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Abstract. Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D
Navier–Stokes equations in a space-time domain containing z0 =(x0, t0), and let Qz0,r =Bx0,r ×

(t0 − r2, t0) be a parabolic cylinder in the domain. We show that if either v × ω

|ω|
∈ L

γ,α
x,t (Qz0,r)

with 3

γ
+ 2

α
≤ 1, or ω × v

|v|
∈ L

γ,α

x,t (Qz0,r) with 3

γ
+ 2

α
≤ 2, where L

γ,α

x,t denotes the Serrin type

of class, then z0 is a regular point for v. This refines previous local regularity criteria for the
suitable weak solutions.
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1. Introduction

The Navier–Stokes equations in a domain Ω ∈ R
3 are the following.

(NS)















∂v

∂t
+ (v · ∇)v = −∇p + ∆v, (x, t) ∈ Ω × (0, T )

div v = 0, (x, t) ∈ Ω × (0, T )

v(x, 0) = v0(x), x ∈ Ω

where v = (v1, v2, v3), vj = vj(x, t), j = 1, 2, 3, is the velocity of the flow, p =
p(x, t) is the scalar pressure, and v0 is the given initial velocity satisfying div
v0 = 0. The global in time existence of a smooth solution to the system (NS) is
an outstanding open problem in mathematics, and is chosen as one of the seven
millennium problems by Clay Institute. One traditional approach to the problem is
to prove global in time existence of weak solutions, and then prove their regularity.
A notion of weak solution of (NS) was introduced, and its global in time existence
in R

3 was proved by Leray in [18]. Later, Hopf proved existence of weak solution
in a bounded domain in [14]. After that there are numerous conditional regularity
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results on the weak solutions, imposing integrability conditions on the velocity or
the vorticity, which guarantee regularity of the weak solutions (see e.g. [25, 21, 23,
17, 10, 26, 1, 2, 3, 28, 9, 13, 15, 16, 20, 5, 6]). For the local analysis of the regularity
properties of weak solutions Caffarelli–Kohn–Nirenberg introduced the notion of
suitable weak solutions and proved its partial regularity as well as global in time
existence ([4]). A refined definition of suitable weak solutions, using a stronger
condition for pressure, which we adopt here, was introduced by Lin in [19]. Let
QT = Ω × (0, T ). For a point z = (x, t) ∈ QT , we denote below

Bx,r = {y ∈ R
3 : |y − x| < r}, Qz,r = Bx,r × (t − r2, t).

We also define the space-time norm,

‖v‖L
γ,α
x,t (QT ) :=

∥

∥‖v(·, t)‖L
γ
x(Ω)

∥

∥

Lα
t (0,T )

, 1 ≤ α, γ ≤ ∞.

Definition 1. A pair (v, p) of measurable functions is a suitable weak solution of
(NS) if the following conditions are satisfied:

(i) v ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; W 1,2(Ω)), p ∈ L
3
2 (QT ).

(ii) The following integral identity holds
∫

QT

[−v · ∂tϕ + (v · ∇)v · ϕ + ∇v : ∇ϕ] dxdt =

∫

Ω

v0 · ϕ(x, 0)dx

for all vector test functions ϕ ∈ [C∞
0 (Ω × [0, T ))]3.

(iii) The pair (v, p) satisfies the local energy inequality,

∫

Ω

|v(x, t)|
2
φ(x, t)dx + 2

∫ t

0

∫

Ω

|∇v(x, τ)|
2
φ(x, τ)dxdτ

≤

∫ t

0

∫

Ω

(

|v|
2
(∂tφ + ∆φ) + (|v|

2
+ 2p)v · ∇φ

)

dxdτ

for almost all t ∈ (0, T ) and for all nonnegative scalar test function φ ∈
C∞

0 (QT ).

We say that a weak solution v is regular at z, if v is bounded in Qz,r for
some r > 0. Such point z is called a regular point. A point in QT , which is not
regular, is called a singular point. Caffarelli–Kohn–Nirenberg showed that the one
dimensional Hausdorff measure of the set S of possible interior singular points
of suitable weak solutions is zero ([4]), which refines the previous results due to
Scheffer ([24]).

In this paper our aim is to obtain refined versions of regularity conditions for
velocity and vorticity for suitable weak solutions, incorporating the directions of
each vector field as well as the magnitudes. Our conditions are not directly on
the velocity or vorticity, but on the orthogonal component of velocity to vorticity
direction, or on the orthogonal component of vorticity to velocity direction. The
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associated integral norms are scaling invariant. Below we use extended defini-
tions the direction fields ω(x, t)/|ω(x, t)| and v(x, t)/|v(x, t)|, which are set to zero
whenever ω(x, t) = 0 or v(x, t) = 0 respectively.

Theorem 1.1. Let z0 = (x0, t0) ∈ QT with Q̄z0,r ⊂ QT , and let (v, p) be a suitable

weak solution of (NS) in QT with the vorticity ω = curl v, where the derivatives

are in the sense of distribution. Suppose v and ω satisfy one of the following

conditions:

(i) There exists an absolute constant ε0 such that
∥

∥

∥

∥

v ×
ω

|ω|

∥

∥

∥

∥

L
3,∞
x,t (Qz0,r)

≤ ε0. (1.1)

(ii) There exist γ ∈ (3,∞] and α ∈ [2,∞) with 3/γ + 2/α ≤ 1 such that

v ×
ω

|ω|
∈ Lγ,α

x,t (Qz0,r). (1.2)

(iii) There exist γ ∈ (3/2,∞] and α ∈ [1,∞) with 3/γ + 2/α ≤ 2 such that

ω ×
v

|v|
∈ Lγ,α

x,t (Qz0,r). (1.3)

Then, z0 is a regular point.

Remark 1.1. We say v is a Beltrami flow in Qz0,r if v × ω = 0 in Qz0,r. In the
study of physics of turbulent flows the Beltrami structure has important roles (see
e.g. [8, 22] and the references therein). The condition that v × ω

|ω| or ω × v
|v| is

controllable in a space-time region implies intuitively that the weak solutions are
not far from the Beltrami flows in that region in an appropriate sense, and the
above theorem says that this implies regularity of the flows in that region.

2. Proof of Theorem 1.1

Before starting our proof we recall previous results concerning the notion of an

epoch of possible irregularity of the weak solution of the Navier–Stokes equations.
It is known that for weak solutions there exists a set E ⊂ I = [0, T ] such that E
is closed, of 1/2-dimensional Hausdorff measure zero, and solutions are regular in
I \E ([18, 12, 11]). Moreover, the set E can be written as I \∪i∈J Ii, where set J is
at most countable, and Ii = (αi, βi) are disjoint open intervals in [0, T ]. Following
[12], we call the instant time βi an epoch of possible irregularity. We recall a fact
proved by Neustupa and Penel in [20] on the epoch of possible irregularity for
suitable weak solutions.

Lemma 2.1. Let z0 = (x0, t0) ∈ QT . Suppose v is a suitable weak solution of

(NS) in QT and t0 be an epoch of possible irregularity. Then there exist positive

numbers τ , r1, and r2 with r1 < r2 such that the followings are satisfied:
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(a) τ is sufficiently small so that t0 is only one epoch of possible irregularity in

time interval [t0 − τ, t0].
(b) The closure of Bx0,r2×(t0−τ, t0) is contained in QT , i.e. Bx0,r2×[t0 − τ, t0]

⊂ QT .

(c)
(

(Bx0,r2 − Bx0,r1) × [t0 − τ, t0]
)

∩ S = φ, where S is the set of possible

singular points of v.
(d) v, vt, and p are, together with all their space derivatives, continuous on

(Bx0,r2 − Bx0,r1) × [t0 − τ, t0].

Next we recall the following result proved in [4], a corollary of which will be
used in the proof of our main theorem.

Proposition 2.1. There exists an absolute constant ε1 > 0 with the following

property. If (v, p) is a suitable weak solution of (NS) near z0 and if

lim sup
ρ→0+

1

ρ

∫

Qz0,ρ

|∇v|2dxdt ≤ ε1, (2.1)

then z0 is a regular point.

As an immediate corollary we have the following local regularity criterion,
which is a local version of the one obtained in [2].

Corollary 2.1. If (v, p) is a suitable weak solution of (NS) near z0, and if either

‖∇v‖
L

3
2

,∞

x,t (Qz0,r)
≤ ε1,

where ε1 is the constant in Proposition 2.1, or there exist γ ∈ (3/2,∞] and α ∈
[2,∞) with 3/γ + 2/α ≤ 2 such that

∇v ∈ Lγ,α
x,t (Qz0,r),

then, z0 is a regular point.

Proof. We observe that

lim sup
ρ→0+

1

ρ

∫

Qz0,ρ

|∇v|2 dxdt ≤ lim supρ→0+ ρ2(2− 3
γ
− 2

α
) ‖∇v‖L

γ,α
x,t (Qz0,ρ)

{

= 0, if γ > 3/2 and 3/γ + 2/α ≤ 2,

≤ ε1, if γ = 3/2, α = ∞

by the Hölder inequality. Then the conclusion is immediate by Proposition 2.1.�

Proof of Theorem 1.1. We first assume that t0 is an epoch of possible irregularity
for v in Qz0,r. Suppose that 0 < r1 < r2 < r, and r2 < τ are the positive numbers
in Lemma 2.1. Below, we denote B1 = Bx0,r1 and B2 = Bx0,r2 . Following [20], we
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choose a cut-off function ϕ ∈ C∞
0 (B2) such that ϕ = 1 on B1, and set u = ϕv−V ,

where V ∈ C2
0 (B2\B1) satisfies div V = v · ∇ϕ. In particular, all the spatial

derivatives of V and ∂V
∂t

are smooth. Using the well-known form of the Navier–
Stokes equations,

∂v

∂t
− v × ω = −∇

(

p +
1

2
|v|2
)

+ ∆v,

one can check easily that u satisfies the following equations:

∂u

∂t
− ϕv × ω = h −∇

(

ϕ
(

p +
1

2
|v|2
)

)

+ ∆u, div u = 0, (2.2)

where we set

h = −
∂V

∂t
+

(

p +
1

2
|v|2
)

∇ϕ − v∆ϕ − 2(∇ϕ · ∇)v + ∆V.

We observe that h(·, t) is supported on
(

B2 \ B1

)

for each t ∈ [t0 − τ, t0), which
is sufficiently smooth in the region. Operating D on (2.2), and taking L2(Bx0,r2)
inner product it by Du, we obtain, after integration by part

1

2

d

dt
‖Du‖2

L2+‖D2u‖2
L2 = −(ϕv × ω, D2u)L2 − (D2u, h)

≤ |(ϕv × ω, D2u)L2 | +
1

8
‖D2u‖2

L2 + C‖h‖2
L2, (2.3)

where (and below) we used simplified notation for the Lp-norm in B2,

‖f‖Lp = ‖f‖Lp(B2), p ∈ [1,∞],

unless other domain is specified. Let us set ξ = ω/|ω|. We estimate the nonlinear
term as follows:

|(ϕv × ω, D2u)L2 | ≤

∫

B2

|v × ξ||ϕω||D2u|dx

≤

∫

B2

|v × ξ||ϕDv||D2u|dx

=

∫

B2

|v × ξ||Du − v∇ϕ + DV ||D2u|dx

≤

∫

B2

|v × ξ||Du||D2u|dx +

∫

B2

|v × ξ||g||D2u|dx

= I1 + I2, (2.4)

where we set g = v∇ϕ − DV. Since g is a smooth function supported on (B2 \
B̄1) × (t0 − τ, t0], we estimate I2 simply as

I2 ≤ ‖g‖L∞‖v‖L2‖D2u‖L2 ≤ C‖v‖2
L2 +

1

4
‖D2u‖2

L2. (2.5)

We first assume the condition (i) of Theorem 1.1 holds true. In this case we
estimate

I1 ≤ ‖v × ξ‖L3‖Du‖L6‖D2u‖L2 ≤ C‖v × ξ‖L3‖D2u‖2
L2. (2.6)
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Combining estimates (2.3)–(2.6) together, we have

d

dt
‖Du‖2

L2 + ‖D2u‖2
L2 ≤ C1‖v × ξ‖L3‖D2u‖2

L2 + C‖h‖2
L2 + C‖v‖2

L2

≤ C1ε0‖D
2u‖2

L2 + C‖h‖2
L2 + C‖v‖2

L2 (2.7)

for t ∈ (t0 − r2
2 , t0], and for an absolute constant C1. If C1ε0 < 1, then integrating

(2.7) in time over [t0 − r2
2 , t0], we can obtain

sup
t0−r2

2<t<t0

‖Du(·, t)‖2
L2 ≤ ‖Du(·, t0 − r2

2)‖
2
L2 + C

∫ t0

t0−r2
2

‖v‖2
L2dt

+C

∫ t0

t0−r2
2

‖h‖2
L2dt < ∞.

Hence, Du ∈ L2,∞
x,t (Qz0,r2), and therefore Dv ∈ L2,∞

x,t (Qz0,r1). Applying Corollary
2.1, we conclude that z0 is a regular point. Next, we assume that the condition
(ii) of Theorem 1.1 holds true, and estimate

I1 ≤ ‖v × ξ‖Lγ‖Du‖
L

2γ
γ−2

‖D2u‖L2

≤ C‖v × ξ‖Lγ‖Du‖1− 3
γ ‖D2u‖

1+ 3
γ

L2

≤ C‖v × ξ‖Lγ‖Du‖1− 3
γ ‖D2u‖

1+ 3
γ

L2

≤ C‖v × ξ‖
2γ

γ−3

Lγ ‖Du‖2
L2 +

1

4
‖D2u‖2

L2, (2.8)

where we used the interpolation inequality,

‖Du‖
L

2γ
γ−2

≤ C‖Du‖
1− 3

γ

L2 ‖D2u‖
3
γ

L2

for 3 < γ ≤ ∞. Combining (2.8) and (2.5) with (2.3), we obtain

d

dt
‖Du‖2

L2 + ‖D2u‖2
L2 ≤ C‖v × ξ‖

2γ

γ−3

Lγ ‖Du‖2
L2 + C‖v‖2

L2 + C‖h‖2
L2. (2.9)

By Gronwall’s lemma we have

‖Du(·, t0)‖
2
L2 + ν

∫ t0

t0−r2
2

‖D2u(·, t)‖2
L2dt

≤ ‖Du(·, t0 − r2
2)‖

2
L2 exp

(

C

∫ t0

t0−r2
2

‖v × ξ(·, t)‖
2γ

γ−3

Lγ dt

)

+C

∫ t0

t0−r2
2

‖h(·, t)‖2
L2dt + C

∫ t0

t0−r2
2

‖v(·, t)‖2
L2dt. (2.10)

Since v × ξ ∈ Lγ,α
x,t (Qz0,r2) with 3/γ + 2/α ≤ 1 and γ > 3, we estimate

∫ t0

t0−r2
2

‖v × ξ(·, t)‖
2γ

γ−3

Lγ dt ≤ ‖v × ξ‖
γ

γ−3

L
γ,α
x,t (B2×(t0−r2

2,t0))
r

2γ

γ−3 (1− 3
γ
− 2

α
)

2 < ∞. (2.11)
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From (2.10), (2.11) we find that Du∈L2,∞
x,t (Qz0,r2), and hence Dv∈L2,∞

x,t (Qz0,r1).
Similarly to the previous case, we conclude that z0 is a regular point for v.

Now we assume (iii) of the theorem holds true, and set η = v/|v|. We multiply
u|u| on the first equation of (2.2), and integrate over B2 to obtain

1

3

d

dt

∫

B2

|u|3dx +
2

3

∫

B2

|∇|u|
3
2 |2dx

=

∫

B2

ϕv × ω · u|u|dx +

∫

B2

|u|(u · ∇)

[

ϕ
(

p +
1

2
|v|2
)

]

dx +

∫

B2

h · u|u|dx

≤

∫

B2

|u|2|u + V ||ω × η|dx +

∫

B2

|u|2
∣

∣

∣

∣

∇

[

ϕ
(

p +
1

2
|v|2
)

]∣

∣

∣

∣

dx +

∫

B2

|h||u|2dx

:= J1 + J2 + J3, (2.12)

where we used the fact ϕv = u + V . Using Hölder’s, Gagliardo–Nirenberg’s, and
Young’s inequalities we estimate as follows.

J1 ≤
∥

∥|u|2
∥

∥

L
3γ

2(γ−1)
‖u + V ‖L3γγ−1‖ω × η‖Lγ

≤ ‖u‖2

L
3γ

γ−1
‖u‖L3γγ−1‖ω × η‖Lγ + C‖u‖2

L
3γ

γ−1
‖ω × η‖Lγ

:= Ja
1 + Jb

1 , (2.13)

where we estimate Ja
1 and Jb

1 ;

Ja
1 ≤ C‖u‖

3(2γ−3)
2γ

L3 ‖∇|u|
3
2 ‖

3
γ

L2‖ω × η‖Lγ

≤ C‖ω × η‖
2γ

2γ−3

Lγ ‖u‖3
L3 +

1

12
‖∇|u|

3
2 ‖2

L2, (2.14)

and

Jb
1 ≤ C‖u‖

2(2γ−3)
2γ

L3 ‖∇|u|
3
2 ‖

2
γ

L2‖ω × η‖Lγ

≤ C‖ω × η‖
2γ

2γ−3

Lγ ‖u‖3
L3 +

1

12
‖∇|u|

3
2 ‖2

L2 + C‖ω × η‖
2γ

2γ−3

Lγ . (2.15)

In order to estimate J2 we need a preliminary elliptic estimate as follows. We take
operation of div(·) on the first equation of (2.2) to have

∆

[

ϕ
(

p +
1

2
|v|2
)

]

= div [ϕv × ω] + div h,

which can be extended to the equation on the whole domain. Hence, by the
gradient estimate for the elliptic operator ∆, we obtain

∥

∥

∥

∥

∇

[

ϕ
(

p +
1

2
|v|2
)

]∥

∥

∥

∥

Lp

≤ Cp‖ϕv × ω‖Lp + Cp‖h‖Lp, 1 < p < ∞.
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Using this fact, we estimate J2 as follows.

J2 ≤
∥

∥|u|2
∥

∥

L
3γ

2(γ−1)

∥

∥

∥

∥

∇

[

ϕ
(

p +
1

2
|v|2
)

]
∥

∥

∥

∥

L
3γ

γ+2

≤ C‖u‖2

L
3γ

γ−1
‖ϕv × ω‖

L
3γ

γ+2
+ C‖u‖2

L
3γ

γ−1
‖h‖

L
3γ

γ+2

:= Ja
2 + Jb

2 . (2.16)

We estimate Ja
2 and Jb

2 separately as follows.

Ja
2 ≤ C‖u‖2

L
3γ

γ−1
‖u + V ‖

L
3γ

γ−1
‖ω × η‖Lγ

≤ C‖u‖2

L
3γ

γ−1
‖u‖

L
3γ

γ−1
‖ω × η‖Lγ + CC‖u‖2

L
3γ

γ−1
‖ω × η‖Lγ

≤ (following the similar estimate of J1)

≤ C‖ω × η‖
2γ

2γ−3

Lγ ‖u‖3
L3 +

1

12
‖∇|u|

3
2 ‖2

L2 + C‖ω × η‖
2γ

2γ−3

Lγ . (2.17)

Jb
2 ≤ C‖u‖

2γ−3
γ

L3 ‖∇|u|
3
2 ‖

2
γ

L2 ≤ C‖u‖
2γ−3
γ−1

L3 +
1

12
‖∇|u|

3
2 ‖2

L2

≤ C‖u‖3
L3 +

1

12
‖∇|u|

3
2 ‖2

L2 + C. (2.18)

The estimate of J3 is simple as the following,

J3 ≤ ‖h‖L3‖u‖2
L3 ≤ C‖u‖3

L3 + C. (2.19)

Combining (2.12)–(2.19), and absorbing the terms involving ‖∇|u|
3
2 ‖2

L2 to the left
hand side of (2.12), we obtain

d

dt

(

‖u‖3
L3 + 1

)

+ ‖∇|u|
3
2 ‖2

L2 ≤ C
(

‖ω × η‖
2γ

2γ−3

Lγ + 1
)(

‖u‖3
L3 + 1

)

, (2.20)

from which, after integration over [t0 − r2
2 , t0], we derive

‖u(·, t0)‖
3
L3 ≤

(

‖u(·, t0−r2
2)‖

3
L3+1

)

exp

(

C

∫ t0

t0−r2
2

‖ω × η‖
2γ

2γ−3

Lγ dt + Cr2
2

)

. (2.21)

Since ω × η ∈ Lγ,α
x,t (Qz0,r2) with 3/γ + 2/α ≤ 2 by hypothesis, we have

∫ t0

t0−r2
2

‖ω × η(·, t)‖
2γ

2γ−3

Lγ dt ≤ ‖ω × η‖
2γ

2γ−3

L
γ,α
x,t (B2×(t0−r2

2,t0))
r

4γ

2γ−3 (2− 3
γ
− 2

α
)

2 < ∞. (2.22)

From (2.21)–(2.22) we find that u ∈ L3,∞
x,t (Qz0,r2), and therefore applying the

regularity criterion due to [9], we conclude that z0 is a regular point.
Next, we assume that z0 is a singular point for which t0 is not an epoch of

possible irregularity. Then, there exists a time t∗ ∈ (t0−r2, t0) and 0 < r̃1 < r̃2 < r
such that v is regular on (Bx0,r̃2 \Bx0,r̃1)× [t∗, t0]. This is due to that fact that the
one dimensional Hausdorff measure of the set of all possible singular space-time
points is equal to zero. We claim v is regular on Bx0,r̃1 × [t∗, t0]. Suppose not,
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then there exists another time s ∈ [t∗, t0] such that the weak solution is regular on
Bx0,r̃1 × [t∗, s), and singularity occurs at (y, s) ∈ Bx0,r̃1 × {s}. We can repeat the
above argument for the parabolic neighborhoods of (y, s) to conclude that (y, s)
is actually a regular point. Hence, there exists no space-time point of singularity
in Bx0,r̃1 × [t∗, t0], and we are reduced to the already considered case that t0 is an
epoch of possible irregularity. This completes the proof. �
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