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1. Introduction

The steady-state problem for the Navier–Stokes equations is to find a solution
(u, p) of the system1 [4]

ν∆u− u · ∇u+ f = ∇p in Ω,

divu = 0 in Ω,

u = a on ∂Ω,

(1)

where u is the velocity, p the pressure, ν the kinematical viscosity coefficient, f the
body force and a the boundary datum. It is well known that if Ω is the exterior
domain

Ω = R
2 \ Ω0, (2)

where ∂Ω0 is connected and Lipschitz, a ∈ W 1/2,2(∂Ω), f ∈ D−1,2
0 (Ω) and

∫

∂Ω

a · n = 0,

1 For the relevant definitions and properties of system (1) we quote [4]. Unless we don’t specify
the symbols, we shall use the notation in [4]. If V is a function space, Vσ = {χ ∈ V : div χ = 0};
H1(R2) denotes the Hardy space on R

2. As is always possible, we assume that Ω0 contains the
unit disk.



408 A. Russo JMFM

with n outward unit normal to ∂Ω, then system (1) has a weak solution with a
finite Dirichlet integral for every value of ν (see, e.g., [4], [8]). The main purpose
of this article is to show that the above result continues to hold under the weaker
assumption

ν >
ξ|Φ|

2π
,

where

ξ = sup
‖w‖

D
1,2
σ (R2)

=1

∣

∣

∣

∣

∫

R2

log |x| div(w · ∇w)

∣

∣

∣

∣

, Φ =

∫

∂Ω

a · n.

2. Some auxiliary results

Consider the Stokes problem

ν∆u+ f= ∇p in Ω,

divu = 0 in Ω,

u = a on ∂Ω.

(3)

The following results are well known.

Theorem 1. Let Ω be the Lipschitz bounded domain

Ω = Ω1 \ Ω0, Ω0 ⊂ Ω1. (4)

If f ∈ D−1,2
0 (Ω) and a ∈ W 1/2,2(∂Ω) satisfies

∫

∂Ω

a · n = 0, (5)

then system (3) has a weak solution h ∈ W 1,2
σ (Ω), expressed by

h(x) = v(x) −
Φx

2π|x|2
, (6)

and
∫

∂Ω0

v · n =

∫

∂Ω1

v · n = 0. (7)

Theorem 2. Let Ω be the Lipschitz exterior domain defined by (2). If f ∈
D−1,2

0 (Ω) and a ∈ W 1/2,2(∂Ω), then system (3) has a weak solution h ∈ D1,2
σ (Ω),

expressed by (6) with
∫

∂Ω

v · n = 0.

Lemma 1. The linear functional

φ ∈ H1 →

∫

R2

φ(x) log |x|

is continuous.
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For a proof of Lemma 1 see, e.g., [11] p. 82.

Lemma 2. [3] If w ∈ D1,2
σ (R2), then div(w · ∇w) ∈ H1.

From the above lemmas it easily follows that

ξ = sup
‖w‖

D
1,2
σ (R2)

=1

∣

∣

∣

∣

∫

R2

log |x| div(w · ∇w)

∣

∣

∣

∣

< +∞. (8)

Theorem 3. Let Ω be the Lipschitz bounded domain defined by (4), let f ∈
D−1,2

0 (Ω) and let a ∈ W 1/2,2(∂Ω) satisfy (5). If

ν >
ξ|Φ|

2π
, (9)

where ξ is defined by (8), then system (1) has a weak solution u ∈ W 1,2
σ (Ω).

Proof. Theorem 3 with a different constant ξ is well known [2], [4]. We give a proof
for the sake of completeness.

Let us look for a solution to system (1) expressed by

u = h+w, (10)

with h given by (6) and w ∈ W 1,2
0,σ (Ω) solution to the equation

ν

∫

Ω

∇ϕ · ∇w =

∫

Ω

(h +w) · ∇ϕ · (h +w), ∀ϕ ∈ W 1,2
0,σ (Ω). (11)

By a classical argument (the Leray–Schauder fixed point theorem, see, e.g., [8],
or H. Fujita’s technique, see, e.g., [4]) this aim will be achieved if we show that
all the solutions to (11) have Dirichlet integrals bounded uniformly for ν ∈ [ν0, ν̄],
ν0 > ξ|Φ|/2π, i.e. there is a positive constant c0 such that, for every pair (ν,w)
with w solution to (11) and ν ∈ [ν0, ν̄],

∫

Ω

(∇w)2 ≤ c0. (12)

To this end we follow a classical reasoning which goes back to J. Leray [9] (see also
[2] and [4], Ch. VIII p. 58). If (12) is not true, then we can find two sequences
{νk}k∈N in [ν0, ν̄] and {wk}k∈N in W 1,2

0,σ (Ω), solutions to (11) such that

lim
k→+∞

νk = ν ∈ [ν0, ν̄], lim
k→+∞

J2
k = lim

k→+∞

∫

Ω

(∇wk)2 = +∞.

Setting

w̃k =
wk

Jk
, (13)

from (11) we have
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νk

Jk

∫

Ω

∇ϕ · ∇w̃k =

∫

Ω

w̃k · ∇ϕ · w̃k +
1

Jk

∫

Ω

h · ∇ϕ · w̃k

+
1

Jk

∫

Ω

w̃k · ∇ϕ · h+
1

J2
k

∫

Ω

h · ∇ϕ · h, (14)

for all ϕ ∈ W 1,2
0,σ (Ω). Since ‖∇w̃k‖L2(Ω) = 1, from {w̃k}k∈N we can extract

a subsequence which converges weakly in W 1,2(Ω) and strongly in Lq(Ω), q ∈
[1, +∞), to a field w̃ ∈ W 1,2

σ,0 (Ω), with ‖∇w̃‖L2(Ω) ≤ 1. Therefore, letting k → +∞
in (14) yields

∫

Ω

w̃ · ∇w̃ · ϕ = 0, ∀ϕ ∈ W 1,2
0,σ (Ω).

Hence it follows that w̃ is a weak solution to equations

w̃ · ∇w̃ + ∇Q̃ = 0 in Ω, (15)

for some pressure field Q̃ ∈ W 1,q(Ω), q ∈ [1, 2), constant on ∂Ω0 and ∂Ω1, say Q̃0

on ∂Ω0 and Q̃1 on ∂Ω1 [7].
Choosing ϕ = wk in (14) and letting k → +∞, we get

ν =

∫

Ω

w̃ · ∇w̃ · h =
Φ

2π

∫

Ω

log |x| div(w̃ · ∇w̃) +

∫

Ω

w̃ · ∇w̃ · v.

Hence, since by (7)
∫

Ω

w̃ · ∇w̃ · v = −

∫

Ω

v · ∇Q̃ = −Q̃0

∫

∂Ω0

v · n− Q̃1

∫

∂Ω1

v · n = 0,

it follows

ν =
Φ

2π

∫

R2

log |x| div(w̃ · ∇w̃). (16)

Therefore, taking into account Lemmas 1, 2, (16) implies

ν ≤
ξΦ

2π
,

which contradicts hypothesis (9). Then, we conclude that (12) holds. Hence it fol-
lows that there is a fieldw∈W 1,2

0,σ such that (10) is a weak solution to system (1). �

3. An existence theorem in exterior domains

We are now in a position to prove our main result.

Theorem 4. Let Ω be the exterior domain defined by (2), let f ∈ D−1,2
0 (Ω) and

let a ∈ W 1/2,2(∂Ω). If

ν >
ξ|Φ|

2π
, (17)

where ξ is defined by (8), then system (1) has a weak solution u ∈ D1,2
σ (Ω).
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Proof. Set TR = S2R \ SR, ΩR = Ω ∩ SR, with Ω0 ⊂ SR = {x : |x| < R}. Let v
be the field appearing in (6) and let g be a C∞ cut-off function, vanishing outside
S2R̄ and equal to 1 in SR̄, with R̄ fixed positive constant. Let ψ ∈ W 1,2

0 (TR̄) be a
solution to the problem (see, e.g., [4] Ch. III)

divψ + div(gv) = 0 in TR̄,

‖∇ψ‖L2(TR̄) ≤ c‖ div(gv)‖L2(TR̄)

and set

γ = ζ −
Φx

2π|x|2
, ζ =











v, in ΩR̄,

ψ + gv, in TR̄,

0, in R
2 \ Ω2R̄.

(18)

Let {Rk}k∈N be an increasing and divergent sequence in (0, +∞), with SR1 ⊃
Ω0. By Theorem 3 the equation

ν

∫

ΩRk

∇ϕ · ∇w =

∫

ΩRk

(γ +w) · ∇ϕ · (γ +w) − ν

∫

ΩRk

∇γ · ∇ϕ+ 〈f ,ϕ〉, (19)

for all ϕ ∈ W 1,2
0,σ (Ω), has a solution wk ∈ W 1,2

0,σ (ΩRk
). Extend each field wk onto

R
2 by setting wk = 0 outside ΩRk

. Let us show that every solution to (19) has
Dirichlet integral uniformly bounded with respect to Rk. Once again we follow
a contradiction argument. Assume that a sequence {wk}k∈N of solutions to (19)
exists such that limk→∞ ‖∇wk‖L2(Ω) = +∞. Then the field w̃k defined by (13)
satisfies the relation

ν

Jk

∫

Ω

∇ϕ · ∇w̃k =

∫

Ω

w̃k · ∇ϕ · w̃k +
1

Jk

∫

Ω

γ · ∇ϕ · w̃k +
1

Jk

∫

Ω

w̃k · ∇ϕ · γ

+
1

J2
k

∫

Ω

(γ · ∇ϕ · γ − ν∇γ · ∇ϕ) +
1

J2
k

〈f ,ϕ〉, (20)

for all ϕ ∈ W 1,2
0,σ (ΩRk

). Since ‖∇w̃k‖L2(Ω) = 1, from {w̃k}k∈N we can extract a
subsequence we denote by the same symbol which converges strongly in Lq

loc(Ω),

for all q ∈ [1, +∞), and weakly in D1,2
0 (Ω) to a field w̃ ∈ D1,2

0,σ(Ω). Therefore,
letting k → +∞ in (20), we see that the field w̃ is a weak solution to equations
(15). Choosing ϕ = w̃k in (20) yields

ν =

∫

Ω

w̃k · ∇w̃k · γ +
1

Jk

∫

Ω

(γ · ∇w̃k · γ − ν∇γ · ∇w̃k) +
1

Jk
〈f , w̃k〉. (21)

Since by Lemmas 1, 2
∣

∣

∣

∣

∫

Ω

w̃k · ∇w̃k · ∇ log |x|

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R2

log |x| div(w̃k · ∇w̃k)

∣

∣

∣

∣

≤ ξ,

(21) yields

ν −
ξ|Φ|

2π
≤

∫

Ω

w̃k · ∇w̃k · ζ +
1

Jk

∫

Ω

(γ · ∇w̃k · γ − ν∇γ · ∇w̃k) +
1

Jk
〈f , w̃k〉.
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Hence, letting k → +∞ and taking into account that

|〈f , w̃k〉| ≤ c‖f‖D−1,2(Ω)‖∇w̃k‖L2(Ω) ≤ c‖f‖D−1,2(Ω),

∣

∣

∣

∣

∫

Ω

(γ · ∇w̃k · γ −∇γ · ∇w̃k)

∣

∣

∣

∣

≤ c

∫

Ω

|∇w̃k|

|x|2

≤ c

{
∫

Ω

1

|x|4

∫

Ω

(∇w̃k)2
}1/2

≤ c,

it follows

ν −
ξ|Φ|

2π
≤

∫

Ω

w̃ · ∇w̃ · ζ. (22)

Since Q̃ is constant (say Q̃0) on ∂Ω, taking into account (15) we have
∫

Ω

w̃ · ∇w̃ · ζ = −

∫

Ω

ζ · ∇Q̃ = −Q̃0

∫

∂Ω

ζ · n = 0. (23)

Therefore, under hypothesis (17), (22) and (23) are incompatible. Hence it follows
that the sequence {w̃k}k∈N is uniformly bounded in D1,2

0 (Ω) so that from it we
can extract a subsequence, we denote by the same symbol, which converges weakly
in D1,2

0 (Ω) to a field w ∈ D1,2
0,σ(Ω) a standard argument shows to be a solution to

equation (19) (see, e.g., [10], Ch. 3). �

One the most intriguing and difficult question related to the above solution
is the knowledge of its behavior at infinity (see [1], [5] ,[6]). Our last result,
which is suggested by a recent one of G. P. Galdi [5] (Theorem 3.2), gives a little
contribution to this problem.

Theorem 5. Let Ω be an exterior Lipschitz domain, symmetric with respect to

the reference axes. Let f = (f1, f2) ∈ D−1,2
0 (Ω) and let a = (a1, a2) ∈ W 1/2,2(∂Ω)

satisfy

f1(x1, x2) = −f1(−x1, x2) = f1(x1,−x2),

f2(x1, x2) = f2(−x1, x2) = −f2(x1,−x2),

a1(x1, x2) = −a1(−x1, x2) = a1(x1,−x2),

a2(x1, x2) = a2(−x1, x2) = −a2(x1,−x2).

(24)

If (17) holds, then the Navier–Stokes problem has a weak solution vanishing at

infinity in the following sense

lim
R→+∞

∫ 2π

0

u2(R, θ) = 0. (25)

Moreover, if f has a compact support, then

lim
|x|→+∞

u(x) = 0 (26)

uniformly.
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Proof. Under the above assumptions the argument used in the proof of Theorem 3
delivers existence of a weak solution u ∈ D1,2

σ (Ω) enjoying the symmetry properties
(24). Therefore, taking into account that by symmetry

∫

TR

u = 0,

by the trace theorem and the Poincaré inequality we have
∫ 2π

0

u2(R, θ) ≤
c

R2

∫

TR

u2 + c1

∫

TR

(∇u)2 ≤ c2

∫

TR

(∇u)2,

with c, c1 and c2 positive constants independent of R. Hence (25) follows; (26) is
proved by Lemma 3.10 in [5]. �

Remark 3.1. By the method of this paper it is not difficult to treat problem (1)
in the exterior domain

Ω = R
2 \

m
⋃

i=1

Ωi,

where Ωi are m Lipschitz domains with connected boundaries and such that Ωi ∩
Ωj = ∅, i 6= j. In such a case one must require that

ν >
ξ

2π

m
∑

i=1

|Φi|,

with

Φi =

∫

∂Ωi

a · n.
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pose l’hydrodynamique, J. Math. Pures Appl. 12 (1933), 1–82.

[10] H. Sohr, The Navier–Stokes equations, Birkhäuser, Basel, 2001.
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