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1. Introduction

The steady-state problem for the Navier—Stokes equations is to find a solution
(u, p) of the system® [4]
vAu—u-Vu+ f=Vp in Q,
divu =0 in Q, (1)
u=a on 02,
where wu is the velocity, p the pressure, v the kinematical viscosity coefficient, f the

body force and a the boundary datum. It is well known that if 2 is the exterior
domain

Q =R\ Q, (2)
where 8 is connected and Lipschitz, a € W'/22(9Q), f € Dy () and

/ a-n=0,
o0

L For the relevant definitions and properties of system (1) we quote [4]. Unless we don’t specify
the symbols, we shall use the notation in [4]. If V is a function space, V, = {x € V : divx = 0};
HE (Rz) denotes the Hardy space on R2. As is always possible, we assume that g contains the
unit disk.
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with n outward unit normal to 9€, then system (1) has a weak solution with a
finite Dirichlet integral for every value of v (see, e.g., [4], [8]). The main purpose
of this article is to show that the above result continues to hold under the weaker
assumption

£|®|
> -,
v 2m
where
&= sup / log |z| div(w - Vw)], ¢ = / a-n.
HwHDé’Q(R2):1 R2 89

2. Some auxiliary results

Consider the Stokes problem
vAu+ f=Vp in Q,
divu=0 in Q, (3)
u=a on 0f).

The following results are well known.

Theorem 1. Let 2 be the Lipschitz bounded domain
Qzﬂl\ﬁo, ﬁoCQl. (4)
If f € Dy *(Q) and a € W/2(9Q) satisfies

/ma~n_0, ®)

then system (3) has a weak solution h € W12(Q), expressed by
Pz
27|x|?’

/ v~n:/ v-n=0. (7)
%% o

Theorem 2. Let ) be the Lipschitz exterior domain defined by (2). If f €
Dy Q) and a € W/22(9Q), then system (3) has a weak solution h € DL2(Q),
expressed by (6) with
/ v-n=0.
[519)

Lemma 1. The linear functional

sen = [ oozl

h(z) = v(x)

and

1S continuous.
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For a proof of Lemma 1 see, e.g., [11] p. 82.

Lemma 2. [3] If w € DL2(R?), then div(w - Vw) € H!.
From the above lemmas it easily follows that

&= sup / log |z| div(w - Vw)| < +o0. (8)
R2

lwll ;1.2 g2y =1

(®2)

Theorem 3. Let Q be the Lipschitz bounded domain defined by (4), let f €
Dy Q) and let a € WY/22(9Q) satisfy (5). If

£|2|
v > or
where & is defined by (8), then system (1) has a weak solution uw € W12(Q).

9)

Proof. Theorem 3 with a different constant & is well known [2], [4]. We give a proof
for the sake of completeness.
Let us look for a solution to system (1) expressed by

u=h+w, (10)

with h given by (6) and w € Wolf () solution to the equation

V/ch-V'w:/(h—i—w)-Vgo-(h—i—w), Ve e WIEQ). (11
Q Q

By a classical argument (the Leray—Schauder fixed point theorem, see, e.g., [8],
or H. Fujita’s technique, see, e.g., [4]) this aim will be achieved if we show that
all the solutions to (11) have Dirichlet integrals bounded uniformly for v € [vg, 7],
vy > &|®|/2m, i.e. there is a positive constant ¢y such that, for every pair (v, w)
with w solution to (11) and v € vy, 7],

/Q(Vw)2 < ¢p. (12)

To this end we follow a classical reasoning which goes back to J. Leray [9] (see also
[2] and [4], Ch. VIII p. 58). If (12) is not true, then we can find two sequences
{Vk}ren in [vo, 7] and {wy }ren in Wol(f(ﬂ), solutions to (11) such that

lim vy =v € [v,7], lim JZ= lim (Vwy)? = +oo.
k—-+o00 k——+oc0 k—+o0 Q
Setting
~ Wi
= Yk 13
Wk = (13)

from (11) we have
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1
Uk ch Vwk—/wk Ve - wk+—/h Ve - wy
Jr J]
1
Ve -h h-Vo-h 14
t g ) e Ve ke J2/ ®-h, (14)
for all ¢ € Wolf(ﬂ) Since ||vwkHL2(Q) = 1, from {Wwg}ren we can extract

a subsequence which converges weakly in W12(Q2) and strongly in L4(2), ¢ €
[1,400), to a field @ € W, 5 (€), with |[Va]|12(q) < 1. Therefore, letting k — +oo
in (14) yields
w-Vw- =0, VYpecW2(9Q).
Q

Hence it follows that w is a weak solution to equations

w-Vw+VQ=0 inQ, (15)
for some pressure field Qe Wh4(Q), q € [1,2), constant on 9y and 98, say Qo
on 09y and @1 on 9 [7].

Choosing ¢ = wy, in (14) and letting k — 400, we get

0]
v = ﬁJ~VﬁJ~h:—/log|x|div(ﬁ)-Vﬁj)+/ﬁ)-Vﬁ)-v.
Q 27 Jo Q

Hence, since by (7)

/@-Vﬁ:-vz—/v-VC}:—Qo/ v-n—@l/ v-n=_0,
Q Q 00 o

it follows o
v=— / log |z| div(w - Vw). (16)
2T R2
Therefore, taking into account Lemmas 1, 2, (16) implies
,< &2
- 27’

which contradicts hypothesis (9). Then, we conclude that (12) holds. Hence it fol-
lows that there is a field w e Wolf such that (10) is a weak solution to system (1). O

3. An existence theorem in exterior domains

We are now in a position to prove our main result.

Theorem 4. Let Q be the exterior domain defined by (2), let f € Dy "?(Q) and
let a € WY22(0Q). If

S ¢l2l

27’
where & is defined by (8), then system (1) has a weak solution w € DL2(Q).

(17)
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Proof. Set T = Sar \ Sr, Qr = QN Sk, with ﬁo C Sgr = {LL‘ : |$| < R} Let v
be the field appearing in (6) and let g be a C*° cut-off function, vanishing outside
S,g and equal to 1 in Sg, with R fixed positive constant. Let 1 € W&’Q(TR) be a
solution to the problem (see, e.g., [4] Ch. III)

divey + div(gv) =0 in Tg,
IV 21,y < el div(go) ey

and set
v, in Qp,
dx .
’YZC_ 2 C: ¢+gva m TR) (18)
27| x|
07 in RQ \ QQR

Let {Ry}ren be an increasing and divergent sequence in (0, +00), with Sg, D
Qo. By Theorem 3 the equation

v [ Vevw= [ 4w Ve (rrw v [ Vy-Vesifie), (19)
QR Qr, Qg

for all ¢ € Wolf(Q), has a solution wy, € Wol”f(QRk). Extend each field wy, onto
R? by setting wy = 0 outside Qg,. Let us show that every solution to (19) has
Dirichlet integral uniformly bounded with respect to Rj. Once again we follow
a contradiction argument. Assume that a sequence {wy, }ren of solutions to (19)
exists such that limy o ||Vws||12(q) = 4+00. Then the field w; defined by (13)
satisfies the relation

1 1
v V@-V@k:/@k-V<p~1bk+—/7~Vgo-ﬁ)k+—/ﬁjk-Vgo~'y
Ji Ja Q Ji Ja Ji Ja

+%/(’Y'VCP"Y—VV’Y'V<P)+%<f780>a (20)
kJQ k

for all ¢ € Wol(f(QRk) Since ||[Vy| r2() = 1, from {@}}ren we can extract a
subsequence we denote by the same symbol which converges strongly in L (),
for all ¢ € [1,+00), and weakly in Dy*(Q) to a field @ € Dy2(Q). Therefore,
letting & — +o00 in (20), we see that the field w is a weak solution to equations
(15). Choosing ¢ = Wy, in (20) yields

_ . 1 . ~ 1 -
u:/wk-Vwk-'y—i——/('y-V'wk-’y—uV'y-Vwk)+—<f,wk>. (21)
Q Ik Ja Ik

Since by Lemmas 1, 2

/ wy, - Vwy, - Viog |z
Q

= ’/W log |x| div(wy, - Vwyg)| <&,
(21) yields

® 1 !
V—€| |§ ﬁ)k~Vﬁ]k'C+—/(7.Vﬁ)k.»7—VV'7~V’&]]€)+_<faﬂ)k>.
2 Q Jk Q Jk
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Hence, letting £ — +o0 and taking into account that

I(f, wi)| < cllfllp-r2@)IVrl L2 < cllfllp-120),

Sc/ |vw2k|
o |z

1 1/2
ol e )
Q |~”U| Q

o
y—%g/ﬂﬁ)-vm-g. (22)

/(’Y'Vﬁ’k")’—v’)"VﬁJk)
Q

it follows

Since Q is constant (say Qo) on 9, taking into account (15) we have
/m-vw-g:-/g-v@:-@o ¢-n=0. (23)
Q Q o9

Therefore, under hypothesis (17), (22) and (23) are incompatible. Hence it follows
that the sequence {wy, }ren is uniformly bounded in D(IJ’2(Q) so that from it we
can extract a subsequence, we denote by the same symbol, which converges weakly
in Dy*(Q) to a field w € Déi(Q) a standard argument shows to be a solution to
equation (19) (see, e.g., [10], Ch. 3). O

One the most intriguing and difficult question related to the above solution
is the knowledge of its behavior at infinity (see [1], [5] ,[6]). Our last result,
which is suggested by a recent one of G. P. Galdi [5] (Theorem 3.2), gives a little
contribution to this problem.

Theorem 5. Let Q be an exterior Lipschitz domain, symmetric with respect to
the reference azes. Let f = (f1, f2) € Dy () and let a = (a1, a9) € W/22(9)
satisfy

fi(zr, ) = —fi(—x1,22) = fi(x1, —x2),
fa(x1,®2) = fa(—21,22) = — fa(w1, —22),
al(ﬂfl,xz) = —&1(—331,1?2) = a1(331, —I2), (24>
ag(xl,xg) = CLQ(—Il, IQ) = —ag(xl, —IQ).

If (17) holds, then the Navier-Stokes problem has a weak solution vanishing at
infinity in the following sense
2m
li %(R,0) = 0. 25
Gl [ R0 (25)
Moreover, if f has a compact support, then

lim wu(z)=0 (26)

|z|—+o00

uniformly.
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Proof. Under the above assumptions the argument used in the proof of Theorem 3
delivers existence of a weak solution u € D}2(2) enjoying the symmetry properties
(24). Therefore, taking into account that by symmetry

/ u =0,
Tr

by the trace theorem and the Poincaré inequality we have

2
/ u?(R,0) < %/ u? —i—cl/ (Vu)? < cz/ (Vu)?,
0 Tr Tr T

with ¢, ¢; and c¢2 positive constants independent of R. Hence (25) follows; (26) is
proved by Lemma 3.10 in [5]. O

Remark 3.1. By the method of this paper it is not difficult to treat problem (1)
in the exterior domain

Q:N\OQ,
i=1

1=

where €); are m Lipschitz domains with connected boundaries and such that Q. n
Q; = @, 14 # j. In such a case one must require that

5 m
> — (I)'L'v
v 27r;| |

@i:/ a-n.
o0,

with
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