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Abstract. We study pointwise asymptotic stability of steady incompressible viscous fluids. The
region of the motion is bounded. Our results of stability are based on the maximum modulus
theorem that we prove for solutions of the Navier–Stokes equations. The asymptotic stability is
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Mathematics Subject Classification (2000). 35Q30, 76D03, 35B40.

Keywords. Navier–Stokes equations, asymptotic stability, maximum modulus theorem.

1. Introduction

In this paper we study the stability of steady solutions of the Navier–Stokes system.
We consider perturbations to the kinetic field of the unperturbed motion (v, π̃).
It is known (cf. [3, 8]) that the perturbation (u, π) satisfies the following initial
boundary value problem:

ut + u · ∇u+ v · ∇u + u · ∇v + ∇π =
1

R
∆u,

∇ · u = 0 in Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ), u(x, 0) = u0(x) in Ω.

(1.1)

The symbol ut denotes
∂

∂t
u and, for any pair of vectors (a, b), by a·∇b we mean the

term (a·∇)b. ByR we indicate the Reynolds number associated to the unperturbed
motion (v, π̃) and by u0 the initial value of the perturbation. The domain Ω ⊂ R

3

is assumed bounded and C2,α-smooth (α ∈ (0, 1)). Usually, the nonlinear stability
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of a steady motion is studied with respect the L2-norm of the perturbations and
the motion is said stable in energy. A very interesting approach to studying the
energy stability is the one based on a variational formulation. It was introduced
by Serrin in [21] and developed by several authors [6, 7, 8, 18, 28]. The advantage
of such a formulation essentially consists in the possibility of determining a critical
Reynolds number Rc. If R < Rc, then the steady motion is unconditionally stable
in L2-norm and asymptotically stable also. The condition R < Rc means that
the result of stability is related to a family of motions, that is, any motion with
Reynolds number R (< Rc) is stable. However, as stressed in [3], from a physical
view point it is interesting to evaluate the stability of a motion with respect to
the uniform norm also. A coherent way to attack the question is to consider at
the initial instant a continuous distribution of velocity of the perturbation and
to assume that its maximum modulus value is finite.1 Then, one establishes the
evolution of the perturbation. A priori no other requirement of regularity is plau-
sible. Of course, the above assumption implies that the perturbation at the initial
instant is in L2(Ω), that is, it has finite energy. However the energy stability does
not imply pointwise stability. Actually we have the following implication: the
energy stability implies attractivity of the basic motion (v, π̃) with respect to the
uniform norm (cf. [19]). That is there exists an instant T0 = T0(|u◦|2, R,Ω) such
that u(x, t) ∈ C(Ω) and |u(x, t)| ≤ C(|u0|2, R, w,Ω)e−γt for any t ≥ T0. If we as-
sume that u0(x) ∈ C(Ω) ∩ L2(Ω), even if we make an assumption of smallness as
max

Ω
|u0(x)|+ |u0|2 << ε, we do not know if the L2-theory ensures that u(x, t) ex-

ists as a classical solution (for definition see Section 2) for t > 0 and, in particular,
if |u(x, t)| < ∞ for any (x, t) ∈ Ω × [0, T0). If we assume u0(x) ∈ C(Ω) ∩ L3(Ω),
then we have a quite analogous statement in a neighborhood of t = 0 .

The above considerations lead us to the conclusion that the pointwise stability
is still an open problem. In this regard, it is also quite natural to inquire if the
pointwise stability can be formulated by means of a variational formulation. Since
we are going to work with classical solutions of problem (1.1), we are not able to
give a variational formulation on the perturbations (u, π). Actually, we approach
the question giving the variational formulation for the solutions of the adjoint

problem, used to evaluate the solutions of system (1.1) with respect to the uniform
norm. Therefore, we define, in a way quite analogous to that of energy stability,
the variational formulation for the solutions of the adjoint problem. The conse-
quence is the possibility of defining a bound (Rc) for the Reynolds numbers, which
ensures the conditional pointwise asymptotic stability of the solution (v, π̃). Since
the domain Ω is bounded, then we can prove that the decay of the perturbation is
of exponential type. Moreover, the initial data is not subject to assumptions of reg-
ularity which, from both the point views, physical and mathematical respectively,

1 Concerning the problem of the minimal requirements on the data for the well posedness
and qualitative properties see the recent paper [5] (and the references therein) also, where, in a
different context from this note, the above questions are studied in connection with fluid steady
motions in a exterior domain.
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appear unessential to the well posedness of the problem. Without restrictions on
the size of the data, we obtain a theorem of existence local in time. Finally, the
bound Rc is just the critical Reynolds number of the energy stability.

In connection with the above considerations about the variational formulation
for the solutions of the adjoint problem, the study of the linearized Navier–Stokes
system obtained in paper [23] is also fundamental for the proof of our results.
Moreover, the starting point for the existence of our classical solution is the paper
[24] on Stokes system. A suitable development and coupling of the above results
lead to establish a maximum modulus theorem (see Remark 2.1) for solutions of
the Stokes and Navier–Stokes system.

The results of this paper were communicated in [15]. When the paper was
completed, Professor V. A. Solonnikov kindly communicated to the author his
paper, [27], concerning the maximum modulus theorem for solutions of the Stokes
and Navier–Stokes system. The results of [27] are stated in the case of Ω bounded
or exterior domain whose boundary ∂Ω is C2,α-smooth and connected; the theorem
of existence of the solutions of the Navier–Stokes system is local in time. The
technique of the proofs is quite different.

The paper essentially articulates in three parts, each one supporting the next
one. Actually, in each of them we establish a maximum modulus theorem and
the asymptotic behavior in time of the solutions, respectively, of the Stokes prob-
lem, the linearized Navier–Stokes problem and the nonlinear Navier–Stokes system
(1.1), which represents our main result.

2. Some preliminaries and statement of the main result

Let g(x, t) be a function defined on Ω × (0, T ) (T ≤ +∞), for any multi-index

h = (h1, h2, h3) and for any k ∈ N ∪ {0}, we denote by Dh,k
x,t the derivatives

∂|h|+kg(x,t)

∂x
h1
1 ∂x

h2
2 ∂x

h3
n ∂tk

, |h| = h1 + h2 + h3. Sometimes, when there is no danger of

confusion, we replace Dh
xg by Dhg. Let m ∈ N∪{0}. The symbol Cm(Ω), m ∈ N,

denotes the Banach space (endowed with the natural norm) of all functions g
which are bounded and uniformly continuous on Ω, together with all their partial
derivatives Dhg of order |h| ≤ m. The norm in Cm(Ω) is denoted by | · |m. We
denote by Cm,α(Ω), α ∈ (0, 1), the vector subspace of C0(Ω), consisting of all
functions g such that, for any

|h| = m, [Dhg]α,x = sup
x,y∈Ω
x 6=y

|Dhg(x) −Dhg(y)|

|x− y|α
<∞.

Moreover, we denote by Cm(a, b;X) the Banach space (endowed with the natural
norm) of all functions bounded and continuous on (a, b) ⊆ R with value in a Banach
space X , together with all derivatives Dk, k ≤ m. We denote by Cm,β(a, b;X),
β ∈ (0, 1), the vector subspace of Cm(a, b;X), consisting of all functions g such
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that

[Dm
t g]β,t = sup

t,t∈(a,b)

t6=t

|Dm
t g(t) −Dm

t g(t)|X

|t− t|β
<∞.

The norm in Cm,α(Ω) is defined in the following way:

|g|m,α,Ω = |g|0 +
∑

|h|=m

[D|h|g]α,x.

The norm in Cm,β(a, b;X) is defined in the following way:

|g|m,β,(a,b) = sup
(a,b)

|g(t)|X + [Dm
t g]β,t.

We denote by Hα(Ω × (0, T )) the class of all functions g(x, t) such that g(x, t) is
α-Hölder continuous with respect to x and α

2 -Hölder continuous with respect to t
and

|g|α = sup
Ω×(0,T )

|g(x, t)| + [g]α,x,t <∞,

with

[g]α,x,t = sup
x 6=x, t

|g(x, t) − g(x, t)|

|x− x|α
+ sup

t6=t, x

|g(x, t) − g(x, t)|

|t− t|
α
2

.

For any α ∈ (0, 1), |g|α is a norm in Hα(Ω × (0, T )). By the symbol C0(Ω) we
denote the set {φ(x) ∈ C∞

0 (Ω) with ∇ · φ = 0}. By the symbol C|0(Ω) we denote

the completion of C0(Ω) with respect to the norm of C(Ω) (the symbol |0 means
that any function has null trace on ∂Ω). Let us consider

Ĉ|0(Ω) =
{
u(x) ∈ C(Ω) : ∇ · u(x) = 0, in weak form, and u(ξ)|∂Ω = 0

}
.

Of course, a priori, it is C|0(Ω) ⊆ Ĉ|0(Ω); in Section 3 we prove that they coincide
when the domain Ω is C1,α smooth. Finally, we denote by Jp(Ω) and J1,p(Ω) the
completion of C0(Ω) with respect to the norm of Lp(Ω) and W 1,p(Ω), respectively.
The norms in Jp and J1,p are indicated by || · ||p and || · ||1,p, respectively. By Pp· we
denote the projector from Lp(Ω) onto Jp(Ω). If there is no danger of confusion we
denote Pp simply by P . We set Hα(Ω) := C0,α(Ω) Following [23] (Section 6), we
introduce the Hα-subspaces Gα(Ω) and Jα(Ω). The space Gα(Ω) is the subspace
of vectors from Hα(Ω) having the form u = ∇ϕ, where ϕ ∈ C1,α(Ω). The space
Jα(Ω) is the subspace of vectors from Hα(Ω) satisfying the condition u ·n = 0 on
∂Ω and ∇·u = 0 in weak form. Since Ω is bounded, then Hα(Ω)∩Lp(Ω) = Hα(Ω),
hence Hα(Ω) = Jα(Ω) ⊕Gα(Ω). We define Pα as the projector from Hα(Ω) onto
Jα(Ω).

Definition 2.1. A pair (u, π) is said to be a classical solution of system (1.1) if, for
some α ∈ (0, α) and for any η ∈ (0, T ), u ∈ C(0, T ; C|0(Ω)) ∩C0, α

2 (η, T ; C2,α(Ω)),
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ut ∈ C0, α
2 (η, T ; C0,α(Ω)), π ∈ C0, α

2 (η, T ;C1,α(Ω)), (u, π) satisfies system (1.1) in
Ω × (0, T ) and, for any x0 ∈ Ω, lim

(x,t)→(x0,0)
u(x, t) = u0(x0).

Remark 2.1. By maximum modulus theorem for solutions of system (1.1), we
mean the result that, under the only assumption of continuous initial data, ensures
the existence of a classical solution, which is defined for any t > 0 and verifies the
following estimate:

max
Ω×(0,+∞)

|u(x, t)| ≤ cmax
Ω

|u0(x)|,

for some c ≥ 1, independent of u0(x).

Definition 2.2. A pair (u, π) is said to be a p-regular solution of system (1.1) if,
for some p ∈(1,∞) and for any η∈(0, T ), u(x, t)∈C(0, T ; Jp(Ω))∩Lp(η, T ;W 2,p(Ω)
∩J1,p(Ω)), ∇π(x, t), ut(x, t) ∈ Lp(η, T ;Lp(Ω)), (u, π) satisfies system (1.1) a.e. in
Ω × (0, T ) and lim

t→0+
|u(t) − u0|p = 0.2

Remark 2.2. In the sequel we also consider the Hopf–Leray weak solutions of
system (1.1). Since the definition is well known, for the sake of brevity, we omit it
and we refer to [10, 20] for details. The above definitions are stated for solutions
of (1.1). Obviously the same can be stated for solutions of the Navier–Stokes
system and for the linearized forms. In Sections 3 and 4 we tacitly assume that
the definitions 2.1 and 2.2 are meant for the Stokes system and the linearized of
(1.1) system as well.

Definition 2.3. A solution (v, π̃) of the Navier–Stokes system is said to be stable

with respect to the metric dX (X metric space) if for any ε > 0 there exists a δ>0
such that if u0 ∈X with dX(u0) < δ, then u(x, t), suitable solution of (1.1),3 is
defined in X for any t > 0, it is unique and dX(u(t)) < ε for any t > 0. A solution
(v,π̃) is said asymptotically stable if it is stable and lim

t→∞
dX(u(t)) = 0. Finally, if

δ = ∞, then both the stability and the asymptotic stability are said unconditional.

In the introduction we have stressed that the results of asymptotic stability are
deduced via a variational formulation of the same kind of the one given for the
asymptotic energy stability. The approach to the energy stability is formally the
following one. Multiplying equation (1.1)1 by u and integrating by parts on Ω we
obtain the relation

1

2

d

dt
||u(t)||22 = −

1

R
||∇u(t)||22 −

∫

Ω

u ·D · udx, ∀t > 0, (2.1)

2 In the sequel by a regular solution we mean a 2-regular solution.
3 That is, a solution satisfying the conditions stated in the above definitions.



Vol. 11 (2009) Pointwise Asymptotic Stability of Steady Fluid Motions 353

that can be written as

1

2

d

dt
||u(t)||22 = ||∇u(t)||22

(
−

1

R
−

1

||∇u(t)||
2

2

∫

Ω

u ·D · udx

)
, ∀t > 0. (2.2)

Therefore, if we assume

max
u∈J1,2(Ω)

−
1

||∇u||
2

2

∫

Ω

u ·D · udx =
1

Rc

<
1

R
, (2.3)

equation (2.2) implies the so called energy inequality

||u(t)||22 + 2

(
1

R
−

1

Rc

) t∫

s

||∇u(τ)||22dτ ≤ ||u(s)||22, ∀t ≥ s and s ≥ 0. (2.4)

Under suitable assumptions on ||u(t)||2, the above relation is sufficient to study
asymptotic energy stability. It is natural to give the following definition.

Definition 2.4. Let v ∈ C1(Ω) and D be the symmetric part of ∇v. For any
φ ∈ J1,2(Ω) we define the functional

F (φ) = −
1

||∇φ|| 2
2

∫

Ω

φ ·D · φdx.

We set
1

Rc

= sup
φ∈J1,2(Ω)

F (φ).

If Rc is finite, then Rc is called critical Reynolds number.

Remark 2.3. Definition 2.4 is well posed. Indeed as proved in [18] (see [7] also)
the functional F attains a maximum in J1,2(Ω), provided that Ω is bounded and
v ∈ C1(Ω). Of course the assumption on v can be relaxed to a weaker one; however,
this is not a relevant issue in the present analysis.

Now we are in a position to state our main result:

Theorem 2.1. Let us assume v ∈ C1,α(Ω) in system (1.1). There exist two pos-

itive numbers Rc and µ such that if R < Rc and u0 ∈ C|0(Ω) with |u0|0 < µ−1,

then system (1.1) admits a unique classical solution (u, π), defined for any t > 0,
and

|u(t)|0 ≤ c(|u0|0)e
−γt, t > 0. (2.5)

where c(|u0|0) =
µ

1
2 |u0|0

1 + (1 − µ|u0|0)
1
2

; γ = 5
8γ, where γ is the constant of the Poin-

caré inequality.
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Remark 2.4. The positive number Rc in Theorem 2.1 is just the one given in
Definition 2.4. Rc is not determined in the set of classical solutions of prob-
lem (1.1), but in the set of the regular solutions of the adjoint problem of the
linearized system of the perturbation. It is clear (see also the above formal con-
siderations which lead either to the energy inequality or to the definition of the
critical Reynolds number) that the energy stability of the unperturbed motion, via
a variational formulation, is unrelated to the nonlinear or linear character of the
system of the perturbation. This aspect is fundamental for the developing our
construction.

Remark 2.5. In the proof of Theorem 2.1 the existence of a solution is proved by

means of the convergence of the series
∞∑

h=0

(cUmin)
h, where c is a suitable constant

depending on R,Rc, v,Ω and Umin is the smallest real root of the equation cU2 −
U + cU0 = 0 (U0 = |u0|0). Therefore the choice of µ must be compatible with the
convergence of the above series and the existence of the real root Umin.

Remark 2.6. Theorem 2.1 ensures the pointwise asymptotic stability of the un-
perturbed motion (v, π̃). Actually it proves a maximum modulus theorem for
solutions of system (1.1). Of course such a theorem holds for the Navier–Stokes
system also. In [22], Serrin conjectures a result of pointwise stability for small
Reynolds number. Theorem 2.1 gives a positive answer to the Serrin’s conjecture.
As a consequence, our result makes satisfied the assumption of the result stated in
[22] about the existence of time-periodic solutions of the Navier–Stokes equations.

Theorem 2.2. Let us assume v ∈ C1,α(Ω) in system (1.1). Let u0 ∈ C|0(Ω).
Then, system (1.1) admits a unique classical solution (u, π) in Ω × (0, T ), for

some T > 0.

Remark 2.7. We would like to emphasize that, on the one hand, the physical
character of the stability problem, and, on the other hand, the limits of the regu-
larity of steady solutions of the Navier–Stokes system for an arbitrary dimension
n, have led us to consider only the three dimensional problem. However, one can
prove that, by our technique, Theorem 2.1 holds for any n ≥ 2.

Remark 2.8. One can prove the maximum modulus theorem also by another
approach. Indeed, one can prove the existence of a classical solution, satisfying
an estimate of the maximum modulus on some finite interval (0, T ), and of a n-
regular solution for any t > 0. Since the two solutions coincide on (0, T ), one has
proved the existence of a global solution (u, π) of system (1.1), which in particular
satisfies the estimate

|u(t)|0 ≤ c|u0|0 for any t ∈ (0, T ),

|u(t)|0 ≤ ct−
n
2p |u0|0 for any t ≥ T,

(2.6)
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where the first equation in (2.6) holds thanks to the local estimate on (0, T ) for
u(x, t) as classical solution and the second one in (2.6) holds in virtue of the
semigroup property for u(x, t) as n-regular solution evaluated for t ≥ T . Actually,
without restriction on |u0|0, a priori, there is the undesirable factor that T depends
on |u0|0; as a consequence constant c in (2.6) is not an uniform constant with
respect to |u0|0, hence it is not the estimate of the maximum modulus theorem.
Thus we must restrict the size of |u0|0 in such a way that T is uniform with
respect to u0. Then another restriction is needed on the size of |u0|n just to prove
the global existence. Moreover, as far as we known, making use of an n-regular
solution, the asymptotic stability of the unperturbed motion w is not connected
with a variational formulation ([9]). The latter considerations, in accord with the
aims of the stability theory, lead us to prefer our proof: we give one condition
on the size of u0, that is just |u0|0 small with respect some parameters, and we
give the asymptotic stability via a variational formulation, which seems to be
more interesting. Finally, apart from the requirement R < Rc, we do not require
smallness of the size of the norms involving v. The connection between the size
of the norms of v and the perturbations is just related with the smallness of the
quantity of |u0|0, which, as assumption, is needed for v = 0 also.

3. The Stokes problem with initial data in C|0(Ω)

Let us consider the initial boundary value problem for the Stokes system:

wt(x, t) − ∆w(x, t) = −∇p(x, t) + F (x, t),

∇ · w(x, t) = 0 in Ω × (0, T ),

w(x, t) = 0 on ∂Ω × (0, T ), w(x, 0) = w0(x).

(3.1)

The aim of this section is just to prove a maximum modulus theorem for solutions
of system (3.1):

Theorem 3.1. Let w0(x) ∈ C|0(Ω) and F = 0 in system (3.1). Then, there exists

a unique classical solution of problem (3.1) such that

|w(t)|0 ≤ c|w0|0 for any t > 0, (3.2)

with c independent of w0.

We start with some auxiliary results.

Lemma 3.1. Let Ω be a C1,α smooth domain in R
n, n ≥ 2. Then, C0(Ω) is dense

in Ĉ|0(Ω). Hence Ĉ|0(Ω) = C|0(Ω).
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Proof. Let u(x) ∈ Ĉ|0(Ω) and

û(x) =

{
u(x), if x ∈ Ω,

0, if x ∈ R
n − Ω.

For δ > 0, we consider Jδ(u)(x) =
∫

Rn

Jδ(x−y)û(y)dy. Of course Jδ(u)(x) ∈ C0(R
n)

and if δ → 0, then Jδ(u)(x) → u(x) in C(Ω). We have
∫

∂Ω

Jδ(u)(ξ) · ndσ = 0.

Moreover, by the uniform convergence of Jδ(U)(x) to u(x) and since u(x) = 0 on
∂Ω, for any ε > 0, there exists δ̄ > 0 such that for any δ ∈ (0, δ̄)

|Jδ(u)(x)| < ε uniformly in x ∈ ∂Ω. (3.3)

For any δ > 0, let us consider the pair (Uδ, Pδ) which is the smooth solution of

∆Uδ −∇Pδ = 0, ∇ · Uδ = 0 in Ω, Uδ(x) = Jδ(u)(x) for any x ∈ ∂Ω. (3.4)

For any p > 1, Jδ(u)(x) ∈ W 1− 1
p

,p(∂Ω)∩C(∂Ω). Assume p > n. For the existence
of the solution (Uδ, Pδ) ∈ W 1,p(Ω) ∩ Ck(Ω) we refer the reader to the well know
paper [1] (see also [4]). Moreover, by virtue of the maximum modulus theorem
proved in [14], there exists a constant M , independent of δ, such that

|Uδ(x)| ≤M max
∂Ω

|Jδ(u)(x)|. (3.5)

We set uδ(x) = Jδ(u)(x)−Uδ(x). For any δ > 0, uδ belongs to J1,p(Ω)∩C(Ω). If
δ → 0, then uδ → u in C(Ω). Indeed, by estimates (3.3)–(3.5) and by the uniform
convergence of Jδ(u) to u in Ω, for a given ε > 0 we deduce the existence of δ̄ > 0
such that

|u− uδ| ≤ |u− Jδ(u)| + |Uδ| ≤ ε+M max
∂Ω

|Jδ(u)|

≤ ε(1 +M) for any δ > δ̄ uniformly in x ∈ Ω.

The arbitrariness of ε proves the convergence. Since for any δ > 0, uδ ∈ J1,p(Ω)
with p > n, there exists a sequence {un

δ } ⊂ C0(Ω) converging to uδ in J1,p(Ω) and,
by the Sobolev imbedding, in C(Ω). Therefore for any ε > 0 we have

|u(x) − un
δ (x)| ≤ |u(x) − uδ(x)| + |uδ(x) − un

δ (x)| < ε(2 +M)

uniformly in x ∈ Ω, provided we first choose δ sufficiently small and then n suffi-
ciently large. The lemma is proved.

Remark 3.1. In the previous proof it is tacitly assumed that Ω is bounded. How-
ever the proof works in any domain for which the maximum modulus theorem holds
coupled with problem (3.4).

Lemma 3.2. Let Ω be a bounded or an exterior C2 smooth domain of R
n, n ≥ 2.

Suppose q ∈ [r1,∞], and r, r1 ∈ (1,∞). Let ψ ∈ Lr1(Ω) and P∆ψ ∈ Lr(Ω).
Then, the following interpolation inequality holds:

||ψ||q ≤ c||P∆ψ||ar ||ψ||
1−a
r1

, (3.6)
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with c independent of ψ, provided that ψ has zero trace on ∂Ω, and the following

dimensional balance is verified:

1

q
= a

(
1

r
−

2

n

)
+ (1 − a)

1

r1

.

Proof. See [13] Theorem 2.1.

We prove some further lemmas.

Lemma 3.3. Let w0 ∈ C2,α∩C|0(Ω) and F ∈ C0, α
2 (0, T ;C0,α(Ω)) in system (3.1).

Then there exists a unique classical solution (w, p) such that

|D2w|α+|wt|α+ |∇p|α+ |p|0 ≤ c
(
|F |α+ |w0|2,α,Ω + sup

(0,T )

|w(t)|0
)
, (3.7)

with c independent of T, w0 and F , provided that

Pα(F (x, 0) + ∆w0(x)) = 0 on ∂Ω. (3.8)

Proof. The lemma is a special case of Theorem 9.1 proved in [23].

Lemma 3.4. Let (w, p) be a classical solution of system (3.1) with F = 0 and

w0 ∈ C0(Ω). Then, there exists a constant c independent of T and (w, p), such

that

|w(t)|0 ≤ c|w0|0 for any t ∈ (0, T ). (3.9)

Proof. The result is stated and partially proved by Solonnikov in [24]. The complete
proof is achieved by Solonnikov in the papers [25, 26].

Remark 3.2. The result of the lemma is an estimate of maximum modulus of
a classical solution of the initial boundary value problem of the Stokes system.
However it is not a maximum modulus theorem, since the existence of a classical
solution with a initial data w0 ∈ C|0(Ω) is not ensured. The proof of the maximum
modulus theorem is just the object of Theorem 3.1. The result of the theorem
cannot be achieved by a simple coupling of Lemma 3.3 and Lemma 3.4. Indeed
we have to modify the estimates of Lemma 3.3 from estimates obtained on the
cylinder Ω× (0, T ) to pointwise estimates. Recently, in [26] Solonnikov has proved
a maximum modulus theorem. Here, we propose another proof for the sake of
completeness.

For the above purposes, we prove the following.

Lemma 3.5. Let w0 ∈ Jp(Ω) ∩ Lr(Ω), p ∈ (1,∞), r ∈ {1, p}, and F = 0 in

system (3.1). Then there exists a unique p-regular solution (w, p) of system (3.1).
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Moreover, for k = 0, 1,

||Dk
t w(t)||q ≤ c||w0||rt

−n
2 ( 1

r
− 1

q )−k,

||∇Dk
t w(t)||q̂ ≤ c||w0||rt

− 1
2−n

2 ( 1
r
− 1

q )−k,
(3.10)

with q ∈ [p,∞] if r = p and q ∈ (1,∞] if r = 1; with q̂ ∈ [p, n] if r = p and

q̂ ∈ (1, n] if r = 1. Moreover, if q̂ > n

||∇Dk
t w(t)||q̂ ≤ c||w0||r

{
t−

1
2−n

2 ( 1
r
− 1

q̂ )−k, if t ∈ (0, 1],

t−
n
2r

−k, if t ≥ 1.
(3.11)

The constant c is independent of w0. In particular, if w0 ∈ C0(Ω), then (w, p) is

a classical solution; moreover
∣∣D2w(x, t) −D2w(x, t)

∣∣ +
∣∣wt(x, t) − wt(x, t)

∣∣ +
∣∣∇p(x, t) −∇p(x, t)

∣∣

≤ c(p)H(t0)
(
|x− x| + |t− t|

1
2

)α
|w0|

1−α
0

(
||w0||

α
p +|w0|

α
0

)
, (3.12)

where t◦ = min{t, t}, H(t0) is a function depending on t0 in such a way that

H(t◦) → ∞ for t◦ → 0, c(p)−1 → 0 for p → ∞; c(p) and H(t0) are independent

of w0.

Proof. The existence, uniqueness and estimate (3.10)1 and (3.10)2 for k = 0 can
be found in [16]. By the same technique employed in [16], one completes the proof

of (3.10) and proves (3.11) also. Let us prove (3.12). Let t ≥ t > η
2 , for some

η > 0. Let us consider a smooth function ζ(t) ∈ [0, 1], with ζ(t) = 0 for t ≤ t
2 and

ζ(t) = 1 for t ≥ t and |ζ′(t)| ≤ ct−1. Multiplying equation (3.1) by ζ(t), a simple
computation gives

Wt − ∆W = −∇P − ζ′w, ∇ ·W = 0 in Ω × (0, T ),

W = 0 on ∂Ω × (0, T ), W (x, 0) = 0,

where (W,P ) = ζ(w, p). The term wζ′ ∈ C0, α
2 (0, T ; C|0(Ω) ∩ C0,α(Ω)). Therefore

by virtue of Lemma 3.3 we deduce the existence of a unique solution (W,P ) such
that

|D2W |α + |Wt|α + |∇p|α ≤ c(|wζ′|α + |W (t)|0). (3.13)

Of course, by virtue of Lemmas 3.3–3.4, we have

|W (x, t)| + |w(x, t)ζ′(t)| ≤ c
(
1 +

1

t

)
|w0|0 for any (x, t) ∈ Ω × (0, T ). (3.14)

Applying the Sobolev imbedding theorem and the Gagliardo–Nirenberg inequality
(see [17], and also [2]), we estimate the spatial Hölder seminorm:

[wζ′]α,x ≤ c|ζ′||∇w|ap|w|
1−a
0 , with a = αp/(p− n),

for some p > n such that 1 − n
p
≥ α. Moreover, by coupling estimates (3.9) and

(3.11), we find

[wζ′]α,x ≤ ct
−1− a

2 ||w0||
a
p|w0|

1−a
0 . (3.15)
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Analogously, with respect to time, we have

[wζ′]α
2 ,t ≤ |w(x, s)|

|ζ′(s) − ζ′(s)|

|s− s|
α
2

+ |ζ′(s)|
|w(x, s) − w(x, s)|

|s− s|
α
2

≤ ct
−1

|wt(s)|
α
2
0 |w(s)|

1− α
2

0 + ct
−1−α

2 |w(s)|0

≤ ct
−1−(2+ n

p
) α

4 ||w0||
α
2
p |w0|

1−α
2

0 + ct
−1−α

2 |w0|0. (3.16)

Taking into account the definition of ζ, for t > t we obtain

|D2w(x, t)−D2w(x, t)|

(|x−x|+|t−t|
1
2 )α

+
|wt(x, t)−wt(x, t)|

(|x−x|+|t−t|
1
2 )α

+
|∇p(x, t)−∇p(x, t)|

(|x−x|+|t−t|
1
2 )α

≤ |D2W |α + |Wt|α + |∇p|α,

hence the result follows from estimates (3.13)–(3.16). The lemma is completely
proved.

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Since w0 ∈ C|0(Ω), by virtue of Lemma 3.1, there exists a

sequence {wn
0 } ⊂ C0(Ω) converging to w0 in C(Ω). By virtue of Lemma 3.5, for any

n ∈ N, we can consider the classical solution (wn, pn) of problem (3.1) assuming
initial data wn

0 . Moreover, any element of the sequence satisfies estimates (3.9)
and (3.12). Taking into account the linearity of the Stokes problem, from estimates
(3.9) and (3.12) we easily obtain the estimates (η > 0)

|wn(t) − wm(t)|0 ≤ c|wn
0 − wm

0 |0 for any t ∈ (0, T ), (3.17)

[D2wn−D2wm]α,x,t+[wn
t −w

m
t ]α,x,t+[∇pn−∇pm]α,x,t

≤ c(p)H(t◦)|w
n
0 − wm

0 |1−α
0

(
||wn

0 − wm
0 ||αp +|wn

0 − wm
0 |α0

)
, (3.18)

provided that α ≤ 1 − 3
p
, t◦ = min{t, t}, for any t, t ∈ (η, T ). By making use

of the interpolation inequalities, from estimates (3.17)–(3.18) we deduce that wn

is, for any η > 0, a Cauchy sequence in C(0, T ; C|0(Ω)) ∩ C0, α
2 (η, T ;C2,α(Ω)) ∩

C1, α
2 (η, T ;C0,α(Ω)), and pn ∈ C0, α

2 (η, T ;C1,α(Ω)). It is immediate to prove that
limt→0 |w(t) − w0|0 = 0. As far as the uniqueness is concerned, we multiply
equation (3.1)1 by φ(x, t−τ), τ ∈ (0, t), where (φ(x, s), π(x, s)) is another solution
of problem (3.1) with φ0 ∈ C0(Ω). An integration by parts on Ω× (η, t) furnishes
the relation

(w(t), φ0) = (w(η), φ(t − η)).

Since for the uniqueness we assume w0 = 0, in the limit for η → 0 we can deduce
w(x, t) = 0. The proof of the theorem is completed.
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We conclude this section with some asymptotic estimates of the solutions of the
Stokes problem. Thanks to the Poincaré inequality, we can prove an asymptotic
behavior of exponential type with respect to the time variable.

Lemma 3.6. Let (w, p) be the solution given in Theorem 3.1, then,

|w(t)|0 ≤ c(Ω)e−γ(t−s)|w(s)|0, t ≥ s ≥ 0. (3.19)

Proof. It is known that the energy differential equation,

1

2

d

dt
||w(t)||22 +

1

R
||∇w(t)||22 = 0,

and the Poincaré inequality, ||w(t)||2 ≤ 1√
γ
||∇w(t)||2, imply

||w(s)||2 ≤ e−γ(s−τ)||w(τ)||2 , s ≥ τ ≥ 0. (3.20)

Since, see [16],

|w(t)|0 = ||w(t)||∞ ≤ c(t− s)−
3
4 ||w(s)||2, (3.21)

estimate (3.20), evaluated for s = t− 1
2 and τ = 0, and estimate (3.21), evaluated

for t and s = t− 1
2 , imply

|w(t)|0 ≤ ce−γt||w0||2 ≤ c(meas(Ω))
1
2 e−γt|w0|0, t ≥ 1. (3.22)

Estimates (3.2) and (3.22) imply (3.19). Theorem 3.1 allows to define the resolving
operator of the Stokes problem on C|0(Ω). The semigroup property holds and we
have in particular

|w(t)|0 ≤ c(Ω)e−γ(t−s)|w(s)|0, t ≥ s ≥ 0. (3.23)

The lemma is completely proved.

4. The linearized perturbation system with initial data in C|0(Ω)

In this section we give some results concerning the linearized system of the per-
turbation:

u0
t −

1

R
∆u0 =−∇p0− ṽ · ∇u0− u0 · A+ F,

∇ · u0 = 0, in Ω × (0, T ),

u0(x, t) = 0, on ∂Ω × (0, T ), u0(x, 0) = u◦(x) ∈ C0(Ω),

(4.1)

where ṽ stands for v or −v and A for ∇v or ∇vT , indifferently. These detailed
positions are necessary because we refer to system (4.1) both as the linearized
system of the perturbation and as its adjoint. In what follows we make the fol-
lowing convention: the pair (φ, π) denotes a solution of the adjoint problem; the
pair (u0, p0) a solution of the linearized problem. The study of system (4.1) is
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crucial for our aims. Indeed, from a variational approach to the L2 stability of
the unperturbed motion (v, p̃), whose perturbations are governed by the linearized
system (4.1), we can deduce by duality the asymptotic pointwise stability of the
motion (v, p̃) itself. However the main result of this section is the following

Theorem 4.1. Assume v ∈ C0,α(Ω), A ∈ C0,α(Ω) and R < Rc in system (4.1).
Let u0 ∈ C|0(Ω). Then, there exists a unique classical solution of system (4.1)
such that

|u0(x, t)| ≤ c|u0|0e
−γt, for any (x, t) ∈ Ω × (0, T ), (4.2)

with c independent of u0.

Remark 4.1. It is quite natural to ask why the maximum modulus theorem for
solutions to the Stokes problem is not seen as special case of Theorem 4.1, obtained
by setting ṽ = 0 and A = 0 in system (4.1). As it will be clear from the proof, the
first step is the result of Theorem 3.1, so we have preferred to separate the two
results completely.

The proof of Theorem 4.1 is achieved through several intermediate results. We
start with an existence result for solutions of problem (4.1). By virtue of the
results concerning the linearized Navier–Stokes system obtained by Solonnikov in
[23], we can state

Theorem 4.2. Let us assume v ∈ C0,α(Ω) and A ∈ C0,α(Ω) in system (4.1). Let

φ0 ∈ C2,α(Ω) ∩ C|0(Ω) and F ∈ C0, α
2 (0, T ;C0,α(Ω)). Then, there exists a unique

classical solution (φ, π) of system (4.1), such that

|D2φ|α+|φt|α+ |∇π|α+ |π|0≤ c
(
|F |α+ |φ0|2,α,Ω + sup

(0,T )

|φ(t)|0
)
, (4.3)

provided that

Pα

(
F (x, 0) +

1

R
∆φ0(x) − ṽ · ∇φ0(x) − φ0(x) ·A

)
= 0 on ∂Ω.

Proof. See Theorem 9.1 proved in [23].

Theorem 4.3. Let us assume v ∈ C|0(Ω) and A ∈ C0(Ω) in system (4.1). Let

φ0 ∈ Jp(Ω) and F ∈ Lp(0, T ;Lp(Ω)). Then, there exists a unique regular solution

(φ, π) of system (4.1). Moreover, assuming F = 0 the following estimates hold

q ∈ [p,∞], p > 1, ||φ(t)||q ≤ ct−
3
2 (

1
p
− 1

q )eγ0t||φ0||p, t > 0,

q ∈ [p,∞], p > 1, ||∇φ(t)||q ≤ ct−
1
2− 3

2 (
1
p
− 1

q )eγ0t||φ0||p, t > 0,
(4.4)

with constants c and γ0 independent of φ0.
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Proof. See Theorem 4.2 and Theorem 5.1 proved in [23]. Actually, Theorem 4.2 in
[23] is proved assuming the data φ0 more regular. However the linear character of
the system and the estimates given in Theorem 5.1 of [23] allow us to extend the
results to the case of φ0 ∈ Jp(Ω), as stated in our theorem.

In the above estimates (4.4) the constants c and γ0 a priori depend on q and p.
We can solve this question, partially at least, with the following.

Lemma 4.1. Let q > r and r ∈ [1, q). Then estimate (4.4) can be improved to the

following

q ∈ (r,∞], r ≥ 1, ||φ(t)||q ≤ ct−
3
2 (

1
r
− 1

q )eγ0t||φ0||r, t > 0,

q ∈ (r,∞], r ≥ 1, ||∇φ(t)||q ≤ ct−
1
2− 3

2 (
1
r
− 1

q )eγ0t||φ0||r, t > 0,
(4.5)

where c and γ0 are independent of r and φ0.

Proof. Assume that (4.4) holds for some constants c and γ0 a priori depending on
q and r. Then we will establish the existence of a constants c and γ0 such that
(4.4) holds with c, γ0 replaced by c, γ0, which are independent of r, provided that
q > r. To this end, consider two solutions of problem (4.1) with F = 0 : (w, p),
with w0 ∈ Lr(Ω), ṽ = v and A = ∇v and (h, p̃), with initial data h0 ∈ C0(Ω),

ṽ = −v and A = ∇vT . For a fixed t > 0, we set ĥ(x, τ) = h(x, t − τ), for any

τ ∈ [0, t]. Multiplying (4.1)1 by ĥ, and integrating by parts gives:

(w(t), h0) = (w0, h(t)). (4.6)

Applying to the right-hand side of the last relation the Hölder inequality and the
classical Lp convexity inequality, we obtain

|(w(t), h0)| ≤ ||w0||r||h(t)||r′ ≤ ||w0||r||h(t)||
θ
∞||h(t)||1−θ

q′ ,

with q′ =
q

q − 1
, θ =

1

r

q − r

q − 1
for any q > r.

(4.7)

The right-hand side can be estimated by (4.4) applied to ||h(t)||q′ and ||h(t)||∞.
Hence from (4.7) and (4.4) we deduce

|(w(t), h0)| ≤ e(θγ0(q′,∞)+(1−θ)γ0(q′,q′))t(c(q′,∞))θ(c(q′, q′))1−θt−
3
2 ( 1

r
− 1

q
)||w0||r||h0||q′ ,

for any h0∈C0(Ω),

which implies

|w(t)|q ≤ e(θγ0(q′,∞)+(1−θ)γ0(q′,q′))t(c(q′,∞))θ(c(q′, q′))1−θt−
3
2 ( 1

r
− 1

q
)||w0||r,

for q > r ≥ 1, t > 0.

Therefore, setting

c = max
θ∈[0,1]

(c(q′,∞))θ(c(q′, q′))1−θ and γ = max
θ∈[0,1]

θγ0(q
′,∞) + (1− θ)γ0(q

′, q′)),
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c and γ are independent of r, which proves the estimate for (4.5)1. The semigroup
property

||∇Dk
t w(t)||q̂ ≤ c||w(t/2)||q̂e

γ0(q̂,q̂) t
2

{
t−

1
2−k, t∈(0, 1), q̂ > r, t > 0, q̂∈(r, n],

t−
n
2q̂

−k, t > 1, q̂ ≥ n,

and estimate (4.5)1 imply the latter of (4.5). The lemma is proved.

Remark 4.2. The result of the above lemma was given as a remark (Remark 3.1)
in [13] for solutions of the Stokes problem. The result is fundamental for our aims
just to prove pointwise estimate.

Lemma 4.2. Let (φ, π) be the solution of system (4.1) whose existence is ensured

by Theorem 4.3. Then, there exist a critical Reynolds number Rc and a constant c
independent of φ0 such that

||φ(t)||q ≤ c1(q, t)||φ0||2e
−γ(q,2)

(
1
R
− 1

Rc

)
t
, t > 0, q ∈ [2,∞];

||∇φ(t)||2 ≤ c2(t)||φ0||2e
− 3

4γ
(

1
R
− 1

Rc

)
t
, t > 0;

||φt(t)||2 ≤ c3(t)||φ0||2e
− 1

2γ
(

1
R
− 1

Rc

)
t
, t > 0;

||P∆φ(t)||2 ≤ c4(t)||φ0||2e
− 1

2γ
(

1
R
− 1

Rc

)
t
, t > 0;

(4.8)

where γ(q, 2) =
(

5
8 + 3

4
1
q

)
γ, γ is the constant of the Poincaré inequality, c3(t) =

c(t−1 + c(v)t−
1
2 ), c4(t) = c3(t) + c

1
2
3 (t)c(v); c1(q, t) = c4(t)

3
2 (

1
2− 1

q ), c2(t) = c3(t)
1
2 ;

in c3(t), c is just a numerical constant and c(v) = ||v||∞ + cs||∇v||3, where cs is

the Sobolev constant. Moreover, the following inequalities hold

||φtt(t)||2 ≤ c3(t)
2||φ0||2 and ||∇φt(t)|| ≤ c3(t)

3
2 ||φ0||2, t > 0. (4.9)

Proof. In order to prove (4.8)1, the first step is just the energy inequality of so-
lutions to problem (4.1), which we deduce employing the variational formulation
given in Definition 2.4. Hence, multiplying (4.1)1 by φ and integrating by parts
furnishes

1

2

d

dt
||φ(t)||22 = −

1

R
||∇φ(t)||22 −

∫

Ω

φ ·D · φdx, t > 0.

Since F (φ) ≤ 1
Rc

and R < Rc, we deduce

1

2

d

dt
||φ(t)||22 +

(
1

R
−

1

Rc

)
||∇φ(t)||22 ≤ 0, t > 0. (4.10)

A first implication is the following inequality

||φ(t)||22+2

(
1

R
−

1

Rc

) t∫

s

||∇φ(τ)||22dτ ≤ ||φ(s)||22 for any t ≥ s and s ≥ 0. (4.11)
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Employing the Poincaré inequality, from the differential inequality (4.10) we obtain
the asymptotic behavior

||φ(t)||2 ≤ e−γ( 1
R
− 1

Rc
)(t−s)||φ(s)||2 for any t ≥ s and s ≥ 0. (4.12)

We prove (4.8)3 in several steps. The first one is very easy. Differentiating equation
(4.1)1 with respect to t, one obtains, by quite analogous arguments, the following
estimate

||φt(t)||
2
2 ≤ e−2γ( 1

R
− 1

Rc
)(t−s)||φs(s)||

2
2 for any t ≥ s and s > 0. (4.13)

Now, we try an estimate for the right-hand side of (4.13) in terms of ||φ0||2. Mul-
tiplying (4.1)1 by φt and integrating on Ω we obtain

1

2

d

dt
||∇φ(t)||22 + ||φt(t)||

2
2 = −(v · ∇φ, φt) − (φ ·A(v), φt).

Applying the Hölder inequality we can estimate the right-hand side in the following
way:

|(v · ∇φ, φt) + (φ ·A(v), φt)| ≤ (||v||∞||∇φ||2 + ||φ||6||∇v||3)||φt||2;

applying the Sobolev inequality we obtain

|(v · ∇φ, φt) + (φ ·A(v), φt)| ≤
1

2
(||v||∞+ cs||∇v||3)

2||∇φ||22 +
1

2
||φt||

2
2. (4.14)

Hence, we can write

d

dt
||∇φ(t)||22 + ||φt(t)||

2
2 ≤ (||v||∞+ cs||∇v||3)

2||∇φ||22.

Let σ ∈ (0, t
2 ). Multiplying by (τ − σ) and integrating on (σ, t

2 ), we have

(
t

2
− σ

) ∥∥∥∥∇φ
(
t

2

)∥∥∥∥
2

2

+

t
2∫

σ

(τ − σ)||φτ (τ)||22dτ

≤
(
||v||∞+ cs||∇v||3

)2

t
2∫

σ

(τ− σ)||∇φ(τ)||22dτ +

t
2∫

σ

||∇φ(τ)||22dτ. (4.15)

Multiplying (4.13) by (τ − σ) and integrating with respect to τ ∈ (σ, t
2 ), by a

simple computation we deduce

1

2

(
t

2
− σ

)2

||φt(t)||
2
2 ≤ e−γt( 1

R
− 1

Rc
)
∫ t

2

σ

(τ − σ)||φτ (τ)||22ds, t > 2σ.

We estimate the right-hand side of the last inequality by (4.15), hence

||φt(t)||
2
2≤8

e−γt(1
R
− 1

Rc)

(t− 2σ)2

[
(||v||∞+cs||∇v||3)

2

t
2∫

σ

(τ− σ)||∇φ(τ)||22dτ+

t
2∫

σ

||∇φ(τ)||22dτ

]
.
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Now, applying estimate (4.11), we can deduce

||φt(t)||2≤c
e−γ t

2 (
1
R
− 1

Rc)

(t− 2σ)
1
2

[
(||v||∞+ cs||∇v||3)+ (t− 2σ)−

1
2

]
||φ(σ)||2, (4.16)

where c is just a numerical constant. The last estimate proves (4.8)3 provided that

σ = t
4 . We set c3(t) = c

[
t−

1
2 (||v||∞ + cs||∇v||3) + t−1

]
. The differential inequality

(4.10) also implies the following one
(

1

R
−

1

Rc

)
||∇φ(t)||22 ≤ ||φ(t)||2||φt(t)||2. (4.17)

Taking into account (4.8)1 and (4.8)3, we easily obtain (4.8)2. Multiplying equa-
tion (4.1)1 by P∆φ, integrating on Ω and applying the Hölder inequality, as made
in estimate (4.14), we arrive at

||P∆φ(t)||22 ≤ ||φt(t)||
2
2 + (||v||∞ + cs||∇v||3)

2||∇φ(t)||22.

Hence, by virtue of estimates (4.8)2 and (4.8)3 we obtain (4.8)4. Now we complete
the proof of estimate (4.8)1 for q ≥ 2. To this end we recall the Sobolev inequality
of Lemma 3.2. We apply inequality (3.6) with r = r1 = 2 to the Lq-norm of φ.
Hence the result follows from (4.12) and (4.8)4. Since v is steady, by differentiating
equation (4.1)1 and by quite analogous arguments to those employed to obtain
(4.16), we can deduce the following estimates:

||φtt(t)||2 ≤c
e−γ t

2 (
1
R
− 1

Rc)

(t− 2σ)
1
2

[
(||v||∞+ cs||∇v||3)+ (t− 2σ)−

1
2

]
||φσ(σ)||2. (4.18)

Choosing σ = t
2 in (4.18), estimate (4.8)3 implies (4.9)1. In the same way as we

showed estimate (4.17), we can prove
(

1

R
−

1

Rc

)
||∇φt(t)||

2
2 ≤ ||φt(t)||2||φtt(t)||2,

hence, (4.9) 2 easily follows from (4.8).

Remark 4.3. With the exception of constant γ, all remaining constants appearing
in estimates (4.8) are independent of the assumption of Ω bounded. Moreover, all
estimates hold because R < Rc. Apart from the assumption on the Reynolds
number, we would like to stress that no requirement of smallness is made for the
norms involving v. If v = 0 estimates (4.8) become those of the solutions of the
Stokes problem. Finally, in estimates (4.8)2,3,4 the coefficients of the exponential
decay are not sharp. However, we are not interested in finding best constants.

Lemma 4.3. In system (4.1), assume v ∈ C|0(Ω), A ∈ C0(Ω) and R < Rc and let

ϕ0 ∈ J2(Ω). Then, there exists a unique regular solution (ϕ,̟) of problem (4.1).
Moreover, ϕ(x, t) satisfies estimates (4.8).
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Proof. Since ϕ0 can be approximated by a sequence {φn} ⊂ C0(Ω), we can es-
tablish the existence of a sequence of solutions (φn, πn), whose elements satisfy
estimates (4.8). Taking into account the linearity of the problem, one deduces

||φn(t) − φ(t)m||q ≤ c1(q, t)||φ
n
0 − φm

0 ||2e
−γ(q,2)

(
1
R
− 1

Rc

)
t
, t > 0, q ∈ [2,∞];

||∇(φn(t) − φm(t))||2 ≤ c2(t)||φ
n
0 − φm

0 ||2e
− 3

4γ
(

1
R
− 1

Rc

)
t
, t > 0;

||φn
t (t) − φm

t (t)||2 ≤ c3(t)||φ
n
0 − φm

0 ||2e
− 1

2γ
(

1
R
− 1

Rc

)
t
, t > 0;

||P∆(φn(t) − φm(t))||2 ≤ c4(t)||φ
n
0 − φm

0 ||2e
− 1

2γ
(

1
R
− 1

Rc

)
t
, t > 0.

Hence, the sequence is a Cauchy sequence and the limit is a regular solution, which
satisfies estimates (4.1). The uniqueness part is immediate, and hence it will be
omitted.

Lemma 4.4. Let (ψ, π̃) be the regular solution of system (4.1) corresponding to

ψ0 ∈ C0(Ω) and whose existence is ensured by Theorem 4.3. Then, there exists a

constant c such that

||ψ(t)||2 ≤ cc1(2, t/2)c1(p
′, t/2)||ψ0||pe

−γ(2,p)
(

1
R
− 1

Rc

)
t
2 , t > 0,

||∇ψ(t)||2 ≤ cc1(p
′, t/2)c2(t)||ψ0||pe

−( 3
4 γ+γ(2,p))( 1

R
− 1

Rc
) t

2 , t > 0,
(4.19)

provided that p ∈ [1, 2] and q ∈ [2,∞]. The constant c is independent of ψ0, p;
γ(2, p) =

(
11
8 − 3

4
1
p

)
γ.

Proof. In system (4.1) we assume ψ · A(v) = ψ · ∇v. Let (ψ, π) be the solution
corresponding to ψ0. Likewise, we denote by (ϕ, π̂) the solution of system (4.1)
with ϕ · A(v) = ϕ · ∇vT and corresponding to ϕ0. We multiply equation (4.1)1
corresponding to (ψ, π̂) by ϕ(t − τ, x), τ(0, t). Integrating by parts on Ω × (0, t)
we obtain, for any t > 0,

|(ψ(t), ϕ0)| = |(ψ0, ϕ(t))| ≤ ||ψ0||p||ϕ(t)||p′ .

Since p ∈ [1, 2], then p′ ∈ [2,∞] and, by virtue of (4.8)1, we have

|(ψ(t), ϕ0)| ≤ c1(p
′, t/2)||ψ0||p||ϕ0||2e

−γ(p′,2)
(

1
R
− 1

Rc

)
t
, t > 0.

Hence we have the estimate

||ψ(t)||2 ≤ ||ψ0||pe
−γ(2,p)

(
1
R
− 1

Rc

)
t
, t > 0. (4.20)

Estimate (4.19)2 is an easy consequence of (4.8)2 evaluated on the interval
(

t
2 , t

)

and (4.19)1 evaluated on the interval
(
0, t

2

)
.

Remark 4.4. It is important to emphasize that γ(2, p) is a continuous function
on [1, p], its minimum value is 5

8 and it is assumed in p = 1; hence the minimum
exponent of (4.19)2 is 11

16 .
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Lemma 4.5. Let u0 ∈ C0(Ω) and F = 0 in system (4.1). Assume R < Rc. Then,

there exists a unique classical solution (u0, p0) of system (4.1) such that

|u0(t)|0 ≤ c|u0|0e
−γ( 1

R
− 1

Rc)t, t > 0; (4.21)

with γ = 5
8γ, where γ is the constant of the Poincaré inequality, and c independent

of u0.

Proof. The existence and uniqueness are ensured by Theorem 4.2. For t ≥ 1 esti-
mate (4.21) follows from (4.8)1 and from the inequality ||u0||2 ≤ (meas(Ω))

1
2 |u0|0.

Thus we prove (4.21) for t ∈ (0, 1). Let us consider u0(x, t) = U0 + U1 and
p0 = P 0 + P 1, where

U0
t −

1

R
∆U0 = −∇P 0,∇ · U0 = 0, in Ω,

U0 = 0 on ∂Ω × (0, T ), U0(x, 0) = u0(x) in Ω;

(4.22)

and

U1
t −

1

R
∆U1 = −∇P 1 − U1 · ∇v − v · ∇U1 − U0 · ∇v − v · ∇U0,

∇ · U1 = 0, in Ω,

U1 = 0 on ∂Ω × (0, T ), U1(x, 0) = 0 in Ω.

(4.23)

Since Lemma 3.4 proves that |U0(t)|0 ≤ c|u0|0, we must prove the estimate just
for U1(x, t). We multiply equation (4.23)1 by φ(x, t − τ), τ ∈ (0, t), t ∈ (0, 1) and
φ(x, s) solution of system (4.1) with v = −v and φ · A = φ · ∇vT . Integrating by
parts on Ω × (0, t), we obtain

(U1(t), φ0) =

t∫

0

[(v · ∇φ,U0) + (U0 · ∇φ, v)]dτ = I1(t) + I2(t). (4.24)

Applying the Hölder inequality, estimate (3.2) and estimate (4.5), we deduce

|I1(t) + I2(t)| ≤ c||v||q′ |u0|0

t∫

0

||∇φ(t − τ)||qdτ

≤ c||v||q′ |u0|0||φ0||r

t∫

0

(t− τ)−
1
2− 3

2 (
1
r
− 1

q )dτ,

where r ∈ (1, q) and q < 3
2 . Employing the above estimates for the right-hand

side of (4.24), taking into account that the estimates hold for any φo ∈ C0(Ω), we
obtain

||U1(t)||r′ ≤ c||v||q′ |u0|0, where r′ =
r

r − 1
.
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By virtue of Lemma 4.1, the last estimate holds for any r ∈ (1, q) and with a
constant c which can be chosen independent of r. Therefore making the limit for
r′ → ∞ we deduce

|U1(t)|0 = ||U1(t)||∞ ≤ c||v||q′ |u0|0,

which completes the proof.

Remark 4.5. The above lemma gives an estimate of the maximum modulus of a
classical solution u0(x, t) of the initial boundary value problem of the linearized
system of the perturbation. The estimates of the lemma have the unsatisfactory
feature that the constant c depends on the measure of Ω. Hence one cannot
extend the proof to the case of unbounded domains. Therefore, we would like to
emphasize that the estimate of the maximum modulus of a solution u0(x, t) holds
in the case of the initial boundary value problem in an exterior domain also. In
fact, we could show the validity of the estimate, with a constant c independent of
meas(Ω), but depending on t in an increasing fashion. We do not give the proof of
this property here, because by such an estimate, even with an assumption of small
data, we would not able to prove, in an exterior domain, existence of classical
solutions of system (1.1) defined for any t > 0.

Let us consider the Stokes problem:

∆h−∇g = q, ∇ · h = 0, in Ω, h = 0 on ∂Ω.

We recall the following well known results holding in a bounded domain.

Lemma 4.6. Let q ∈ L2(Ω). Then, there exists a unique regular solution (h, g) of

the Stokes problem such that

||h||2,2 + ||∇g||2 ≤ c||q||2, (4.25)

with c independent of q.

Lemma 4.7. Let u0 ∈ C0(Ω) and let F = 0 in system (4.1). Then, there exists a

unique classical solution (u0, p0) of system (4.1) such that,

|u0(x, t)| ≤ c|u0|0 for any t > 0, (4.26)

with a constant c independent of u0. Moreover, let η > 0. Then, for any t, t ∈
(η, T ), x, x ∈ Ω, the following inequality holds

|D2u0(x, t)−D2u0(x, t)|+|u0
t (x, t)−u

0
t (x, t)|+|∇p0(x, t)−∇p0(x, t)|

≤c(p)H(t◦)(|x−x|+|t−t|
1
2 )β |u0|

1−β
0

(
||u0||

β
p + |u0|

β
0

)
, (4.27)

where β ∈ (0, 1), t◦ = min{t, t}, c(p)−1 → 0 as p→ ∞, and H(t◦) → ∞ as t◦ → 0.
Finally, c(p) and H(t0) are independent of u0.
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Proof. The existence and uniqueness of (u0, p0) are given in Theorem 4.2. Estimate
(4.26) is a trivial consequence of Lemma 4.5. To prove (4.27), first of all we prove
the following Hölder estimates for the solution u0:

|u0(x, t) − u0(x, t)| ≤ c|x− x|
1
2 ||u0||2t

−γ3 , (4.28)

|u0(x, t) − u0(x, t)| ≤ c|t− t|
1
4 ||u0||2t

−γ4 , (4.29)

where c is independent of u0 and γ3, γ4 are suitable positive exponents and we

have assumed t > t > η
2 > 0. This assumption is considered in the sequel also;

the case t < t is quite analogous. Since u0 ∈ C0(Ω), by assuming p = 2, we have
that (u0, p0) is also a regular solution. From the estimates of Lemma 4.2 and of
Lemma 4.7 we have in particular

||u0(t)||2,2 ≤ c(||u0
t (t)||2 + ||v · ∇u0(t)||2 + ||u0(t) · ∇v||2),

||u0
t (t)||2,2 ≤ c(||u0

tt(t)||2 + ||v · ∇u0
t (t)||2 + ||u0

t (t) · ∇v||2).

Employing the Hölder inequality and the Sobolev embedding theorem we deduce

||u0(t)||2,2 ≤ c||u0
t (t)||2 + c(||v||∞ + cs||∇v||3)||∇u

0(t)||2

||u0
t (t)||2,2 ≤ c||u0

tt(t)||2 + c(||v||∞ + cs||∇v||3)||∇u
0
t (t)||2.

Estimates (4.8) and the Sobolev embedding theorem allow us to deduce estimates
(4.28)–(4.29). In order to obtain estimate (4.27) we argue as in the proof of
Lemma 3.5 to prove estimate (3.12). Hence, we multiply equation (4.1)1 by ζ(t),
and, by a simple computation, we have

U0
t − ∆U0 = −∇P 0 − v · ∇U0 −A(v) · U0 + ζ′(t)u0,

∇ · U0 = 0, in Ω × (0, T ),

u0 = 0 on ∂Ω × (0, T ), U0(x, 0) = 0.

(4.30)

Theorem 4.2 ensures the validity of following estimate

|D2U0|α+|U0
t |α+ |∇P 0|α+ |P 0|0≤ c

(
|ζ′u0|α+ sup

(0,T )

|U0(t)|0
)
. (4.31)

Taking into account estimate (4.26) and estimates (4.28)–(4.29), the right-hand
side of (4.31) can be just evaluated by the same arguments employed for solutions
of the Stokes problem, and (4.27) follows.

Proof of Theorem 4.1. The proof is quite analogous to the one given for Theo-
rem 3.1 concerning the solutions of the Stokes problem. We just recall the main
steps. Since u0(x) ∈ C|0(Ω), there exists a sequence {un

0} ⊂ C0(Ω) converging

to u0 in C(Ω). By virtue of the linearity of system (4.1) and Lemma 4.5 and
Lemma 4.7 we can show the following estimates

|u0n(x, t) − u0m(x, t)| ≤ c|u0n − u0m|0e
−γt;
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for any η > 0 and t, t ∈ (η, T ), x, x ∈ Ω,
∣∣D2u0n(x, t)−D2u0m(x, t)

∣∣+
∣∣u0n

t (x, t)−u0m
t (x, t)

∣∣+
∣∣∇p0n(x, t)−∇p0m(x, t)

∣∣

≤c(p)H(t◦)
(∣∣x−x

∣∣+
∣∣t−t

∣∣ 1
2
)β∣∣un

0 − um
0

∣∣1−β

0

(
||un

0 − um
0 ||βp +

∣∣un
0 − um

0

∣∣β
0

)
,

for some β and t◦ = min{t, t}. The above estimates ensure existence. As far as
uniqueness is concerned, assume that, in system (4.1), u0(x) = 0 and multiply
system (4.1) by φ(x, t− τ), with (φ(x, s), π(x, s)) solution of the adjoint system to
(4.1). Integrating by parts on (t, t) × Ω, we obtain the relation

(u0(t), φ0) = (u(t), φ(t− t)).

By the arbitrariness of t > 0 and by the continuity of functions u(x, t) and φ(x, s),
letting t → 0, we arrive at (u0(t), φ0) = 0. Assuming φ0 = u0(t) we deduce the
uniqueness. Finally estimate (4.2) is a consequence of the uniform convergence
and of estimate (4.21).

5. Problem (1.1) with initial data in C|0(Ω)

Proof of Theorem 2.1. To prove Theorem 2.1 we follow an idea given in [12] for
the nonlinear stationary Navier–Stokes system. At first, we establish the existence
of a weak solution u (weak in the sense of Leray–Hopf) to problem (1.1) such
that u ∈ C(0, T ; C|0(Ω)). For the latter task it is required that the size of the
uniform norm of the data u0 is sufficiently small. Subsequently, we prove that
such weak solution is a classical solution. The result of existence is obtained by
applying the method of successive approximations. We set U0 = u0, P 0 = p0

where (u0, p0) is the solution to system (4.1) with F = 0. For n ∈ N, we set
un = U0 + Un, πn = P 0 + Pn, where the pair (Un, Pn) is the solution of the
problem

Un
t − ∆Un = −∇Pn − v · ∇Un − Un · ∇v − un−1 · ∇un−1,

∇ · Un = 0, in Ω × (0, T );

Un = 0 on ∂Ω × (0, T ), Un(x, 0) = 0,

(5.1)

In system (5.1) the coefficients v and ∇v are the same as in system (1.1). It then
follows that the pair (un, πn) is a solution to the following problem

un
t + un−1 · ∇un−1 + (v · ∇)un + (un · ∇)v + ∇πn =

1

R
∆un,

∇ · un = 0, in Ω × (0, T ),

un(x, t) = 0, on ∂Ω × (0, T ), un(x, 0) = u0(x) in Ω.

(5.2)

The existence of the approximates un(x, t)

The pair (U0, P 0) exists by virtue of Theorem 4.8 and it is a classical solution.
Moreover, assuming that un−1 ∈ C(0, T ; C|0(Ω)) ∩ L2(0, T ; J1,2(Ω)), then un−1 ·
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∇un−1 ∈ L2(0, T ;L2(Ω)). Hence the pair (Un, Pn) exists by virtue of Theorem 4.3
and it is a regular solution of (5.1). This last property implies that un(x, t) is a
regular solution of system (5.2). However, assuming that, for any η > 0, un−1 ∈
C0, α

2 (η, T ;C1,α(Ω)), we can prove that (Un, Pn) is a classical solution on (η, T ).4

Let η > 0. Since (Un, Pn) is a regular solution, the Sobolev embedding theorem
implies that, for any η1 ∈ (0, η), Un ∈ Lp(η1, T ; Jp(Ω)), for p ≤ 4. Of course, by
the arbitrariness of η > 0 in our assumption, un−1 ·∇un−1 ∈ Lp(η1, T ;Lp(Ω)), for
any p ≤ 4 also. Let us consider a smooth function h1(t), defined for t ≥ η1, with

h1(η1) = 0 and h1(t) > 0, for t > η1. The pair (Ũn, P̃n) = h1(t)(U
n(x, t), Pn(x, t))

is a regular solution to the following initial boundary value problem:

Ũn
t −∆Ũn+∇P̃n = −v · ∇Ũn− Ũn · ∇v − h1(t)u

n−1 ·∇un−1+ h′1(t)U
n,

∇ · Ũn = 0, in Ω × (η1, T ),

Ũn = 0 on ∂Ω × (η1, T ), Ũn(x, η1) = 0.

(5.3)

For p = 4, by virtue of Theorem 4.3, system (5.3) admits a unique p-regular

solution. By uniqueness, (Ũn, P̃n) is a p-regular solution also. Taking into account

that Ũn = 0 for t ∈ (0, η1), by imbedding we deduce that Ũn ∈ Hα(Ω × (0, T ))
for any α ∈ (0, 3

4 ]. Let η2 ∈ (η1, η). Let us consider a smooth function h2(t),

defined for t ≥ η2, with h2(η2) = 0 and h2(t) > 0, for t > η2. The pair (Ûn, P̂n) =
h2(t)(U

n(x, t), Pn(x, t)) is a regular solution to the following initial boundary value
problem:

Ûn
t −∆Ûn+∇P̂n = −v · ∇Ûn− Ûn · ∇v − h2(t)u

n−1 ·∇un−1+h′2(t)U
n,

∇ · Ûn = 0, in Ω × (η2, T ),

Ûn = 0 on ∂Ω × (η2, T ), Ûn(x, η2) = 0.

(5.4)

Taking into account that h2(η2) = 0 and that Un(x, t) ∈ C(0, T ; C|0(Ω))∩Hα(Ω×
(0, T )), the data of the IBVP of system (5.4), that is F = h2u

n−1 ·∇un−1 + h′2U
n

and Ûn(x, η2) = 0, satisfy the compatibility condition required in Theorem 4.2.
Hence there exists a unique classical solution of system (5.4) and, by uniqueness, it

coincides with the pair (Ûn, P̂n). This proves that the pair (Un, Pn) is a classical
solution in (η, T ) × Ω. As a consequence we can state that (un, πn) is a classical
solution in (η, T )× Ω. The arbitrariness of η completes the proof of the result.

The sequence {un(x, t)} ⊂ C(0, T ; C|0(Ω))

Since U0 is a classical solution, then U0 ∈ C(0, T ; C|0(Ω)). Now let us prove that

un−1 ∈ C(0, T ; C|0(Ω)) implies that un ∈ C(0, T ; C|0(Ω)). Since un = U0 + Un,

we just have to prove that Un(x, t) is uniformly continuous on [0, T ) × Ω. Let

4 Here and in the sequel, proving the proprieties of the classical solutions for regular solutions
actually we employ the technique of the structure theorem applied by Leray for a weak solution
[11].
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t2, t1 ∈ (0, T ) and assume t2 > t1. Since Un(x, τ) ∈ C(0, T ; J2(Ω)), by a simple
computation one obtains the following relations:

(Un(t2), φ0) = −

t2∫

0

(
un−1(t2 − τ) · ∇φ(τ), un−1(t2 − τ)

)
dτ,

(Un(t1), φ0) = −

t1∫

0

(
un−1(t1 − τ) · ∇φ(τ), un−1(t1 − τ)

)
dτ,

where φ(x, τ) is the regular solution of the problem (4.1) corresponding to φ0 ∈
C0(Ω). Therefore

|(Un(t2) − Un(t1), φ0)|

≤

t1∫

0

|(un−1(t2− τ) · ∇φ(τ), un−1(t2 − τ) − un−1(t1 − τ))|dτ

+

t1∫

0

|((un−1(t2 − τ) − un−1(t1 − τ)) · ∇φ(τ), un−1(t1 − τ))|dτ

+

t2∫

t1

|(un−1(t2 − τ) · ∇φ(τ), un−1(t2 − τ))|dτ = I1 + I2 + I3. (5.5)

We estimate Ii, for i = 1, 2, 3. Employing estimate (4.5)2 and estimate (4.19)2 for
I1 and I2 respectively, we obtain

I1 + I2 ≤ max
Ω×[0,T ]

|un−1(x, t2 − τ) − un−1(x, t1 − τ)| max
Ω×[0,T ]

|un−1(x, s)| ·

· c(Ω)




1∫

0

|∇φ(τ)|pdτ +

T∫

1

|∇φ(τ)|2dτ





≤ max
Ω×[0,T ]

|un−1(x, t2 − τ) − un−1(x, t1 − τ)| max
Ω×[0,T ]

|un−1(x, s)| ·

· c(Ω, R, v)|φ0|r




1∫

0

τ−
1
2− 3

2 (
1
r
− 1

p )dτ +

T∫

1

e−
11
16 (

1
R
− 1

R )ττ−
1
2− 3

2 (
1
r
− 1

2 )dτ



 ;

in the above estimate we have assumed p < 3
2 and r ∈ (1, p). As far as I3 is

concerned, by means of (4.5)2 again, we have

I3 ≤ max
Ω×[0,T ]

|un−1(x, s)|2c(Ω)

t2∫

t1

|∇φ(τ)|pdτ
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≤ max
Ω×[0,T ]

|un−1(x, s)|2c(Ω, R, v)eγ0T |φ0|r

(
t

1
2− 3

2 (
1
r
− 1

p )
2 − t

1
2− 3

2 (
1
r
− 1

p)
1

)
,

where we have employed the assumptions p < 3
2 and r ∈ (1, p) again. We estimate

the right-hand side of (5.5) by the estimates obtained for Ii, i = 1, 2, 3. The
arbitrariness of φ0 implies that

||Un(t2) − Un(t1)||r′

≤c(Ω, R, v) max
Ω×[0,T ]

|un−1(x, t2 − τ) − un−1(x, t1 − τ)| max
Ω×[0,T ]

|un−1(x, s)|

+ max
Ω×[0,T ]

|un−1(x, s)|2c(Ω, R, v)eγ0T
(
t

1
2− 3

2 (
1
r
− 1

p )
2 − t

1
2− 3

2 (
1
r
− 1

p )
1

)
.

By virtue of Lemma 4.1, the right-hand side of this latter inequality is independent
of r, and, therefore, in the limit r′ → ∞ we deduce that

|Un(t2) − Un(t1)|0

≤ c(Ω, R, v) max
Ω×[0,T ]

|un−1(x, t2 − τ) − un−1(x, t1 − τ)| · max
Ω×[0,T ]

|un−1(x, s)|

+ max
Ω×[0,T ]

|un−1(x, s)|2c(Ω, R, v)eγ0T
(
t

1
2− 3

2 (
1
r
− 1

p )
2 − t

1
2− 3

2 (
1
r
− 1

p )
1

)
,

which proves that Un(x, t) is uniformly continuous in (x, t). As a consequence, we
have that the limit as t → 0 exists in the uniform norm. Since in the L2 norm
the limit of Un(x, t) is zero, we have lim(x,t)→(x0,0)U

n(x, t)=0. The above results
for Un allow us to state that (un, πn) is a classical solution of problem (5.2) in
Ω × (0, T ) and, for any T > 0, un ∈ C(0, T ; C|0(Ω)). The proof then follows from
the fact that n ∈ N is arbitrary.

Estimates for the convergence of the sequence {un}

Here, unless the contrary is explicitly stated, we denote by c a generic constant
whose value is independent of the initial data u0(x) and it is uniform with respect to

n and (x, t). We set U0 = |u0|0 and, for any n∈N0, Un(T )= max
[0,T ]

|un(t)|0e
γ( 1

R
− 1

Rc
)t.

Let us prove the following estimates:

a) If U
n−1(T ) < +∞, then, there exists c ≥ 1 such that U

n(T ) ≤ cU0 +
c (Un−1(T ))2, for any n ∈ N ;

b) Un(T ) ≤ Umin, for any n ∈ N and for any T > 0, provided that U0 ≤ (2c)−2,
where Umin is the least root of the quadratic equation cU2 − U + cU0 = 0.

c)

||un(t)||22 +

(
1

R
−

1

Rc

) t∫

s

||∇un(τ)||22dτ

≤ ||un(s)||22 + c(Umin)
4, for any t > s, s ≥ 0 and n. (5.6)
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Estimate a) for n = 0 is true, thanks to estimate (4.2): U0(T ) ≤ cU0. Now, let
n ≥ 1. We multiply equation (5.1)1 by φ(x, s), solution on Ω× (0, t) of the adjoint
of system (4.1) of the solution u0(x, t). By an integration by parts we get, for all
t > 1,

(Un(t), φ0)=

t∫

0

(
un−1(τ)·∇φ(t−τ),un−1(τ)

)
dτ

=

t−1∫

0

(un−1(τ)·∇φ(t−τ), un−1(τ))dτ+

t∫

t−1

(
un−1(τ)·∇φ(t−τ),un−1(τ)

)
dτ

= I1(t) + I2(t). (5.7)

Employing estimate (4.19)2, taking into account Remark 4.4, we easily obtain

|I1(t)| ≤ (Un−1(t))2|Ω|
1
2

t−1∫

0

|∇φ(t − τ)|2e
−2γ( 1

R
− 1

Rc
)τdτ

≤ c(Un−1(t))2|Ω|
1
2 |φ0|re

−γ( 1
R
− 1

Rc)t

t−1∫

0

e−γ( 1
R
− 1

Rc)τ c1(r
′, (t−τ)/2)c2(t−τ)dτ,

which, for a suitable constant c, implies

eγ( 1
R
− 1

Rc
)t|I1(t)| ≤ c(Un−1(t))2|φ0|r for any r ∈ (1, 2].

Let us consider I2(t). For some q ∈ (r, 3
2 ) and for any r ∈ (1, q), by the Hölder

inequality and by estimate (4.5)2, we deduce

|I2(t)| ≤ (Un−1(t))2|Ω|
1
q′

t∫

t−1

|∇φ(t− τ)|qe
−2γ( 1

R
− 1

Rc)τdτ

≤ c(Un−1(t))2|Ω|
1
q′|φ0|re

−γ( 1
R
− 1

Rc)t

t∫

t−1

(t− τ)−
1
2− 3

2 (
1
r
− 1

q )dτ

≤ c(Un−1(t))2|Ω|
1
q′ |φ0|re

−γ( 1
R
− 1

Rc)t.

In the above estimate, we have chosen q in such a way that sup
r∈(1,q)

[
1
2 + 3

2

(
1
r
− 1

q

)]
=

3
4 . In the case of t ∈ (0, 1) it is sufficient to argue as in the case of the estimate of
the term I1(t). Hence by means of a suitable constant c we obtain

|I2(t)| ≤ c(Un−1(t))2|φ0|re
−γ( 1

R
− 1

Rc
)t, uniformly in t ≥ 1;
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∣∣∣∣

t∫

0

(un−1(τ)·∇φ(t−τ),un−1(τ))dτ

∣∣∣∣ ≤ c(Un−1(t))2|φ0|re
−γ( 1

R
− 1

Rc)t, (5.8)

uniformly in t ∈ (0, 1).

Applying the estimates obtained for I1(t) and (5.8) to the right-hand side of (5.7),
we deduce, uniformly in t > 0,

eγ(1
R
− 1

Rc)t|Un(t)|r′ ≤ c(Un−1)2, for any r∈(1, q). (5.9)

As already remarked, since from (4.2) U0(x, t) satisfies the estimate U0(T ) ≤ cU0,
taking into account that un = U0 + Un, by a simple computation we achieve
estimate a).

Estimate b) is a consequence of a) and Lemma 10.2 of [23].
Finally we prove c). We multiply equation (5.7)1 by un. By integrating by

parts on Ω × (s, t), s > 0, we find

1

2
||un(t)||22 +

1

R

t∫

s

||∇un(τ)||22dτ

=
1

2
||un(s)||22 −

t∫

s

(un(τ) ·∇v, un(τ))dτ +

t∫

s

(un−1⊗un−1(τ),∇un(τ))dτ. (5.10)

Applying the variational formulation to the first integral term on the right-hand
side of (5.10) we obtain the differential inequality

||un(t)||22+2
( 1

R
−

1

Rc

) t∫

s

||∇un(τ)||22dτ ≤ ||un(s)||22+2

t∫

s

(un−1⊗un−1(τ),∇un(τ))dτ.

Taking into account estimate b) and applying the Hölder inequality, we have

||un(t)||22 + 2

(
1

R
−

1

Rc

) t∫

s

||∇un(τ)||22dτ

≤ ||un(s)||22 + c(Umin)
2

t∫

s

e−2γ( 1
R
− 1

Rc)τ ||∇un(τ)||2dτ.

Applying the Cauchy inequality and taking into account the uniform continuity of
un(x, s), we deduce, in the limit of s→ 0, the energy relation

||un(t)||22+

(
1

R
−

1

Rc

) t∫

0

||∇un(τ)||22dτ ≤ ||un(0)||22+c(Umin)
4 uniformly in t and n,

which proves relation c).
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The convergence of {un}

By c we denote a constant, whose value is independent of the initial data u0(x)
and is uniform with respect to n and (x, t). Let us prove that {un(x, t)} converges
in C(0, T ;C|0(Ω)) ∩ L2(0, T ;J1,2(Ω)). To this end we set

un(x, t) =
n∑

h=1

[uh(x, t) − uh−1(x, t)] + u0(x, t) =
n∑

h=1

wh(x, t) + u0(x, t). (5.11)

Of course, for any h, function wh is a solution of the following problem

wh
t + v · ∇wh + wh · ∇v + ∇πn −

1

R
∆wh

= −wh−1 ·∇uh−1 − uh−2 ·∇wh−1,

∇ · wh = 0 in Ω × (0, T ), wh(x, t) = 0 on ∂Ω × (0, T ), wh(x, 0) = 0 in Ω.
(5.12)

We set w0 = u0. Let us prove that

|wh−1(t)|0e
γ( 1

R
− 1

Rc)t ≤ (cUmin)
h implies

|wh(t)|0e
γ( 1

R
− 1

Rc
)t ≤ (cUmin)

h+1 for any h ∈ N.

We multiply equation (5.12)1 by φ(x, t−τ). By an integration by parts on Ω×(0, t)
we get

(wh(t), φ0) =

t−1∫

0

(wh−1⊗uh−1(τ) + uh−2⊗wh−1(τ),∇φ(t − τ))dτ

+

t∫

t−1

(wh−1⊗uh−1(τ) + uh−2⊗wh−1(τ),∇φ(t − τ))dτ

= Ih
1 (t) + Ih

2 (t). (5.13)

We estimate the right-hand side in quite an analogous way as we did for estimating
I1 and I2 in relation (5.7). Taking into account items a)–b) and applying the
Hölder inequality, we obtain

|Ih
1 (t)| ≤ |Ω|

1
2 cch(Umin)

h+1

t−1∫

0

e−2γ( 1
R
− 1

R )τ |∇φ(t− τ)|2dτ.

Applying (4.19)2, we deduce

|Ih
1 (t)| ≤ |Ω|

1
2 cch(Umin)

h+1

t−1∫

0

e−2γ( 1
R
− 1

R)τ |∇φ(t−τ)|2dτ

≤ |Ω|
1
2 e−γ( 1

R
− 1

R )tcch(Umin)
h+1|φ0|r for any r ∈ (2, 1). (5.14)
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As far as Ih
2 (t) is concerned, applying the Hölder inequality we have the estimate

|Ih
2 (t)| ≤ |Ω|

1
q′ cch(Umin)

h+1

t∫

t−1

e−2γ( 1
R
− 1

R)τ |∇φ(t− τ)|qdτ

≤ |Ω|
1
q′ cch(Umin)

h+1e−γ( 1
R
− 1

R )t

t∫

t−1

|∇φ(t− τ)|qdτ.

By virtue of estimate (4.5)2 we prove

|Ih
2 (t)| ≤ |Ω|

1
q′ cch(Umin)

h+1e−γ( 1
R
− 1

R)t

t∫

t−1

|∇φ(t− τ)|qdτ

≤ |Ω|
1
q′cch(Umin)

h+1||φ0||re
−γ( 1

R
− 1

R )t

t∫

t−1

τ−
1
2− 3

2 (
1
r
− 1

q )dτ

≤
c(q)

γ̃(r, q)
cch(Umin)

h+1|Ω|
1
q′||φ0||re

−γ( 1
R
− 1

R )t, for any r∈(1, q), (5.15)

provided that q ∈ (1, 3
2 ). Estimating the right-hand side of (5.13) by employing

(5.14)–(5.15), taking into account the arbitrariness of φ0, uniformly in h ∈ N and
t > 0, we obtain

|wh(t)|r′ ≤
c(q)

γ̃(r, q)
cch(Umin)

h+1|Ω|
1
q′e−γ( 1

R
− 1

R )t, for any r∈(1, q).

In the limit of r′ → ∞, by suitable meaning of c, we prove

eγ( 1
R
− 1

R )t|wh(t)|0 ≤ (cUmin)
h+1, uniformly in h ∈ N. (5.16)

Analogously, let us prove that

||wh−1(t)||2 ≤ (cUmin)
h implies

||wh(t)||22 +

(
1

R
−

1

Rc

) t∫

0

||∇wh(τ)||22dτ ≤ (cUmin)
2(h+1),

for any t > 0 and for any n ∈ N.

We begin to derive the energy relation for wh. Multiplying equation (5.12)1 by
wh, and by integrating by parts we find

||wh(t)||22 + 2

(
1

R
−

1

Rc

) t∫

0

||∇wh(τ)||22dτ

≤

t∫

0

∣∣(wh−1⊗uh−1(τ),∇wh(τ)) + (uh−2⊗wh−1(τ),∇wh(τ))
∣∣ dτ. (5.17)



378 P. Maremonti JMFM

Applying the Hölder inequality, taking into account items a)-c) and (5.16), we
can easily get the inequality

∣∣(wh−1⊗ uh−1,∇wh) + (uh−2⊗wh−1,∇wh)
∣∣

≤

(
1

R
−

1

Rc

)−1

||wh−1(t)||22|u
h−1(t)|20 +

(
1

R
−

1

Rc

)
||∇wh(t)||22

≤
(cUmin)

2hU2
min(

1
R
− 1

Rc

) e−2γ( 1
R
− 1

Rc
)t +

(
1

R
−

1

Rc

)
||∇wh(t)||22. (5.18)

Estimates (5.17)–(5.18), for a suitable constant c, imply

||wh(t)||22 +

(
1

R
−

1

Rc

) t∫

0

||∇wh(τ)||22dτ ≤ (cUmin)
2(h+1),

for any t > 0 and for any h ∈ N.

(5.19)

Estimates (5.16) and (5.19) imply that the series (5.11) is convergent in C(0, T ;
C|0(Ω)) ∩ L2(0, T ; J1,2(Ω)), provided that cUmin < 1 (actually for a suitable value
U0). Hence, if we set µ = max{4c2, c2}, we have proved the bound for the initial
data as claimed in the theorem for the existence of the solutions. Indeed the
convergence of the series implies that {un(x, t)} converges in C(0, T ; C|0(Ω)) ∩

L2(0, T ; J1,2(Ω)). Denoting by u(x, t) the limit of the sequence in C(0, T ; C|0(Ω))∩
L2(0, T ; J1,2(Ω)), then u(x, t) is a weak solution of system (1.1).

The regularity of the weak limit u(x, t)

Employing classical results of regularity, of the kind proved by Sather–Serrin, it
is possible to associate to u(x, t) a pressure field π(x, t) and the pair (u, π) is a
regular solution in Ω × (0, T ) such that, for any η1 > 0, u ∈ C0(0, T,C|0(Ω)) ∩
L2(η1, T ;W 2,2(Ω)) ∩ C(η1, T ; J1,2(Ω)). This last property by the Sobolev imbed-

ding theorem ensures that (u ·∇)u ∈ L
10
3 (η1, T ;L

10
3 (Ω)). Now to prove that (u, π)

is a classical solution is sufficient to argue in the same way as we did in the case
of the approximating solutions. We introduce a smooth function h1(t) such that
h(η1) = 0 and h1(t) > 0 for t > η1. We set (ũ, π̃) = h1(u, π). The pair (ũ, π̃) is a
solution to the system

ũt − ∆ũ+ ∇p̃ = −v · ∇ũ− ũ · ∇v − u · ∇ũ+ h′1(t)u,

∇ · ũ = 0 in Ω × (η1, T ),

ũ = 0 on ∂Ω × (η1, T ), ũ(x, η1) = 0.

(5.20)

Since u · ∇ũ + h′1(t)u ∈ L
10
3 (0, T ;L

10
3 (Ω)), by virtue of Theorem 4.3 and by

the uniqueness property, we deduce that ũ ∈ L
10
3 (0, T ;W 2, 103 (Ω)), ∇π̃, ũt ∈

L
10
3 (0, T ;L

10
3 (Ω)). Furthermore, by the Sobolev imbedding theorem we obtain

∇ũ ∈ L
32
9 (0, T ;L

32
9 (Ω)), and, hence, u · ∇ũ + h′1(t)u ∈ L

32
9 (0, T ;L

32
9 (Ω)). By



Vol. 11 (2009) Pointwise Asymptotic Stability of Steady Fluid Motions 379

iterating the above argument we establish the existence of p ∈ (n,∞) such that
ũ ∈ Lp(0, T ;W 2,p(Ω)), ∇π̃, ũt ∈ Lp(0, T ;Lp(Ω)) and, by imbedding, that, for some
α ∈ (0, 1), ũ ∈ C0, α

2 (0, T ; C|0(Ω) ∩ C1,α(Ω)). Of course, for any η > η1, we have

u ∈ C0, α
2 (η, T ; C|0(Ω) ∩ C1,α(Ω)). Introducing a new smooth function h(t) with

h(η) = 0, h(t) > 0, for t > η, setting (û, π̂) = h(u, π), we have

ût − ∆û+ ∇p̂ = −v · ∇û− û· ∇v − u·∇û+ h′1(t)u,

∇ · û = 0 in Ω × (η, T );

û = 0 on ∂Ω × (η, T ), û(x, η) = 0.

(5.21)

Since −u·∇û+h′1(t)u satisfies the compatibility condition expressed in Theorem 4.2,
then we can establish the regularity of solution (u, π) in (η, T ). The arbitrariness
of η1 > 0 proves completely that (u, π) is a classical solution.

To end the proof of the theorem, we must show uniqueness. To this end, we
refer to the uniqueness part of the proof of Theorem 2.2 below.

Proof of Theorem 2.2. In order to prove the existence of a classical solution, we con-
sider the same sequence {un(x, t)} determined for the global existence with small

data. We modify estimates a)–c) in the subsection “Estimates for the convergence

of the sequence {un}” to the following ones:

d) Ûn(T ) ≤ cU0 + c(Ûn−1(T ))2eγ0TT γ̃ , for any n ∈ N , for some T > 0, for
some constants γ0 and γ̃ > 0;

e) Ûn(T ) ≤ Ûmin, for any n ∈ N, provided that U0eγ0TT γ̃ ≤ (2c)−2, where Ûmin

is the minimal square root of the quadratic equation ceγ0TT γ̃Û2− Û+cU0 =
0, c ≥ 1.

f) = c),

where, for any n ∈ N, we set Û
n(T ) = max

[0,T ]
|un(t)|0. Estimate d) for n = 0 is

true, thanks to estimate (4.2). Now, let n ≥ 1. We multiply equation (5.1)1 by
φ(x, t − τ), solution of the adjoint of system (4.1) of the solution u0(x, t). An
integration by parts gives

(Un(t), φ0) =

t∫

0

(
un−1(τ)·∇Φ(t− τ), un−1(τ)

)
dτ = I1(t). (5.22)

Employing the Hölder inequality and estimate (4.5)2, for any t ∈ [0, T ] and for
some q ∈ (r, 3

2 ), we easily obtain

|I1(t)| ≤ (Un−1)2|Ω|
1
q′

t∫

0

|∇φ(t− τ)|qdτ

≤ c(Un−1)2|Ω|
1
q′ |φ0|re

γ0t

t∫

0

τ−
1
2− 3

2 (
1
r
− 1

q )dτ
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≤ c(q)(γ̃(r, q))−1(Un−1)2|Ω|
1
q′ |φ0|re

γ0ttγ̃(r,q),

with γ̃(r, q) = 1
2 −

3
2

(
1
r
− 1

q

)
. Therefore, from relation (5.22), taking into account

the arbitrariness of φ0 we obtain the inequality

||Un(t)||r′ ≤ c(q)(γ̃(r, q))−1(Un−1)2|Ω|
1
q′ eγ0ttγ̃(r,q).

Passing to the limit r → 1 in the last inequality, we deduce

|Un(t)|∞ ≤ c(q)(γ̃(q))−1(Un−1)2|Ω|
1
q′ eγ0ttγ̃(q),

with γ̃(q) = 1
2 − 3

2
1
q
. Taking into account that |U0(x, t)| ≤ cU0, for any chosen

q ∈ (1, 3
2 ) we obtain relation d) for a suitable constant c.

Assuming that for some T > 0 U0eγ0TT γ̃ ≤ (2c)−2, then estimate in e) is
implied by that in d) and by Lemma 10.2 of [23].

The estimate in f) is deduced in a quite analogous way as the estimate given
in c).

Since ceγ0TT γ̃ → 0 as T → 0, by employing the same arguments used to
prove the convergence in the case of small data, we can prove the convergence of
{un(x, t)} with respect the norm C(0, T ; C|0(Ω))∩L2(0, T ; J1,2(Ω)) on some inter-
val (0, T ). Indeed in quite analogous way, one proves the following implications:

|wh−1(t)|0 ≤ (cUmine
γ0TT γ)h implies

|wh(t)|0 ≤ (cUmine
γ0TT γ)h+1

for any t ∈ [0, T ] and for any h ∈ N;

|wh−1(t)|2 ≤ (cUmine
γ0TT γ)h implies

||wh(t)||22 +

(
1

R
−

1

Rc

) t∫

0

||∇wh(τ)||22dτ ≤ (cUmine
γ0TT γ)h+1

for any t ∈ [0, T ] and for any h ∈ N.

Thus, for a suitable T > 0, the series (5.11) is convergent in C(0, T ; C|0(Ω)) ∩
L2(0, T ; J1,2(Ω)). In this way, we have obtained a weak solution u(x, t) belonging
to C(0, T ; C|0(Ω))∩L2(0, T ; J1,2(Ω)). Now, the regularity follows as in subsection
“The regularity of the weak solution u(x, t).” The theorem will be completely
proved once we prove the uniqueness (see next section).

The uniqueness of a classical solution

Since a classical solution u(x, t) belongs to C(0, T ; C|0(Ω))∩L2(0, T ; J1,2(Ω)), then
the uniqueness can be deduced as in the case of a weak solution.
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