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Abstract. We consider two-dimensional standing gravity waves on the surface of an infinitely
deep perfect fluid, the flow being potential. It is known that the linearized problem is completely
resonant. Following the method described in [4], we prove the existence of an infinity of multi-
modal standing gravity waves, corresponding to any choice of asymptotic expansion in powers
of the amplitude ¢, indicated in [2] and [3]. Each one of these solutions exist for a set of values
of € being dense in 0.
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1. Introduction

This paper follows the paper [3], considering the problem of existence of two-
dimensional standing gravity waves on an infinitely deep perfect fluid layer (called
“clapotis” in French), periodic in time and in the horizontal coordinate, and sym-
metric with respect to the vertical axis. In [4], Tooss, Plotnikov and Toland proved
the existence of unimodal standing waves (only one dominant mode at the main
order €), for a set of amplitudes ¢ which is dense at 0. The complete resonance of
the linearized problem allows to think about the existence of multimodal standing
waves, which means that at order € it might be possible to have a suitable combina-
tion of several modes (necessarily solutions of the linearized problem). The paper
[3] uses the present formulation of the problem, and gives in particular another
complete proof of the possibility to find a large family of approximate solutions for
our problem, in the form of asymptotic expansions in powers of the amplitude ¢,
(same result as in [2]). The present paper adapts the lines of [4] , used for proving
the existence of unimodal standing waves, and shows the existence of (nearly) all
multimodal solutions which possess the asymptotic expansions found in [3], for a
set of amplitudes dense at 0 (see the precise statement in Theorem 1 below).
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In the present formulation, there is one dimensionless parameter 1 + p =
gT?/2m\ where g is the acceleration of gravity, T is the time period, A is the
horizontal wave length, p being close to 0. We indeed look for non trivial doubly
2m— periodic solutions of the following second order nonlocal PDE, as deduced
from the formulation introduced by Dyachenko et al. [1]:

1 Lw’ {
O (L) — (1+ p)Huw' +HO, {EH((Lw/w)HLU,/w) + (HLyb)H ( w)} =0,

D
(1)
where w is an unknown function of (z,t) € R?, the free surface of the waves being
given in the physical plane by

(&) = (v + Huw(z,b), ~w(z,1), (z,t) € R

In (1) the operator H denotes the periodic Hilbert transform with respect to a:
H(e™*) = isgn(n)e'™®, and we denote by a dot or d; the time ¢ partial derivative
and by a prime or J, the space x partial derivative. The function D and the linear
operator L., are defined as follows, for w doubly periodic and smooth enough and
any f € L} = L*(R/27Z)

Lof = (1+Hw')f - w'Hf
D = (14 Huw')? +w'™.
For eliminating solutions deduced by shifting time and z origins, we look for
solutions of (1) which are even in z and in ¢. Moreover, we restrict our study
to solutions w with 0 average, since adding a constant to w gives a solution of

the problem corresponding to the same physical solution. Equation (1) may be
written as

f(w’ :u) =0, (2)

where F is a analytic mapping Hy"® x R — H7™ %% m > 3, where Hy™ s
by definition the subspace of functions even in x and in t of the Sobolev space
Hjr = H™{(R/21Z)?}. Defining the nonlinear terms N>z, we can write

F(w, p) = Low — pHW' + Nsa(w)

where

Low =1 — Hw'.

The complete resonance in our problem means that the kernel of Ly is infinite
dimensional, here spanned by

{cos ¢*x cosqt; q € N},

which leads to an infinite dimensional bifurcation equation. We gave in [3] an
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infinite set of asymptotic expansions (where I is any finite subset of N)

2
€
w™ = Z Pw® | = T (3)
1<p<N
w® = Z 6—3 cosg’zcosqt, e, =%l
q€l

which are approximate solutions of (2):

2
i (wéN), %) =0V e Hy»*, for any N and m.

Let us state our main result:

Theorem 1. For any finite subset I of N, satisfying the following hypothesis
H(I): For any fixed p € I, the following inequality holds

P’(¢® —p°) 41

q4 2’ (4)

q€l, g>p

there exists a measurable set E C [0,e0] which is dense at 0 (0 is a Lebesgue point)

such that, for any e € &, there exists a solution w € H;?ee with 0 average, of

equation (1), with u = €%/4. The function € — w satisfies w = wi™ 4 O(eN), for

N >4, where wéN) is given by (3).

Remark. This theorem completes the main theorem of [4] where only the case
I = {1} was considered. We may notice that when I contains one, or two, or three
elements, hypothesis H(I) is satisfied for any choice of numbers.

The method of proof rests on the use of the Nash—Moser implicit function
theorem to seek solutions as perturbations of the approximate solutions ng). As
shown in [4], the existence question can be reduced to one of estimating the inverses
of linearized operators at non-zero points. Then, there are two difficulties for
this inversion. First, the linearized operator restricted to the infinite-dimensional
kernel of the linearization at 0, expressed with the explicit formula of an arbitrary
approximate solution, gives an operator (see Mg below) we need to invert and for
which we need to show the same properties as in [4]. Second, we need to control
the small divisor problem which arises on the complement of this kernel. This
proof follows the same path as in [4], which was largely inspired by the proof in
[5] (problem with a fluid layer of finite depth), so we recall some essential steps
and check precisely in the general case whether the proof made in [4] is still valid,
modulo some adaptation and painful computations.

Acknowledgements. The authors deeply acknowledge John Toland for many
fruitful discussions.
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2. Linearized operator

Let us define the perturbation u by
w=w™ +eNu, N>4, p=c?/4
and decompose as in [4] the linearized operator at such non zero point w
B F(w™ + eNu,e?/4) = A(u, ) + T(F(w,e?/4), Ly (-)) (5)

where I' cancels when F = 0, and satisfies suitable estimates (see [4]). Now the
structure of the linear operator A is detailed in [4], and this is the approximate
linearized operator, we need to invert. Indeed, the linear equation for du(x,t)

A(u,e)ou = f (6)

takes, after a number of transformations (see Theorem 7.5 of [4]), the form of a
new equation for 9(&, 7)

AOyY = p (7)
where
Su = LH(1+d)(PdoQ)} (8)
h=P Hp(foQ™ ")}
and

ADY =99 — (1 + BOYHO — kKO0 — W(W). (9)

The definitions of the coefficients 3(°) = O(2), k(®) = O(e?), the functions d’, p,
the change of coordinates ) and the change of variables P are recalled below.
The operator W is the sum of smoothing operators and quasi-one-dimensional
operators, all of order O(e), and the above coefficients, functions and operators
depend on u in a “tame” way (see [4]), which is necessary for applying the Nash—
Moser implicit function theorem. More precisely, we decompose (7) as follows
Mae + .A‘(EO)\I/ = 5_2P0h,
(AD 4+ eAY 4 (K_y +eK.)0 = e (I — Ry)Ph

where Py and P are orthogonal projections in L?h’ resp. on ker Ly, and on the set
of functions of 0 average

P=04+e¥, ©= Py e ker Ly,
and operators M., AS’), Aéo), Agl), K_1, K. are defined by
e2M. = BAO R, (10)
eAD) = P AOPI - Py), (11)
AL 4 A = (1 - P)PAOPI — Py),
eK_1 +e2K. = (I1— Py)PAO Ry, (12)
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AT =0, 0 — (1 + BONYHIT — xO .
It is shown in [4] that the operator W is sufficiently smoothing in £ or in 7, first for
allowing to bound M;1A§°) provided M ! is good enough (as in [4], see Lemma 6
below), and second to be able to invert
AL 4 A — (K +eL)MTTAD

provided some diophantine conditions are realized by the coefficients (9, k(9 for
insuring a suitable inverse for A&O). The aim of all what follows is to give the
principal parts of coefficients (¥ and x(°), which appear to have the same form
as in [4], and to compute My (and its inverse, see Lemma 6), and to show that
the occurence of the new operator K_;, which is 0 in [4], does not perturb the
invertibility of the operator

A0 — gy MGt AD, (13)
(see Lemma 7 and Theorem 8). The computation of My and the study of its

invertibility and the invertibility of operator (13) are the main difficulties here.
2.1. Definition of coefficients and changes of coordinates

We first need, for any w € H;;"“, to compute the functions a € Hggfl’oo, b e
Hggﬁ’ee occuring in Lemma 5.1 of [4], defined by

1 1
a="MH <5Lw,w> + S H(Lurih) (14)
Ly
b:ITJ&FLWw”—hﬂ@qﬂ+wadeD—1—HwU}+—Eg—ﬁmhwwf.@&
Then we introduce the function d(z,t) € C;ﬁ*g’oe defined by the linear PDE
8td = (1(1 + Qxd), d|t=0 =0. (16)

This defines the following change of coordinates
y=x+ d(.’t, t)
a(y,t) = u(w,t), o(xz,t)=v(y,1),

and allows to introduce two important functions ¢(y,t) and p(y,t)

g = {[(1+22/4) =51+ d)}, (17)
p=1-0d={1+d)"}. (18)

Then we define the coefficient 3(°) and two useful functions do(y) and e (y, t) by:

q(y, )1 + dy(y))
1+ p©

(14 Oreo(y,1))? = (19)
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where

n ©) \ 1/2
o [ty (2 (20)

and where we take the positive root in (19), and we use the fact that the average
of the derivative of a periodic function is 0. The changes of coordinates @ and @
are the following

(&T) = Q(yat) = (y + dO(y)’t + eO(y7t)> (21)
(537_) = @(Ivt) = (‘T + d(l’,t) + d0($ + d((l?,t)),t + eO(x + d(x7t)7t))7

and the coefficient x(®) and function p; (&, 7) are defined by

(1+ )2 +é &0\’
KO = T 16m2 / / 1+d'0 Eo — (e0)° ¢ dtdy,

()

We shall make precise later the near identity change of variables P (see (30)), with
the computation of the main order of the operator W.

2.2. Calculation of coefficients in (9)
We can show the following

Lemma 2. When wéN) +eNu, N>4, p= £2/4 we obtain

a(z,t) = 2EZ—smq wsingt + 20 (2, ) + O(e?), (22)
q€l

b(x,t) = —2¢ Z £4 €08 2z cos gt + €26 (z,t) + O(e®), (23)

qel

d(z,t) = 2¢ Z s_g sin g2z(1 — cos gt) + £2d® (z,t) + O(e?), (24)
qel

q(y.t) = 1+2c Y ggcosq’y + 2 (y,1) + O(%), (25)

qel
p(y,t) = 1—2¢ Z gq4c08 ¢*y(1 — cosqt) + O(?), (26)

qel
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with
a® (z,t) 25 t sin st
(x,t) Z €r€s 5 sin(r? 4 s2)x cos rt sin st +
r,s€l
+ Z ErE 2—Tsin(r2 — %) sinrt cos st
r-s 82 )
r,sel
r>8
b2 (z,t) 21—1—25765 cos(r? 4 s2)z cos rt cos st +
rel
2 2 r’ T .
+ Z: 2e,e5co8(r — s ) |1 — - ) cos rt cos st — S sin rtsinst o,
r>s

2
= Z Er€s— sin(r? + s?)x cosrt(cos st — 1)
r,sel r
. 2 2 _82 1
+ Z eres2s8in(r* — s%)x 7‘2(7"2—— - T—Qcosrt—i—
r,s€l
>S5

1 1 1
+ — cos st + (ﬁ — —2> cosrt cos st + sinrtsinst} ,
s r?—s s

s
r(r?2 — s?)

1 2
(@ (y,1) = a1 > (2 —cos2rt) =Y Qi—eres cos(r? + %)y +

rel r,s

r? 4 52 r2
2 2 . .
- E 2e,€5 cos(r” — $7)y | cos Tt cos st — sinrtsinst — — ¢ .
rs s
r,sel
r>Ss

Proof. The proof of this lemma is straightforward. Notice that for computing
d(x,t) we just need to identify powers of € in the PDE (16).
We can then show the following

Lemma 3. When w!™) +eNu, N >4, y= €2 /4, we obtain

2 4
3O = %+0(53), w0 = - (card(1) — 1/2) > @ +0(e (27)
qel

€q .
do(y) = —252 q—g sin ¢*y + O(e?),
qel



S356 G. Tooss and P. Plotnikov JMFM

ErE .
o(y,t) = & E 2T = cos(r2 — 5%)y{ssinrt cos st — 13 cosrtsin st} +
rs(r? — s2
r,s€l
r>s
1
—&2 E y sin 2rt + O(®).
rel

Proof. From the expression of ¢(y,t) and (20), we obtain

1+ dy(y)

1
1 2 12
1350 — 1—-2¢ E €4COSQ°Y 45

qel

2
+¢2 Z 2 <i—2 + 1) erescos(r? + 5%y

r,sel

2
+-¢2 Z 2e,€5 ( ) cos(r? — s?)y,

r,sel
r>8

which leads to the results of the lemma for 5(°), dy(y) and eo(y,t). Now from the
formula for £(©) we have

R(O)—W/ / {5 — e } dydt + O(°),

and after a straightforward calculation

=5 (T X0 voe) 2s)

r>S8

which leads to (27). We check that the formula fits with the case I = {1} where
k(O =et/8 + O(°) (see [4]).

2.3. Calculation of the principal part of W in (9)

As it is indicated in [4], the linear operator W is a sum of two parts as follows
W(W) = (Ao + MH)D;*PY + V(¥) (29)

where we shall give later precisions on the part V(«}). The near identity bounded
operator P~1 is written as

Pt =1+ a0+ BoH + (a1 + BiH)I; " + (o + B2H)O; (30)
where 97! is defined by
07 cosnt = (1/n)sinnr, 0 sinnt = —(1/n)cosnt, 011 =0,

and functions o, 85, Ao, A1 are at most of order € (see Lemma M.3 of [4]). More
precisely, let us show the following
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Lemma 4. When w = wéN) +eNu, N >4, u=e2/4, the coefficients g and M\
in the operator W (see (29)) are O(g?).

Remark. This means that the order € in W necessarily comes from the part V.
Moreover, the precisions we give below on the order of magnitude of coefficients
o, B; will be helpful for finding the principal part of V.

Proof of the lemma. The computation of the above coefficients is based on the
following 3 functions

_ éio o O-1 o (0) €0 0 O-1

_(_—9ya _
‘T ((HZO)Q)OQ E

and it is clear from the form of ¢ and eg that o only depends on 7 at order 2.
Then considering formulas given in Appendix M of [4], giving «;, 8, we obtain
successively

ap(é, ) = 25qu(cos ¢~ 1)+ 0(?) (31)

qel

and By = O(g?), by, by = O(e?), o, B1 = O(e?), bz, by = O(e?), az, 2 = O(e?),
A1, A2 = O(g?). Hence the lemma is proved.

Now we are ready to compute the principal part, which is of order € in the
operator V : we have the following

Lemma 5. When w = wéN) +eNu, N >4, 4= €2 /4, the linear operator V
satisfies

V(J)
2 _p)

= 92 Z 8‘1((]

{—ncos g7 cos pT + pgsin qT siin}ﬁ%p) cos(q* — n)¢
q€I, n<q?,pENo a

+ O(e?).
In particular, we have PyV Py = O(g?).
Remark. All the above formulae fit with what we found in [4] in the case when
I = {1}, where we notice that V(0) = O(g?) (instead of O(g)), this order O(£?)

)
was very helpful in [4], since such a case implies £_1 = 0 (see (12) and (13)).

Proof. See Appendix 1.
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3. Inversion of the approximate linearized operator

In this section we compute the operators Mg (M. is defined in (10)), .Aéo) and K_;
(defined in (12)). These operators are fundamental in the study of the inversion
of the approximate linearized operator A(®). Our aim is to prove the same type of
estimates as in [4], despite of the occurence of the new operator K_;. Moreover
we shall see that the form of Mj is more complicated than in the unimodal case,
and that this leads to the need of the extra assumption H(I) of the subset 7 C N
occuring in the asymptotic expansions of our standing waves.

Let us first observe that for © = »° _ A, cos r2€cosrt € ker Ly we already
have from Lemma 5, two operators occuring in (13)

K_10=2 E %8785{008 qTsinrt Sin(q2 — 7’2)§}Ar,
q
qel, r<q

and

3
Erq T r—
AP}, = - 3 o (U DYETH - (r—a)liTh),

rel, r>q
hence it remains to compute M. Indeed, we can show the following

Lemma 6. When w = wéN) +eNu, N > 4, p = £2/4, we have for © =

EpEN A, cos p*€ cos pT

2

2 4,2 2 .
AIJ{_%_'_ZqEL q>pp (qq4p )} fpel

2 402 2 . .
AP{%+Zq€I, q>pp (qq4p )} ifp ¢l

If Hypothesis H(I) (see (4)) holds, operator Mo has a bounded inverse from PoHp;™
onto POHhShH’ee.

{Moe}p =

Remark. The above smoothing property of M 1is precisely the one which is
required in [4].

Proof. For computing My we might compute the coefficient W2 of 2 in the
operator W. This is awful and we prefer to use a way which uses the calculations
made in [3]. Lemma 6 is proved in Appendix 2.

Once M, has a nice inverse as in [4], this leads to the need to invert the operator

(13) (instead of AE;O)). We observe that Aéo) and K_; have finite dimensional
matrices, since the subset of integers [ is finite, and since M !is diagonal the

operator K_; M I.A(()O) has a finite dimensional matrix. More precisely, we have
the following
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Lemma 7. When w = wéN) +eNu, N>4, p= e2/4, we have
—{’C—lMElAéO)‘I’}S) =0if (n,1) #(¢° —p*,q£p), qel, 1<p<yq,
and for qe I, 1<p<yq
—{KaMmg AP e

. egerp?(¢® —1°)(g = p) ((r+ )0, (r— p)ul?)

q2r2mp 7‘2—])2 T2_p2

rel, r>p

— KMt AP e

2(.2 2
¢crp”(¢" —P7)(4 + D) (r+p) (r—p)
= Z q2r2mp {(T+p)\llr2—p2 - (7’ _p)\Ijr2_p2}

rel, r>p

where o s
1 p(¢"=p°)

2+quI,q>p q4 prejv

M= p’(*—p°) ; I
it qul, q>p q* gl

Proof. The proof of this lemma follows immediately from

_ Er r —
(Mg AP}, == 3 {4l - - Pl )

rel, r>p P

and from the form of K_1, noticing that (r? — p?,r £p) = ("2 — p'2,7" £ p') leads
tor=1r',p=yp.

Now we can show the following

Theorem 8. Assume that 3©) and k©) satisfy the diophantine condition
| =@+ 1+ 8= sV 2 ¢/¢?, forp# ¢,
then, provided that assumption H(I) holds (m, # 0 for p € I) the linear operator
Ago) _ ICflMglA(()O)
has an inverse which satisfies the estimate
AL = K MG AP}y, < e(9)] W],

i.e. as for the inverse of A" (see [4]).

Proof. For I +n > 2(max{I})?, {—IC_lMalAéo)\I/}g) = 0, hence for large n and

), Hence, to prove the above theorem, it is sufficient

[ the operator reduces to AS’
to prove that for components U with 12 4+ n < 2(max{I})?, the linear operator

AS’) - KMy 1Aéo) is invertible. Indeed, it is sufficient to consider components
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of the form \Il(q 1;) )2 where ¢ € I, and p < ¢, since these components are uncoupled

from the rest where the operator is diagonal. We then need to invert the following
linear operator acting on components \Ingfi )2

_ eerp(q® — p? . .
glar) Z 2q=rP(a” = P) ){(r +p)\11£2t};)2 —(r —p)\IJ( p)z}
»

q?—p 2¢2r2m r2—p
rel, r>p
2 2
(a+p) EqerP(q” — P°) 60) (r—p)
\I’QQ—PQ - Z 2¢%r2m {<T +p)‘1’ —(r— p)\llrz_lﬂ}
rel, r>p p
which has a simple structure with respect to Dg2_,2 \If(q+p ) \I/(q ’; )2 and
qu,pz = \IngtZ)Q + \Iff}Zf’Q. Since, the operator reduces to the 1dent1ty for Dy e,

we just need to invert with respect to Sy2_,2 the linear operator with components
(for fixed p > 1 and all ¢ > p, since we already have Dy = Sp)
2(.2 2
€ — €
mp—gqu_pz — M Z —Tsrz_pz.
q

4 2
q rel, r>p

Taking the sum of all lines we obtain

2( 2 2
p*(¢* — p?) £
Y. | Dl w5

qel, q>p q rel, r>p

and since the factor in front is —1/2 or 1/4 we can solve with respect to the sum
dore I r>p “5S,2_p2, hence solve with respect to all unknowns, and Theorem 8 is
proved It results from Lemma 6 and Theorem 8 that the method of [4] applies
exactly.

3.1. Kernel of A©®

To complete the proof of Theorem 1, we just need to specify ker A, Indeed in
[4] we use the precise structure of W(1) at order €2, which we have not in this
general case. In fact the kernel also satisfies 9(®) = 1 + O(¢) in the general case,
which is precisely what we need to show.

Since constants lie in ker 9, F (w, ), this implies that the function 9" defined

by (see(8)) -
oV = PH(p(1+ Hur)) 0 Q')

satisfies
A(O)ﬁ(l) =hy = O(EN+1)

due to the fact that A is a reformulation of operator A, and that the “error”
term T' = O(eV*') in (5). Let us proceed as in [4] and define the kernel 9¥(*) in
fixing its component on constants equal to 1: 9O =14 wy, Pwy = 0. Let us
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also decompose 9V = ~,1 + wy, Pwy =0, then v, =1+ O(e) and @y = O(e) by
construction, and since 9! and 9(©) are as smooth as we wish, we can now use
the inverse of A% restricted to the space of O-average functions, which is O(e~?2)
as soon as diophantine conditions are satisfied by (9 and x(®):

A(O)(wl - ’717/0) =M
hence, since N > 4
wo =77 w1 — (PAOP) PR} = O(e).

All required properties which are used in [4] are satisfied, the proof of Theorem 1
is then completed.

4. Appendix 1

We want now to give the principal part of the operator V in Theorem 7.5 of [4].
For this calculation, we first need to compute the main order of the operator G in
Theorem 6.9 of [4], where

G(p) = —0,{S(gp) + Sgp + (HSu(@ro/p)) "},

where by definition, for any smooth enough function f

Sf.t) = (M) (w,t) = (HA(w.1), Saf =H(af) - aH].
Since p = 14 O(¢), a = O(e), and the change of coordinates (x,t) — (y,t) is e—
close to the identity, we obtain thanks to (22)
—_— — 6 .
(HSo(Orp/p))” = 2¢ Z ;q sin gtHSsin 24O p(y, 1) + O(€2).
qel
We also have from (I.2) in Appendix I of [4]
S(ap) = Szlaw) + O(e?),
it then results (using (24) and (25)), that
5
Q(@) = _25874 Z q_g {8y(Ssin q2y<p) — CO8 thsiany(PI} +
qel
—2e0y Z %9 gin qtHSsin 424 0sp + O(e?).
qel
Now comes the computation of the main order of the operator Gy in Lemma 7.2
of [4]. Since B(*) and ¢ are O(£?) and using again (I.2) in [4]
Sy = (H(B0Q) 0 Q™ —HO = S0/ + O(=?) = O(¢)
where do(£) is do(y) expressed with € = y + do(y), and since the mapping @Q is e—
close to the identity (see (21)), we have

Go(0) = —858%9' +G(0) + O(£?)
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Now, from the formula giving V in Appendix M of [4], we have
V(W) = —Go (V) — 0eSay? + O(e?)

and thanks to the forms of dy (see Lemma 3) and «agp (see (31)) at order €, we
obtain

V() = 2e Z 5—385{— 08 qTSxin g260" + qSIn qTHS g5 2£0-0} + O(e%).
qel

Now using the identities

HSgin gze cosné = —sin(q® — )¢, — nSn g2¢ sinné = nsin(g® —n)¢  for n < ¢

HSin g2¢ cosné = 0, — NSgip g2¢ SinNE = 0 for n > ¢2

we obtain the result of Lemma 5.

5. Appendix 2

In this appendix, we prove Lemma 6. To reach the operator My let us use the
calculations made in [3]. In Lemma 1 of [3] we show that the map w — v = F(w)
defined by
v = F(w) =w+ Bw,w)
B(wy,ws) = H(wiwsz) — wiHws — 2weHwy
transforms equation (2) into a new one £(v, 1) = 0 for v , where there is no longer
any quadratic term in v. Moreover
F(w, ) =TpE(v, p),

where Ty, is the inverse linear map of f — f+ 9,B(w, f). Hence defining véN) =

F(wéN)), we have E(U§N), %) = O(eN¥*1) and from Lemma 1 of [3], the above
definitions and from the definition of operator A in (5) (N > 4), we obtain

Au,e) = Lo+e{TD Lo+ Lo fM Y+ TP Lo+ T Lo fD 4 Lo fP 4+ By} +O(e%),
with
Lo =T+l W4+2T0 4 0(E?), TW=-9,BwM, ),
OwF (W) = T+efV +2f® +0(), fO =B(,w")+ B, 0,)

2
c%é'(véN), EZ) = Lo+ 2By + 0(53),

and B, satisfies (see the proof of Theorem 4 of [3] ) for © = > A, cosr?{ cosrT €
ker Eo
—ﬁAp7 forpel,

{P082®}p = { 2

e (32)
A, forpéI.
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Coming back to the relationship between operators A and A (see (6), (7) and
(8)), we can check that for © = Py, that

A0Q = c£y(QW + fMe + 2{(TM + 0W 4 pM — W) £y (FO 4+ 0W) + B,
+Lo(fP + 1P QM + 9®)1e + O(e?),

where
pgl) = —2ZEq cos ¢2¢(1 — cosqr), P = Qqu(l — cos ¢2€),
qel qel
20,9
QWY = qu {(2 — cos >z cos qt ) — (’Hﬁ +— ) sin ¢?x cos qt} ,
qel q
~ 0
Q(l)g =2 Z a9 259 sin ¢%€ cos .
qel

Since PyLy = 0, we finally have
MO = Po{(TD + QW 4 pM —pWy (O + W) 4 Byle.  (33)

Let us first consider Lo(f™ 4+ Q1)O : we have

fYe = BO, vV + Bw®, o)
hence

(f+ QM0 = 08,10 +20 ) ¢,
g€l

and since L£y© = 0, and
—sin(q? —n)¢, forn < ¢?
=0 for n > ¢>

Scos g2¢ COSNE = {

then we obtain

Lo(fY +oMe

22
_ Z %Ar cos(¢®>—12)e{(q + 7) cos(q + r)T — (g—7) cos(q—7)T}.
gel, 1<r<gq

Now, we can check that

(P + QW 4 pfV — PW)p}

2
5\S S— S
=200 Y et Y il el

sel sel, 1<p<s

and observing that ¢1(v€) = 0, and collecting the above results, we obtain

~ ~ 4/ 2 2
{Po(TD + QW 4 p) — PO £y(fD 4 9o}, = 4, S p'(g - p’)
qel, 1<p<q q
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Now thanks to (32), we have completely M as given in Lemma 6. We notice
that the operator M is diagonal, and that the factor of A, is > 0 for p ¢ I,
in particular for large p. We then need to assume that assumption H(I) holds for
p € I. This assumption H(I) insures that for p > 1, one has

|{M09}p| > Cp2‘Ap|

i.e. the inverse M ! has the same smoothing properties as in [4], and Lemma 6 is
proved.
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