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Abstract. We consider two-dimensional standing gravity waves on the surface of an infinitely
deep perfect fluid, the flow being potential. It is known that the linearized problem is completely

resonant. Following the method described in [4], we prove the existence of an infinity of multi-
modal standing gravity waves, corresponding to any choice of asymptotic expansion in powers
of the amplitude ε, indicated in [2] and [3]. Each one of these solutions exist for a set of values
of ε being dense in 0.
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1. Introduction

This paper follows the paper [3], considering the problem of existence of two-
dimensional standing gravity waves on an infinitely deep perfect fluid layer (called
“clapotis” in French), periodic in time and in the horizontal coordinate, and sym-
metric with respect to the vertical axis. In [4], Iooss, Plotnikov and Toland proved
the existence of unimodal standing waves (only one dominant mode at the main
order ε), for a set of amplitudes ε which is dense at 0. The complete resonance of
the linearized problem allows to think about the existence of multimodal standing
waves, which means that at order ε it might be possible to have a suitable combina-
tion of several modes (necessarily solutions of the linearized problem). The paper
[3] uses the present formulation of the problem, and gives in particular another
complete proof of the possibility to find a large family of approximate solutions for
our problem, in the form of asymptotic expansions in powers of the amplitude ε,
(same result as in [2]). The present paper adapts the lines of [4] , used for proving
the existence of unimodal standing waves, and shows the existence of (nearly) all
multimodal solutions which possess the asymptotic expansions found in [3], for a
set of amplitudes dense at 0 (see the precise statement in Theorem 1 below).
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In the present formulation, there is one dimensionless parameter 1 + µ =
gT 2/2πλ where g is the acceleration of gravity, T is the time period, λ is the
horizontal wave length, µ being close to 0. We indeed look for non trivial doubly
2π− periodic solutions of the following second order nonlocal PDE, as deduced
from the formulation introduced by Dyachenko et al. [1]:

∂t(Lw′ẇ)−(1+µ)Hw′+H∂x

{
1

D
H((Lw′ẇ)HLw′ẇ) + (HLw′ẇ)H

(
Lw′ẇ

D

)}
= 0,

(1)
where w is an unknown function of (x, t) ∈ R2, the free surface of the waves being
given in the physical plane by

(ξ, η) = (x + Hw(x, t),−w(x, t)), (x, t) ∈ R2.

In (1) the operator H denotes the periodic Hilbert transform with respect to x:
H(einx) = isgn(n)einx, and we denote by a dot or ∂t the time t partial derivative
and by a prime or ∂x the space x partial derivative. The function D and the linear
operator Lw′ are defined as follows, for w doubly periodic and smooth enough and
any f ∈ L2

♮ = L2(R/2πZ)

Lw′f = (1 + Hw′)f − w′Hf

D = (1 + Hw′)2 + w′2.

For eliminating solutions deduced by shifting time and x origins, we look for
solutions of (1) which are even in x and in t. Moreover, we restrict our study
to solutions w with 0 average, since adding a constant to w gives a solution of
the problem corresponding to the same physical solution. Equation (1) may be
written as

F(w, µ) = 0, (2)

where F is a analytic mapping Hm,ee
♮♮ × R → Hm−2,ee

♮♮ , m ≥ 3, where Hm,ee
♮♮ is

by definition the subspace of functions even in x and in t of the Sobolev space
Hm

♮♮ = Hm{(R/2πZ)2}. Defining the nonlinear terms N≥2, we can write

F(w, µ) = L0w − µHw′ + N≥2(w)

where

L0w = ẅ −Hw′.

The complete resonance in our problem means that the kernel of L0 is infinite
dimensional, here spanned by

{cos q2x cos qt; q ∈ N},

which leads to an infinite dimensional bifurcation equation. We gave in [3] an
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infinite set of asymptotic expansions (where I is any finite subset of N)

w(N)
ε =

∑

1≤p≤N

εpw(p), µ =
ε2

4
(3)

w(1) =
∑

q∈I

εq

q2
cos q2x cos qt, εq = ±1

which are approximate solutions of (2):

F

(
w(N)

ε ,
ε2

4

)
= O(εN+1) ∈ Hm,ee

♮♮ , for any N and m.

Let us state our main result:

Theorem 1. For any finite subset I of N, satisfying the following hypothesis
H(I): For any fixed p ∈ I, the following inequality holds

∑

q∈I, q>p

p2(q2 − p2)

q4
6=

1

2
, (4)

there exists a measurable set EI ⊂ [0, ε0] which is dense at 0 (0 is a Lebesgue point)
such that, for any ε ∈ EI , there exists a solution w ∈ H17,ee

♮♮ with 0 average, of

equation (1), with µ = ε2/4. The function ε 7→ w satisfies w = w
(N)
ε + O(εN ), for

N ≥ 4, where w
(N)
ε is given by (3).

Remark. This theorem completes the main theorem of [4] where only the case
I = {1} was considered. We may notice that when I contains one, or two, or three
elements, hypothesis H(I) is satisfied for any choice of numbers.

The method of proof rests on the use of the Nash–Moser implicit function

theorem to seek solutions as perturbations of the approximate solutions w
(N)
ε . As

shown in [4], the existence question can be reduced to one of estimating the inverses
of linearized operators at non-zero points. Then, there are two difficulties for
this inversion. First, the linearized operator restricted to the infinite-dimensional
kernel of the linearization at 0, expressed with the explicit formula of an arbitrary
approximate solution, gives an operator (see M0 below) we need to invert and for
which we need to show the same properties as in [4]. Second, we need to control
the small divisor problem which arises on the complement of this kernel. This
proof follows the same path as in [4], which was largely inspired by the proof in
[5] (problem with a fluid layer of finite depth), so we recall some essential steps
and check precisely in the general case whether the proof made in [4] is still valid,
modulo some adaptation and painful computations.

Acknowledgements. The authors deeply acknowledge John Toland for many
fruitful discussions.
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2. Linearized operator

Let us define the perturbation u by

w = w(N)
ε + εNu, N ≥ 4, µ = ε2/4

and decompose as in [4] the linearized operator at such non zero point w

∂wF(w(N)
ε + εNu, ε2/4) = Λ(u, ε) + Γ(F(w, ε2/4), Lw′(·)) (5)

where Γ cancels when F = 0, and satisfies suitable estimates (see [4]). Now the
structure of the linear operator Λ is detailed in [4], and this is the approximate
linearized operator, we need to invert. Indeed, the linear equation for δu(x, t)

Λ(u, ε)δu = f (6)

takes, after a number of transformations (see Theorem 7.5 of [4]), the form of a
new equation for ϑ(ξ, τ)

A(0)ϑ = h (7)

where

δu = L−1
w′ {(1 + d′)(Pϑ ◦ Q̂)} (8)

h = P−1{p1(f ◦ Q̂−1)}

and

A(0)ϑ ≡ ∂ττϑ − (1 + β(0))H∂ξϑ − κ(0)ϑ −W(ϑ). (9)

The definitions of the coefficients β(0) = O(ε2), κ(0) = O(ε4), the functions d′, p1,

the change of coordinates Q̂ and the change of variables P are recalled below.
The operator W is the sum of smoothing operators and quasi-one-dimensional
operators, all of order O(ε), and the above coefficients, functions and operators
depend on u in a “tame” way (see [4]), which is necessary for applying the Nash–
Moser implicit function theorem. More precisely, we decompose (7) as follows

MεΘ + A(0)
ε Ψ = ε−2P0h,

(Λ(0)
ε + εΛ(1)

ε )Ψ + (K−1 + εKε)Θ = ε−1(I − P0)Ph

where P0 and P are orthogonal projections in L2
♮♮, resp. on kerL0, and on the set

of functions of 0 average

ϑ = Θ + εΨ, Θ = P0ϑ ∈ kerL0,

and operators Mε,A
(0)
ε ,Λ

(0)
ε ,Λ

(1)
ε ,K−1,Kε are defined by

ε2Mε = P0A
(0)P0, (10)

εA(0)
ε = P0A

(0)P(I − P0), (11)

Λ(0)
ε + εΛ(1)

ε = (I − P0)PA
(0)P(I − P0),

εK−1 + ε2Kε = (I − P0)PA
(0)P0, (12)
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Λ(0)
ε Ψ = ∂ττΨ − (1 + β(0))H∂ξΨ − κ(0)Ψ.

It is shown in [4] that the operator W is sufficiently smoothing in ξ or in τ, first for

allowing to bound M−1
ε A

(0)
ε provided M−1

0 is good enough (as in [4], see Lemma 6
below), and second to be able to invert

Λ(0)
ε + εΛ(1)

ε − (K−1 + εKε)M
−1
ε A(0)

ε

provided some diophantine conditions are realized by the coefficients β(0), κ(0) for

insuring a suitable inverse for Λ
(0)
ε . The aim of all what follows is to give the

principal parts of coefficients β(0) and κ(0), which appear to have the same form
as in [4], and to compute M0 (and its inverse, see Lemma 6), and to show that
the occurence of the new operator K−1, which is 0 in [4], does not perturb the
invertibility of the operator

Λ(0)
ε −K−1M

−1
0 A

(0)
0 , (13)

(see Lemma 7 and Theorem 8). The computation of M0 and the study of its
invertibility and the invertibility of operator (13) are the main difficulties here.

2.1. Definition of coefficients and changes of coordinates

We first need, for any w ∈ Hm,ee
♮♮ , to compute the functions a ∈ Hm−1,oo

♮♮ , b ∈

Hm−2,ee
♮♮ occuring in Lemma 5.1 of [4], defined by

a = H

(
1

D
Lw′ẇ

)
+

1

D
H(Lw′ẇ) (14)

b = D−1{a2Lw′w′′−2aLw′ẇ′+Lw′ẅ+µ(D−1−Hw′)}+
Lw′w′′

D3
(π0Lw′ẇ)2. (15)

Then we introduce the function d(x, t) ∈ Cm−3,oe
♮♮ defined by the linear PDE

∂td = a(1 + ∂xd), d|t=0 = 0. (16)

This defines the following change of coordinates

y = x + d(x, t)

ũ(y, t) = u(x, t), v̂(x, t) = v(y, t),

and allows to introduce two important functions q(y, t) and p(y, t)

q = {[(1 + ε2/4) − b̃] ˜(1 + d′)}, (17)

p = 1 − ∂yd̃ = ˜{(1 + d′)−1}. (18)

Then we define the coefficient β(0) and two useful functions d0(y) and e0(y, t) by:

(1 + ∂te0(y, t))2 =
q(y, t)(1 + d′

0(y))

1 + β(0)
(19)
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where

1

2π

∫ π

−π

{q(y, t)}1/2dt =

(
1 + β(0)

1 + d′0(y)

)1/2

, (20)

and where we take the positive root in (19), and we use the fact that the average

of the derivative of a periodic function is 0. The changes of coordinates Q and Q̂
are the following

(ξ, τ) = Q(y, t) = (y + d0(y), t + e0(y, t)) (21)

(ξ, τ) = Q̂(x, t) = (x + d(x, t) + d0(x + d(x, t)), t + e0(x + d(x, t), t)),

and the coefficient κ(0) and function p1(ξ, τ) are defined by

κ(0) =
(1 + β(0))2

16π2

∫ π

−π

∫ π

−π

(1 + ė0)

(1 + d′0)

{(
ë0

q

)2

− (e′0)
2

}
dtdy,

p1 =

(
p

(1 + ė0)2

)
◦ Q−1.

We shall make precise later the near identity change of variables P (see (30)), with
the computation of the main order of the operator W.

2.2. Calculation of coefficients in (9)

We can show the following

Lemma 2. When w
(N)
ε + εNu, N ≥ 4, µ = ε2/4 we obtain

a(x, t) = 2ε
∑

q∈I

εq

q
sin q2x sin qt + ε2a(2)(x, t) + O(ε3), (22)

b(x, t) = −2ε
∑

q∈I

εq cos q2x cos qt + ε2b(2)(x, t) + O(ε3), (23)

d(x, t) = 2ε
∑

q∈I

εq

q2
sin q2x(1 − cos qt) + ε2d(2)(x, t) + O(ε3), (24)

q(y, t) = 1 + 2ε
∑

q∈I

εq cos q2y + ε2q(2)(y, t) + O(ε3), (25)

p(y, t) = 1 − 2ε
∑

q∈I

εq cos q2y(1 − cos qt) + O(ε2), (26)
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with

a(2)(x, t) = −
∑

r,s∈I

εrεs
2s

r2
sin(r2 + s2)x cos rt sin st +

+
∑

r,s∈I
r>s

εrεs
2r

s2
sin(r2 − s2)x sin rt cos st,

b(2)(x, t) = −
∑

r∈I

1 +
∑

r,s

εrεs
2s2

r2
cos(r2 + s2)x cos rt cos st +

+
∑

r>s

2εrεs cos(r2 − s2)x

{(
1 −

r2

s2

)
cos rt cos st −

r

s
sin rt sin st

}
,

d(2)(x, t) =
∑

r,s∈I

εrεs
2

r2
sin(r2 + s2)x cos rt(cos st − 1)

+
∑

r,s∈I
r>s

εrεs2 sin(r2 − s2)x

{
−s2

r2(r2 − s2)
−

1

r2
cos rt+

+
1

s2
cos st +

(
1

r2 − s2
−

1

s2

)
cos rt cos st +

s

r(r2 − s2)
sin rt sin st

}
,

q(2)(y, t) =
1

4
+

∑

r∈I

(2 − cos 2rt) −
∑

r,s

2
s2

r2
εrεs cos(r2 + s2)y +

−
∑

r,s∈I
r>s

2εrεs cos(r2 − s2)y

{
cos rt cos st −

r2 + s2

rs
sin rt sin st −

r2

s2

}
.

Proof. The proof of this lemma is straightforward. Notice that for computing
d(x, t) we just need to identify powers of ε in the PDE (16).

We can then show the following

Lemma 3. When w
(N)
ε + εNu, N ≥ 4, µ = ε2/4, we obtain

β(0) =
ε2

4
+ O(ε3), κ(0) =

ε4

4
(card(I) − 1/2)

∑

q∈I

q2 + O(ε5). (27)

d0(y) = −2ε
∑

q∈I

εq

q2
sin q2y + O(ε2),
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e0(y, t) = ε2
∑

r,s∈I
r>s

εrεs

rs(r2 − s2)
cos(r2 − s2)y{s3 sin rt cos st − r3 cos rt sin st} +

−ε2
∑

r∈I

1

4r
sin 2rt + O(ε3).

Proof. From the expression of q(y, t) and (20), we obtain

1 + d′0(y)

1 + β(0)
= 1 − 2ε

∑

q∈I

εq cos q2y −
1

4
ε2

+ε2
∑

r,s∈I

2

(
s2

r2
+ 1

)
εrεs cos(r2 + s2)y

+ε2
∑

r,s∈I
r>s

2εrεs

(
2 −

r2

s2

)
cos(r2 − s2)y,

which leads to the results of the lemma for β(0), d0(y) and e0(y, t). Now from the
formula for κ(0) we have

κ(0) =
1

16π2

∫ π

−π

∫ π

−π

{
ë2
0 − e′20

}
dydt + O(ε5),

and after a straightforward calculation

κ(0) =
ε4

4

(
∑

r

r2

2
+

∑

r>s

(r2 + s2)

)
+ O(ε5) (28)

which leads to (27). We check that the formula fits with the case I = {1} where
κ(0) = ε4/8 + O(ε5) (see [4]).

2.3. Calculation of the principal part of W in (9)

As it is indicated in [4], the linear operator W is a sum of two parts as follows

W(ϑ) = (λ0 + λ1H)∂−2
τ Pϑ + V(ϑ) (29)

where we shall give later precisions on the part V(ϑ). The near identity bounded
operator P−1 is written as

P−1 = 1 + α0 + β0H + (α1 + β1H)∂−1
τ + (α2 + β2H)∂−2

τ (30)

where ∂−1
τ is defined by

∂−1
τ cos nτ = (1/n) sin nτ, ∂−1

τ sin nτ = −(1/n) cos nτ, ∂−1
τ 1 = 0,

and functions αj , βj , λ0, λ1 are at most of order ε (see Lemma M.3 of [4]). More
precisely, let us show the following
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Lemma 4. When w = w
(N)
ε + εNu, N ≥ 4, µ = ε2/4, the coefficients λ0 and λ1

in the operator W (see (29)) are O(ε2).

Remark. This means that the order ε in W necessarily comes from the part V.
Moreover, the precisions we give below on the order of magnitude of coefficients
αj , βj will be helpful for finding the principal part of V.

Proof of the lemma. The computation of the above coefficients is based on the
following 3 functions

γ =

{
ë0

(1 + ė0)2

}
◦ Q−1, δ = −(1 + β(0))

(
e′0

1 + d′0

)
◦ Q−1,

α =

(
−∂yq

(1 + ė0)2

)
◦ Q−1,

and it is clear from the form of q and e0 that α only depends on τ at order ε2.
Then considering formulas given in Appendix M of [4], giving αj , βj , we obtain
successively

α0(ξ, τ) = 2ε
∑

q∈I

εq(cos q2ξ − 1) + O(ε2) (31)

and β0 = O(ε2), b1, b2 = O(ε2), α1, β1 = O(ε2), b3, b4 = O(ε2), α2, β2 = O(ε2),
λ1, λ2 = O(ε2). Hence the lemma is proved.

Now we are ready to compute the principal part, which is of order ε in the
operator V : we have the following

Lemma 5. When w = w
(N)
ε + εNu, N ≥ 4, µ = ε2/4, the linear operator V

satisfies

V(ϑ)

= 2ε
∑

q∈I, n<q2, p∈N0

εq(q
2 − n)

q2
{−n cos qτ cos pτ + pq sin qτ sin pτ}ϑ(p)

n cos(q2 − n)ξ

+ O(ε2).

In particular, we have P0VP0 = O(ε2).

Remark. All the above formulae fit with what we found in [4] in the case when
I = {1}, where we notice that V(Θ) = O(ε2) (instead of O(ε)), this order O(ε2)
was very helpful in [4], since such a case implies K−1 = 0 (see (12) and (13)).

Proof. See Appendix 1.
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3. Inversion of the approximate linearized operator

In this section we compute the operators M0 (Mε is defined in (10)), A
(0)
0 and K−1

(defined in (12)). These operators are fundamental in the study of the inversion
of the approximate linearized operator A(0). Our aim is to prove the same type of
estimates as in [4], despite of the occurence of the new operator K−1. Moreover
we shall see that the form of M0 is more complicated than in the unimodal case,
and that this leads to the need of the extra assumption H(I) of the subset I ⊂ N

occuring in the asymptotic expansions of our standing waves.
Let us first observe that for Θ =

∑
r∈N

Ar cos r2ξ cos rτ ∈ kerL0 we already
have from Lemma 5, two operators occuring in (13)

K−1Θ = 2
∑

q∈I, r<q

rεq

q2
∂τ∂ξ{cos qτ sin rτ sin(q2 − r2)ξ}Ar,

and

{A
(0)
0 Ψ}q = −

∑

r∈I, r≥q

εrq
3

r2
{(r + q)ψ

(r+q)
r2−q2 − (r − q)ψ

(r−q)
r2−q2},

hence it remains to compute M0. Indeed, we can show the following

Lemma 6. When w = w
(N)
ε + εNu, N ≥ 4, µ = ε2/4, we have for Θ =∑

p∈N
Ap cos p2ξ cos pτ

{M0Θ}p =





Ap

{
−p2

2 +
∑

q∈I, q>p
p4(q2−p2)

q4

}
if p ∈ I

Ap

{
p2

4 +
∑

q∈I, q>p
p4(q2−p2)

q4

}
if p /∈ I

.

If Hypothesis H(I) (see (4)) holds, operator M0 has a bounded inverse from P0H
s,ee
♮♮

onto P0H
s+1,ee
♮♮ .

Remark. The above smoothing property of M−1
0 is precisely the one which is

required in [4].

Proof. For computing M0 we might compute the coefficient W(2) of ε2 in the
operator W. This is awful and we prefer to use a way which uses the calculations
made in [3]. Lemma 6 is proved in Appendix 2.

Once M0 has a nice inverse as in [4], this leads to the need to invert the operator

(13) (instead of Λ
(0)
ε ). We observe that A

(0)
0 and K−1 have finite dimensional

matrices, since the subset of integers I is finite, and since M−1
0 is diagonal the

operator K−1M
−1
0 A

(0)
0 has a finite dimensional matrix. More precisely, we have

the following
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Lemma 7. When w = w
(N)
ε + εNu, N ≥ 4, µ = ε2/4, we have

−
{
K−1M

−1
0 A

(0)
0 Ψ

}(l)

n
= 0 if (n, l) 6= (q2 − p2, q ± p), q ∈ I, 1 ≤ p < q,

and for q ∈ I, 1 ≤ p < q

−
{
K−1M

−1
0 A

(0)
0 Ψ

}(q−p)

p2−q2

= −
∑

r∈I, r≥p

εqεrp
2(q2 − p2)(q − p)

q2r2mp

{
(r + p)Ψ

(r+p)
r2−p2 − (r − p)Ψ

(r−p)
r2−p2

}

−
{
K−1M

−1
0 A

(0)
0 Ψ

}(q+p)

p2−q2

=
∑

r∈I, r≥p

εqεrp
2(q2 − p2)(q + p)

q2r2mp

{
(r + p)Ψ

(r+p)
r2−p2 − (r − p)Ψ

(r−p)
r2−p2

}

where

mp =





− 1
2 +

∑
q∈I, q>p

p2(q2−p2)
q4 if p ∈ I,

1
4 +

∑
q∈I, q>p

p2(q2−p2)
q4 if p /∈ I.

Proof. The proof of this lemma follows immediately from
{
M−1

0 A
(0)
0 Ψ

}
p

= −
∑

r∈I, r≥p

εrp

r2mp

{
(r + p)ψ

(r+p)
r2−p2 − (r − p)ψ

(r−p)
r2−p2

}

and from the form of K−1, noticing that (r2 − p2, r ± p) = (r′2 − p′2, r′ ± p′) leads
to r = r′, p = p′.

Now we can show the following

Theorem 8. Assume that β(0) and κ(0) satisfy the diophantine condition

| − q2 + (1 + β(0))p − κ(0)| ≥ c/q2, for p 6= q2,

then, provided that assumption H(I) holds (mp 6= 0 for p ∈ I) the linear operator

Λ(0)
ε −K−1M

−1
0 A

(0)
0

has an inverse which satisfies the estimate
∥∥{Λ(0)

ε −K−1M
−1
0 A

(0)
0 }−1Ψ

∥∥
Hs

≤ c(s)||Ψ||Hs+2 ,

i.e. as for the inverse of Λ
(0)
ε (see [4]).

Proof. For l2 + n > 2(max{I})2, {−K−1M
−1
0 A

(0)
0 Ψ}

(l)
n = 0, hence for large n and

l the operator reduces to Λ
(0)
ε . Hence, to prove the above theorem, it is sufficient

to prove that for components Ψ
(l)
n with l2 + n ≤ 2(max{I})2, the linear operator

Λ
(0)
ε − K−1M

−1
0 A

(0)
0 is invertible. Indeed, it is sufficient to consider components
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of the form Ψ
(q±p)
q2−p2 where q ∈ I, and p ≤ q, since these components are uncoupled

from the rest where the operator is diagonal. We then need to invert the following

linear operator acting on components Ψ
(q±p)
q2−p2

Ψ
(q−p)
q2−p2 −

∑

r∈I, r≥p

εqεrp(q2 − p2)

2q2r2mp

{
(r + p)Ψ

(r+p)
r2−p2 − (r − p)Ψ

(r−p)
r2−p2

}

Ψ
(q+p)
q2−p2 −

∑

r∈I, r≥p

εqεrp(q2 − p2)

2q2r2mp

{
(r + p)Ψ

(r+p)
r2−p2 − (r − p)Ψ

(r−p)
r2−p2

}

which has a simple structure with respect to Dq2−p2 = Ψ
(q+p)
q2−p2 − Ψ

(q−p)
q2−p2 and

Sq2−p2 = Ψ
(q+p)
q2−p2 + Ψ

(q−p)
q2−p2 . Since, the operator reduces to the identity for Dq2−p2 ,

we just need to invert with respect to Sq2−p2 the linear operator with components
(for fixed p ≥ 1 and all q > p, since we already have D0 = S0)

mp
εq

q2
Sq2−p2 −

p2(q2 − p2)

q4

∑

r∈I, r>p

εr

r2
Sr2−p2 .

Taking the sum of all lines we obtain

mp −

∑

q∈I, q>p

p2(q2 − p2)

q4


 ∑

r∈I, r>p

εr

r2
Sr2−p2

and since the factor in front is −1/2 or 1/4 we can solve with respect to the sum∑
r∈I, r>p

εr

r2 Sr2−p2 , hence solve with respect to all unknowns, and Theorem 8 is
proved. It results from Lemma 6 and Theorem 8 that the method of [4] applies
exactly.

3.1. Kernel of A(0)

To complete the proof of Theorem 1, we just need to specify kerA(0). Indeed in
[4] we use the precise structure of W(1) at order ε2, which we have not in this
general case. In fact the kernel also satisfies ϑ(0) = 1 + O(ε) in the general case,
which is precisely what we need to show.

Since constants lie in ker ∂wF(w, µ), this implies that the function ϑ(1) defined
by (see(8))

ϑ(1) = P−1{(p ˜(1 + Hw′)) ◦ Q−1}

satisfies
A(0)ϑ(1) = h1 = O(εN+1)

due to the fact that A(0) is a reformulation of operator Λ, and that the “error”
term Γ = O(εN+1) in (5). Let us proceed as in [4] and define the kernel ϑ(0) in
fixing its component on constants equal to 1: ϑ(0) = 1 + ̟0, P̟0 = 0. Let us
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also decompose ϑ(1) = γ11 + ̟1, P̟1 = 0, then γ1 = 1 + O(ε) and ̟1 = O(ε) by
construction, and since ϑ(1) and ϑ(0) are as smooth as we wish, we can now use
the inverse of A(0) restricted to the space of 0-average functions, which is O(ε−2)
as soon as diophantine conditions are satisfied by β(0) and κ(0):

A(0)(̟1 − γ1̟0) = h1

hence, since N ≥ 4

̟0 = γ−1
1 {̟1 − (PA(0)P)−1Ph1} = O(ε).

All required properties which are used in [4] are satisfied, the proof of Theorem 1
is then completed.

4. Appendix 1

We want now to give the principal part of the operator V in Theorem 7.5 of [4].
For this calculation, we first need to compute the main order of the operator G in
Theorem 6.9 of [4], where

G(ϕ) = −∂y{S(qϕ) + Sqϕ + (HSa(∂̂tϕ/p))˜},
where by definition, for any smooth enough function f

Sf(y, t) = (Hf̂)˜(y, t) − (Hf)(y, t), Saf = H(af) − aHf.

Since p = 1 + O(ε), a = O(ε), and the change of coordinates (x, t) 7→ (y, t) is ε−
close to the identity, we obtain thanks to (22)

(HSa(∂̂tϕ/p))˜ = 2ε
∑

q∈I

εq

q
sin qtHSsin q2y∂tϕ(y, t) + O(ε2).

We also have from (I.2) in Appendix I of [4]

S(qϕ) = Sd̃(qϕ)′ + O(ε2),

it then results (using (24) and (25)), that

G(ϕ) = −2ε∂y

∑

q∈I

εq

q2

{
∂y(Ssin q2yϕ) − cos qtSsin q2yϕ′

}
+

−2ε∂y

∑

q∈I

εq

q
sin qtHSsin q2y∂tϕ + O(ε2).

Now comes the computation of the main order of the operator G0 in Lemma 7.2
of [4]. Since β(0) and δ are O(ε2) and using again (I.2) in [4]

S(0)θ = (H(θ ◦ Q)) ◦ Q−1 −Hθ = S
d̃0

θ′ + O(ε2) = O(ε)

where d̃0(ξ) is d0(y) expressed with ξ = y + d0(y), and since the mapping Q is ε−
close to the identity (see (21)), we have

G0(θ) = −∂ξSd̃0
θ′ + G(θ) + O(ε2)
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Now, from the formula giving V in Appendix M of [4], we have

V(ϑ) = −G0(ϑ) − ∂ξSα0
ϑ + O(ε2)

and thanks to the forms of d0 (see Lemma 3) and α0 (see (31)) at order ε, we
obtain

V(ϑ) = 2ε
∑

q∈I

εq

q2
∂ξ{− cos qτSsin q2ξθ

′ + q sin qτHSsin q2ξ∂τθ} + O(ε2).

Now using the identities

HSsin q2ξ cos nξ = − sin(q2 − n)ξ , − nSsin q2ξ sinnξ = n sin(q2 − n)ξ for n < q2

HSsin q2ξ cos nξ = 0, − nSsin q2ξ sin nξ = 0 for n ≥ q2

we obtain the result of Lemma 5.

5. Appendix 2

In this appendix, we prove Lemma 6. To reach the operator M0 let us use the
calculations made in [3]. In Lemma 1 of [3] we show that the map w 7→ v = F (w)
defined by

v = F (w) = w + B(w,w′)

B(w1, w2) = H(w1w2) − w1Hw2 − 2w2Hw1

transforms equation (2) into a new one E(v, µ) = 0 for v , where there is no longer
any quadratic term in v. Moreover

F(w, µ) = Γ̃wE(v, µ),

where Γ̃w is the inverse linear map of f 7→ f + ∂xB(w, f). Hence defining v
(N)
ε =

F (w
(N)
ε ), we have E(v

(N)
ε , ε2

4 ) = O(εN+1) and from Lemma 1 of [3], the above
definitions and from the definition of operator Λ in (5) (N ≥ 4), we obtain

Λ(u, ε) = L0 +ε{Γ̃(1)L0 +L0f
(1)}+ε2{Γ̃(2)L0 +Γ̃(1)L0f

(1) +L0f
(2) +B2}+O(ε3),

with

Γ̃
w

(N)
ε

= I + εΓ̃(1) + ε2Γ̃(2) + O(ε3), Γ̃(1) = −∂xB(w(1), ·),

∂wF (w(N)
ε ) = I + εf (1) + ε2f (2) + O(ε3), f (1) = B(·, w(1)′) + B(w(1), ∂x·)

∂vE(v(N)
ε ,

ε2

4
) = L0 + ε2B2 + O(ε3),

and B2 satisfies (see the proof of Theorem 4 of [3] ) for Θ =
∑

r∈N
Ar cos r2ξ cos rτ ∈

kerL0

{P0B2Θ}p =

{
−p2

2 Ap, for p ∈ I,
p2

4 Ap, for p /∈ I.
(32)
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Coming back to the relationship between operators Λ and A(0) (see (6), (7) and
(8)), we can check that for Θ = P0ϑ, that

A(0)Θ = εL0(Q
(1) + f (1))Θ + ε2{(Γ̃(1) + Q̃(1) + p

(1)
1 − P(1))L0(f

(1) + Q(1)) + B2

+L0(f
(2) + f (1)Q(1) + Q(2))}Θ + O(ε3),

where

p
(1)
1 = −2

∑

q∈I

εq cos q2ξ(1 − cos qτ), P(1) = 2
∑

q∈I

εq(1 − cos q2ξ),

Q(1)ϑ =
∑

q∈I

εq

{
(2 − cos q2x cos qt)ϑ −

(
Hϑ +

2∂xϑ

q2

)
sin q2x cos qt

}
,

Q̃(1)g = 2
∑

q∈I

εq∂ξg

q2
sin q2ξ cos qτ.

Since P0L0 = 0, we finally have

M0Θ = P0{(Γ̃
(1) + Q̃(1) + p

(1)
1 − P(1))L0(f

(1) + Q(1)) + B2}Θ. (33)

Let us first consider L0(f
(1) + Q(1))Θ : we have

f (1)Θ = B(Θ, w(1)′) + B(w(1),Θ′)

hence
(f (1) + Q(1))Θ = ∂ξSw(1)Θ + 2Θ

∑

q∈I

εq

and since L0Θ = 0, and

Scos q2ξ cos nξ =

{
− sin(q2 − n)ξ, for n < q2

= 0 for n ≥ q2

then we obtain

L0(f
(1) + Q(1))Θ

=
∑

q∈I, 1≤r<q

εqr(q
2 − r2)

q2
Ar cos(q2−r2)ξ{(q + r) cos(q + r)τ − (q−r) cos(q−r)τ}.

Now, we can check that
{
P0(Γ̃

(1) + Q̃(1) + p
(1)
1 − P(1))φ

}
p

= −2φ
(p)
p2

∑

s∈I

εs +
∑

s∈I, 1≤p<s

εsp
2

2s2

{
φ

(s−p)
s2−p2 + φ

(s+p)
s2−p2

}
,

and observing that φ
(p)
p2 = 0, and collecting the above results, we obtain

{P0(Γ̃
(1) + Q̃(1) + p

(1)
1 − P(1))L0(f

(1) + Q(1))Θ}p = Ap

∑

q∈I, 1≤p<q

p4(q2 − p2)

q4
.
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Now thanks to (32), we have completely M0 as given in Lemma 6. We notice
that the operator M0 is diagonal, and that the factor of Ap is > 0 for p /∈ I,
in particular for large p. We then need to assume that assumption H(I) holds for
p ∈ I. This assumption H(I) insures that for p ≥ 1, one has

|{M0Θ}p| ≥ cp2|Ap|

i.e. the inverse M−1
0 has the same smoothing properties as in [4], and Lemma 6 is

proved.
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