
J. math. fluid mech. 8 (2006) 333–381
1422-6928/06/030333-49
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Abstract. This paper is devoted to the study of the initial value problem for density dependent
incompressible viscous fluids in a bounded domain of R

N (N ≥ 2) with C2+ǫ boundary. Ho-
mogeneous Dirichlet boundary conditions are prescribed on the velocity. Initial data are almost
critical in term of regularity: the initial density is in W 1,q for some q > N , and the initial velocity
has ǫ fractional derivatives in Lr for some r > N and ǫ arbitrarily small. Assuming in addition
that the initial density is bounded away from 0, we prove existence and uniqueness on a short
time interval. This result is shown to be global in dimension N = 2 regardless of the size of the
data, or in dimension N ≥ 3 if the initial velocity is small.

Similar qualitative results were obtained earlier in dimension N = 2, 3 by O. Ladyzhenskaya

and V. Solonnikov in [18] for initial densities in W 1,∞ and initial velocities in W
2− 2

q
,q

with
q > N .
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Introduction

This paper is devoted to the study of flows of density dependent incompressible
viscous fluids in connected bounded domains Ω of R

N .
The system of PDE’s associated to such flows reads:





∂tρ + div ρu = 0,
∂t(ρu) + div(ρu ⊗ u) − µ∆u + ∇Π = ρf,
div u = 0,
(ρ, u)|t=0 = (ρ0, u0).

(1)

Above, ρ = ρ(t, x) ∈ R
+ denotes the density, u = u(t, x) ∈ R

N , the velocity
field. The parameter µ > 0 stands for the viscosity. The term ∇Π (namely the
gradient of the pressure) may be seen as the Lagrange multiplier associated to the
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constraint div u = 0. In addition, the velocity u is assumed to satisfy homogeneous
Dirichlet boundary conditions, namely u|∂Ω ≡ 0. For the sake of simplicity, it is
assumed throughout the paper that ∂Ω is C2+ǫ for some ǫ > 0.

Given initial conditions (ρ0, u0) (with u0 satisfying the Dirichlet boundary con-
ditions), and an external force f , we address the question of finding a unique
solution to (1) for small or large time.

This question has been studied by a number of authors. Roughly, two different
approaches may be distinguished. The oldest one relies on the following formal
inequality

‖(√ρu)(t)‖2
L2 + 2µ

∫ t

0

‖∇u(τ)‖2
L2 dτ ≤ ‖√ρ0u0‖2

L2 + 2

∫ t

0

∫

Ω

ρ(τ)f(τ) · u(τ) dτ.

(2)
for solutions (ρ, u,Π) of (1).

Using (2) and the fact that the density is advected by the flow of u so that
the Lp norms of ρ are (at least formally) conserved during the evolution, it is
then possible to use compactness methods to prove the existence of global weak
solutions.

This approach has been introduced by J. Leray in 1934 in the homogeneous
case (i.e. ρ ≡ 1) and no external force. The reader is referred to [19] for more
details.

The non-homogeneous equations (1) have been considered in the sixties and
seventies by the Russian school (see e.g. [3] and the references therein) and more
recently by P.-L. Lions in [20] and B. Desjardins in [7] and [9]. Compare to the
homogeneous case, the two main difficulties that one has to face are:

• the control of regions of vacuum,

• the fact that the pressure cannot be eliminated by projecting the momentum
equation over the set of solenoidal vector-fields.

Let us mention in passing that in dimension N = 2, one can further use a quasi-
conservation law for the H1 norm of the velocity and get global H1 solutions.

In both cases however, the problem of uniqueness has not been solved.
On the other hand, for smooth enough data and no external force, the question

of finding unique strong solutions has been successfully solved by O. Ladyzhen-
skaya and V. Solonnikov in [18]. They proved:

Theorem 0.1. Let q > N and N = 2, 3. Let ρ0 ∈ C1(Ω) satisfy infx∈Ω ρ0(x) > 0

and let u0 be a solenoidal vector-field with coefficients in W 2− 2
q

,q and vanishing on
∂Ω. There exists a positive time T such that (1) has a unique solution (ρ, u,∇Π)
with

ρ ∈ L∞(0, T ;C1), u ∈ C([0, T ];W 2− 2
q

,q) and ∂tu,∇2u,∇Π ∈ Lq(0, T × Ω).

If N = 3 and ‖u0‖
W

2− 2
q

,q is sufficiently small, or if N = 2 then the solution is

global and belongs to the spaces described above for all T > 0.
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Similar qualitative results have been obtained by H. Okamoto in the framework
of Sobolev spaces: the initial density is assumed to be non-negative and the initial
velocity belongs to the fractional domain1 D(Aη) with η ∈ (N/4, 1) where A is the
Stokes operator in L2.

In the present work, we aim at finding a class of data (ρ0, u0, f) as large as
possible for which Ladyzhenskaya and Solonnikov’s result remains true.

In order to guess what the limit regularity for the data should be, let us briefly
review a few standard results in the homogeneous case ρ ≡ 1. System (1) then
reduces to the celebrated incompressible Navier–Stokes equations:





∂tu + div(u ⊗ u) − µ∆u + ∇Π = f,
div u = 0,
u|t=0 = u0.

(3)

In the case of a (smooth) bounded domain Ω with no external force, it has been
stated by Y. Giga in [13] that (3) has a unique local solution for data u0 in the
space

Xr def
= {z ∈ Lr(Ω)N | div z = 0 in Ω and z · n = 0 on ∂Ω}

whenever r ≥ N .
As far as existence and uniqueness is obtained from contracting mapping ar-

guments, the exponent r = N seems to be optimal. This is closely linked to the
invariance (for all λ > 0) of the space LN (RN ) by the transform

u0(x) 7→ uλ
0 (x)

def
= λu0(λx)

and to the fact that if u is the solution of (3) corresponding to the data u0 then
(t, x) 7→ λu(λ2t, λx) is the solution associated to uλ

0 .
Similar scaling considerations are relevant in the density-dependent case (see

e.g. [5] for more explanations) and induce us to consider data (ρ0, u0) in a critical
space whose norm is invariant by the transformation

ρ0(x) 7→ ρ0(λx), u0(x) 7→ λu0(λx).

As a matter of fact, in [5] and [6], we stated local and global existence results for
(1) in the whole space R

N or in the torus T
N for data having critical or almost

critical Sobolev regularity. There, our proofs rely on Fourier analysis so that they
cannot be easily carried out in bounded domains.

In the present work, we aim at generalizing Giga’s result to non-homogeneous
fluids. According to the above scaling considerations, choosing (ρ0, u0) in W 1,N ×
LN seems to be an appropriate choice. This has to be compared with the assump-

tions of Theorem 0.1: there u0 has to be in W 2− 2
q

,q with q > N .
Whether existence of strong unique solutions may be proved under such as-

sumptions is open. The fact that W 1,N fails to be embedded in L∞ is one of the

1 Roughly, it amounts to asking u0 to have 2η derivatives in L2.
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reasons why. We shall see however that, if we make slightly stronger assumptions
in terms of integrability and regularity then all the results of Theorem 0.1 remain
true.

Our paper is structured as follows. In the first section, we state our main local
and global existence results. In the next section, we introduce some notation and
functional spaces. Section 3 is devoted to the proof of a priori estimates for the
linearized system (1). Here we get estimates for a non-homogeneous non-stationary
Stokes equation, interesting for their own sake. In Part 4, we study uniqueness
and stability for (1) whereas the proof of local existence is postponed to Section 5.
In the next section, we prove global existence for small initial velocity and non-
vanishing density in dimension N ≥ 2 whereas Section 7 deals with global existence
for large data in dimension N = 2. Some technical estimates are postponed in
appendix.

Acknowledgements.The author is grateful to the anonymous referee who pointed
out a flaw in a former version of the proof of Theorem 3.7.

1. Main results

Let us first define the functional spaces in which existence is going to be shown:

Definition 1.1. For T > 0 and 1 < p, q, r < +∞, we denote by Ep,q,r
T the set of

triplets (ρ, u,Π) such that

u ∈ C([0, T ];D
1− 1

p
,p

Ar
) ∩ Lp(0, T ;W 2,r ∩ W 1,r

0 ), ∂tu ∈ Lp(0, T ;Lr) and div u = 0,

ρ ∈ C(0, T ;W 1,q), Π ∈ Lp(0, T ;W 1,r) and

∫

Ω

Π dx = 0.

If q = +∞, we agree that ρ belongs to L∞(0, T ;W 1,∞) ∩ C([0, T ] × Ω) instead of
C([0, T ];W 1,∞).

The corresponding norm is denoted by ‖ · ‖Ep,q,r
T

.

The space D
1− 1

p
,p

Ar
stands for some fractional domain of the Stokes operator in

Lr (see the definition in Section 2.3). Roughly, the vector-fields of D
1− 1

p
,p

Ar
have

2 − 2
p derivatives in Lr, are divergence-free and vanish on ∂Ω.

Our main local existence result reads:

Theorem 1.2. Let Ω be a bounded domain with C2+ǫ boundary. Let ρ̌ > 0,
q ∈ (N,∞], 1 < p < ∞ and r ∈ (N, q] ∩ R. Let ρ0 ∈ W 1,q be bounded away

from zero by ρ̌, u0 ∈ D
1− 1

p
,p

Ar
and f ∈ Lp(0, T0;L

r) for some T0 > 0. There exists
a T ∈ (0, T0] such that system (1) has a unique solution (ρ, u,Π) in Ep,q,r

T with
besides 0 < ρ̌ ≤ ρ on [0, T ] × Ω.
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Remark 1.3. 1. The time T of local existence may be bounded by below in terms
of the norms of the initial data, and of Ω, µ, ρ̌, p, r, q and N . The reader
is referred to Proposition 6.4 for more details.

2. One can also prove a result of continuity with respect to the data (see
Remark 4.3).

For small initial velocity u0 and external force f but no restriction on the size
of ρ0, we actually have global existence in any dimension N ≥ 2:

Theorem 1.4. Let u0, ρ0 and f satisfy the assumptions of Theorem 1.2. Let
γ > 0. There exists a constant η depending on p, q, r, N , γ, ρ̌, Ω but independent
of µ, and δ > 0 depending only on p, q, r and N , such that if

‖u0‖
D

1− 1
p

,p

Ar

+ µ
1
p
−1‖f‖Lp(R+;Lr) +

∫ ∞

0

eµγt ‖f(t)‖L2 dt ≤ ηµ
(
1 + ‖ρ0‖W 1,q

)δ

then (1) has a unique global solution which belongs to Ep,q,r
T for all T ≥ 0.

Besides, denoting by λ1 the first eigenvalue of the Dirichlet–Laplace operator in

Ω, and κ
def
= min(γ, λ1/ ‖ρ0‖L∞), we have the following inequalities for all t ∈ R

+:

∥∥∥
√

ρ(t)u(t)
∥∥∥

L2
≤ e−κµt

(
‖√ρ0u0‖L2 +

∫ t

0

eµγτ ‖√ρf‖L2 dτ

)

and, for some K depending only on ‖ρ0‖W 1,q , p, q, r, N , µ, γ, ρ̌ and Ω,

‖(ρ, u,Π)‖Ep,q,r
t

≤ K

(
‖u0‖

D
1− 1

p
,p

Ar

+ ‖f‖Lp
t (Lr) +

∫ t

0

eµγt ‖f(τ)‖L2 dτ

)
.

It turns out that in dimension N = 2, global existence of smooth solutions holds
true for large data with non-vanishing density, a result which has to be compared
with what we have in the homogeneous case.

Theorem 1.5. Let 1 < p < ∞, 2 < r < ∞ and q ∈ [r,∞]. Assume that

N = 2, that ρ0 ∈ W 1,q is bounded away from 0, that u0 ∈ D
1− 1

p
,p

Ar
and that

f ∈ Lp
loc(R

+;Lr) ∩ L2
loc(R

+;L2). Then system (1) has a unique global solution
which belongs to Ep,q,r

T for all T > 0.

Remark 1.6. For the sake of simplicity, we restricted ourselves to the study of
fluids in bounded domains. However, we expect that all the results pertaining
to local existence may be proved for domains in which the Stokes operator in Lr

satisfies condition (H2) described in Section B of the appendix. This property
is known to be true if Ω is the complementary of a bounded smooth domain for
instance (see [15]).
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2. Notations and functional spaces

2.1. General notation

Throughout the paper, C stands for a “harmless” constant whose exact meaning
depends on the context. Given a set of parameters S = {α1, · · · , αk}, the notation
C = CS = C(S) means that C depends only on α1, · · · , αk. Sometimes, we make
use of A . B in place of A ≤ CB and A ≈ B means that A . B and B . A.

Let Ω be a bounded Lipschitz domain of R
N . Then ∂Ω denotes the boundary

of Ω, and n stands for the outer unit normal at the boundary. We denote by δ(Ω)
the diameter of Ω and by |Ω|, its Lebesgue measure. The notation σ(Ω) stands
for the “dimensionless” open set

σ(Ω) =

{
x

δ(Ω)

∣∣∣∣ x ∈ Ω

}
.

Hence, when denoting C = Cσ(Ω), it is understood that the constant C does not
change under dilation of Ω, i.e. depends only on the shape of Ω.

Let 1 ≤ p ≤ ∞ and K be a measurable subset of R
N . The notation Lp(K) (or

Lp if no ambiguity) stands for the set of measurable functions on K with values in
R and bounded Lp norm. A similar notation is used for vector-valued functions.
More generally, if X is a Banach space and f = (f1, · · · , fk) is such that fi ∈ X
for each i ∈ {1, · · · , k}, we define

‖f‖X = ‖(f1, · · · , fk)‖X
def
=

k∑

i=1

‖fi‖X .

For r ∈ [1,+∞], we denote by Lr(0, T ;X) the set of Bochner measurable X-
valued time dependent functions f such that t 7→ ‖f‖X belongs to Lr(0, T ). The
corresponding Lebesgue norm is denoted by ‖ ·‖Lr

T
(X) and the conjugate exponent

of r (i.e. r/(r − 1)) is denoted by r′. If I is an interval of R, the notation C(I;X)
(resp. Cb(I;X)) stands for the set of continuous (resp. continuous and bounded)
functions of F(I;X).

If k is an integer, we denote by W k,q(Ω) (or W k,q) the set of Lq functions whose
derivatives up to order k belong to Lq. If I is an interval of R and X, a Banach
space, the notation W 1,p(I;X) stands for the set of Lp(I;X) functions whose first
time derivative also belongs to Lp(I;X).

We shall also make use of trace spaces W s,q(∂Ω) (see their definition in e.g. [1],
[11] or [16]).

2.2. Basic properties of the Stokes operator

For 1 < q < ∞, let Xq be the completion in Lq of the set of solenoidal vector-fields
with coefficients in C∞

0 (Ω). It is well known (see e.g. [23]) that for C1 domains,
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Xq =
{

u ∈ (Lq(Ω))N | div u = 0 and u · n = 0 on Ω
}

,

and that any vector-field with coefficients in Lq has a Helmholtz decomposition:

Lemma 2.1. Let Ω be a bounded domain of R
N with C1 boundary. For all f ∈

Lq(Ω)N , there exists a unique couple (f0, P ) with

f = f0 + ∇P, f0 ∈ Xq, P ∈ Lq
loc(Ω), ∇P ∈ Lq(Ω) and

∫

Ω

P dx = 0.

Besides the map f :

{
Lq −→ Xq × Lq

f 7−→ (f0,∇P )
is continuous.

We denote by Pq : f 7→ f0 the projector from Lq onto Xq introduced above.
We further define (according to [12]) the Stokes operator on Lq:

Aq = −Pq∆ with domain D(Aq) = W 2,q(Ω) ∩ W 1,q
0 (Ω) ∩ Xq. (4)

2.3. Fractional domains for the Stokes operator

Let us first give the formal definition of the (homogeneous) fractional domains of
the Stokes operator in Lq.

Definition 2.2. Let 1 < q < ∞. For α ∈ (0, 1) and s ∈ (1,∞), we set

‖u‖Ḋα,s
Aq

def
=

(∫ +∞

0

∥∥t1−αAqe
−tAqu

∥∥s

Lq

dt

t

) 1
s

,

where e−tAq stands for the semi-group associated to Aq. We then define the

homogeneous fractional domain Ḋα,s
Aq

as the completion of D(Aq) under ‖u‖Ḋα,s
Aq

.

The above definition may be made rigorous if Aq generates a bounded analytic
semi-group. According to [15], this latter property is known to be true if conditions
(H1) and (H2) of Section B in the appendix are fulfilled.

As 1 < q < ∞, the space Xq(Ω) is ζ-convex (even if Ω is not bounded or/and
not smooth, see [15] page 81) so that (H1) always holds. On the other hand, if Ω
is a bounded domain with C2+ǫ boundary, condition (H2) is also fulfilled (see [12]
and [15]).

Besides, the Stokes operator has the so-called maximal regularity property (see
Theorem B.4 in the Appendix and Theorem 3.2 below).

Remark 2.3. 1. Let Ḋ(Aq) be the completion of D(Aq) in Xq under the norm

‖Au‖Lq . One can show that Ḋα,s
Aq

agrees with (X, Ḋ(Aq))α,s.
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2. One can also define non-homogeneous fractional domains Dα,s
Aq

as the com-

pletion of D(Aq) under the following norm:

‖u‖Dα,s
Aq

def
= ‖u‖Lq +

(∫ +∞

0

∥∥t1−αAqe
−tAqu

∥∥s

Lq

dt

t

) 1
s

.

Of course, Dα,s
Aq

agrees with (X,D(Aq))α,s.

As from now on we shall consider only bounded domains, the following result
will be very useful:

Proposition 2.4. Let Ω be a Lipschitz bounded domain of R
N . There exists a

constant C = CN,r,σ(Ω) such that

‖u‖W 2,q

def
=

∥∥∇2u
∥∥

Lq + δ(Ω)−1 ‖∇u‖Lq + δ(Ω)−2 ‖u‖Lq ≤ C
∥∥∇2u

∥∥
Lq .

whenever u ∈ W 2,q ∩ W 1,q
0 (Ω).

Proof. One just has to notice that Poincaré inequality applies to u (as u vanishes
on ∂Ω), and that Poincaré–Wirtinger inequality applies to ∇u (as

∫
Ω
∇u dx = 0).

¤

Hence, for bounded domains, the non-homogeneous fractional spaces Dα,s
Aq

co-
incide with the homogeneous ones. Therefore, we shall not make the distinction
between the two of them from now on.

Let us now explain how the fractional domains of Aq may be identified with
Besov spaces Bβ

q,s.

Proposition 2.5. Let α ∈ (0, 1) and 1 < q, s < ∞. Let
◦
Bq,s

β be the completion of
C∞

0 (Ω) in Bβ
q,s. Then we have

◦
Bq,s

2α ∩ Xq →֒ Dα,s
Aq

→֒ B2α
q,s ∩ Xq.

Besides, the three sets are the same (with equivalent norms) provided 2α ≤ 1/q.

Proof. Combining Remark 2.3 and (4), we can write

Dα,s
Aq

= (Xq,Xq ∩ W 1,q
0 ∩ W 2,q)α,s = Xq ∩ (Lq,W 1,q

0 ∩ W 2,q)α,s.

Because W 2,q
0 →֒ W 1,q

0 ∩ W 2,q →֒ W 2,q, we have

◦
Bq,s

2α = (Lq,W 2,q
0 )α,s →֒ (Lq,W 1,q

0 ∩ W 2,q)α,s →֒ (Lq,W 2,q)α,s = B2α
q,s

which yields the desired chain of embeddings (see e.g. [22] for the proof of the first

and last equality). Moreover, if 2α ≤ 1/q, the spaces
◦
Bq,s

2α and B2α
q,s are the same

(see e.g. [22], page 83). ¤
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3. The linearized equations

This section is devoted to the study of the linearized system (1).

3.1. The transport equation

The following result is quite standard (as a matter of fact, it is a straightforward
generalization of the one presented in [18]):

Proposition 3.1. Let Ω be a Lipschitz domain of R
N and v ∈ L1(0, T ; Lip) be a

solenoidal vector-field such that v · n = 0 on ∂Ω. Let a0 ∈ W 1,q with q ∈ [1,+∞].
Then equation {

∂ta + v · ∇a = 0,
ρ|t=0 = a0,

has a unique solution in L∞(0, T ;W 1,∞) ∩ C([0, T ];∩r<∞W 1,r) if q = ∞ and in
C([0, T ];W 1,q) if q < ∞.

Besides, the following estimate holds true:

∀t ∈ [0, T ], ‖a(t)‖W 1,q ≤ e
∫

t
0
‖∇v(τ)‖L∞ dτ‖a0‖W 1,q .

If in addition a belongs to Lp for some p ∈ [1,+∞] then

∀t ∈ [0, T ], ‖a(t)‖Lp = ‖a0‖Lp .

3.2. Estimates for non-stationary Stokes equations

This section is devoted to the proof of estimates for the following linear system:




∂tv − µ∆v + ∇Π = f,
∫
Ω

Π = 0,
div v = τ,
v|t=0 = v0, v|∂Ω = 0.

(5)

Throughout this section and unless otherwise specified, Ω is a C2+ǫ bounded do-
main.

3.2.1. The case of solenoidal vector-fields

We first focus on the non-stationary Stokes equation (5) with τ = 0. Our main
statement reads:

Theorem 3.2. Let Ω be a C2+ǫ bounded domain of R
N and 1 < q, s < ∞. Assume

that u0 ∈ D
1− 1

s
,s

Aq
and f ∈ Ls(R+;Lq). Then system





∂tu − µ∆u + ∇Π = f,
∫
Ω

Π dx = 0,
div u = 0, u|∂Ω = 0,
u|t=0 = u0,

(6)
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has a unique solution (u,Π) satisfying the following inequality for all T ≥ 0:

µ
1
s′ ‖u(T )‖

D
1
s′

,s

Aq

+

(∫ T

0

∥∥∥
(
∇Π, µ∇2u, ∂tu

)∥∥∥
s

Lq
dt

) 1
s

≤ C

(
µ

1
s′ ‖u0‖

D
1
s′

,s

Aq

+

(∫ T

0

‖f(t)‖s
Lq dt

)1
s
)

with C = C(q, s,N, σ(Ω)) and 1/s′ = 1 − 1/s.

Proof. Using the change of function u(t, x) = µv(µt, x), Π(t, x) = µ2P (µt, x) and
f(t, x) = µ2g(µt, x) enables us to consider only the case µ = 1.

Now, as under our assumptions on Ω and q, conditions (H1) and (H2) of
Section B in the appendix are fulfilled, Theorem B.4 may be applied.

Moreover, for u ∈ D(Aq), we have (see Prop. 1.4 in [14])
∥∥∇2u

∥∥
Lq ≤ Cq,N,σ(Ω) ‖Aqu‖Lq ,

and, according to Lemma 2.1,

∇Π = ∆u + Aqu,

which completes the proof. ¤

3.2.2. The general case

Let us now treat the general case div v = τ . Maximal regularity estimates for (6)
will be obtained by solving first the following stationary Stokes problem:





−∆v + ∇P = f,
∫
Ω

P dx = 0,
div v = τ,
v|∂Ω = 0,

(7)

then a problem of type (6) for which Theorem 3.2 applies.
For system (7), we have the following result.

Proposition 3.3. Let Ω be a C2 bounded domain and 1 < q < ∞. Let f ∈ Lq(Ω)
and τ ∈ W 1,q(Ω) with

∫
Ω

τ dx = 0. Then system (7) has a unique solution (v, P )
in W 2,q(Ω)N × W 1,q(Ω). Moreover, there exists C = Cq,N,σ(Ω) such that

∥∥∇2v
∥∥

Lq + ‖∇P‖Lq ≤ Cq,N,σ(Ω)

(
‖f‖Lq + ‖∇τ‖Lq

)
.

Proof. See [11] p. 226, and Exercise 6.2. Using scaling arguments enables us to
show that the constant depends only on the shape of Ω. ¤

It turns out that estimates for ‖v‖Lq will be also needed.
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Proposition 3.4. Let Ω be a C2 bounded domain and 1 < q < ∞. Let Ω′ be
a Lipschitz open subdomain of Ω, star-shaped with respect to some ball B ⊂ Ω′

centered at x0 and of diameter d > 0. Denote χ = δ(Ω′)/d the distortion parameter
of Ω′ with respect to B, and

c =
1

δ(Ω′)
ess inf

x∈∂Ω′

(
n′ ·(x−x0)

)

where n′ stands for the outer unit normal on ∂Ω′.
Assume that v solves (7) with f = 0 and τ = τ0 +div R, and that τ0 and R are

supported in Ω
′
. The following inequalities hold true whenever 1 < r < ∞:

‖v‖Lr(Ω) ≤ Cr,N,σ(Ω)

(
δ(Ω′)χ

N−1
r′ ‖τ0‖Lr(Ω) + ‖R‖Lr(Ω) + ‖R · n‖

W− 1
r

,r(∂Ω)

)
, (8)

‖v‖Lr(Ω) ≤ Cr,N

(
δ(Ω′)χ

N−1
r′ ‖τ0‖Lr(Ω)+‖R‖Lr(Ω)+ δ(Ω′)

1
r
χ

N−1
r′

c
1
r′

‖R·n‖Lr(∂Ω)

)
. (9)

Proof. We have

‖v‖Lr = sup
‖F‖

Lr′ =1

∫

Ω

v · F dx.

Fix a function F in (Lr′

(Ω))N . Proposition 3.3 provides a solution (w,Q) to




−∆w −∇Q = F,

∫

B

Qdx = 0,

div w = 0,
w|∂Ω = 0.

Combining integrations by parts and equation (7) yields
∫

Ω

v · F dx =

∫

Ω

(τ0Q − R·∇Q) dx +

∫

∂Ω

Q R·ndσ.

Therefore, taking advantage of the assumptions on the supports of τ0 and R,
∫

Ω

v · F dx ≤ ‖Q‖Lr′ (Ω′)‖τ0‖Lr(Ω′) + ‖∇Q‖Lr′ (Ω′)‖R‖Lr(Ω′)

+

{
‖R · n‖

W− 1
r

,r(∂Ω)
‖Q‖

W
1
r

,r′ (∂Ω)
,

‖R · n‖Lr(∂Ω)‖Q‖Lr′ (∂Ω∩Ω
′
).

As
∫

B
Q = 0, Poincaré–Wirtinger inequality (97) yields

‖Q‖Lr′ (Ω′) ≤ CNχ
N−1

r′ δ(Ω′)‖∇Q‖Lr′ (Ω′).

Proof of (8). By making use of standard trace theorems, we have ‖Q‖
W

1
r

,r′ (∂Ω)
≤

Cr,N,σ(Ω)‖Q‖W 1,r′ (Ω). On the other hand, according to Proposition 3.3, we have

‖∇Q‖Lr′ (Ω) ≤ Cr,N,σ(Ω)‖F‖Lr′ (Ω), (10)
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hence inequality (8).

Proof of (9). In order to bound the term ‖Q‖Lr′ (∂Ω∩Ω
′
), it suffices to bound

‖Q‖Lr′ (∂Ω′).

According to inequality (3.3) page 43 in [11], we have

cδ(Ω′)‖Q‖r′

Lr′ (∂Ω′) ≤ N‖Q‖r′

Lr′ (Ω′) + r′δ(Ω′)‖Q‖r′−1
Lr′ (Ω′)

‖∇Q‖Lr′ (Ω′).

Hence, combining Poincaré–Wirtinger inequality (97) and Hölder inequality,

c
1
r′ ‖Q‖Lr′ (∂Ω′) ≤ CN,rδ(Ω

′)
1
r

(
χ

N−1
r′ ‖∇Q‖Lr′ (Ω′) + χ

N−1
rr′ ‖∇Q‖Lr′ (Ω′)

)
,

≤ CN,rχ
N−1

r′ δ(Ω′)
1
r ‖∇Q‖Lr′ (Ω′).

Using again (10) completes the proof of the proposition. ¤

Proposition 3.5. Let 1 < p, r < ∞ and τ ∈ Lp(0, T ;W 1,r(Ω))∩W 1,p(0, T ;W−1,r)
satisfy

τ(0, ·) ≡ 0,

∫

Ω

τ dx = 0 and ∂tτ = τ0 + div R

with R, τ0 ∈ Lp(0, T ;Lr(Ω)), R·n in Lp(0, T ;Lr(∂Ω)) and Supp τ0(t, ·)∪SuppR(t, ·)
⊂ Ω

′
for all t ∈ (0, T ) with Ω′ satisfying the assumptions of Proposition 3.4.

The non-stationary Stokes system




∂tv − ∆v + ∇Π = 0,
∫
Ω

Π dx = 0,
div v = τ,
v|∂Ω = 0, v|t=0 = 0,

(11)

has a unique solution (v,Π) with

v ∈ Lp(0, T ;W 2,r) ∩ W 1,p(0, T ;Lr) and Π ∈ Lp(0, T ;W 1,r).

Moreover, the following inequality holds true:

‖(∂tv,∇2v,∇Π)‖Lp
T

(Lr(Ω)) ≤ Cr,p,N,σ(Ω)

(
δ(Ω′)χ

N−1
r′ ‖τ0‖Lp

T
(Lr(Ω))

+‖R‖Lp
T

(Lr(Ω)) + δ(Ω′)
1
r
χ

N−1
r′

c
1
r′

‖R·n‖Lp
T

(Lr(∂Ω)) + ‖∇τ‖Lp
T

(Lr(Ω))

)
.

Proof. For fixed t, let (v1(t, ·),Π1(t, ·)) be the solution to




−∆v1 + ∇Π1 = 0,
∫
Ω

Π1 dx = 0,
div v1 = τ(t, ·),
(v1)|∂Ω = 0.

Remark that (∂tv1,∇∂tΠ1) satisfies the stationary Stokes system (7). Hence,
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according to Proposition 3.4, we have

‖∂tv1‖Lr(Ω) ≤ Cr,N

(
δ(Ω′)χ

N−1
r′ ‖τ0‖Lr(Ω) + ‖R‖Lr(Ω) + δ(Ω′)

1
r
χ

N−1
r′

c
1
r′

‖R·n‖Lr(∂Ω)

)
.

(12)
Next, define v2 as the solution to





∂tv2 − ∆v2 + ∇Π2 = −∂tv1,
∫
Ω

Π2 dx = 0,
div v2 = 0,
(v2)|∂Ω = 0, (v2)|t=0 = 0.

Note that τ(0, ·) ≡ 0 implies v1(0, ·) ≡ 0, hence v
def
= v1 + v2 solves (11).

According to Theorem 3.2, we have

‖v2(T )‖
D

1− 1
p

,p

Ar

+ ‖(∂tv2,∇2v2,∇Π2)‖Lp
T

(Lr(Ω)) ≤ Cr,p,N,σ(Ω)‖∂tv1‖Lp
T

(Lr(Ω)).

Hence, using (12) shows that (v2,Π2) satisfies the wanted inequality.
Now, according to Proposition 3.3, we have

‖(∇2v1,∇Π1)‖Lr(Ω) ≤ Cr,N,σ(Ω)‖∇τ‖Lr(Ω).

The proof of Proposition 3.5 is thus complete. ¤

We can now easily solve the general non-stationary Stokes system (5). First,
using a suitable change of function (see the proof of Th. 3.2), it suffices to consider
the case µ = 1. Then, using the decomposition (v,∇Π) = (v1,∇Π1) + (v2,∇Π2)
with





∂tv1 − ∆v1 + ∇Π1 = f,
div v1 = 0,

∫
Ω

Π1 = 0,
(v1)|t=0 = v0, (v1)|∂Ω = 0.

and





∂tv2 − ∆v2 + ∇Π2 = 0,
div v2 = τ,

∫
Ω

Π2 = 0,
(v2)|t=0 = 0, (v2)|∂Ω = 0,

Theorem 3.2 and Proposition 3.5 yield the following:

Theorem 3.6. Let 1 < p, r < ∞, and Ω be a C2+ǫ bounded domain of R
N . Let

Ω′ ⊂ Ω be open and star-shaped with respect to some ball of diameter d > 0. Let
τ ∈ Lp(0, T ;W 1,r) satisfy τ(0, ·) ≡ 0,
∫

Ω

τ dx = 0, ∂tτ = τ0+div R and ∀t ∈ (0, T ), Supp τ0(t, ·)∩Supp R(t, ·) ⊂ Ω
′

with R and τ0 in Lp(0, T ;Lr(Ω)) and R · n in Lp(0, T ;Lr(∂Ω)). Let v0 ∈ D
1− 1

p
,p

Ar

and f ∈ Lp(0, T ;Lr(Ω)). Then problem (5) has a unique solution (v,Π) such that

v ∈ Lp(0, T ;W 2,r) ∩ W 1,p(0, T ;Lr) and Π ∈ Lp(0, T ;W 1,r).
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Besides the following estimate holds true with C = Cr,p,N,σ(Ω):

‖(∂tv, µ∇2v,∇Π)‖Lp
T

(Lr(Ω)) ≤ C
(
µ1−1

p ‖v0‖
D

1−1
p

,p

Ar

+ ‖f‖Lp
T

(Lr(Ω)) + ‖R‖Lp
T

(Lr(Ω))

+µ‖∇τ‖Lp
T

(Lr(Ω)) + χ
N−1
r′ δ(Ω′)‖τ0‖Lp

T
(Lr(Ω)) + δ(Ω′)

1
r
χ

N−1
r′

c
1
r′

‖R·n‖Lp
T

(Lr(∂Ω))

)

with c defined as in Proposition 3.4.

3.3. The linearized momentum equation

This section is devoted to the study of the following linear system:




ρ∂tu − µ∆u + ∇Π = f,
∫
Ω

Π dx = 0,
div u = 0,
u|t=0 = u0, u|∂Ω = 0.

(13)

Our main existence theorem reads:

Theorem 3.7. Let Ω be a C2+ǫ bounded domain, 1 < p, r < ∞ and q ∈ (N,+∞]

such that q ≥ r. Let u0 ∈ D
1− 1

p
,p

Ar
and f ∈ Lp(0, T ;Lr). Assume that the density

ρ satisfies
∀(t, x) ∈ [0, T ] × Ω, 0 < ρ̌ ≤ ρ(t, x) ≤ ρ̂ < ∞

and that for some β ∈ (0, 1],

ρ ∈ L∞
(
0, T ;W 1,q(Ω)

)
∩ Cβ

(
[0, T ];L∞(Ω)

)
.

Then equation (13) has a unique solution (u,Π) such that

u ∈ C([0, T ];D
1− 1

p
,p

Ar
) ∩ Lp(0, T ;W 2,r ∩ W 1,r

0 ), Π ∈ Lp(0, T ;W 1,r)

and ∂tu∈Lr(0, T ;Lp).

Besides, there exists C = C(N, p, q, r, σ(Ω)) such that, denoting

δ+
def
= max

(
0,

N

q
− N

r′

)
,

ς̃ = max

(
0,

N

p
− N

r

)
max

(
r′

N ′ ,
q

q − N

)
,

r∗
def
= max

(
6 + 2σ̃

1 − δ+
, 6 +

4

r − 1
+ 2r′(ς̃ + δ+)

)
,

Bρ(t)
def
= 1 + δ(Ω)

(
ρ̌−1‖∇ρ‖L∞

t (Lq)

) q
q−N

,
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Mβ(t)
def
= sup

x∈Ω
τ,τ′∈[0,t],τ 6=τ′

|ρ(τ, x) − ρ(τ ′, x)|
ρ̌|τ − τ ′|β ,

ηρ
def
= ρ̂/ρ̌, Cρ(t)

def
= η2r′

ρ (Bρ(t))
r∗

+ ρ̂
δ(Ω)2

µ
η
1+ 1

β
ρ (Bρ(t))

( 1
β

+1)(2+ς̃+δ+)(Mβ(t))
1
β ,

we have the following inequalities for all t ∈ [0, T ]:

µ‖u‖Lp
t (W 2,r) + ρ̌‖∂tu‖Lp

T
(Lr) + ‖Π‖Lp

t (W 1,r) + ρ̌
1
p µ

1
p′ ‖u(t)‖

D
1− 1

p
,p

Ar

≤ Cη3
ρB2+ς̃+δ+

ρ (t) e
CµtCρ(t)

ρ̌δ(Ω)2

(
‖f‖Lp

t (Lr)+ρ̌
1
p µ

1
p′ ‖u0‖

D
1− 1

p
,p

Ar

)
. (14)

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
t (Lr) + ρ̌

1
p µ

1
p′ ‖u(t)‖

D
1− 1

p
,p

Ar

≤ C

(
η4

ρB2+ς̃+δ+
ρ (t)

(
‖f‖Lp

t (Lr)+ρ̌
1
p µ

1
p′ ‖u0‖

D
1− 1

p
,p

Ar

)
+

ηρµ

δ(Ω)2
Cρ(t)‖u‖Lp

t (Lr)

)
. (15)

The basic idea is that when ρ is close to a positive constant ρ, Theorem 3.2
provides us with the desired estimates. Indeed, it is only a matter of rewriting
system (13) as





ρ∂tu − µ∆u + ∇Π = f + (ρ − ρ)∂tu,
∫
Ω

Π dx = 0,
div u = 0,
u|t=0 = u0, u|∂Ω = 0.

Now, if ‖ρ − ρ‖L∞ is small, the term ‖(ρ − ρ)∂tu‖Lp
t (Lr) may be absorbed by the

left-hand side of the inequality given in Theorem 3.2.
The proof is structured as follows. First, we restrict ourselves to null initial data

and prove a priori estimates for (u,Π) under the assumption that ρ is independent
of t. Next, we prove similar estimates in the case of time-dependent densities.
These estimates will enable us to prove Theorem 3.7 in the case u0 ≡ 0.

The last step of the proof is devoted to general initial data u0 ∈ D
1− 1

p
,p

Ar
.

3.3.1. Existence of solutions for null initial data

a) A priori estimates in the case of a density independent of the time
The main result of this part is the following:

Proposition 3.8. Let Ω, α, β, p, q, r be as in Theorem 3.7. Let f ∈ Lp(0, T ;Lr).

Let ρ be independent of t, satisfy ρ̌
def
= infx∈Ω ρ(x) > 0 and belong to W 1,q(Ω).
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There exists C = C(p, q, r,N, σ(Ω)) such that the following estimates hold true:

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
T

(Lr)

≤ C

(
BNς

ρ ‖f‖Lp
T

(Lr) +
(
Bρ − 1

)2+2Nς max
(
1, r′

N′

)
µ‖u‖Lp

T
(Lr)

δ(Ω)2

+
(
Bρ − 1

)1+Nς max
(

r′

N′ , q
q−N

) ‖Π‖Lp
T

(Lr)

δ(Ω)

)
, (16)

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
T

(Lr) ≤ C

(
ηρB2+ς̃+δ+

ρ ‖f‖Lp
T

(Lr)

+
µ

δ(Ω)2
η2r′

ρ Br∗−1
ρ (Bρ − 1)‖u‖Lp

T
(Lr)

)
, (17)

with ηρ
def
= ρ̂/ρ̌, δ+

def
= max

(
0, N

q −N
r′

)
, Bρ

def
= 1 + δ(Ω)

(
ρ̌−1 ‖∇ρ‖Lq

) q
q−N

, ς
def
=

max(0, 1p− 1
r ), ς̃

def
= Nς max

(
r′

N ′ ,
q

q−N

)
, and r∗

def
= max

(
6+2σ̃
1−δ+

, 6+ 4
r−1 + 2r′(ς̃+δ+)

)
.

Proof. The proof is based on the old argument by O. Ladyzhenskaya and V. Solon-
nikov in [18]. As explained above, the key idea is that the inequality to be proved
is a mere consequence of Theorem 3.2 if ρ is “almost” a constant.

On the other hand, by virtue of Sobolev embeddings, ρ belongs to Cα with

α
def
= 1 − N

q so that it does not vary much on small subdomains of Ω. Hence we
introduce a convenient partition of unity in the x variable and use Theorem 3.6 in
order to control the solution on each subdomain. Of course, one has to be careful
that the constants appearing in each local inequality are harmless, a detail which
has been passed over in silence in [18].

First step: Local estimates. Let us first notice that one can rule out the case
‖ρ‖Ċα ≤ κρ̌δ(Ω)−α for κ suitably small constant. Indeed, rewriting the momentum
equation as follows:

ρ̌∂tu − µ∆u + ∇Π = f +

(
ρ̌ − ρ

ρ̌

)
ρ̌∂tu,

and using that ‖ρ − ρ̌‖L∞ ≤ δ(Ω)α‖ρ‖Ċα , Theorem 3.2 obviously yields the desired
estimates.

Let us assume from now on that

‖ρ‖Ċα > κρ̌δ(Ω)−α. (18)

Let (Ωk)1≤k≤K be a covering of Ω by connected open sets with C2 boundaries,
finite multiplicity m = m(N) and diameter less than some λ ∈ (0, δ(Ω)) to be
fixed hereafter. As Ω is C2 we can assume in addition that the parameters χ and
c (see Proposition 3.4) associated to each subdomain Ω ∩ Ωk are bounded and
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bounded away from zero independently of k. Consider a subordinate partition of
unity (ϕk)1≤k≤K of class C2 such that

1. Suppϕk ⊂ Ωk,

2.
∑

k ϕk ≡ 1 on Ω,

3. 0 ≤ ϕk ≤ 1,

4. ‖∇αϕk‖L∞ ≤ Cα|λ|−|α| for |α| ≤ 2,

5. K ≈ (δ(Ω)λ−1)N and the number K ′ of domains Ωk intersecting ∂Ω is of
order (δ(Ω)λ−1)N−1.

Let fk
def
= ϕkf , Πk

def
= ϕkΠ and uk

def
= ϕku. Further denote by xk a point of Ωk ∩ Ω

where the minimum of ρ is attained, and ρk = ρ(xk), µk = µ/ρk. Obviously
(uk,Πk) satisfies





∂tuk−µk∆uk+∇
(

Πk

ρk

)
=

fk

ρk
+

(ρk−ρ

ρk

)
ϕk∂tu−µku∆ϕk−2µk∇ϕk ·∇u+

Π

ρk
∇ϕk

︸ ︷︷ ︸
gk

,

div uk = u · ∇ϕk︸ ︷︷ ︸
τ

,

uk(0) = 0,
(uk)|∂Ω = 0.

Of course, as div u = 0 and u vanishes on ∂Ω, one has
∫
Ω

div uk dx = 0. Note also
that u|t=0 = 0 entails div uk(0, ·) ≡ 0. On the other hand, using the summation
convention on the repeated indices, we have

∂t div uk =
f

ρ
·∇ϕk+Π∂i

(
∂iϕk

ρ

)
−∂ju

i∂j

(
µ

ρ
∂iϕk

)

︸ ︷︷ ︸
τ0

+div

(
µ

ρ
∂iϕk∂ju

i − Π

ρ
∂iϕk

︸ ︷︷ ︸
R

)
.

From now on, let C denote a constant depending only on q, r,N, α and σ(Ω). We
also use the symbol “.” introduced in Section 2.

Since τ(t, ·) and R(t, ·) are supported in Ωk ∩ Ω, applying Theorem 3.6 and
using the properties of ϕk gives

‖∂tuk, µk∇2uk,∇
(

Πk

ρk

)
‖

Lp
T

(Lr(Ω))

. ‖gk‖Lp
T

(Lr(Ω)) + µk‖∇(u·∇ϕk)‖Lp
T

(Lr(Ω))

+λ‖τ0‖Lp
T

(Lr(Ω)) + ‖R‖Lp
T

(Lr(Ω)) + λ
1
r ‖R · n‖Lp

T
(Lr(∂Ω)). (19)

Second step: The global estimate
As ρ ∈ Cα, we have

‖ρk − ρ‖L∞(Ωk∩Ω) ≤ λα‖ρ‖Ċα .

Hence, taking advantage of the properties of (ϕk)1≤k≤K , one gets
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‖gk‖Lp
T

(Lr(Ω))

. µk

(
λ−1‖∇u‖Lp

T
(Lr(Ωk)) + λ−2‖u‖Lp

T
(Lr(Ωk))

)

+ρ−1
k

(
‖f‖Lp

T
(Lr(Ωk))+λα‖∂tuk‖Lp

T
(Lr(Ω))‖ρ‖Ċα+λ−1‖Π‖Lp

T
(Lr(Ωk))

)
. (20)

Clearly, µk‖∇τ‖Lp
T

(Lr(Ω)) = µk‖∇(u·∇ϕk)‖Lp
T

(Lr(Ω)) may be bounded by the first

two terms of the right-hand side of (20). As for τ0, we have

λ‖τ0‖Lp
T

(Lr(Ω))

. µk

(
λ−1‖∇u‖Lp

T
(Lr(Ωk)) + ‖∇u · ∇ log ρ‖Lp

T
(Lr(Ωk))

)

+ρ−1
k

(
‖f‖Lp

T
(Lr(Ωk)) + λ−1‖Π‖Lp

T
(Lr(Ωk)) + ‖Π∇ log ρ‖Lp

T
(Lr(Ωk))

)
. (21)

For ‖R‖Lp
T

(Lr(Ω)), easy computations yield

‖R‖Lp
T

(Lr(Ω)) . λ−1
(
µk‖∇u‖Lp

T
(Lr(Ωk)) + ρ−1

k ‖Π‖Lp
T

(Lr(Ωk))

)
. (22)

Finally, we have

λ‖R · n‖Lp
T

(Lr(∂Ω)) . µk‖∇u‖Lp
T

(Lr(Ωk∩∂Ω)) + ρ−1
k ‖Π‖Lp

T
(Lr(Ωk∩∂Ω)). (23)

Plugging inequalities (20) to (23) in (19) yields

‖ρk∂tuk, µ∇2uk,∇Πk‖Lp
T

(Lr(Ω)) . ‖f‖Lp
T

(Lr(Ωk)) + µλ−2‖u‖Lp
T

(Lr(Ωk))

+µλ−1‖∇u‖Lp
T

(Lr(Ωk)) + λ−1‖Π‖Lp
T

(Lr(Ωk)) + ‖Π∇ log ρ‖Lp
T

(Lr(Ωk))

+µ‖∇u·∇ log ρ‖Lp
T

(Lr(Ωk)) + λ− 1
r′ µ‖∇u‖Lp

T
(Lr(Ωk∩∂Ω))

+λ− 1
r′ ‖Π‖Lp

T
(Lr(Ωk∩∂Ω)) + λα‖ρ‖Ċα‖∂tuk‖Lp

T
(Lr(Ω)). (24)

On the one hand, by setting λ = κρ̌
1
α ‖ρ‖

1
α

Ċα
with κ small enough – a choice which

is allowed thanks to (18), the last term in the right-hand side may be absorbed
by the left-hand side. On the other hand, since the covering has finite multiplicity
m, it is clear that we have

∀z ∈ Lp(0, T ; Ω),

K∑

k=1

‖z‖p
Lp

T
(Lr(Ωk)) ≤ mKmax(0,1− p

r
)‖z‖p

Lp
T

(Lr(Ω)).

Hence, raising both sides of inequality (19) to the power p then summing on k, we
eventually get

‖ρ̌∂tu, µ∇2u,∇Π‖Lp
T

(Lr(Ω))

. (δ(Ω)λ−1)Nς
(
‖+‖Lp

T
(Lr(Ω))µλ−2‖u‖Lp

T
(Lr(Ω))

+µλ−1‖∇u‖Lp
T

(Lr(Ω)) + λ−1‖Π‖Lp
T

(Lr(Ω)) + µ‖∇u·∇ log ρ‖Lp
T

(Lr(Ω))
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+‖Π∇ log ρ‖Lp
T

(Lr(Ω))

)

+(δ(Ω)λ−1)(N−1)ςλ− 1
r′

(
µ‖∇u‖Lp

T
(Lr(∂Ω)) + ‖Π‖Lp

T
(Lr(∂Ω))

)
. (25)

Standard interpolation and trace theorems enable us to simplify the right-hand
side. Indeed, from [1] page 75 and obvious scaling considerations, we have for
η ≤ 1 and C = Cr,N,σ(Ω),

δ(Ω)‖∇u‖Lr(Ω) ≤ C
(
η−1‖u‖Lr(Ω) + η δ(Ω)2‖∇2u‖Lr(Ω)

)
(26)

and, according to inequality (3.3) page 43 in [11], we have

δ(Ω)
1
r ‖Π‖Lr(∂Ω) ≤ C

(
η̃− 1

r ‖Π‖Lr(Ω) + η̃
1
r′ δ(Ω)‖∇Π‖Lr(Ω)

)
. (27)

On the other hand, replacing Π with ∇u in (27) and using (26), we also get

δ(Ω)1+
1
r ‖∇u‖Lr(∂Ω) ≤ C

(
η̃− 1

r
−1‖u‖Lr(Ω) + η̃

1
r′ δ(Ω)2‖∇2u‖Lr(Ω)

)
. (28)

Moreover, combining Hölder, Gagliardo–Nirenberg, Poincaré–Wirtinger and Young
inequalities (here we use that r ≤ q and q > N), we get for all positive ǫ,

‖Π∇ log ρ‖Lr(Ω) ≤ C
(
‖∇ log ρ‖Lq ‖Π‖1−N

q

Lr ‖∇Π‖
N
q

Lr

)
,

≤ ǫ ‖∇Π‖Lr + Cǫ−
N

q−N ‖∇ log ρ‖
q

q−N

Lq ‖Π‖Lr .

Similarly, since u ∈ W 2,q ∩ W 1,r
0 , combining Gagliardo–Nirenberg, Poincaré–

Wirtinger and Young inequalities yields

‖∇u · ∇ log ρ‖Lr(Ω) ≤ ǫ
∥∥∇2u

∥∥
Lr + Cǫ

N−q
N+q ‖∇ log ρ‖

2q
q−N

Lq ‖u‖Lr .

Choose ǫ = κ′(λδ(Ω)−1)Nς , η = κ′(λδ(Ω)−1)1+Nς and η̃ = κ′(λδ(Ω)−1)1+r′(N−1)ς

with κ ≪ 1. Inserting the above inequalities in (25) and reminding that λ =

κρ̌
1
α ‖ρ‖

1
α

Ċα
, we end up with inequality 16.

Third step: estimates for the pressure
Estimating the pressure lies on a duality argument. For technical reasons how-

ever, the proof is slightly different depending on r ≥ q′ or r < q′.
• Case r ≥ q′. Since the pressure has null mean, we have

‖Π‖Lr = sup
‖h‖

Lr′
≤1

∫
Ω h dx=0

∫

Ω

Πh dx. (29)

As log ρ belongs to W 1,q with q > N and q ≥ r′, and as ρ is bounded by above
and by below, Proposition C.1 insures that the following Neumann problem

{
div(ρ−1∇v) = h,

∫
Ω

v dx = 0,
∂nv|∂Ω = 0.
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has a unique solution v in W 2,r′

(Ω) with besides

‖∇2v‖Lr′ (Ω) . ρ̂B2
ρ ‖h‖Lr′ and ‖∇v‖Lr′ (Ω) . ρ̂δ(Ω)Bρ ‖h‖Lr′ . (30)

On the other hand, integrating by parts and using the definition of v and ∇Π
yields

∫

Ω

Πh dx = −
∫

Ω

ρ−1∇Π · ∇v dx =

∫

Ω

∇v ·
(
∂tu − µρ−1∆u − ρ−1f

)
dx.

Hence, denoting µ̌
def
= µ/ρ̌, integrating by parts once again and using the summa-

tion convention for repeated indices,
∫

Ω

Πh dx = µ

∫

Ω

∂ju
i∂j

(
∂iv

ρ

)
dx − µ

∫

∂Ω

∂ju
i∂iv

ρ
njdσ −

∫

Ω

∇v · f
ρ

dx,

≤ µ̌‖∇u‖Lr(Ω)‖∇2v‖Lr′ (Ω) + µ̌‖∇ log ρ‖Lq(Ω)‖t∇u · ∇v‖Lq′ (Ω)

+µ̌‖∇u‖Lr(∂Ω)‖∇v‖Lr′ (∂Ω) + ρ̌−1‖f‖Lr(Ω)‖∇v‖Lr′ (Ω). (31)

Let us now bound the terms in the right-hand side of (31). Taking advantage of
(30), we easily get

µ̌ ‖∇u‖Lr

∥∥∇2v
∥∥

Lr′ . µηρB2
ρ ‖∇u‖Lr ‖h‖Lr′ . (32)

Next, as q′ ≤ r, Hölder inequality yields
∥∥t∇u · ∇v

∥∥
Lq′ ≤ ‖∇u‖Lr ‖∇v‖Ls

with s satisfying 1/s = 1/r′ − 1/q.
As, moreover, q > N , Gagliardo–Nirenberg inequality combined with (30)

yields

‖∇v‖Ls . ‖∇v‖1−N
q

Lr′

(∥∥∇2v
∥∥

Lr′ + δ(Ω)−1 ‖∇v‖Lr′

)N
q

,

. δ(Ω)−
N
q ‖∇v‖Lr′ + ‖∇v‖1−N

q

Lr′

∥∥∇2v
∥∥N

q

Lr′ ,

. ρ̂δ(Ω)1−
N
q B1+ N

q
ρ ‖h‖Lr′ ,

whence ∥∥t∇u · ∇v
∥∥

Lq′ . ρ̂δ(Ω)1−
N
q B1+ N

q
ρ ‖∇u‖Lr ‖h‖Lr′ .

Note that as δ(Ω)1−
N
q ‖∇ log ρ‖Lq ≤ B1−N

q
q , we actually have

µ̌ ‖∇ log ρ‖Lq

∥∥t∇u · ∇v
∥∥

Lq′ . µηρB2
ρ ‖∇u‖Lr ‖h‖Lr′ . (33)

In order to bound the last term in the right-hand side of (31), we first remark that
trace estimates and (30) yield:

‖∇v‖Lr′ (∂Ω) . ‖∇v‖
1
r

Lr′ (Ω)

(
‖∇2v‖Lr′ (Ω) + δ(Ω)−1‖∇v‖Lr′ (Ω)

) 1
r′

,

. ρ̂B1+ 1
r′

ρ δ(Ω)
1
r ‖h‖Lr′ (Ω).
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Hence

µ̌‖∇u‖Lr(∂Ω)‖∇v‖Lr′ (∂Ω) . µηρB
1+ 1

r′
ρ δ(Ω)

1
r ‖∇u‖Lr(∂Ω)‖h‖Lr′ (Ω). (34)

Therefore, plugging (32), (33), (34) in (31) and reminding of (29), we conclude
that

‖Π‖Lr(Ω) . ηρBρδ(Ω)

(
‖f‖Lr(Ω) + µBρ

‖∇u‖Lr(Ω)

δ(Ω)
+ µ

( Bρ

δ(Ω)

) 1
r′

‖∇u‖Lr(∂Ω)

)
.

(35)
We now claim that inequality (35) entails estimates for ‖(ρ̌∂tu,µ∇2u,∇Π)‖Lp

T
(Lr)

involving only the data and ‖u‖Lp
T

(Lr). Indeed, inequalities (28) and (26) give us

for suitably small ǫ and η:

‖∇u‖Lr(Ω) . η−1δ(Ω)−1‖u‖Lr(Ω) + ηδ(Ω)‖∇2u‖Lr(Ω),

‖∇u‖Lr(∂Ω) .
(
ǫδ(Ω)

)−1− 1
r ‖u‖Lr(Ω) +

(
ǫδ(Ω)

)1− 1
r ‖∇2u‖Lr(Ω). (36)

Hence, plugging the above inequalities in (35),

‖Π‖Lr(Ω)

δ(Ω)
. ηρBρ

(
‖f‖Lr(Ω) +

µ‖u‖Lr(Ω)

δ(Ω)2

(
Bρη

−1 + B
1
r′
ρ ǫ−1− 1

r

)

+µ‖∇2u‖Lr(Ω)

(
Bρη + B

1
r′
ρ ǫ

1
r′

))
.

Let κ be a suitably small positive constant depending only on N , p, q and r.
Inserting the above inequality with η = κη−1

ρ B−3−ς̃
ρ and ǫ = κη−r′

ρ B−2r′−1−r′ ς̃
ρ in

(16) yields inequality (17) in the case r ≥ q′.
• Case 1 < r < q′. Note that the condition q ≥ r′ was needed to get (30). We

would like to avoid this additional assumption (otherwise we will run into troubles
when proving uniqueness in dimension 2. . . )

Let us first use the fact that

‖Π‖Lr(Ω) ≤ δ(Ω)
N
r
− N

q′ ‖Π‖Lq′ (Ω). (37)

Now, the same duality argument as above will enable us to bound ‖Π‖Lq′ (Ω).
Indeed, we have

‖Π‖Lq′ = sup
‖h‖Lq ≤1∫
Ω h dx=0

∫

Ω

Πh dx. (38)

According to Proposition C.1,2 the Neumann problem
{

div(ρ−1∇v) = h,
∫
Ω

v dx = 0,
∂nv|∂Ω = 0

has a unique solution v in W 2,q(Ω) with besides

‖∇2v‖Lq(Ω) . ρ̂B2
ρ‖h‖Lq(Ω) and ‖∇v‖Lq(Ω) . ρ̂δ(Ω)Bρ‖h‖Lq(Ω). (39)

2 Remark that since 1 < r < q′ we must have q finite.
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Mimicking the proof of (31), one gets
∫

Ω

Πh dx ≤ µ̌‖∇u‖Lq′ (Ω)‖∇2v‖Lq(Ω) + µ̌‖∇ log ρ‖Lq(Ω)‖∇u‖Lq′ (Ω)‖∇v‖L∞(Ω)

+µ̌‖∇u‖Lr(∂Ω)‖∇v‖Lr′ (∂Ω) + ρ̌−1‖f‖Lr(Ω)‖∇v‖Lr′ (Ω). (40)

Taking advantage of (39), we get

µ̌‖∇u‖Lq′ (Ω)‖∇2v‖Lq(Ω) . µηρB2
ρ‖∇u‖Lq′ (Ω)‖h‖Lq(Ω). (41)

According to Gagliardo–Nirenberg inequality, we have

‖∇v‖L∞(Ω) . ‖∇v‖1−N
q

Lq(Ω)

(
‖∇2v‖Lq(Ω) + δ(Ω)−1‖∇v‖Lq(Ω)

)N
q

,

so that, by virtue of (39),

µ̌‖∇ log ρ‖Lq(Ω)‖∇u‖Lq′ (Ω)‖∇v‖L∞(Ω) . µηρB2
ρ‖∇u‖Lq′ (Ω)‖h‖Lq(Ω). (42)

According to inequality (3.3) page 43 in [11], we have

‖∇v‖Lr′ (∂Ω) . δ(Ω)−
1
r′ ‖∇v‖Lr′ (Ω) + ‖∇v‖

1
r

Lq′(r′−1)(Ω)
‖∇2v‖

1
r′

Lq(Ω).

On the other hand, according to Gagliardo–Nirenberg inequality, we have

‖∇v‖Lq′(r′−1)(Ω) . ‖∇v‖1−r(N
q
− N

r′ )
Lq(Ω)

(
‖∇2v‖Lq(Ω) + δ(Ω)−1‖∇v‖Lq(Ω)

)r(N
q
− N

r′ )
,

‖∇v‖Lr′ (Ω) . ‖∇v‖1−N
q

+ N
r′

Lq(Ω)

(
‖∇2v‖Lq(Ω) + δ(Ω)−1‖∇v‖Lq(Ω)

)N
q
− N

r′

, (43)

hence, taking advantage of (39),

‖∇v‖Lr′ (∂Ω) . ρ̂δ(Ω)
1
r
−N

q
+ N

r′ B1+ 1
r′

+ N
q
− N

r′

ρ ‖h‖Lq(Ω),

whence

µ̌‖∇u‖Lr(∂Ω)‖∇v‖Lr′ (∂Ω) . µηρδ(Ω)
1
r
−N

q
+N

r′ B1+ 1
r′

+N
q
−N

r′

ρ ‖∇u‖Lr(∂Ω)‖h‖Lq(Ω). (44)

Combining (43) and (39), we get

ρ̌−1‖f‖Lr(Ω)‖∇v‖Lr′ (Ω) . ηρA
1+ N

q
− N

r′

ρ δ(Ω)1−
N
q

+ N
r′ ‖f‖Lr(Ω)‖h‖Lq(Ω). (45)

Therefore, denoting δ
def
= N

q − N
r′ and plugging (41), (42), (44) and (45) in (40),

and taking advantage of (37), we conclude that

‖Π‖Lr(Ω) . ηρB1+δ
ρ δ(Ω)‖f‖Lr(Ω)

+µηρB2
ρ

(
δ(Ω)δ‖∇u‖Lq′ (Ω) + Bδ− 1

r
ρ δ(Ω)

1
r ‖∇u‖Lr(∂Ω)

)
.

Combining inequality (36) and the following Gagliardo–Nirenberg inequality:

∀η ∈ (0, 1), δ(Ω)1+δ‖∇u‖Lq′ (Ω) . η
1
2− δ

2 δ(Ω)2‖∇2u‖Lr(Ω) + η− 1
2− δ

2 ‖u‖Lr(Ω),
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(which stems from the fact that [Lr,W 2,r] δ
2+

1
2
→֒ W 1,q′

), one can further get for

all ǫ, η ∈ (0, 1),

‖Π‖Lr(Ω) .ηρB1+δ
ρ δ(Ω)‖f‖Lr(Ω) + µηρBρ

(
δ(Ω)

(
η

1
2− δ

2Bρ + ǫ
1
r′ B

1
r′

+δ
ρ

)
‖∇2u‖Lr(Ω)

+δ(Ω)−1
(
η− 1

2− δ
2Bρ + ǫ−1− 1

r B
1
r′

+δ
ρ

)
‖u‖Lr(Ω)

)
.

Choose ǫ = κ
(
ηρB

2+ 1
r′

+δ+ς̃
ρ

)−r′

and η = κ
(
ηρB3+ς̃

ρ

) 2
δ−1

for a suitably small con-

stant κ and insert the above estimate in inequality (16). We end up with3

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
T

(Lr) . ηρB2+δ+σ̃
ρ ‖f‖Lp

T
(Lr)

+µδ(Ω)−2η2r′

ρ

(
Bρ − 1

)
Bmax( 5+2σ̃+δ

1−δ
,5+2r′δ+ 4

r−1+2ς̃)
ρ ‖u‖Lp

T
(Lr), (46)

which is inequality (17) in the case 1 < r < q′. ¤

b) A priori estimates for (13) with time-dependent density

In this section, we aim at generalizing Proposition 3.8 to the case of a time-
dependent density. We have the following proposition:

Proposition 3.9. Let 1 < p, r < ∞ and f ∈ Lp(0, T ;Lr). Assume that ρ satisfies
the assumptions of Theorem 3.7 and that (u,Π) solves (13) with null initial data.
Let δ+, ς̃ and r∗ be defined as in the statement of Proposition 3.8 and denote

Bρ(t)
def
= 1 + δ(Ω)

(
ρ̌−1‖∇ρ‖L∞

t (Lq)

) q
q−N

, Mβ(t)
def
= sup

x∈Ω
τ,τ′∈[0,t],τ 6=τ′

|ρ(τ, x)−ρ(τ ′, x)|
ρ̌|τ − τ ′|β ,

Cρ(t)
def
= η2r′

ρ (Bρ(t))
r∗

+ ρ̂
δ(Ω)2

µ
η
1+1

β
ρ (Bρ(t))

( 1
β
+1)(2+ς̃+δ+)(Mβ(t))

1
β .

There exists C = C(α, β, q, r,N, σ(Ω)) such that for all t ∈ [0, T ] we have

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
t (Lr) ≤ C

(
ηρB2+̃ς+δ+

ρ (t)‖f‖Lp
t (Lr) +

µ

δ(Ω)2
Cρ(t)‖u‖Lp

t (Lr)

)
.

(47)

Proof. Let (u,Π) solve (13) with null initial data.
1. Estimates on a small time interval. Proposition 3.8 provides us with a priori

estimates on a small interval even if ρ depends on t. Indeed, (u,Π) satisfies




ρ(0)∂tu − µ∆u + ∇Π = f + (ρ(0) − ρ)∂tu,
div u = 0,

∫
Ω

Π dx = 0,
u|t=0 = 0, u|∂Ω = 0,

3 Note that since q > N , we have 1+δ
1−δ

≤ r+1

r−1
.
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so that Proposition 3.8 applies with density ρ(0). From it, we get

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
t (Lr)

≤ Cηρ(0)B2+ς̃+δ+

ρ(0)

(
‖f‖Lp

t (Lr) + ‖ρ(t)−ρ(0)‖L∞‖∂tu‖Lp
t (Lr)

)

+
Cµ

δ(Ω)2
η2r′

ρ(0)Br∗

ρ(0)‖u‖Lp
t (Lr)

so that denoting

τ
def
= min

(
T,

(
2CηρB2+ς̃+δ+

ρ (T )Mβ(T )
)− 1

β

)

and using the Hölder continuity of ρ with respect to t, we end up with

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
t (Lr) ≤ 2Cηρ

(
B2+̃ς+δ+

ρ (t)‖f‖Lp
t (Lr)+

µη2r′

ρ

δ(Ω)2
Br∗

ρ (t)‖u‖Lp
t (Lr)

)

whenever t belongs to [0, τ ]. Of course, we used above the fact that Bρ(t) ≥ Bρ(0).
2. Estimates on [0, T ]. Estimates on the whole interval [0, T ] may be proved

by introducing a partition of unity with respect to the t variable so that one can
proceed as in the previous step.

Of course, it suffices to prove (47) for t = T and we can assume that T > τ .
Let us introduce a partition of unity (ψk)k∈N of R

+ such that

• Suppψ0 ⊂ [0, τ ] and ψ0 ≡ 1 in a neighborhood of 0,
• For k ≥ 1, Suppψk ⊂ [k

2 τ, k
2 τ + τ ] and ‖∂tψk‖L∞ ≤ C

τ .

Denoting uk
def
= ψku, Πk

def
= ψkΠ and fk

def
= ψkf , we have





ρ∂tuk − µ∆uk + ∇Πk = fk + uρ∂tψk,
div uk = 0,

∫
Ω

Πk dx = 0,
uk(k

2 τ) = 0, uk|∂Ω = 0.

For t ≥ kτ/2, we have

‖ρu∂tψk‖Lp( k
2 τ,t;Lr) ≤ ρ̂‖u‖Lp( k

2 τ,t;Lr) ‖∂tψk‖L∞ ,

≤ Cρ̂
(
ηρB2+ς̃+δ+

ρ (T )Mβ(T )
) 1

β ‖u‖Lp( k
2 τ,t;Lr),

hence, according to the first step of the proof,

‖(ρ̌∂tuk, µ∇2uk,∇Πk)‖Lp( k
2 τ,t;Lr) . ηρB2+ς̃+δ+

ρ (t)‖f‖Lp( k
2 τ,t;Lr)

+
µη2r′

ρ

δ(Ω)2
Br∗

ρ (t)‖uk‖Lp( k
2 τ,t;Lr)+ρ̂ηρB2+ς̃+δ+

ρ (t)
(
ηρB2+σ̃+δ+

ρ (T )Mβ(T )
)1

β‖u‖Lp( k
2 τ,t;Lr)

)

whenever t belongs to Ik
def
= [k

2 τ, k
2 τ + τ ].

Of course, uk and Πk vanish outside Ik so that performing a summation on
k ∈ {0, · · · ,K} (with K such that Kτ ≤ T < (K + 1)τ), we obtain inequality
(47). ¤
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c) Existence and uniqueness for (13) with null initial data

We here want to prove the following result, which is a particular case of Theo-
rem 3.7:

Proposition 3.10. Let f and ρ satisfy the assumptions of Theorem 3.7. Then
equation (13) with null initial data has a unique solution (u,Π) such that

u ∈ C([0, T ];D
1−1

p
,p

Ar
) ∩ Lp(0, T ;W 2,r ∩ W 1,r

0 ), Π ∈ Lp(0, T ;W 1,r)

and ∂tu ∈ Lp(0, T ;Lr).

Besides, there exists C = C(α, q, r,N, σ(Ω)) such that the following estimates hold
true:

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
t (Lr) ≤ CηρB2+ς̃+δ+

ρ (t)e
CµtCρ(t)

ρ̌δ(Ω)2 ‖f‖Lp
t (Lr),

µ
1
p′ ρ̌

1
p ‖u(t)‖

D
1− 1

p
,p

Ar

≤ Cη2
ρB2+ς̃+δ+

ρ (t)e
CµtCρ(t)

ρ̌δ(Ω)2 ‖f‖Lp
t (Lr).

where ηρ, Cρ and Bρ have been defined in the statement of Proposition 3.9, and
t ∈ [0, T ].

Proof. Let us first remark that estimate (47) enables us to get an a priori estimate
for ‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp

t (Lr) involving only ρ and f . Indeed, let us recall the

following inequality (which holds true for smooth functions):

d

dt
‖u(t)‖Lr ≤ ‖∂tu‖Lr . (48)

Taking advantage of (48), (47) and of an appropriate smoothing of the function u,
the following formal computations may be made rigorous for all ǫ > 0:

‖u(t)‖p
Lr = p

∫ t

0

‖u(τ)‖p−1
Lr

d

dt
‖u(τ)‖Lr dτ,

≤ (p − 1)ǫ

∫ t

0

‖u(τ)‖p
Lr dτ + ǫ1−p

∫ t

0

‖∂tu(τ)‖p
Lr dτ,

≤
(

(p − 1)ǫ + Cǫ1−p
( µCρ(t)

ρ̌δ(Ω)2

)p
)∫ t

0

‖u‖p
Lr dτ

+ Cǫ1−p
(ηρ

ρ̌
B2+ς̃+δ+

ρ

)p
∫ t

0

‖f‖p
Lr dτ.

Choosing ǫ =
(

C
p−1

) 1
p µCρ

ρ̌δ(Ω)2 and applying Gronwall lemma yields for some con-
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stant C = CN,r,q,σ(Ω),

‖u(t)‖Lr ≤ C

(
µCρ(t)

δ(Ω)2

) 1
p
−1

ηρB2+ς̃+δ+
ρ (t)

ρ̌
1
p

e
CµCρ(t)t

ρ̌δ(Ω)2 ‖f‖Lp
t (Lr), (49)

µ

δ(Ω)2
‖u‖Lp

t (Lr) ≤ C

(
ηρB2+ς̃+δ+

ρ (t)

Cρ(t)

)
e

CµCρ(t)t

ρ̌δ(Ω)2 ‖f‖Lp
t (Lr). (50)

Plugging inequality (50) in (47), we conclude that

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
t (Lr) ≤ CηρB2+ς̃+δ+

ρ (t) e
CµCρ(t)t

ρ̌δ(Ω)2 ‖f‖Lp
t (Lr). (51)

In order to prove estimates for u in L∞(0, T ;D
1− 1

p
,p

Ar
), we use the fact that (u,Π)

satisfies 



ρ̌∂tu − µ∆u + ∇Π = f + (ρ̌ − ρ)∂tu,
div u = 0,

∫
Π dx = 0,

u|t=0 = 0, u∂Ω = 0,

hence, according to Theorem 3.2,

µ
1
p′ ρ̌

1
p ‖u(t)‖

D
1− 1

p
,p

Ar

≤ C
(
‖f‖Lp

t (Lr) + ηρ‖ρ̌∂tu‖Lp
t (Lr)

)
.

Inserting (51) in the above inequality, we conclude that

µ
1
p′ ρ̌

1
p ‖u(t)‖

D
1− 1

p
,p

Ar

≤ Cη2
ρB2+ς̃+δ+

ρ (t) e
CµCρ(t)T

ρ̌δ(Ω)2 ‖f‖Lp
t (Lr). (52)

Now, it is easy to prove the existence of a solution for (13) with null initial data.
Indeed, in the case p = r and q = +∞, it has been proved by O. Ladyzhenskaya
and V. Solonnikov in [18]. By making use of a standard mollifying process for
smoothing out f and ρ, and of estimates (51), (52) and Remark 2.4, one can prove
that under our assumptions, there exists a solution with the required regularity
properties. The details are left to the reader.

Uniqueness obviously stems from estimates (51) and (52). ¤

3.3.2. General initial data

Let us now consider the initial value problem (13) for general initial data u0 in

D
1− 1

p
,p

Ar
.

We claim that it may be reduced to the case u0 ≡ 0 by splitting the unknown
solution (u,Π) into the sum of a solution of the standard non-stationary Stokes
system (5) with u0 as initial data and f as external force, and a solution of (13)
with null initial data.

More precisely, let (w,Q) and (v, P ) be the solutions of




ρ̌∂tw − µ∆w + ∇Q = f,
div w = 0,

∫
Ω

Qdx = 0,
w|t=0 = u0, w|∂Ω = 0

and





ρ∂tv − µ∆v + ∇P = (ρ̌ − ρ)∂tw,
div v = 0,

∫
Ω

P dx = 0,
v|t=0 = 0, v|∂Ω = 0.
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The existence of (w,Q) is insured by Theorem 3.2 while Proposition 3.10 provides

a solution for the system on the right. On the other hand (u,Π)
def
= (v + w,P + Q)

is clearly a solution to (13) with initial data u0.
As uniqueness stems from estimate (14), we are left with the proof of (14) and

(15).
• Estimates for w: According to Theorem 3.6, we have for t ∈ [0, T ]:

‖(ρ̌∂tw, µ∇2w,∇Q)‖Lp
t (Lr)+ρ̌

1
p µ

1
p′ ‖w(t)‖

D
1−1

p
,p

Ar

. ‖f‖Lp
t (Lr)+ρ̌

1
p µ

1
p′ ‖u0‖

D
1−1

p
,p

Ar

.

(53)
• Estimates for v: According to Proposition 3.10, we have

‖(ρ̌∂tv, µ∇2v,∇P )‖Lp
t (Lr)+ρ̌

1
p µ

1
p′ ‖v(t)‖

D
1
p′ ,p

Ar

. Cη2
ρB2+ς̃+δ+

ρ (t) e
CµCρ(t)t

ρ̌δ(Ω)2

∥∥∥∥1− ρ

ρ̌

∥∥∥∥
L∞

‖ρ̌∂tw‖Lp
T

(Lr),

hence, plugging (53) in the above inequality, we get

‖(ρ̌∂tv, µ∇2v,∇P )‖Lp
t (Lr) + ρ̌

1
p µ

1
p′ ‖v(t)‖

D
1− 1

p
,p

Ar

≤ Cη3
ρB2+ς̃+δ+

ρ (t) e
CµCρ(t)t

ρ̌δ(Ω)2

(
ρ̌

1
p µ

1
p′ ‖u0‖

Ḋ
1− 1

p
,p

Ar

+ ‖f‖Lp
T

(Lr)

)
. (54)

• Estimates for u: Adding inequalities (53) and (54), and using Proposition 2.4
yields (14). In order to prove (15), we apply estimate (47) to (v, P ). We get

‖(ρ̌∂tv, µ∇2v,∇P )‖Lp
t (Lr) .ηρB2+ς̃+δ+

ρ (t)
(
ρ̌

1
p µ

1
p′ ‖u0‖

D
1
p′ ,p

Ar

+ ‖f‖Lp
t (Lr)

)

+
Cρ(t)µ

δ(Ω)2
‖v‖Lp

t (Lr).

Now, we have
‖v‖Lp

t (Lr) ≤ ‖u‖Lp
t (Lr) + ‖w‖Lp

t (Lr)

and, according to Proposition 2.4,

‖w‖Lp
t (Lr) ≤ Cδ(Ω)2‖∇2w‖Lp

t (Lr).

Hence, by virtue of (53),

‖(ρ̌∂tu, µ∇2u,∇Π)‖Lp
t (Lr)

. ηρB2+ς̃+δ+
ρ (t)

(
‖f‖Lp

t (Lr) + µ
1
p′ ρ̌

1
p ‖u0‖

D
1− 1

p
,p

Ar

)
+

Cρ(t)µ

δ(Ω)2
‖u‖Lp

t (Lr). (55)

Now, as the system satisfied by (u,Π) may be rewritten




ρ̌∂tu − µ∆u + ∇Π = f + (ρ̌ − ρ)∂tu,
div u = 0,

∫
Ω

Π dx = 0,
u|t=0 = u0, u|∂Ω = 0.
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Theorem 3.2 insures that

‖u(t)‖
D

1− 1
p

,p

Ar

. ‖u0‖
D

1− 1
p

,p

Ar

+ ρ̌−
1
p µ

− 1
p′

(
‖f‖Lp

t (Lr) +

∥∥∥∥1 − ρ

ρ̌

∥∥∥∥
L∞

‖ρ̌∂tu‖Lp
t (Lr)

)
.

Using (55), we thus conclude that ‖u(t)‖
D

1− 1
p

,p

Ar

is bounded by the right-hand side

of (15). ¤

4. Uniqueness

Before tackling the problem of uniqueness, let us state two interpolation inequali-
ties.

Lemma 4.1. Let 1 < p, q, r, s < +∞ satisfy 0 < p
2 − Np

2r < 1 and 1
s = 1

r + 1
q . The

following inequalities hold true:

‖∇f‖Lp
T

(L∞) ≤ CT
1
2− N

2r ‖f‖1−θ

L∞
T

(D
1− 1

p
,p

Ar
)
‖f‖θ

Lp
T

(W 2,r),

‖∇f‖Lp
T

(Lq) ≤ CT
1
2− N

2r ‖f‖1−θ

L∞
T

(D
1− 1

p
,p

As
)
‖f‖θ

Lp
T

(W 2,s),

for some constant C depending only on Ω, N , p, q and r and (1 − θ)/p = 1/2 −
N/2r.

Proof. The proof is based on the use of embeddings and interpolation results which
may be found in [22].

For proving the first inequality, we use that (B
1− 2

p
−N

r
∞,∞ , B

1−N
r∞,∞ )θ,1 = B0

∞,1 (with
θ defined as in the statement of the lemma) and that B0

∞,1 →֒ L∞ so that

‖∇f‖L∞ . ‖∇f‖θ

B
1− N

r
∞,∞

‖∇f‖1−θ

B
1− 2

p
− N

r
∞,∞

. (56)

Remark that D
1− 1

p
,p

Ar
→֒ B

2− 2
p

r,p →֒ B
2− 2

p
−N

r
∞,∞ (see Prop. 2.5). Hence, according to

(56) and because W 1,r →֒ B
1−N

r∞,∞ , we have

‖∇f‖Lp
T

(L∞) ≤ C

(∫ T

0

‖∇f‖pθ

B
1− N

r
∞,∞

‖∇f‖p(1−θ)

B
1− 2

p
− N

r
∞,∞

dt

) 1
p

,

≤ C

(∫ T

0

‖f‖pθ
W 2,r‖f‖p(1−θ)

D
1− 1

p
,p

Ar

dt

) 1
p

,

≤ CT
1
2− N

2r ‖f‖1−θ

L∞
T

(D
1− 1

p
,p

Ar
)
‖f‖θ

Lp
T

(W 2,r).

The proof of the second inequality is based on the fact that

B0
q,1 = (B

1− 2
p
−N

r
q,p , B

1−N
r

q,q )θ,1 →֒ Lq
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and that W 1,s →֒ B
1−N

r
q,q whereas D

1− 1
p

,p

As
→֒ B

1− 2
p
−N

r
q,p .

Then going along the lines of the proof of the first inequality yields the desired
result. ¤

Proposition 4.2. Let p ∈ (1,∞), r ∈ (N,+∞) and q ∈ [r,+∞] with besides

q > N . Denote s
def
= rq/(r+q) (s = r if q = +∞). Let (ρ1, u1,∇Π1) and

(ρ2, u2,∇Π2) be two solutions of (1) with the same data ρ0 ∈ W 1,q, u0 ∈ D
1− 1

p
,p

Ar

and f ∈ Lp(0, T ;Lr). Assume that (u1,Π1) and (u2,Π2) belong to
(
C([0, T ];D

1− 1
p

,p

As
) ∩ W 1,p(0, T ;Ls) ∩ Lp(0, T ;W 2,s)

)
× Lp(0, T ;W 1,s)

and that, in addition, ∀(t, x) ∈ [0, T ] × Ω, 0 < ρ̌ ≤ ρi(t, x) for i = 1, 2,

ρ1 ∈ L∞(0, T ;Lq), ∇u1 ∈ Lp(0, T ;L∞), ∂tu
1 + u1 · ∇u1 ∈ Lp(0, T ;Lr),

ρ2 ∈ L∞(0, T ;W 1,q) ∩ Cβ([0, T ];L∞) for some β ∈ (0, 1) and u2 ∈ L∞(0, T ;Lr).

Then (ρ1, u1,∇Π1) ≡ (ρ2, u2,∇Π2) on [0, T ] × Ω.

Proof. Let δρ
def
= ρ2 − ρ1, δu

def
= u2 − u1, δΠ

def
= Π2 − Π1. Remark that (δρ, δu, δΠ)

satisfies the following system:



∂tδρ + u1 · ∇δρ = −δu · ∇ρ2,
ρ2∂tδu + ∇δΠ − µ∆δu = fδρ − δρ ∂tu

1 − δρ u1 ·∇u1 − ρ2u2 ·∇δu − ρ2δu·∇u1,
div δu = 0,

∫
Ω

δΠ = 0,
(δρ, δu)|t=0 = (0, 0), δu|∂Ω = 0.

(57)
Obviously, we have for all t ∈ [0, T ],

‖δρ(t)‖Lq ≤
∫ t

0

∥∥∇ρ2(τ)
∥∥

Lq ‖δu(τ)‖L∞ dτ. (58)

On the other hand, Theorem 3.7 yields for some ‘constant’ CT depending on T ,
N , q, r, p, µ, ρ̌ and on the norm of ρ2 in L∞(0, T ;W 1,q) ∩ Cβ(0, T ;L∞) and all
t ∈ [0, T ],

‖δu‖Lp
t (W 2,s) + ‖δΠ‖Lp

t (W 1,s) + ‖δu‖
L∞

t (D
1
p′ ,p

As
)

≤ CT

(
‖δρ(f − ∂tu

1 − u1 · ∇u1)‖Lp
t (Ls)

+‖ρ2u2 · ∇δu‖Lp
t (Ls) + ‖ρ2δu · ∇u1‖Lp

t (Ls)

)
. (59)

Thanks to Hölder inequality, we get, up to a change of CT ,

‖δu‖Lp
t (W 2,s) + ‖δΠ‖Lp

t (W 1,s) + ‖δu‖
L∞

t (D
1
p′ ,p

As
)

≤ CT ‖δρ‖L∞
t (Lq)‖f − ∂tu

1 − u1 · ∇u1‖Lp
t (Lr)

+CT

(
‖u2‖L∞

t (Lr)‖∇δu‖Lp
t (Lq) + ‖∇u1‖Lp

t (L∞)‖δu‖L∞
t (Ls)

)
. (60)
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If 1/2 − N/2r < 1/p, Lemma 4.1 yields

‖∇δu‖Lp
t (Lq) . t

1
2− N

2r

(
‖δu‖Lp

t (W 2,s) + ‖δu‖
L∞

t (D
1−1

p
,p

As
)

)
.

If 1/2 − N/2r > 1/p, we have D
1− 1

p
,p

As
→֒ W 1,q so that the above inequality holds

with t
1
p . The limit case 1/2 − N/2r = 1/p may be handled by noticing that

we also have ‖ρ2u2 ·∇δu‖Lp
t (Ls) ≤ ρ̂ ‖u2‖L∞

t (Lr+ )‖∇δu‖Lp
t (Lq− ) with r+ (resp.

q−) slightly greater (resp. smaller) than r (resp. q) and by using the embeddings

D
1− 1

p
,p

As
→֒ W 1,q−

and D
1− 1

p
,p

As
→֒ Lr+

. We eventually get ‖ρ2u2 ·∇δu‖Lp
t (Ls) .

t
1
p ‖u2‖

L∞
t (D

1
p′ ,p

As
)
‖δu‖

L∞
t (D

1
p′ ,p

As
)
.

On the other hand, since N/s < 2, we have W 2,s →֒ L∞ so that

‖δu‖Lp
t (L∞) . ‖δu‖Lp

t (W 2,s).

Hence, denoting

X(t)
def
= ‖δρ(t)‖L∞

t (Lq) + ‖δu‖Lp
t (W 2,s) + ‖δΠ‖Lp

t (W 1,s) + ‖δu‖
L∞

t (D
1−1

p
,p

As
)

and coming back to (58, 60), we eventually gather

X(t) ≤ CT

{
‖f−∂tu

1−u1 ·∇u1‖Lp
t (Lr) + tmin( 1

p
, 1
2−N

2r
)‖u2‖

L∞
t (Lr∩D

1
p′ ,p

As
)

+‖∇u1‖Lp
t (L∞) + ‖∇ρ2‖

Lp′

t (Lq)

}
X(t). (61)

Now, choosing η so small as the term between brackets is less than 1/2 for t = η
enables us to conclude that X ≡ 0 on [0, η]. As the constant CT does not depend
on η, a standard induction argument yields uniqueness on the whole interval [0, T ].

¤

Remark 4.3. Going along the lines of the proof of Proposition 4.2, one can eas-
ily prove that if (ρ1, u1,Π1) and (ρ2, u2,Π2) solve (1) with different initial data
(ρ1

0, u
1
0) and (ρ2

0, u
2
0), and external forces f1 and f2, and satisfy the assumptions

of Proposition 4.2 then the following estimate holds true on [0, T ] (with obvious
notations):

‖δρ(t)‖Lq + ‖δu‖Lp
t (W 2,s) + ‖δΠ‖Lp

t (W 1,s) + ‖δu(t)‖
D

1
p′ ,p

As

≤ CT

(
‖δρ0‖Lq +‖δu0‖

D
1
p′ ,p

As

+ ‖δf‖L∞
t (Ls)

)
.

Combining with Theorem 1.2, we conclude that for small enough T , the map

(ρ0, u0, f) 7→ (ρ, u,Π) is Lipschitz continuous from bounded sets of W 1,q ×D
1
p′ ,p

Ar
×

Lp(0, T ;Lr)N to

C([0, T ];Lq)×
(
W 1,p(0, T ;Ls)N∩Lp(0, T ;W 2,s)N∩C([0, T ];D

1
p′ ,p

As
)
)
×Lp(0, T ;W 1,s).
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5. Existence on a small time interval

This section is devoted to the proof of Theorem 1.2.

First step: construction of approximate solutions. We initialize the con-

struction of approximate solutions by prescribing ρ0 def
= ρ0 and u0 def

= u0. Given
(ρn, un), Propositions 3.1 and 3.7 enable us to define ρn+1 as the (global) solution
of the transport equation

∂tρ
n+1 + un · ∇ρn+1 = 0, ρn+1

|t=0 = ρ0 (62)

and (un+1,Πn+1) as the (global) solution of




ρn+1∂tu
n+1 − µ∆un+1 + ∇Πn+1 = ρn+1f − ρn+1un · ∇un,

∫
Ω

Πn+1 dx = 0,
div un+1 = 0,
un+1
|t=0 = u0, un+1

|∂Ω = 0.

(63)
Arguing by induction yields (ρn, un,Πn) ∈ Ep,q,r

T for all positive T .

Second step: uniform bounds for some small fixed T . We aim at finding a
positive time T independent of n for which (ρn, un,Πn)n∈N is uniformly bounded
in the space Ep,q,r

T .
Applying Proposition 3.1 to (62) yields

‖ρn+1(t)‖W 1,q ≤ ‖ρ0‖W 1,qe
∫

t
0
‖∇un(τ)‖L∞ dτ . (64)

In addition, for all time t, we have

min
x∈Ω̄

ρn(t, x) = ρ̌
def
= min

x∈Ω̄
ρ0(x) and max

x∈Ω̄
ρn(t, x) = ρ̂

def
= max

x∈Ω̄
ρ0(x). (65)

Therefore, if one can prove that ρn+1 belongs to Cβ(0, T ;L∞) for some positive β
then applying Theorem 3.7 to system (63) yields

‖∂tu
n+1‖Lp

t (Lr) + ‖un+1‖Lp
t (W 2,r) + ‖Πn+1‖Lp

t (W 1,r) + ‖un+1‖
L∞

t (D
1− 1

p
,p

Ar
)

≤ C
(
‖u0‖

D
1− 1

p
,p

Ar

+ ‖f‖Lp
t (Lr) + ‖un · ∇un‖Lp

t (Lr)

)

× e
Ct

(
1+‖ρn+1‖L∞

t (W1,q)

)γ1
(
1+‖ρn+1‖

1
β

Ċ
β
t (L∞)

)
(66)

for some positive exponent γ1 depending only on N , p, q, r and β, and a constant
C depending only on p, q, r, N, ρ̌, ρ̂, Ω, µ and β.

Remark that interpolating between L∞(0, T ;W 1,q) and W 1,∞(0, T ;Ls) (with

s
def
= rq/(r + q)) shows that ρn+1 belongs to Cβ(0, T ;L∞) whenever β ∈

(
0,

1−N
q

1+ N
r

)

and that
‖ρn+1‖Ċβ

t (L∞) . ‖ρn+1‖L∞
t (W 1,q) + ‖∂tρ

n+1‖L∞
t (Ls). (67)
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Now, we have ∂tρ
n+1 = −un ·∇ρn+1 so that ∂tρ

n+1 ∈ L∞
loc(R

+;Ls), and for t ≥ 0,

‖∂tρ
n+1‖L∞

t (Ls) ≤ ‖un‖L∞
t (Lr)‖∇ρn+1‖L∞

t (Lq).

Hence, inserting the above inequalities in (66), we gather

‖∂tu
n+1‖Lp

t (Lr)+‖un+1‖Lp
t (W 2,r)+‖Πn+1‖Lp

t (W 1,r)+‖un+1‖
L∞

t (D
1− 1

p
,p

Ar
)

≤ C
(
‖u0‖

D
1− 1

p
,p

Ar

+ ‖f‖Lp
t (Lr)

+‖un‖L∞
t (Lr)‖∇un‖Lp

t (L∞)

)
e
Ct(1+‖ρn+1‖L∞

t (W1,q))
γ(1+‖un‖L∞

t (Lr))
δ

. (68)

for some positive exponents γ and δ depending only on N , p, q and r.
Fix a (large) reference time T0 and define

Un(t)
def
= ‖un‖

L∞
t (D

1− 1
p

,p

Ar
)
+ ‖un‖Lp

t (W 2,r),

U0
def
= ‖u0‖

D
1− 1

p
,p

Ar

+ ‖f‖Lp
T0

(Lr), Pn(t)
def
= ‖ρn‖L∞

t (W 1,q) and P0(t)
def
= ‖ρ0‖W 1,q .

To simplify, assume from now on that p/2 − Np/2r < 1 so that Lemma 4.1
may be applied to ∇un. We get4

‖∇un‖Lp
t (L∞) ≤ t

1
2− N

2r ‖un‖θ
Lp

t (W 2,r)‖un‖1−θ

L∞
t (D

1− 1
p

,p

Ar
)

(69)

with θ such that (1 − θ)/p = 1/2 − N/2r.
Plugging inequality (69) in (64) and (68), we eventually get

Un+1(t) ≤ CeCt(1+P n+1(t))γ(1+Un(t))δ
(
U0 + t

1
2− N

2r (Un(t))2
)
, (70)

Pn+1(t) ≤ P0e
Ct

1
p′ + 1

2
− N

2r Un(t). (71)

Inserting (71) in (70) yields

Un+1(t) ≤ CeCt(1+Un(t))δ(1+P0)
γeγCt

1
p′ + 1

2
− N

2r (
U0 + t

1
2− N

2r (Un(t))2
)

so that, assuming that t is so small as to satisfy

γCt
1
p′ +

1
2− N

2r ≤ log 2,

we get

Un+1(t) ≤ Ce2Ct(1+Un(t))δ(1+P0)
γ
(
U0 + t

1
2− N

2r (Un(t))2
)

and Pn+1(t) ≤ 2P0.

4 If p/2 − Np/2r ≥ 1, we would get t
1
p instead of t

1
2
−

N
2r below.
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Now, if we assume that Un(t) ≤ 4CU0 on [0, T ] with5

T = min

(
T0,

(
log 2

γC

) 1
1
p′ + 1

2
− N

2r
,

(
1

16CU0

) 1
1
2
− N

2r
,

log 2

2C(1 + P0)γ(1 + 4CU0)δ

)
,

(72)
easy computations show that Un+1(t) ≤ 4CU0 on [0, T ]. Coming back to (71),
we conclude that the sequence (ρn, un,Πn) is uniformly bounded in Ep,q,r

T . More
precisely, we have for all t ∈ [0, T ]:

Pn(t) ≤ 2P0 and Un(t) ≤ 4CU0. (73)

Third step: Convergence of the sequence in small norm. In this part, we
aim at proving that (ρn, un,Πn)n∈N is a Cauchy sequence in the space Ep,q,s

T with

s
def
= rq/(r + q).

Let δun def
= un+1−un, δΠn def

= Πn+1−Πn and δρn def
= ρn+1−ρn. Define

δUn(t)
def
= ‖(∂tδu

n,∇2δun,∇δΠn)‖Lp
t (Ls) + ‖δun‖

L∞
t (D

1− 1
p

,p

As
)
.

The triplet (δρn, δun, δΠn) satisfies




∂tδρ
n + un · ∇δρn = −δun−1 · ∇ρn,

δρn
|t=0 = 0,

ρn+1∂tδu
n − µ∆δun + ∇δΠn = δρn(f − ∂tu

n+1 − un · ∇un)
−ρn(un · ∇δun−1 + δun−1 · ∇un−1),

div δun = 0,
∫
Ω

δΠn dx = 0,
δun

|t=0 = 0, δun
|∂Ω = 0.

(74)
Hence, according to Theorem 3.7 and by virtue of (73),

δUn(t) ≤ C
(
‖δρn(f − ∂tu

n+1 − un · ∇un)‖Lp
t (Ls)

+ ‖un · ∇δun−1‖Lp
t (Ls) + ‖δun−1 · ∇un−1‖Lp

t (Ls)

)
,

≤ C
(
‖δρn‖L∞

t (Lq)(‖f‖Lp
t (Lr)+‖∂tu

n+1‖Lp
t (Lr)+‖un‖L∞

t (Lr)‖∇un‖Lp
t (L∞))

+ ‖un‖L∞
t (Lr)‖∇δun−1‖Lp

t (Lq) + ‖δun−1‖L∞
t (Ls)‖∇un−1‖Lp

t (L∞)

)

for some constant C depending only on the regularity parameters and on P0

and U0.
Of course, in this step, one can assume with no loss of generality that p( 1

2 −
N
2r ) < 1. Hence, taking advantage of (69) and (73), we eventually get

δUn(t) ≤ C
(
‖δρn‖L∞

t (Lq) + ‖∇δun−1‖Lp
t (Lq) + t

1
2− N

2r ‖δun−1‖L∞
t (Ls)

)
. (75)

5 If p

2
− Np

2r
≥ 1, replace 1

2
− N

2r
(whenever it appears) with 1

p
.
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Remark that by virtue of the second inequality of Lemma 4.1, we have

‖∇δun−1‖Lp
t (Lq) ≤ Ct

1
2− N

2r δUn−1(t).

Plugging this latter inequality in (75), we conclude that

δUn(t) ≤ C
(
‖δρn‖L∞

t (Lq) + t
1
2− N

2r δUn−1(t)
)
. (76)

On the other hand, we obviously have

‖δρn(t)‖Lq ≤
∫ t

0

∥∥(δun−1 ·∇ρn)(τ)
∥∥

Lq dτ,

≤ t
1
p′ ‖δun−1‖Lp

t (L∞)‖∇ρn‖L∞
t (Lq),

≤ Ct
1
p′ ‖δun−1‖Lp

t (L∞). (77)

Since N/s = N/r+N/q < 2, the space W 2,s is embedded in L∞. Hence inequality
(77) rewrites

‖δρn(t)‖Lq ≤ Ct
1
p′ δUn−1(t).

Inserting this latter inequality in (76), we get for t ∈ [0, T ]

δUn(t) ≤ C
(
t

1
p′ + t

1
2− N

2r

)
δUn−1(t)

If we choose an η ∈ (0, T ] such that the condition

C
(
η

1
p′ + η

1
2− N

2r

)
≤ 1

2
(78)

is fulfilled, it is now clear that (ρn, un,Πn)n∈N is a Cauchy sequence in Ep,q,s
η .

Note that the time of existence η (that we shall denote by T from now on)
depends (continuously) on the norms of the data, on the lower bound for the
density, on the domain and on the regularity parameters.

Fourth step: Checking that the limit is a solution. Let (ρ, u,Π) ∈ Ep,q,s
T

be the limit of the sequence (ρn, un,Πn)n∈N.
Passing to the limit in (73) and (65) shows that the density ρ is bounded by

below by ρ̌, and by above by ρ̂, and that ρ ∈ L∞(0, T ;W 1,q), u ∈ L∞(0, T ;D
1
p′ ,p

Ar
)∩

Lp(0, T ;W 2,r), ∂tu ∈ Lp(0, T ;Lr) and Π ∈ Lp(0, T ;W 1,p). Combining with the
properties of convergence stated in the previous part of the proof, we gather that
(ρn, un,Πn)n∈N converges to (ρ, u,Π) in Ep,q′,r′

η for all q′ < q and r′ < r, which
suffices to pass to the limit in equations (63) and (62). The details are left to the
reader.

Last step: Uniqueness and continuity. Since ρ ∈ L∞ (
0, T ; W 1,q

)
∩

W 1,∞(0, T ;Ls) implies that ρ belongs to Cβ(0, T ;L∞) whenever β ∈
(

0,
1−N

q

1+ N
r

)
,

uniqueness is a mere consequence of Proposition 4.2.
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Finally, as ρ satisfies a transport equation with data in W 1,q and u satisfies

ρ̌∂tu − µ∆u + ∇Π ∈ Lp(0, T ;Lr),

Proposition 3.1 and Theorem 3.7 insure that ρ ∈ C([0, T ];W 1,q) (if q 6= ∞) and

u ∈ C([0, T ];D
1− 1

p
,p

Ar
). ¤

6. Global existence for small initial velocities

6.1. An estimate for ‖u‖
L2

Lemma 6.1. Let p, q, r satisfy the usual conditions and let (ρ, u,Π) ∈ Ep,q,r
T be

a solution to (1) on [0, T ] × Ω. Then the following inequality holds true for all
t ∈ [0, T ]:

‖(√ρu)(t)‖L2 ≤ e
−µλ1

ρ̂
t
(

∥∥√ρ0u0

∥∥
L2 +

∫ t

0

e

µλ1
ρ̂

τ

‖(√ρf)(τ)‖L2 dτ

)
, (79)

where ρ̂
def
= ‖ρ0‖L∞ and λ1 stands for the first eigenvalue of the Dirichlet Laplace

operator in Ω.

Proof. Note that ρ is continuous in (t, x), and that u ∈ C
(
[0, T ]; D

1
p′ ,p

Ar

)
∩

Lp(0, T ;W 2,r) with r > N ≥ 2 so that u ∈ C([0, T ];Hǫ) ∩ L2(0, T ;H1+ǫ) for
some positive ǫ. This enables us to justify the following computations.

Taking the L2 scalar product of the momentum equation in (1) with u and
performing integrations by parts when necessary, we gather

1

2

d

dt
‖√ρu‖2

L2 + µ ‖∇u‖2
L2 =

∫

Ω

ρf · u dx.

Now, by virtue of Poincaré inequality, we have

‖∇u‖2
L2 ≥ λ1 ‖u‖2

L2 ,

hence,
1

2

d

dt
‖√ρu‖2

L2 +
µλ1

ρ̂
‖√ρu‖2

L2 ≤ ‖√ρu‖L2 ‖
√

ρf‖L2 .

It is now easy to get (79). ¤

6.2. A more explicit lower bound for the existence time

A lower bound for the existence time has already been obtained when proving
Theorem 1.2 (see (72) and (78)). It is rather inexplicit though. In this section, we
want to take advantage of (79) in order to get a more accurate lower bound.

Let us first clarify what we call a smooth solution:
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Definition 6.2. Let T ∗ ∈ (0,+∞] and (ρ, u,Π) be a solution to (1) on [0, T ∗)×Ω
with data (ρ0, u0, f). The triplet (ρ, u,Π) is called a smooth solution of (1) on
[0, T ∗) if it satisfies (1) on [0, T ∗) × Ω in the weak sense and belongs to Ep,q,r

T

whenever T < T ∗. The time T ∗ is called ‘maximal existence time’ if (ρ, u,Π)
cannot be continued beyond T ∗ into a smooth solution of (1).

Let us first state a continuation criterion:

Lemma 6.3. Let ρ0, u0 and f satisfy the assumptions of Theorem 1.2 and assume
that (1) has a smooth solution on a finite time interval [0, T ∗) with besides,

ρ ∈ L∞(0, T ∗;W 1,q), inf
t<T∗, x∈Ω

ρ(t, x) > 0 and u ∈ L∞(0, T ∗,D
1
p′ ,p

Ar
).

Then (ρ, u,Π) may be continued beyond T ∗ into a smooth solution of (1).

Proof. Obviously, the existence time given by (72) and (78) has a positive lower
bound η when (ρ0, u0, f) remain in a bounded set of

W 1,q × D
1
p′ ,p

Ar
× Lp(0, T ;Lr)N

with in addition infx ρ0(x) ≥ ρ̌ for a fixed ρ̌ > 0.
Hence system (1) with initial density ρ(T ∗ − η/2), initial velocity u(T ∗ − η/2)

and external force f(· + T ∗ − η/2) has a unique smooth solution on [0, η]. This
provides us with a continuation of u beyond T ∗. ¤

Combining Lemmas 6.1 and 6.3 will enable us to get the following result:

Proposition 6.4. Let ρ0, u0 and f satisfy the assumptions of Theorem 1.2 and
let (ρ, u,Π) denote the corresponding smooth solution of (1). There exists c =
c(p, q, r, µ,Ω, ρ̌) such that the maximal existence time T ∗ for (ρ, u,Π) satisfies

T ∗ ≥ c

(1 + ‖ρ0‖W 1,q )
γ

U δ
0 (T ∗)

for some positive exponents γ and δ depending only on the regularity parameters,
and

U0(T
∗)

def
= ‖u0‖

D
1
p′ ,p

Ar

+ ‖f‖Lp

T∗ (Lr).

Proof. Fix a T < T ∗. We aim at proving that if T ≤ c(1 + ‖ρ0‖W 1,q )
−γ

U−δ
0 (T )

for a convenient choice of c, γ and δ then (ρ, u,Π) may be bounded in Ep,q,r
T by

a function depending only on the data. Then Proposition 6.3 will entail Proposi-
tion 6.4.

Let U(t)
def
= ‖u‖Lp

t (W 2,r) + ‖∂tu‖Lp
t (Lr) + ‖u‖

L∞
t (D

1
p′ ,p

Ar
)
+ ‖Π‖Lp

t (W 1,r). Accord-
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ing to Theorem 3.7 and (67), we have

U(t) . B2
ρ(t)

(
U0(t) + ‖u · ∇u‖Lp

t (Lr)

)
+ Cρ(t)‖u‖Lp

t (Lr). (80)

In the definition of Cρ, we can take e.g. β = 1
2

(
1−N/q
1+N/r

)
.

Arguing once again by interpolation, we have for all ǫ > 0

‖u‖Lr . ǫ‖u‖W 2,r + ǫ1−
1
θ ‖u‖L2 with θ

def
=

2

2 + N
2 − N

r

. (81)

Hence, taking ǫ = c Cρ
−1(t) with c suitably small and plugging (81) in (80), we get

U(t) . B2
ρ(t)

(
U0(t) + ‖u · ∇u‖Lp

t (Lr)

)
+ C

1
θ
ρ (t)‖u‖Lp

t (L2). (82)

Note that Lemma 6.1 insures that

‖u‖L∞
t (L2) . U0(t). (83)

For the sake of simplicity, assume from now on that p
2 − Np

2r < 1 so that Lemma
4.1 may be applied.6 We then gather that

‖u · ∇u‖Lp
t (Lr) . t

1
2− N

2r U2(t) and ‖∇u‖L1
t (L∞) . t

1
p′ +

1
2− N

2r U(t) (84)

On the other hand, Proposition 3.1 yields

‖ρ(t)‖W 1,q ≤ ‖ρ0‖W 1,qe
∫

t
0
‖∇u(τ)‖L∞ dτ (85)

so that according to (84) and to the definition of Bρ,

Bρ(t) ≤ CeCt
1
p′ + 1

2
− N

2r U(t)
(
1 + ‖ρ0‖W 1,q

) q
q−N

. (86)

Arguing like in (67), we get

‖ρ‖Ċβ
t (L∞) . ‖ρ‖L∞

t (W 1,q) + ‖∂tρ‖L∞
t (Ls),

. ‖ρ‖L∞
t (W 1,q) + ‖∇ρ‖L∞

t (Lq)‖u‖L∞
t (Lr),

hence taking advantage of (86), we get for some positive exponents γ1 and γ2

depending only on N , p, q, r and β,

Cρ(t) ≤ CeCt
1
p′+

1
2
−N

2r U(t)

(
(1+‖ρ0‖W 1,q )

γ1 + (1+‖ρ0‖W 1,q )
γ2‖ρ0‖

1
β

W 1,q (1+U(t))
1
β

)
.

(87)
Plugging (83,86,87) in (82), we conclude that for some positive exponents δ1 and
δ2, we have

U(t) ≤ CeCt
1
p′+

1
2
−N

2r U(t)
(
1+‖ρ0‖W 1,q

)δ1
(

U0(t)
(
1+t

1
p (1+U(t))δ2

)
+ t

1
2−N

2r U2(t)

)
.

(88)

6 If this condition is not satisfied, replace everywhere 1

2
− N

2r
with 1

p
in the following compu-

tations.
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Assume that T has been chosen such that

U(T ) ≤ 8C
(
1 + ‖ρ0‖W 1,q

)δ1

U0(T ). (89)

Using the continuity of the function t 7→ U(t), a standard induction argument
shows that (89) is satisfied at time t ≤ T with a strict inequality whenever the
following three inequalities are satisfied:

(
1 + 8C(1 + ‖ρ0‖W 1,q )

δ1 U0(T )
)δ2

t
1
p ≤ 1,

8C2t
1
p′ +

1
2− N

2r (1 + ‖ρ0‖W 1,q )
δ1 U0(T ) < log 2,

8C(1 + ‖ρ0‖W 1,q )
δ1 t

1
2− N

2r U0(T ) ≤ 1

2
.

Hence Proposition 6.3 enables us to continue the solution beyond T . This com-
pletes the proof of Proposition 6.4. ¤

6.3. The case of a small initial velocity

Proposition 6.4 insures that the existence time of a smooth solution for (1) goes

to infinity (for fixed initial density) when u0 (resp. f) tends to 0 in D
1
p′ ,p

Ar
(resp.

Lp(R+;Lr)).
We here aim at stating that (1) has indeed a global smooth solution if u0 and

f are suitably small. This will give Theorem 1.4.
Let (ρ, u,Π) be the smooth solution given by Theorem 1.2. Before going into

the heart of the proof, let us stress the fact that it suffices to prove Theorem 1.4
when the viscosity coefficient µ = 1. Indeed, the following change of functions and
variables:

ρ(t, x) = ρ′(µt, x), u(t, x) = µv(µt, x),

Π(t, x) = µ2P (µt, x) and f(t, x) = µ2g(µt, x)

transform system (1) with viscosity µ and data (ρ0, u0, f) into system (1) with
viscosity µ and data (ρ0, u0, g) (this change of variable does not affect Ω).

Denote by T ∗ the maximal time of existence for (ρ, u,Π). Define the functions
U and U0 as in the previous section and further denote

U0,2,γ(t)
def
=

∥∥√ρ0u0

∥∥
L2 +

∫ t

0

eγτ ‖(√ρf)(τ)‖L2 dτ and U0,2(t)
def
= U0,2,0(t).

First, applying Lemma 6.1 yields for t < T ∗,

‖√ρu‖Lp
t (L2) . U0,2(t) and ‖(√ρu)(t)‖L2 ≤ e−κtU0,2,γ(t) (90)

with κ
def
= min(γ, λ1/ρ̂).
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Hence, starting from inequality (80), using inequalities (81,90), and the fact
that

‖u · ∇u‖Lp
t (Lr) ≤ ‖u‖L∞

t (Lr)‖∇u‖Lp
t (L∞),

. ‖u‖
L∞

t (D
1
p′ ,p

Ar
)
‖u‖Lp

t (W 2,r),

we end up with

U(t) ≤ C

(
B2

ρ(t)
(
U0(t) + U2(t)

)
+ C

1
θ
ρ (t)U0,2(t)

)
with θ

def
=

2

2 + N/2 − N/r
.

(91)
Once again, the bounds for Bρ and Cρ will follow from inequality (85). In contrast
with the previous section however, we are going to take advantage of Lemma 6.1

to avoid the appearance of the factor t
1
p′ +

1
2− N

2r .
Indeed, denoting ϕ = (1+ N

2 )/(2+ N
2 −N

r ) and using once more that (L2,W 2,r)ϕ

→֒ W 1,∞, we gather:
∫ t

0
‖∇u(τ)‖L∞ dτ .

∫ t

0
e−κ(1−ϕ)τU1−ϕ

0,2,γ(τ)‖u(τ)‖ϕ
W 2,r dτ,

. U1−ϕ
0,2,γ(t)Uϕ(t).

Now, bounding Bρ and Cρ may be done by mimicking the proof of Proposition 6.4
and we eventually conclude that

U(t) ≤ C(1 + ‖ρ0‖W 1,q )
δ1eCU1−ϕ

0,2,γ(t)Uϕ(t)
(
U0(t)(1 + U(t))δ2 + U2(t)

)
(92)

for some positive exponents δ1 and δ2 depending only on p, q, r and N .
Fix a positive T and assume that

∀t ∈ [0, T ], U(t) ≤ 8C(1 + ‖ρ0‖W 1,q )
δ1U0(T ) (93)

If the data are so small as to satisfy

CU1−ϕ
0,2,γ(T )

(
8C(1 + ‖ρ0‖W 1,q )

δ1U0(T )
)ϕ

≤ log 2 (94)

then inequality (92) implies

U(t) ≤ 2C(1 + ‖ρ0‖W 1,q )
δ1

(
U0(t)(1 + U(t))δ2 + U2(t)

)
.

Now, one can be easily convinced that if in addition

16C2(1 + ‖ρ0‖W 1,q )
2δ1U0(T ) ≤ 1

3
and

(
1 + 8C(1 + ‖ρ0‖W 1,q )

δ1U0(T )
)δ2

≤ 2,

then (93) is satisfied with the constant 6C instead of 8C. A standard bootstrap
argument enables to conclude to Theorem 1.4. ¤

7. Global existence in dimension N = 2

In dimension N = 2, it is well-known that for all T > 0, the L∞(0, T ;H1) ∩
L2(0, T ;H2) norm of the velocity u may be bounded by the data if u0 belongs to
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H1 and f ∈ L2
loc(R

+;L2). This fact has been noticed by different authors (see [3],
[9] [18] and [20]) and is quite straightforward (at least formally) if the density is
bounded away from 0.

The following inequality may be easily stated in the case of a bounded domain
Ω (see the proof in [6] in the case Ω = R

2 or T
2):

Proposition 7.1. Let v be divergence-free and satisfy v · n = 0 on ∂Ω and let
(ρ, u,Π) solve 




∂tρ + v · ∇ρ = 0,
ρ(∂tu + v · ∇u) − µ∆u + ∇Π = ρf,
div u = 0,

for some divergence-free time-dependent vector field v. There exists a universal
constant C such that the following a priori estimate holds true:

‖∇u(t)‖2
L2 +

∫ t

0

(∥∥√ρ∂tu
∥∥2

L2

µ
+

‖∇Π‖2
L2

µ ‖ρ0‖L∞

+ µ

∥∥∇2u
∥∥2

L2

‖ρ0‖L∞

)
dτ

≤ e
C‖ρ0‖L∞

µ3

∫
t
0‖√ρv‖4

L4 dτ
(
‖∇u0‖2

L2 + C

∫ t

0

∥∥√ρf
∥∥2

L2

µ
dτ

)
.

Gagliardo–Nirenberg inequality enables us to bound
∥∥√ρv

∥∥
L4 . From it, we get

‖ρ0‖L∞

µ3

∫ t

0

‖√ρv‖4
L4 dτ ≤ C ‖ρ0‖3

L∞

ρ̌µ4

(
µ‖∇v‖2

L2
t (L2)

)(
‖√ρv‖2

L∞
t (L2)

)
.

Now, if (ρ, u) solves (1), the basic energy inequality (2) is satisfied so that the
above inequalities eventually yield

‖∇u(t)‖2
L2 +

∫ t

0

(∥∥√ρ∂tu
∥∥2

L2

µ
+

‖∇Π‖2
L2

µ ‖ρ0‖L∞

+ µ

∥∥∇2u
∥∥2

L2

‖ρ0‖L∞

)
dτ

≤ e
C‖ρ0‖3

L∞

ρ̌µ4

(
‖√ρ0u0‖2

L2+
∫

t
0‖√ρf‖2

L2 dτ

)2(
‖∇u0‖2

L2 + C

∫ t

0

∥∥√ρf
∥∥2

L2

µ
dτ

)
. (95)

Let us now turn to the proof of Theorem 1.5. Theorem 1.2 provides us with a
local smooth solution (ρ, u,Π). Let T ∗ denote its maximal existence time.

7.1. The case of smooth data

We first assume that (ρ, u,Π) belongs to ∩T<T∗Ep,q,r
T for some p ≥ 2. Hence in

particular u0 ∈ H1 and f ∈ L2
loc(R

+;L2) so that Proposition 7.1 applies.

Existence of a global H1 solution. Taking advantage of the formal inequality
given by Proposition 7.1, one can prove that whenever ρ0 ∈ L∞ is bounded away
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from vacuum, u0 ∈ H1 and f ∈ L2
loc(R

+;L2), system (1) has a global solution

(ρ̃, ũ, Π̃) in

L∞(R+;L∞) ×
(
L∞

loc(R
+;H1) ∩ W 1,2(0, T ;L2) ∩ L2

loc(R
+;H2)

)N

× L2
loc(R

+;H1)

which besides satisfies the energy inequality (2) and the inequality given in Propo-
sition 7.1 (see e.g. [3]). Note that the question of uniqueness in the above class
has remained unsolved. On the other hand, as the density ρ̃ satisfies

{
∂tρ̃ + ũ · ∇ρ̃ = 0,
ρ̃|t=0 = ρ0 ∈ W 1,q,

with u ∈ L2
loc(R

+;H2), Theorem 1 in [8] insures that ρ ∈ C(R+;W 1,q−

) for all
q− < q.

Weak-strong uniqueness. Therefore, we are now given two solutions for (1)
with the same data. The smooth one, (ρ, u,Π) belongs to Ep,q,r

T whenever T < T ∗

whereas the second one (ρ̃, ũ, Π̃) is global and satisfies for all T > 0,

(ρ̃, ũ, Π̃) ∈ ∩q−<qE
2,q−,2
T .

Besides, both ρ and ρ̃ are bounded away from 0.
With no loss of generality, one can assume that 2 > rq/(r + q) (indeed, if it

is not the case, one can always take smaller q ≥ r > 2). Hence one can find a

q− ∈ (2, q) such that both solutions belong to E2,q−,s−

T with s−
def
= rq−/(r + q−).

Since in addition ∂tρ̃ ∈ L∞
loc(0, T

∗;Ls−

), the same interpolation argument as
in (67) shows that ρ̃ ∈ Cβ(0, T ∗;L∞) for some β > 0. Now, as obviously ∇u ∈
Lp(0, T ;L∞), ∂tu+u ·∇u ∈ Lp(0, T ;Lr), and ũ ∈ L∞(0, T ;Lr) for all 0 < T < T ∗,

Proposition 4.2 insures that (ρ̃, ũ, Π̃) ≡ (ρ, u,Π) on 0, T ∗ × Ω.

Showing that (ρ, u, Π) is global. Assume that the maximal existence time T ∗

for (ρ, u,Π) is finite. According to the previous step of the proof, ρ ≡ ρ̃ on [0, T ∗)
so that in particular

ρ ∈ Cb([0, T
∗);W 1,q−

) ∩ Cβ
b ([0, T ∗);L∞) for all q− < q and some β > 0.

(96)
Now, if q > r, Theorem 3.7 may be applied. From it, we gather that u ∈
L∞(0, T ∗;D

1
p′ ,p

Ar
) ∩ Lp(0, T ∗;W 2,r). This entails that ∇u ∈ L1(0, T ∗;L∞). Hence

Proposition 3.1 shows that no loss of integrability for ρ occurs: ρ ∈ L∞(0, T ∗;W 1,q).
Then Proposition 6.3 shows that T ∗ cannot be finite.

In the limit case q = r, repeating the above argument for some r− ∈ (N, r),

we get u ∈ L∞(0, T ∗;D
1
p′ ,p

A
r−

)∩Lp(0, T ∗;W 2,r−

). We thus get ∇u ∈ L1(0, T ∗;L∞),

whence ρ ∈ L∞(0, T ∗;W 1,q). One can now apply Proposition 3.7 with r instead
of r− and conclude as before.
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7.2. The case of rough data

We now assume that ρ0 ∈ W 1,q has a positive lower bound, that u0 ∈ D
1
p′ ,p

Ar
and

that f ∈ Lp(0, T ;Lr) ∩ L2
loc(0, T ;L2).

Let (ρ, u,Π) be the maximal smooth solution given by Theorem 1.2 and denote
by T ∗ the existence time. In order to show that T ∗ = +∞, we are going to proceed
like in [6].

As u ∈ Lp
loc(0, T

∗;W 2,r), one can find some t0 ∈ (0, T ∗) such that u(t0) ∈ W 2,r.
Hence u(t0) also belongs to H1.

According to the previous solution, one can find a unique smooth global solution
(ρ̃, ũ, Π̃) for (1) with data ρ(t0), u(t0) and f(· + t0).

On the other hand, the weak-strong uniqueness result proved above does not
use the fact that p ≥ 2. Hence (ρ̃, ũ, Π̃) is a global smooth continuation of (ρ, u,Π).

¤

Appendix

A. Poincaré–Wirtinger type inequalities

Let us first state the Poincaré–Wirtinger inequality in a bounded domain Ω, star-
shaped with respect to a convex set C ⊂ Ω. We aim at giving an estimate of the
constant in terms of Ω and C.

Lemma A.1. For all p ∈ [1,+∞], the following inequality holds true:

∥∥f − fC

∥∥
Lp(Ω)

≤
( |SN−1| δ(C)δ(Ω)N−1

|C|

) 1
p

δ(Ω) ‖∇f‖Lp(Ω) , (97)

where fC denotes the average of f over the convex set C and S
N−1, the unit sphere

in R
N .

Proof. It is inspired by [4], page 104.
Fix a x ∈ Ω. We have

f(x) − fC =
1

|C|

∫

C

∫ 1

0

∇f((1 − t)x̃ + tx) · (x − x̃) dt dx̃, (98)

which yields (97) in the case p = +∞.
For proving the inequality in the case p = 1, make the change of variables

y = x̃ + t(x − x̃) and ρ = (1 − t)−1|x − y| in (98). We get

f(x)− fC =

∫

Vx

x − y

|x − y|
∇f(y)

|x − y|N−1

(∫ +∞

|x−y|
ρN−1ω

(
x + ρ

( y−x

|y−x|
))

dρ

)
dy, (99)

where Vx denotes the convex hull of {x} ∪ C, and ω
def
= 1C/|C|.
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Note that for fixed y ∈ Vx, the integration is actually restricted to the inter-
section of the half-line [x, y) and C, which is a segment of length less than δ(C).
Besides, as Vx ⊂ Ω, the integration may be restricted to ρ < δ(Ω).

Therefore
∫ +∞

|x−y|
ρN−1ω

(
x + ρ

( y−x

|y−x|
))

dρ ≤ δ(C)δ(Ω)N−1

|C| . (100)

Plugging (100) in (99) yields

|f(x) − fC | ≤
δ(C)δ(Ω)N−1

|C|

(∫

Vx

|∇f(y)|
|x − y|N−1

dy

)
. (101)

Integrating over Ω and using a convolution inequality yields the desired result in
the case p = 1. Interpolation then entails the general case p ∈ [1,+∞]. ¤

Remark A.2. 1. The first term of the left-hand side of (97) is a measurement
of the distortion of Ω with respect to C. If C is a ball, it reduces to

(δ(Ω)/δ(C))
N−1

p .

2. If Ω itself is convex, one can improve the inequality:
∥∥f − fΩ

∥∥
Lp(Ω)

≤ CNδ(Ω) ‖∇f‖Lp(Ω) ,

with CN depending only on the dimension N .

Let us mention in passing the following variation on Poincaré–Wirtinger in-
equality.

Lemma A.3. Let Ω and C satisfy the above assumptions and let 1 < p < N . The
following inequality holds true:

∥∥f − fC

∥∥
L

Np
N−p (Ω)

≤ Cp,N

(
δ(C)δ(Ω)N−1

|C|

)
‖∇f‖Lp(Ω) . (102)

Proof. Starting from inequality (101), the desired inequality easily stems from
Hardy–Littlewood–Sobolev inequality. ¤

B. Maximal regularity for abstract evolution equations

Let X be a Banach space and A, a non-bounded linear operator in X with domain
D(A). We here want to review a few results on the following abstract evolution
equation: {

d

dt
u + Au = f ∈ Ls(0, T ;X),

u|t=0 = u0 ∈ X.
(L)
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Following Y. Giga and H. Sohr in [15], we make the following assumptions on X
and A:

• (H1) X is a ζ-convex Banach space,

• (H2) A is a closed nonnegative linear operator in X belonging to Eθ
K(X) for

some K ≥ 1 and θ ≥ 0, namely

– Both the range and the domain of A are dense in X,

– The operator t + A is invertible for t > 0, and supt>0 ‖t(t + A)−1‖X < ∞,

– ∀y ∈ R, ‖Aiy‖L(X) ≤ Keθ|y|.

Remark B.1. Under assumption (H2) with θ ∈ [0, π/2), the operator −A gener-

ates a bounded analytic semi-group
(
e−tA

)

t≥0
.

Definition B.2. For α ∈ (0, 1) and s ∈ (1,∞), set

‖u‖Ḋα,s
A

def
=

(∫ +∞

0

‖t1−αAe−tAu‖s

X

dt

t

) 1
s

.

We then define the homogeneous fractional domains Ḋα,s
A as the completion of

D(A) under ‖u‖Ḋα,s
A

.

Remark B.3. 1. Let Ḋ(A) be the completion of D(A) in X under ‖Au‖X . One

can show that Ḋα,s
A agrees with (X, Ḋ(A))α,s.

2. One can also define non-homogeneous fractional domains Dα,s
A as the com-

pletion of D(A) under the following norm:

‖u‖Dα,s
A

def
= ‖u‖X +

(∫ +∞

0

‖t1−αAe−tAu‖s

X

dt

t

) 1
s

.

And of course, Dα,s
A agrees with (X,D(A))α,s.

The main result of this section is the following:

Theorem B.4. Let X and A satisfy assumptions (H1) and (H2) for some θ ∈[
0, π

2

)
. Let s ∈ (1,∞), f ∈ Ls(R+;X) and u0 ∈ Ḋ

1− 1
s
,s

A . The abstract evolution

problem (L) has a unique solution u in Ls(R+; Ḋ(A))∩Cb(R
+; Ḋ

1− 1
s
,s

A ) with ∂tu ∈
Ls(R+;X). Moreover, there exists a constant C = C(s, θ,K,X) such that the
following inequality holds true for all T ≥ 0:

∥∥∥∥
(du

dt
,Au

)∥∥∥∥
Ls

T
(X)

+ ‖u(T )‖
Ḋ

1− 1
s

,s

A

≤ C
(
‖u0‖

Ḋ
1− 1

s
,s

A

+ ‖f‖Ls
T

(X)

)
.
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Proof. As −A generates a bounded analytic semi-group
(
e−tA

)

t≥0
, the solution u

to (L) writes u = v + w with

v(t)
def
=

∫ t

0

e−(t−τ)Af(τ) dτ and w(t)
def
= e−tAu0.

First step: Maximal regularity for the Duhamel term v. Under assump-
tions (H1) and (H2), the operator A has the so-called “maximal regularity” prop-
erty (see e.g. [15]), namely

d

dt
v + Av = f, v|t=0 = 0,

implies ∥∥∥∥
(dv

dt
,Av

)∥∥∥∥
Ls

T
(X)

. ‖f‖Ls
T

(X).

Second step: Additional estimates for v. Straightforward computations
yield

‖v(T )‖
Ḋ

1−1
s

,s

A

=

(∫ +∞

0

‖Ae−tAv(T )‖s

X dt

) 1
s

,

=

(∫ +∞

0

∥∥∥∥
∫ T

0

Ae−(t+T−τ)Af(τ) dτ

∥∥∥∥
s

X

dt

) 1
s

,

=

(∫ +∞

T

∥∥∥∥
∫ T

0

Ae−(t′−τ)Af(τ)dτ

∥∥∥∥
s

X

dt′
) 1

s

≤
(∫ +∞

0

∥∥∥∥
∫ t′

0

Ae−(t′−τ)Af(τ)1[0,T ](τ) dτ

∥∥∥∥
s

X

dt′
) 1

s

.

Hence, taking advantage of the maximal regularity of the operator A,

‖v(T )‖
Ḋ

1−1
s

,s

A

. ‖f1[0,T ]‖Ls(X)
= ‖f‖Ls

T
(X). (103)

Third step: Estimates for w. Because w(T ) = e−TAu0 and
(
e−tA

)

t≥0
is a

bounded semi-group, we have

‖w(T )‖
Ḋ

1−1
s

,s

A

=

(∫ +∞

0

‖e−TAAe−tAu0‖
s

X dt

) 1
s

,

≤ C

(∫ +∞

0

‖Ae−tAu0‖
s

X dt

) 1
s

= C‖u0‖
Ḋ

1−1
s

,s

A

.

On the other hand,

‖Aw‖Ls
T

(X) =

(∫ T

0

‖Ae−tAu0‖
s

X dt

) 1
s

≤
(∫ +∞

0

‖Ae−tAu0‖
s

X dt

) 1
s

= ‖u0‖
Ḋ

1−1
s

,s

A

.
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Last step: Time continuity for v and w. Fix a positive T . Let (fn)n∈N be a
sequence of functions in C([0, T ];X)∩Ls(0, T ;X) which tends to f in Ls(0, T ;X).

Denote vn(t) =
∫ t

0
e−(t−τ)Afn(τ) dτ . According to the previous estimates, vn

tends to v in L∞(0, T ; Ḋ
1− 1

s
,s

A ). On the other hand, fn belongs to e.g. L2s(0, T ;X),

hence by maximal regularity, ∂tv
n is in L2s(0, T ;X), and vn ∈ L∞(0, T ; Ḋ

1− 1
2s

,2s

A ).

Interpolation thus yields vn ∈ C([0, T ]; Ḋ
1− 1

s
,s

A ). As (vn)n∈N converges to v in

L∞(0, T ; Ḋ
1− 1

s
,s

A ), we conclude that v ∈ C([0, T ]; Ḋ
1− 1

s
,s

A ).

Since D(A) is dense in Ḋ
1− 1

s
,s

A , one can find a sequence (un
0 )n∈N ∈ D(A)N

tending to u0 in Ḋ
1− 1

s
,s

A . Denoting wn(t) = e−tAun
0 , the estimate of step three

insures that wn tends to w in L∞(R+; Ḋ
1− 1

s
,s

A ).

Using the fact that un
0 belongs to D(A) we gather that wn ∈ L∞(R+; Ḋ

1− 1
s′

,s′

A )

and that ∂tw
n ∈ Ls′

(R+;X) for all s′ ≥ s. Hence by interpolation, wn ∈
C(R+; Ḋ

1− 1
s
,s

A ) which completes the proof. ¤

C. An elliptic equation with Neumann boundary conditions

In this section, we state an estimate for the following elliptic problem:
{

div(τ∇u) = h,
∂nu|∂Ω = 0,

(104)

where h satisfies the compatibility condition
∫
Ω

h(x) dx = 0.

Proposition C.1. Let r ∈ (N,+∞] and q ∈ (1, r] ∩ R. Let Ω be a C2 bounded

domain of R
N . Assume that h ∈ Lq(Ω) and that τ ∈ W 1,r(Ω) satisfies τ̌

def
=

infx∈Ω τ(x) > 0. Then (104) has a solution u ∈ W 2,q(Ω) such that

τ̌
∥∥∇2u

∥∥
Lq ≤ CN,r,q,σ(Ω) ‖h‖Lq

(
1 + |Ω| 2

N ‖∇ log τ‖
2r

r−N

Lr

)
,

τ̌ ‖∇u‖Lq ≤ CN,r,q,σ(Ω)|Ω| 1
N ‖h‖Lq

(
1 + |Ω| 1

N ‖∇ log τ‖
r

r−N

Lr

)
.

Proof. Arguing by dilation, it suffices to prove the inequality in the case |Ω| = 1.
The existence of a solution for (104) is stated in e.g. [2]. Of course, uniqueness

in W 2,q holds true up to a constant.
Remark that

∆u = τ−1h −∇u · ∇ log τ,

hence, according to e.g. [17] page 105,
∥∥∇2u

∥∥
Lq .

∥∥τ−1h
∥∥

Lq + ‖∇u · ∇ log τ‖Lq ,

.
∥∥τ−1h

∥∥
Lq + ‖∇u‖Ls ‖∇ log τ‖Lr ,
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with 1/r + 1/s = 1/q.
According to Gagliardo–Nirenberg inequality, we have

‖∇u‖Ls . ‖u‖
1
2−N

2 ( 1
q
− 1

s
)

Lq

(
‖u‖Lq +

∥∥∇2u
∥∥

Lq

) 1
2+ N

2 ( 1
q
− 1

s
)

.

Therefore, thanks to Young inequality

∥∥∇2u
∥∥

Lq .
(∥∥τ−1h

∥∥
Lq + (1 + ‖∇ log τ‖

2r
r−N

Lr ) ‖u‖Lq

)
.

We are left with bounding ‖u‖Lq . Obviously, proving that

τ̌ ‖u‖Lq . ‖h‖Lq (105)

yields the desired inequality for
∥∥∇2u

∥∥
Lq . Then, arguing by interpolation will give

the inequality for ‖∇u‖Lq .
Inequality (105) will be achieved by prescribing appropriate mean for u (in that,

we follow [18]). Of course, changing the mean of u amounts to adding constants
so that ∇u and ∇2u are unchanged.

Case q = 2. Integration by parts yields

−
∫

Ω

τ |∇u|2 dx =

∫

Ω

hu dx. (106)

Choose u with null mean value. By virtue of Poincaré–Wirtinger inequality, we
conclude that

τ̌ ‖u‖2
L2 . τ̌ ‖∇u‖2

L2 ≤ ‖h‖L2 ‖u‖L2 .

Case 2 ≤ q ≤ 2N/(N −2). We still prescribe null mean value for u. Gagliardo–
Nirenberg inequality thus reduces to

‖u‖Lq . ‖∇u‖
N
2 −N

q

L2 ‖u‖1−N
2 + N

q

L2 .

Now, by virtue of (106),

√
τ̌ ‖∇u‖L2 ≤

√
‖h‖L2 ‖u‖L2 ,

hence

‖u‖Lq .

(‖h‖L2

τ̌

)N
4 − N

2q

‖u‖1+ N
2q

−N
4

L2 .

Hölder inequality enables us to replace L2 norms with Lq norms in the right-hand
side, which completes the proof.

Case 2N/(N − 2) < q < +∞. Let ℓ = q(N − 2)/(2N). As the function

κ 7−→
∫

Ω

|u + κ|ℓ−1(u + κ) dx
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is continuous and tends to ±∞ when κ goes to ±∞, one can find a solution u to

(104) such that v
def
= |u|ℓ−1u has null mean on Ω.

On the other hand, integrating by parts yields
∫

Ω

τ |∇v|2 dx = −
(

ℓ2

2ℓ − 1

)∫

Ω

h|u|2ℓ−1 sgn u dx,

hence, in view of Sobolev embeddings and Hölder inequality,

τ̌ ‖u‖2ℓ
Lq = τ̌ ‖v‖2

L
2N

N−2
. τ̌ ‖∇v‖2

L2 . ‖u‖2ℓ−1
Lq ‖h‖

L
q

q+1−2ℓ
≤ ‖u‖2ℓ−1

Lq ‖h‖Lq .

Case 2N/(N + 2) ≤ q ≤ 2. Let us choose a solution u with null mean value.
We have

‖u‖Lq = sup
‖g‖

Lq′
≤1

∫
Ω g dx=0

∫

Ω

ug dx. (107)

Let v be a solution to

div(τ∇v) = g,

∫

Ω

v dx = 0 and ∂nv|∂Ω = 0.

As 2 ≤ q′ ≤ 2N/(N − 2), we already know that

τ̌ ‖v‖Lq′ . ‖g‖Lq′ .

As of course

∫

Ω

ug dx ≤ ‖h‖Lq ‖v‖Lq′ , one obtains the desired inequality.

Case 1 < q ≤ 2N/(N + 2). Once again, the desired inequality stems from a
duality argument. The solution u is chosen such that

∫
Ω

u dx = 0 so that (107)
still holds. Since now q′ > 2N/(N − 2) the function v such that div(τ∇v) = g has
to be normalized in the following way:

∫

Ω

|v|ℓ−1v dx = 0 with ℓ = q′(N − 2)/2N. ¤
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