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Abstract. This paper is devoted to the study of the initial value problem for density dependent
incompressible viscous fluids in a bounded domain of RY (N > 2) with C?*€ boundary. Ho-
mogeneous Dirichlet boundary conditions are prescribed on the velocity. Initial data are almost
critical in term of regularity: the initial density is in W19 for some ¢ > N, and the initial velocity
has € fractional derivatives in L" for some r > N and € arbitrarily small. Assuming in addition
that the initial density is bounded away from 0, we prove existence and uniqueness on a short
time interval. This result is shown to be global in dimension N = 2 regardless of the size of the
data, or in dimension N > 3 if the initial velocity is small.

Similar qualitative results were obtained earlier in dimension N = 2,3 by O. Ladyzhenskaya

_2
and V. Solonnikov in [18] for initial densities in W1 and initial velocities in W2 47 with
qg> N.
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Introduction

This paper is devoted to the study of flows of density dependent incompressible
viscous fluids in connected bounded domains Q of RY.
The system of PDE’s associated to such flows reads:

Orp + div pu = 0,
O(pu) + div(pu ® u) — pAu + VII = pf,
- (1)
divu =0,
(pa u)|t:0 = (pO, UO)'
Above, p = p(t,z) € RT denotes the density, u = u(t,z) € R¥, the velocity

field. The parameter p > 0 stands for the viscosity. The term VII (namely the
gradient of the pressure) may be seen as the Lagrange multiplier associated to the
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constraint divu = 0. In addition, the velocity u is assumed to satisfy homogeneous
Dirichlet boundary conditions, namely u|pq = 0. For the sake of simplicity, it is
assumed throughout the paper that 9 is C?*¢ for some € > 0.

Given initial conditions (pg, ug) (with ug satisfying the Dirichlet boundary con-
ditions), and an external force f, we address the question of finding a unique
solution to (1) for small or large time.

This question has been studied by a number of authors. Roughly, two different
approaches may be distinguished. The oldest one relies on the following formal
inequality

[[VZOIG] P +2u/0 IVa(r)Il7: dr < |lv/pouoll +2/0 /Qp(T)f(T) ~u(T) dr.

(2)
for solutions (p, u, IT) of (1).

Using (2) and the fact that the density is advected by the flow of u so that
the LP norms of p are (at least formally) conserved during the evolution, it is
then possible to use compactness methods to prove the existence of global weak
solutions.

This approach has been introduced by J. Leray in 1934 in the homogeneous
case (i.e. p = 1) and no external force. The reader is referred to [19] for more
details.

The non-homogeneous equations (1) have been considered in the sixties and
seventies by the Russian school (see e.g. [3] and the references therein) and more
recently by P.-L. Lions in [20] and B. Desjardins in [7] and [9]. Compare to the
homogeneous case, the two main difficulties that one has to face are:

e the control of regions of vacuum,
e the fact that the pressure cannot be eliminated by projecting the momentum
equation over the set of solenoidal vector-fields.
Let us mention in passing that in dimension N = 2, one can further use a quasi-
conservation law for the H' norm of the velocity and get global H' solutions.

In both cases however, the problem of uniqueness has not been solved.

On the other hand, for smooth enough data and no external force, the question
of finding unique strong solutions has been successfully solved by O. Ladyzhen-
skaya and V. Solonnikov in [18]. They proved:

Theorem 0.1. Let ¢ > N and N = 2,3. Let py € C*(Q) satisfy inf,ecq po(x) > 0
and let ug be a solenoidal vector-field with coefficients in W2=44 and vanishing on

0. There exists a positive time T such that (1) has a unique solution (p,u, VII)
with

pe L®0,T:CY), weC([0,T;W> ¢9) and 0yu,Vu,VII € LI(0,T x Q).
If N =3 and HUOHW%%"’ is sufficiently small, or if N = 2 then the solution is
global and belongs to the spaces described above for all T > 0.
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Similar qualitative results have been obtained by H. Okamoto in the framework
of Sobolev spaces: the initial density is assumed to be non-negative and the initial
velocity belongs to the fractional domain® D(A") with n € (N/4,1) where A is the
Stokes operator in L2.

In the present work, we aim at finding a class of data (po,uo, f) as large as
possible for which Ladyzhenskaya and Solonnikov’s result remains true.

In order to guess what the limit regularity for the data should be, let us briefly
review a few standard results in the homogeneous case p = 1. System (1) then
reduces to the celebrated incompressible Navier—Stokes equations:

Ou+div(iu @ u) — pAu+ VII = f,
divu =0, (3)
U|t:0 = Ug-

In the case of a (smooth) bounded domain {2 with no external force, it has been
stated by Y. Giga in [13] that (3) has a unique local solution for data ug in the
space

X”d:ef{zeLr(Q)N|divz:0 in Q@ and z-n=0 on 00O}

whenever r > N.

As far as existence and uniqueness is obtained from contracting mapping ar-
guments, the exponent r = N seems to be optimal. This is closely linked to the
invariance (for all A > 0) of the space LV (RY) by the transform

uo(z) — ud () ef Aup(Ax)

and to the fact that if w is the solution of (3) corresponding to the data ug then
(t,x) — AMu(A?t, A\r) is the solution associated to u}).

Similar scaling considerations are relevant in the density-dependent case (see
e.g. [5] for more explanations) and induce us to consider data (po,uo) in a critical
space whose norm is invariant by the transformation

po(x) = po(Az),  uo(x) — Aug(A).

As a matter of fact, in [5] and [6], we stated local and global existence results for
(1) in the whole space R or in the torus TV for data having critical or almost
critical Sobolev regularity. There, our proofs rely on Fourier analysis so that they
cannot be easily carried out in bounded domains.

In the present work, we aim at generalizing Giga’s result to non-homogeneous
fluids. According to the above scaling considerations, choosing (pg, ug) in WH¥ x
LY seems to be an appropriate choice. This has to be compared with the assump-
tions of Theorem 0.1: there ug has to be in W25 with q> N.

Whether existence of strong unique solutions may be proved under such as-
sumptions is open. The fact that W% fails to be embedded in L™ is one of the

1 Roughly, it amounts to asking ug to have 27 derivatives in LZ2.
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reasons why. We shall see however that, if we make slightly stronger assumptions
in terms of integrability and regularity then all the results of Theorem 0.1 remain
true.

Our paper is structured as follows. In the first section, we state our main local
and global existence results. In the next section, we introduce some notation and
functional spaces. Section 3 is devoted to the proof of a priori estimates for the
linearized system (1). Here we get estimates for a non-homogeneous non-stationary
Stokes equation, interesting for their own sake. In Part 4, we study uniqueness
and stability for (1) whereas the proof of local existence is postponed to Section 5.
In the next section, we prove global existence for small initial velocity and non-
vanishing density in dimension N > 2 whereas Section 7 deals with global existence
for large data in dimension N = 2. Some technical estimates are postponed in
appendix.

Acknowledgements. The author is grateful to the anonymous referee who pointed
out a flaw in a former version of the proof of Theorem 3.7.

1. Main results
Let us first define the functional spaces in which existence is going to be shown:

Definition 1.1. For 7 > 0 and 1 < p,¢,r < +o0, we denote by ER?" the set of
triplets (p,w, IT) such that

1-1.p

uwe C([0,T); D, *")NLP(O0,T; W NWy™"), € LP(0,T;L") and divu =0,
p€CO,T;Wh), e LP(0,T;Wh") and / Mdx = 0.
Q

If ¢ = 00, we agree that p belongs to L (0,T; W1>°) N C([0,T] x Q) instead of
C([0, T]; Whee).
The corresponding norm is denoted by || - [|gz.a.r.

1-1, . . .
The space D, * " stands for some fractional domain of the Stokes operator in

1-2.p

L" (see the definition in Section 2.3). Roughly, the vector-fields of D, have
— % derivatives in L", are divergence-free and vanish on 0f).
Our main local existence result reads:

Theorem 1.2. Let Q be a bounded domain with C**¢ boundary. Let p > 0,
q € (N,oo], 1 <p<ooandr € (N,ggNR. Let pg € WH4 be bounded away
1

from zero by p, ug € Di‘:;’p and f € LP(0,To; L") for some Ty > 0. There exists
a T € (0,Ty) such that system (1) has a unique solution (p,u,Il) in ER®" with
besides 0 < p < p on [0,T] x Q.
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Remark 1.3. 1. The time T of local existence may be bounded by below in terms
of the norms of the initial data, and of Q, u, p, p, r, ¢ and N. The reader
is referred to Proposition 6.4 for more details.

2. One can also prove a result of continuity with respect to the data (see
Remark 4.3).

For small initial velocity ug and external force f but no restriction on the size
of po, we actually have global existence in any dimension N > 2:

Theorem 1.4. Let ug, py and f satisfy the assumptions of Theorem 1.2. Let
v > 0. There exists a constant n depending on p, q, r, N, v, p, Q) but independent
of u, and § > 0 depending only on p, q, r and N, such that if

i > e
ol sy #1557 W langarsiny + [ @ I Ola e < ;
0 L+ polwra )

then (1) has a unique global solution which belongs to EX*" for all T > 0.
Besides, denoting by A1 the first eigenvalue of the Dirichlet—Laplace operator in

Q, and k% min(y, A1/ ||pollp ), we have the following inequalities for all t € R :

|V/pEu)

and, for some K depending only on || poly1.q, P,a,7m, N, p, v, p and Q,

t
= (vl + [ e 1yl ar)
0

t
1o, TD)| g < K<||U0|D1%,p 1 o ery + / I F () dT).

Ap

It turns out that in dimension N = 2, global existence of smooth solutions holds
true for large data with non-vanishing density, a result which has to be compared
with what we have in the homogeneous case.

Theorem 1.5. Let 1 < p < 00, 2 < r < o0 and ¢ € [r,00]. Assume that

1
N = 2, that pg € W1 is bounded away from 0, that uy € D;T’”p and that
fe Ll (RY;L7)NLE (RY;L2). Then system (1) has a unique global solution

which belongs to EX*" for all T > 0.

Remark 1.6. For the sake of simplicity, we restricted ourselves to the study of
fluids in bounded domains. However, we expect that all the results pertaining
to local existence may be proved for domains in which the Stokes operator in L”"
satisfies condition (Hz) described in Section B of the appendix. This property
is known to be true if Q is the complementary of a bounded smooth domain for
instance (see [15]).
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2. Notations and functional spaces
2.1. General notation

Throughout the paper, C stands for a “harmless” constant whose exact meaning
depends on the context. Given a set of parameters S = {1, - , oy}, the notation
C = Cg = C(S) means that C' depends only on aq,- -, k. Sometimes, we make
use of A < B in place of A < CB and A ~ B means that A < B and B < A.

Let Q be a bounded Lipschitz domain of RY. Then 9 denotes the boundary
of 2, and n stands for the outer unit normal at the boundary. We denote by 6(2)
the diameter of Q and by |Q], its Lebesgue measure. The notation o(2) stands
for the “dimensionless” open set

T € Q} .

Hence, when denoting C = C,(q), it is understood that the constant C' does not
change under dilation of €2, i.e. depends only on the shape of Q.

Let 1 < p < 0o and K be a measurable subset of RY. The notation L?(K) (or
L? if no ambiguity) stands for the set of measurable functions on K with values in
R and bounded LP norm. A similar notation is used for vector-valued functions.
More generally, if X is a Banach space and f = (fy,---, fx) is such that f; € X
for each i € {1,--- ,k}, we define

k
£l = 10 Flllx E3 1l
=1

For r € [1,400], we denote by L"(0,T;X) the set of Bochner measurable X-
valued time dependent functions f such that ¢ — || f||x belongs to L"(0,7"). The
corresponding Lebesgue norm is denoted by |- || Lr (x) and the conjugate exponent
of r (i.e. r/(r — 1)) is denoted by /. If I is an interval of R, the notation C(I; X)
(resp. Cp(I; X)) stands for the set of continuous (resp. continuous and bounded)
functions of F(I; X).

If k is an integer, we denote by W*:4(Q) (or W) the set of L4 functions whose
derivatives up to order k belong to LY. If I is an interval of R and X, a Banach
space, the notation WP (I; X) stands for the set of L?(I; X) functions whose first
time derivative also belongs to LP(I; X).

We shall also make use of trace spaces W*2(952) (see their definition in e.g. [1],
[11] or [16]).

2.2. Basic properties of the Stokes operator

For 1 < g < oo, let X7 be the completion in L? of the set of solenoidal vector-fields
with coefficients in C§°(Q2). It is well known (see e.g. [23]) that for C! domains,
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X7 = {u € (L1Q)Y |divu=0 and u-n=0 on Q},
and that any vector-field with coefficients in L? has a Helmholtz decomposition:

Lemma 2.1. Let Q be a bounded domain of RN with C' boundary. For all f €
L)V, there exists a unique couple (fo, P) with

f=fo+VP, foeX? PelL]

loc

(Q), VPeLi) and / Pdx =0.
Q

L1 — X7x L4
f — (f07vP)

Besides the map f : { 8 continuous.

We denote by P, : f — fo the projector from L9 onto X9 introduced above.
We further define (according to [12]) the Stokes operator on L9:

A, = —P,A with domain D(A,) = W?2(Q) N W, Q) N X (4)

2.3. Fractional domains for the Stokes operator

Let us first give the formal definition of the (homogeneous) fractional domains of
the Stokes operator in L9.

Definition 2.2. Let 1 < ¢ < co. For a € (0,1) and s € (1, 00), we set

oo dt\ *
el ([ 0o o, )

¢ stands for the semi-group associated to A,. We then define the

a,s

homogeneous fractional domain D , as the completion of D(Ay) under [[ul| Doe-
aq

where e~ 4

The above definition may be made rigorous if A, generates a bounded analytic
semi-group. According to [15], this latter property is known to be true if conditions
(H1) and (Hz) of Section B in the appendix are fulfilled.

As 1 < g < o0, the space X1(2) is (-convex (even if Q is not bounded or/and
not smooth, see [15] page 81) so that (H;) always holds. On the other hand, if
is a bounded domain with C?*¢ boundary, condition (Hz) is also fulfilled (see [12]
and [15]).

Besides, the Stokes operator has the so-called maximal regularity property (see
Theorem B.4 in the Appendix and Theorem 3.2 below).

Remark 2.3. 1. Let D(A,) be the completion of D(A,) in X7 under the norm
[Aul[,- One can show that D% agrees with (X, D(4g))a,s-
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2. One can also define non-homogeneous fractional domains D%’* as the com-
q

pletion of D(A,) under the following norm:

+oo H
def _ _ s dt\*
lollog b+ ([ ey, )

Of course, DY agrees with (X, D(Ag))a,s-

As from now on we shall consider only bounded domains, the following result
will be very useful:

Proposition 2.4. Let Q be a Lipschitz bounded domain of RN . There exists a
constant C = Cy ;. o(q) such that

lullyza (| V2u]],, + 8 [Vull 1 + 6() 72 [Jull o < C ||V, -

whenever u € W24 N Wy 9(Q).

Proof. One just has to notice that Poincaré inequality applies to u (as u vanishes
on 01), and that Poincaré-Wirtinger inequality applies to Vu (as [, Vudz = 0).
|

Hence, for bounded domains, the non-homogeneous fractional spaces Dj’qs co-
incide with the homogeneous ones. Therefore, we shall not make the distinction
between the two of them from now on.

Let us now explain how the fractional domains of A, may be identified with
Besov spaces Bqﬁ,s.

[e]
Proposition 2.5. Let a € (0,1) and 1 < q,s < co. Let Bf sbe the completion of
C§°(Q) in BY .. Then we have
[e]
BisN X" D" — Bi% N X"

Besides, the three sets are the same (with equivalent norms) provided 2a < 1/q.

Proof. Combining Remark 2.3 and (4), we can write
DG = (X4, XINWe I N W), s = X90 (L4, Wy T N IW>9), 4.
Because WOQ’q — Wol’q N W24 — W24 we have

B = (LYW )as = (LLWo " W) o s o (LY, W), o = By
which yields the desired chain of embeddings (see e.g. [22] for the proof of the first

and last equality). Moreover, if 2oc < 1/g, the spaces Bg% and B:% are the same

(see e.g. [22], page 83). O
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3. The linearized equations

This section is devoted to the study of the linearized system (1).

3.1. The transport equation

The following result is quite standard (as a matter of fact, it is a straightforward
generalization of the one presented in [18]):

Proposition 3.1. Let Q be a Lipschitz domain of RN and v € L'(0,T;Lip) be a
solenoidal vector-field such that v-n =0 on 0. Let ag € W4 with q € [1,400].
Then equation
{&a—kv-VazO,
p‘t:O = ao,
has a unique solution in L°°(0,T; W) N C([0,T); Nr<cc WHT) if ¢ = 00 and in
C([0,T); W) if g < oc.
Besides, the following estimate holds true:
Vi € (0,7, lla(®)llypra < efoIV e 9lag] .

If in addition a belongs to LP for some p € [1,400] then

vt € [0,T], [la(®)llL» = llaoll v -

3.2. Estimates for non-stationary Stokes equations

This section is devoted to the proof of estimates for the following linear system:
O — pAv + VIIL = f, fQH:O,
dive =7, (5)
Ujg=0 = Vo, Vjaq = 0.

Throughout this section and unless otherwise specified, Q is a C%*¢ bounded do-

main.

3.2.1. The case of solenoidal vector-fields
We first focus on the non-stationary Stokes equation (5) with 7 = 0. Our main

statement reads:

Theorem 3.2. Let Q be a C*T¢ bounded domain of RN and1 < q,s < co. Assume
R
that ug € qu <" and f € L*(R*; LY). Then system
Oy — pAu + VII = f, JoHdz =0,

divu = 0, ujpn =0, (6)
Ult=0 = U0,
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has a unique solution (u,I1) satisfying the following inequality for all T > 0:

T s 1
2
Diys + </0 H(VH,HV u,@tu)HLq dt)
. T , :
< c(wnuon L+ ( | rols, dt) )
D3, 0

with C = C(q,s,N,0(Q)) and 1/s' =1—1/s.

1
" (lu(T)]

Proof. Using the change of function u(t,z) = pv(ut,z), U(t,x) = p?P(ut,z) and
f(t,z) = u%g(ut, z) enables us to consider only the case y = 1.

Now, as under our assumptions on  and ¢, conditions (H;) and (Hz) of
Section B in the appendix are fulfilled, Theorem B.4 may be applied.

Moreover, for u € D(A,), we have (see Prop. 1.4 in [14])

IV2ull s < Convoo 14qull o
and, according to Lemma 2.1,
VII = Au+ Aju,

which completes the proof. O

3.2.2. The general case

Let us now treat the general case dive = 7. Maximal regularity estimates for (6)
will be obtained by solving first the following stationary Stokes problem:

—Av+ VP = f, Jo Pdx =0,
dive =T, (7)
vjan = 0,

then a problem of type (6) for which Theorem 3.2 applies.
For system (7), we have the following result.

Proposition 3.3. Let Q2 be a C? bounded domain and 1 < q < oo. Let f € L(£2)
and 7 € Wh4(Q) with [, 7dx = 0. Then system (7) has a unique solution (v, P)
in W24(Q)N x Whi(Q). Moreover, there exists C = Cy n o) such that

1920l 0 + IV Pllo < Covotey (I1F11a + 197120 ).

Proof. See [11] p. 226, and Exercise 6.2. Using scaling arguments enables us to
show that the constant depends only on the shape of 2. O

It turns out that estimates for ||v||;, will be also needed.
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Proposition 3.4. Let Q be a C? bounded domain and 1 < q¢ < oco. Let ' be
a Lipschitz open subdomain of Q, star-shaped with respect to some ball B C
centered at xog and of diameter d > 0. Denote x = 6(')/d the distortion parameter
of Q' with respect to B, and

_ 1 : ’
= sy 2 (7 )

where n' stands for the outer unit normal on 0.
Assume that v solves (7) with f =0 and T = 19 +div R, and that 7o and R are
supported in Q. The following inequalities hold true whenever 1 < r < oco:

N1
[0llr @) < Crnvo@ (5(9/)X 7 7ol ey + 1Rl e o) + |R'”||Wi,r(m))7 (8)
N—-1

N1 X
i < Coar (SO [l + IRl iyt SO IRl ) 9)

[

Proof. We have

llv|l - = sup /U~Fdac.
1EN =10

Fix a function F in (L" (€2))N. Proposition 3.3 provides a solution (w, Q) to

—Aw—-VQ =F, /de:(),
B

divw =0,

'LU‘(‘)Q:O.

Combining integrations by parts and equation (7) yields

/v~Fda::/(TonR-VQ)dx+ Q R-ndo.
Q Q

a0
Therefore, taking advantage of the assumptions on the supports of 7y and R,

/QU Fdr < ||Ql L o lIToll ey + IVl L () 1Bl L 0y

||R : nHWf%,T'(aQ)HQ”W%,T'/(BQV
IR -1l 100y 1@l L (90ner)-

As [ 5 @ = 0, Poincaré-Wirtinger inequality (97) yields

N—-1
1Qll L @y < Cnx 7 SV QI Lo ey

Proof of (8). By making use of standard trace theorems, we have ”Q”Wl’”(aﬁ) <

Cr N,o(Q) HQHWI,T/(Q). On the other hand, according to Proposition 3.3, we have

||VQ||LT’(Q) < OT,N70'(Q)||FHLT'(Q)7 (10)
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hence inequality (8).

Proof of (9). In order to bound the term HQ”L“(anﬁ’)’ it suffices to bound
||QHLr’(aQ’)'

According to inequality (3.3) page 43 in [11], we have

SR o0y < NIQIL (o) +7'8(Q)IQ]

Hence, combining Poincaré-—Wirtinger inequality (97) and Hoélder inequality,

r—1
F IVl -

1 1/ N1 -1
QL oy < Cnrd(Q)F (x TAVQIl Ly + X HVQ\|L~(Q,)),
N—1
< CnaX 7 67 IVQ 1o -

Using again (10) completes the proof of the proposition. O

Proposition 3.5. Let1 < p,r < oo and 7 € LP(0,T; WbH™(Q))NnW P (0, T; W—1T)
satisfy

7(0,-) =0, /QdeZO and O;T =719+ divR

with R, 79 € LP(0,T; L"(2)), R-nin LP(0,T; L™ (0K2)) and Supp 7o(t, -)USupp R(t, -)
cq for allt € (0,T) with Q' satisfying the assumptions of Proposition 3.4.
The non-stationary Stokes system
O —Av+VII=0, [,IIdz=0,
dive =7, (11)
U|aQ = 07 v\tZO = 07
has a unique solution (v,II) with

ve LP0, T; W)y NnWhP(0,T; L") and T € LP(0,T;WhH").

Moreover, the following inequality holds true:

N1
100, V20, VID | 15 (1 () < Crp.Noo(2) (5(9')X 7 7ol e (e
N—-1
iXr
HIR 1z (1)) +0(2)" CTHR'TLHLZ;(Lr(aQ)) + ||VT||L;(LT(Q))>'

Proof. For fixed t, let (v1(¢,-),II1(¢,-)) be the solution to

—Avy + VII; =0, fQ II; dx =0,
dive; = 7(t, ),
(v1)j90 = 0.

Remark that (0yv1, VO,II;) satisfies the stationary Stokes system (7). Hence,
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according to Proposition 3.4, we have
N1

10c0rll pr () < Crn (5(9/)X% I7oll - ) T IRl Lo (o) +o()r ; ”R'n”LT(BQ))'
cr 1)

Next, define vy as the solution to

8tv2 — AUQ + VHQ = 7at1)1, fQ H2 dr = 0,
div Vg = O,
(v2)ja0 = 0, (v2)t=0 = 0.

Note that 7(0,-) = 0 implies v1(0, ) = 0, hence v L 01 + v solves (11).
According to Theorem 3.2, we have

HUZ(T)HDI’%”’ +[1(9ev2, V202, VL)l 12 () < CrpNo@ 10001 12 (100

Anr

Hence, using (12) shows that (ve,II2) satisfies the wanted inequality.
Now, according to Proposition 3.3, we have

(9201, VIL) | g < Crnaon 19711 -

The proof of Proposition 3.5 is thus complete. O

We can now easily solve the general non-stationary Stokes system (5). First,
using a suitable change of function (see the proof of Th. 3.2), it suffices to consider
the case u = 1. Then, using the decomposition (v, VII) = (v, VII1) + (v, VII3)
with

Btvl — A'Ul + VH1 = f, 8tvg — AUQ + VHQ = 0,
divu; =0, Jo 1 =0, and divus =7, Jo I =0,
(v1)jt=0 = vo, (v1)j90 = 0. (v2)jt=0 = 0, (v2)j90 =0,

Theorem 3.2 and Proposition 3.5 yield the following;:

Theorem 3.6. Let 1 < p,r < 0o, and () be a C?*¢ bounded domain of RN . Let
Q' C Q be open and star-shaped with respect to some ball of diameter d > 0. Let
T € LP(0,T; W) satisfy 7(0,-) = 0,

/ 7dr =0, T =719+divR and Vte (0,T), Suppo(t,-)NSupp R(¢t,-) C o
Q

1
with R and 19 in LP(0,T; L"(Q)) and R-n in LP(0,T; L"(0)). Let vy € D;T vP
and f € LP(0,T; L"(Q)). Then problem (5) has a unique solution (v,II) such that

ve LP0, T; W)y NnWYP(0,T; L") and T € LP(0,T;WhH").
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Besides the following estimate holds true with C = C,. , N,o(Q)*

_1
180, 120, VI 12 (10 0y < C(Ml v ||Uo||D17§,p 1Al e oy 1Rl L2 (-
A
N1
X
1
v

N / ni
FulIV7ll e () + X7 0 I70ll Lo (L)) + ()7 ||R'n||L2;(Lr(aQ)))

with ¢ defined as in Proposition 3.4.

3.3. The linearized momentum equation

This section is devoted to the study of the following linear system:

pOu — pAu + VII = f, Jodx =0,
divu =0, (13)
Up=0 = U0, Ujpn = 0.

Our main existence theorem reads:

Theorem 3.7. Let Q be a C**€ bounded domain, 1 < p,r < oo and q € (N, +00]

_1
such that ¢ > r. Let ug € D;r » P and f € LP0,T;L"). Assume that the density
p satisfies

Y(t,2) € [0.T) x 2, 0< p< plt,z) < 7 < o0

and that for some (€ (0,1],
pe L™ (o, T W1=q(9)) N Cﬁ([o, T]; LOO(Q)).
Then equation (13) has a unique solution (u,II) such that

_1
we C([0,T]; Dy * 7y A LP(0,T; W2 A WE"), Tl e LP(0,T; W)

and OwuelL"(0,T;LP).
Besides, there exists C = C(N,p,q,r,0(2)) such that, denoting

e N N
04 € hax (O,E — —),

/

”
e max (0. Y NN i (4
R \Ng-N)°
« def 6+25 4 "

r :max(15+,6+r1+2r’(§—|—(5+)>,

q

def . -N
By() 1+ 82 (5 1Vl 1))
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def |p(Ta .13) B p(T/,J?)|
Mpg(t) =
s(t) Sen plr— /|8
7,7/ €(0,t], T#T!

)

ef <, . e s * ,\(5 Q 2 141 1 ~ 1
n0 S 5 Colt) 2 (B,(1)) +p%np 5B, (1) FHEHTID (M (1))

we have the following inequalities for all t € [0,T]:

_ I
wllull oy + P||6tu||Lg(Lv~) + I Lo oy + P77 ||U(t)||D1—%,p

Ap

CutCp(t)

. R
< OBttt (t) e o (IIfL;;-(erpPW uOIIDl;,p) (14)
Ap

sP

y 1L
[(pBet, 1V >0, VI | oy + 57 17 [fu(t)

=

1
D,

¢ 1L Mokt
< c<n;*zs§+<+5+<t>(||f|Lf<m+pw Juoll 1 y.0)+ Wc,)(t)nunmm) (15)
Ap

The basic idea is that when p is close to a positive constant p, Theorem 3.2
provides us with the desired estimates. Indeed, it is only a matter of rewriting
system (13) as

pou — pAu+ VI = f + (p — p)Oru, Jodz =0,
divu =0,
Ujg=0 = Uo, Ujga = 0.

Now, if ||p — D]l .« is small, the term ||(p — p)@tuHLf(Lr) may be absorbed by the
left-hand side of the inequality given in Theorem 3.2.

The proof is structured as follows. First, we restrict ourselves to null initial data
and prove a priori estimates for (u,II) under the assumption that p is independent
of t. Next, we prove similar estimates in the case of time-dependent densities.
These estimates will enable us to prove Theorem 3.7 in the case ug = 0.

1-1,
The last step of the proof is devoted to general initial data ug € D, " Y

3.3.1. Existence of solutions for null initial data

a) A priori estimates in the case of a density independent of the time
The main result of this part is the following:

Proposition 3.8. Let Q, a, B, p, q, 7 be as in Theorem 3.7. Let f € LP(0,T;L").
Let p be independent of ¢, satisfy p def inf,cq p(z) > 0 and belong to WH4(9).
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There exists C = C(p,q,r,N,0(Q)) such that the following estimates hold true:
1(pOu, V>, VII) Lz (Lry

2+2N¢ max( ) M
) Qe

max H P 7‘
+(Bp— )1+N< (% %) I, 2(L7) ),

5(%)

< C(BéWHfHL;(LT') + (Bp -1

(ﬁ@tu,uV%,VH)HL;(LT») < C(np8§+g+5+f”L’%(L")

K 2r r*—1
bt B By~ Dluliger) ). (17

P
with n, < 5/p, 8 < max(0, X-2), B, € 148() (5 IVell.) ¢

max(0,7 — ), < ¢ Ngmax(N,, . N), andr* < max ( 6120 G4 4. 42 (€+5+)>-

T

Proof. The proof is based on the old argument by O. Ladyzhenskaya and V. Solon-
nikov in [18]. As explained above, the key idea is that the inequality to be proved
is a mere consequence of Theorem 3.2 if p is “almost” a constant.

On the other hand, by virtue of Sobolev embeddings, p belongs to C* with

o 7 so that it does not vary much on small subdomains of 2. Hence we

mtroduce a convenient partition of unity in the x variable and use Theorem 3.6 in
order to control the solution on each subdomain. Of course, one has to be careful
that the constants appearing in each local inequality are harmless, a detail which
has been passed over in silence in [18].

First step: Local estimates. Let us first notice that one can rule out the case
llpll¢e < KPO(2)™ for k suitably small constant. Indeed, rewriting the momentum
equation as follows:

poru — pAu+ VIL = f + (p 5 >p5‘tu

and using that ||p — p|| .« < 6(2)%||pl| ¢, Theorem 3.2 obviously yields the desired
estimates.
Let us assume from now on that

ol > ra8(Q) . (18)

Let (Qk)1<k<rk be a covering of Q by connected open sets with C? boundaries,
finite multiplicity m = m(N) and diameter less than some A € (0,6(€2)) to be
fixed hereafter. As 2 is C2? we can assume in addition that the parameters x and
c (see Proposition 3.4) associated to each subdomain N Q; are bounded and
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bounded away from zero independently of k. Consider a subordinate partition of
unity (¢x)1<k<rk of class C? such that

1. Supp ¢ C Qp,
YLk =1onQ,
0<pr <1,
Vel e < CalA[71e for o] <2,
K =~ (6(Q)A~1)Y and the number K’ of domains €, intersecting 92 is of
order (6(Q)A~H)N-L
Let fx def orf, def il and ug def pru. Further denote by x; a point of Q; N Q
where the minimum of p is attained, and pr = p(zk), pr = pu/pr. Obviously
(ug, Ii) satisfies

U N

I — I
8tuk_ﬂkAuk+v(—k) = &+ (pk p)‘ﬂkatu_ﬂkUA<Pk_2ﬂkv§0k Vu+—Voy,
Pk Pk Pk Pk

gk
divug = u - Vg,
——

uk(O) = 0,
(ur)jpe = 0.

Of course, as divu = 0 and u vanishes on 0f2, one has fQ div ug dx = 0. Note also
that u;;—o = 0 entails divug(0,-) = 0. On the other hand, using the summation
convention on the repeated indices, we have

Oy divuy = i chk—kH@Z (al(pk) —8jui8j <H82<pk> + d1v<ﬁ8lapk8juz — Eal<pk>
P P P 4 P
T0 R

From now on, let C denote a constant depending only on ¢,r, N, and o(Q2). We
also use the symbol “<” introduced in Section 2.

Since 7(t,-) and R(t,-) are supported in €, N Q, applying Theorem 3.6 and
using the properties of ¢y gives

Iy

2 k
|Or e, iV uk,V<pk S gkl oy + 1l V (w-Veor)ll e (- )

|
> LE(L7(9)

1
FA70l 2 (L)) + 1Bl e (- )y T AT IR 2l Lz (- 00))- (19)

Second step: The global estimate
As p € C°, we have

1ok = Pll oo (uny < A%l
( )

Hence, taking advantage of the properties of (¢x)1<k<k, one gets
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kIl L2 (L))
S ﬂk( ||VU||LP () TA ”u”L”(LT(Qk)))
+pi (||fHL;(Lr(Qk))+>\a||atuk||L1;(LT(Q))||PHca+>\71||H||L;(Lr(ﬂk)))' (20)

Clearly, py, HVTHLI%(LT(Q)) = ur||V(u-Vr) ||L?(LT(Q)) may be bounded by the first
two terms of the right-hand side of (20). As for 79, we have

Mol e (e @)
< (N IVl (o) + 19 V108 Pl 10 )
+p <||fHL7’(LT(Qk))+>‘ 1||H||LP(LT(Qk))+||HVIng”L7’(LT(Qk))> (21)

For HRHL?(U(Q))7 easy computations yield

1Rl oy S A7 (6190l g oy + 05 MWy o). (22)
Finally, we have

AllR- n”L” (L7 (09)) ~ ﬂk”V“”LP (L (@eno9)) T Pr ”H”L” (L7 (QxNOQ))* (23)
Plugging inequalities (20) to (23) in (19) yields
k0w, 1V ur, VIl o 1)y S W lliooruyy + B3 2l o o)
+M)‘_1||vu||L§,(LT'(Qk)) + A" 1||H||L;(L (@) ‘t HHVlOgPHL;(L ()
+ul|Vu-Viogpll e (- (a,)) + ATl Vaull e (- @non)
1
AT e (- @enon)) T A ol eallOunll e (e @y (24)
1
On the one hand, by setting A = xp=||p|| 2., with x small enough — a choice which
is allowed thanks to (18), the last term in the right-hand side may be absorbed

by the left-hand side. On the other hand, since the covering has finite multiplicity
m, it is clear that we have

K
. max(0,1—
Vz e LP(0,T;Q), 12170 (1 0y < ME™ ( )IIZIILP @)

k=1

Hence, raising both sides of inequality (19) to the power p then summing on k, we
eventually get

||,68tu, [LVQ’U,, VHHL;(LT(Q))
S R (PP el s

HATH VUl Lo 10y T AT e gy + 2l Ve Viog pll e 1))
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+|[IIV log p”L’%(L"(Q)))

_ _ .
HEEAH I (/LHVUHLZ;(U(BQ)) + ||H||L§(LT(BQ)))' (25)

Standard interpolation and trace theorems enable us to simplify the right-hand
side. Indeed, from [1] page 75 and obvious scaling considerations, we have for
n<land C = C) N0

()| Vul

Ly < C (07l @) (26)

and, according to inequality (3.3) page 43 in [11], we have

L7 (Q) +7771'5(Q)||VHHU(Q))' (27)

On the other hand, replacing IT with Vu in (27) and using (26), we also get

L) T 10(2)?]V?ul

8(Q)F I £ oy < € (77 11

SO IVl o ony < C (Tl iy + 77 61Vl ) (28)

Moreover, combining Holder, Gagliardo—Nirenberg, Poincaré—Wirtinger and Young
inequalities (here we use that r < ¢ and ¢ > N), we get for all positive e,

1—-N N
119 108 pl oy < C(I¥og o M IV ).
__N_ -N
< €|[VII|| . + Cem o= [ Viog pl £ ™ [Tl -
Similarly, since u € W24 N WO1 ", combining Gagliardo—Nirenberg, Poincaré—
Wirtinger and Young inequalities yields

N—g 24
[Vu-Viogpll 1r(qy < €||V2ul|, + CevTa [[Viogpll e ™ [lull . -

Choose € = £/ (A6(Q) NS, = &/ (AS(Q)~ NS and 77 = &/ (AJ(Q) 1)1 (N=1)s

with k < 1. Inserting the above inequalities in (25) and reminding that A\ =
1

Kpa o[l ., we end up with inequality 16.

Third step: estimates for the pressure

Estimating the pressure lies on a duality argument. For technical reasons how-
ever, the proof is slightly different depending on r > ¢’ or r < ¢'.

e Case r > ¢'. Since the pressure has null mean, we have

I, = sup /tha:. (29)
Q

(!
Jq h dz=0

As log p belongs to Wi with ¢ > N and ¢ > 7/, and as p is bounded by above
and by below, Proposition C.1 insures that the following Neumann problem
div(p~1Vv) = h, Jovdz =0,
an”l)‘ag =0.
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has a unique solution v in W2’ (Q) with besides

||V2U||Lr’(sz) S 583 [h]l~  and ||VU||L7"(Q) S P()B, [l - (30)
On the other hand, integrating by parts and using the definition of v and VII
yields
/ [Mhdx = —/ p VI - Vudr = / Vv - (8tu — pup AU — p_lf) dz.
Q Q Q

Hence, denoting i def i/ p, integrating by parts once again and using the summa-
tion convention for repeated indices,

Q Q P o9 P Q P

£Vl ey V20l o () + 21V 108 pll Loy IV - Vol Lot 0
VUl @y IVOll L oy + 87 Il e @ VOl - (31)

Let us now bound the terms in the right-hand side of (31). Taking advantage of
(30), we easily get

IN

VQ’U‘

Lo S By [Vl o [|Bl e (32)
Next, as ¢’ < r, Holder inequality yields
'V - VoL, < IVl 1Vl

i HVUHU

with s satisfying 1/s =1/r" —1/q.

As, moreover, ¢ > N, Gagliardo-Nirenberg inequality combined with (30)
yields
- X
S 1ol (1920] . + 8@~ 190l )

N

S 875 IVl + Vil [V
<

~ _n 1+
po() T B, |l

||VU||L8

a
L

whence
t < 7 -2 1+%
1"V Vol L S BB, IVullpe (Bl -
N
Note that as 6(9)17% Viogpll . < B; 7, we actually have
IV 1og pll o ||V - Vo[ o S unpBy [ Vull e (1Al - (33)

In order to bound the last term in the right-hand side of (31), we first remark that
trace estimates and (30) yield:

1
s

190l oy S IV0N7 0 gy (19200 + (@) Vell gy )™
<

ol 1
pBy 7 5(Q) (IRl -
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Hence

. 1+ 1
H”VU”Lr(aQ)HVUHLT'(BQ) S By ()" VUHLT(BQ)Hh”LT/(Q)' (34)
Therefore, plugging (32), (33), (34) in (31) and reminding of (29), we conclude

that

[Vul L7 (Q) B, \*
I, ) S 86 (1o + 85 + (505 ) 1oy )
(35)
We now claim that inequality (35) entails estimates for |[(pOyu,uV2u, VII)|| oL

involving only the data and ||u||LpT(L,,,). Indeed, inequalities (28) and (26) give us
for suitably small € and #:

IVull ) < 1718 ull e gy + 18 QN Vull 1 g

11 11
IVull o S (0)  llullpray + (0(@) 192l
Hence, plugging the above inequalities in (35),

(11| L7(Q) pllul L™ (Q) 1 L 41
WSTI Bp<||f||u(sz)+W(Bp77 +Bs'e T)

Lr(Q) (Bpn + Bp%'ﬁrl/>> )

Let k be a suitably small positive constant depending only on N, p, ¢ and 7.
Inserting the above inequality with n = xn, 18,37 and € = /—177;’"/[3;2’”/’1*’”/5 in
(16) yields inequality (17) in the case r > ¢'.

e Case 1 < r < ¢'. Note that the condition g > ' was needed to get (30). We
would like to avoid this additional assumption (otherwise we will run into troubles
when proving uniqueness in dimension 2...)

Let us first use the fact that

N_N
I Ly < O() " ([T Lt - (37)

L7 (Q)" (36)

+u]| Vul

Now, the same duality argument as above will enable us to bound [[II|| . q)-
Indeed, we have

|||, = sup /thm. (38)
Inliga<t Jo
Jq hdz=0

According to Proposition C.1,2 the Neumann problem

div(p~tVv) = h, Jovdz =0,
an’l}‘ag =0

has a unique solution v in W%4(Q) with besides

||V2U||Lq(sz) S ﬁBi‘IhHLQ(Q) and ||VU||Lq(Q) S 55(Q)Bp||h||Lq(Q)- (39)

2 Remark that since 1 < 7 < ¢’ we must have ¢ finite.
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Mimicking the proof of (31), one gets

/Qthl” < I Vull Lo @ V20l Loy + IV 108 pll ooy [Vl o (o V0l L 0
il Vull ooy IVl v a0y + 87 Il ey VOl Ly (40)
Taking advantage of (39), we get
ﬂ”VUHLq/(Q)||V21’||Lq(9) S unpb’i”vu”Lq’(Q)”h”Lq(Q)' (41)

According to Gagliardo—Nirenberg inequality, we have

[z

q

- _
190l 2=y S 1900 agly (19200 oy + 5D IV o)
so that, by virtue of (39),
AllV 108 pll o) | Vel o ) | V0l 1 @) S 1o By Vull Lo oy Bl gy (42)
According to inequality (3.3) page 43 in [11], we have

1
7

L Ny
||VU||LT'(8§Z) So(Q)” HVUHLT'(Q) + [V )||V2U La(Q)"

1
Lq/(T'—l)(Q

On the other hand, according to Gagliardo—Nirenberg inequality, we have

< 1=r(§-7) 2 —1 (=)
196l S 190l ) (19200 gy + 8@ Vol gagey)

N__N
7

=T+ 2 -1 7T
Vol S 190l (19200 ey + 5 Vel o)~ (43)

hence, taking advantage of (39),

1 N N
N gttt T

HVUHLW(BQ)gﬁé(Q) 7 Bp ||hHLq(Q)=

whence
N

1NN LT
B, |Vl Loy | agay- (44)

ﬂ”VUHLr(aQ)HVUHLT’(aQ) S b ()T B
Combining (43) and (39), we get

L +4-_X _N,N
5 e 190l oy S 0™ SO N e Bl oy (45)

Therefore, denoting ¢ LN _ N and plugging (41), (42), (44) and (45) in (40),

q r’

and taking advantage of (37), we conclude that
T 2y S 1By 20| £|

LT ()

5—L 1
+un, B3 (5(9)6HVUHLq/(Q) +B, 76(Q)7([Vul

L"((’)Q)) ‘
Combining inequality (36) and the following Gagliardo—Nirenberg inequality:

15 _1_38
vn € (0,1), 6(Q)H5||Vu||m/(9) SUE 25(9)2HV2U”U(Q) +n727 2 [ull 1
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(which stems from the fact that [L", WQJ']gJF% < W14 one can further get for
all e,mn € (0,1),

1 1

B,+e By " ) V24|

[N

B (Q)|1£]

L) + 1By (5(9) (77%_

L7
_ _1_s _1-1 7+
+8(@) " (0418, + et )||u||m)

Choose € = /ﬁ(an

stant x and insert the above estimate in inequality

2+ +5+§) and n = n(anz‘“) for a suitably small con-
(1

6). We end up with?

||(p8tu,uv2u, VH)HLP L) 577p82+6+5”f||LPT(Lr)
max 5+28+5, r'§+ 2427
+/’65( ) 2 2r (B _1)6 ( 1o O1+2 +7‘71+2§)

||UHL’;(LT)7 (46)

which is inequality (17) in the case 1 <r < ¢'. a

b) A priori estimates for (13) with time-dependent density

In this section, we aim at generalizing Proposition 3.8 to the case of a time-
dependent density. We have the following proposition:

Proposition 3.9. Let 1 < p,r < oo and f € LP(0,T;L"). Assume that p satisfies
the assumptions of Theorem 3.7 and that (u,II) solves (13) with null initial data.
Let §4, < and r* be defined as in the statement of Proposition 3.8 and denote

q

def 1 a=N def ‘p(T,l’)fp(T',l‘”
By(t) E 1+ 82 (5 IVl i) Ma(t) E g S v
7,7/ €l0,t], T#T/

622 142
—( )ﬂpﬁ

Colt) E " (B, (1) + 5 (B, (£)) FHICHHID (A1) 7.

There exists C = C(«, B,q,7m, N,0(Q)) such that for all t € [0,T] we have

; z 1
[I(pOsu, MVZU,VH)HU:(U) <C (np6§+<+5+ ONFll e ry + ch(t)ﬂuuf(y)) :
(47)

Proof. Let (u,II) solve (13) with null initial data.
1. Estimates on a small time interval. Proposition 3.8 provides us with a priori
estimates on a small interval even if p depends on t. Indeed, (u,II) satisfies

p(0)0ru — pAu+ VIL = f + (p(0) — p)Osu,
divu =0, JoIdz =0,
Ult=0 = 07 Ul = 07

3 Note that since ¢ > N, we have }—fg <t

r—

==
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so that Proposition 3.8 applies with density p(0). From it, we get
(PO, V20, VID)| 1 (1)

2435+4
< Onpoy B, (I oy + 1) = p(O) < 100t )

Cu o o
+ WUPEO)B;(O) HUHLf(Lr)

so that denoting
1
+ f min (T, (20ang+E+5+ (T)Mj (T)) B)
and using the Holder continuity of p with respect to ¢, we end up with

2r'
; : -
10w, nV*u, VID)|| 1y < 2C, <B§+’+6+ (t)||f||Lf(Lr)+—5((§)g B, (t)|u||Lf(Lr)>

whenever ¢ belongs to [0, 7]. Of course, we used above the fact that B,(t) > B, ).
2. Estimates on [0,T]. Estimates on the whole interval [0, T] may be proved
by introducing a partition of unity with respect to the ¢ variable so that one can
proceed as in the previous step.
Of course, it suffices to prove (47) for ¢t = T and we can assume that 7' > 7.
Let us introduce a partition of unity (¢ )gen of RT such that
e Supp iy C [0,7] and ¥y = 1 in a neighborhood of 0,
e For k > 1, Suppvy C [57, E7 + 7] and |04 1 < €.

Denoting ug def Yru, I def Il and fy def Ui f, we have
pOyur, — pAuy + VI = fi + updyipy,
divug =0, fQ Il dx =0,
up(57) =0, U0 = 0.

For t > k7/2, we have

IN

||Puat¢k ||LP(gT,t;L“") ﬁHuHLl’(gr,t;LT) ||8twk ||L°° ’
1
~ 2435+5 ]
Cp (B (@OM(D)) ull o
hence, according to the first step of the proof,

H (ﬁatuk?a IU/VQUIW ka) ||LP(§T,1§;L7‘) 5 an§+E+5+ (t) ||fHLP(§T,t;LT)

IN

s

! 1
r* -~ 13 o B
+5(Q)28p (t)”uk||LP(%T,t;L"‘)—I_pnPB§+§+6+(t) (77p83+ +o (T)MB(T)) ||u||LP(§T,t;Lr)>

whenever ¢ belongs to I}, %ef [gr, %7’ + 7).

Of course, uy and II; vanish outside I so that performing a summation on
k € {0,--- K} (with K such that K7 < T < (K + 1)7), we obtain inequality
(47). O
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c) Existence and uniqueness for (13) with null initial data

We here want to prove the following result, which is a particular case of Theo-
rem 3.7:

Proposition 3.10. Let f and p satisfy the assumptions of Theorem 8.7. Then
equation (13) with null initial data has a unique solution (u,II) such that

we C([0,T); D p’p) NLP(0,T; W2T nWy"), Tle LP(0,T; W)
and Opu € LP(0,T;L").

Besides, there exists C = C(a, q,7, N, () such that the following estimates hold
true:

p (1)
(pOyu, pV2u, VH)HLP(U <Cn, 5’2+<+5+(t)e s ”fHLp(LT

p ()
[lu(t )||D1,%,p < Cn38§+<+6+(t)e I £ oo iy

Ap

i p

=

where n,, C, and B, have been defined in the statement of Proposition 3.9, and
te0,T].

Proof. Let us first remark that estimate (47) enables us to get an a priori estimate
for ||(pOru, uV=u, VH)HLp () involving only p and f. Indeed, let us recall the
following inequality (Wthh holds true for smooth functions):

d
2 1@l < 10eull - (48)

Taking advantage of (48), (47) and of an appropriate smoothing of the function wu,
the following formal computations may be made rigorous for all € > 0:

d
(@) =p / Ju(r) 5 % Nl dr,
t
<(p—1)e / lu() [, dr -+ / 10|
0 0

< (o-verear(520)") [ it o

t
~ p
oar (L)’ [ry, ar

P
1 dT,

=

Choosing € = (p%l) % and applying Gronwall lemma yields for some con-
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stant C' = Cn . ¢,0(9)s

11 245444
HCo (D) \ P By (t) cueoty):
lu@ll,. < C<5(6>2> e Wy, 49
24+5+04 CuCp(t)t
K o8y (t) et
5(€)2 Hu”Lf(U') <C (W e po? HfHLp(LT (50)

Plugging inequality (50) in (47), we conclude that

~ p (D)t
170, V%, VI || g 1y < CppBy 04 (2) € S £ e zry-  (51)

_1
In order to prove estimates for u in L>(0,T; D;T »"y, we use the fact that (u,II)
satisfies

POu — pAu+ VII = f + (p — p)Osu,

divu = 0, JIldx =0,

ujp=0 =0, upn =0,
hence, according to Theorem 3.2,

11 .
p PO 13 < (g + 900l o))
Ap

Inserting (51) in the above inequality, we conclude that

_ CuCp(t)T
[l (t)||D1_%,p < Cn§B§+<+5+(t)e—rﬁs(m ||fHLf(LT), (52)

Ay

1
7

pe'p

S=

Now, it is easy to prove the existence of a solution for (13) with null initial data.
Indeed, in the case p = r and ¢ = +00, it has been proved by O. Ladyzhenskaya
and V. Solonnikov in [18]. By making use of a standard mollifying process for
smoothing out f and p, and of estimates (51), (52) and Remark 2.4, one can prove
that under our assumptions, there exists a solution with the required regularity
properties. The details are left to the reader.

Uniqueness obviously stems from estimates (51) and (52). O

3.3.2. General initial data

Let us now consider the initial value problem (13) for general initial data ug in
1_,

D,y 7.
We claim that it may be reduced to the case ug = 0 by splitting the unknown
solution (u,II) into the sum of a solution of the standard non-stationary Stokes
system (5) with ug as initial data and f as external force, and a solution of (13)
with null initial data.

More precisely, let (w, Q) and (v, P) be the solutions of

pow — pAw +VQ = f, pOv — pAv + VP = (p— p)ow,
divw = 0, JoQdx =0, and dive = 0, Jo Pdx =0,
W= = Uo, Wjpn =0 V=0 =0, g = 0.
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The existence of (w, Q) is insured by Theorem 3.2 while Proposition 3.10 provides

a solution for the system on the right. On the other hand (u, IT) <f (v+w, P+ Q)

is clearly a solution to (13) with initial data wuo.

As uniqueness stems from estimate (14), we are left with the proof of (14) and
(15).

e Estimates for w: According to Theorem 3.6, we have for ¢t € [0,T7:

< 1L 1L
100w, 190, Y@y + 5717 0O 130 S 1 pary 7707 Nl 1y
Ap Ap
(53)
e Estimates for v: According to Proposition 3.10, we have
3 ERS
1000, 150, VP g 7 17 )]y
Ap
Cucp(t)t

5 Cn383+5+6+ (t) e P2

P 3
1-= lpOcw]| Lo 1y,
PHLOO et
hence, plugging (53) in the above inequality, we get
1
1(pBev, uN20, VP) || oy + 57 17 Il -3

*571’
Ar
CuCp(t)t

S+6 - R
< OSBRI (1) e s (pwp luoll -y + IIsz;(m) (54)
Ay

e Estimates for u: Adding inequalities (53) and (54), and using Proposition 2.4
yields (14). In order to prove (15), we apply estimate (47) to (v, P). We get

_ : 1o
1(pBsv, 11V %0, VP) || o 1y SnpBL (1) (PPMP ||U0||Dﬁ,p + ||fHLf(u)>

GO
s(y2 1@y

+
Now, we have
lollpery < lullpe ey + lwll e r
and, according to Proposition 2.4,
[wll ey < COHQ? Vw0l p 1.
Hence, by virtue of (53),
(500, 192, VI | 1)
S 41 Co(t)p
SBE ) (U agan + 17 ol 1oy 0) + G Wlipan. (55)
Ar

Now, as the system satisfied by (u,II) may be rewritten

POru — pAu+ VIL = f + (p — p)Osu,
divu = 0, JoIdz =0,
Ujg=0 = Up, Ujpn = 0.
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Theorem 3.2 insures that

—Li -1 P -
Ol 30 S ool g+ 575077 (6lgany + 1= 2] 1000l ).
DAT Ar P L=
Using (55), we thus conclude that ||u(t)]| 1-1,, is bounded by the right-hand side
D,,
of (15). O

4. Uniqueness

Before tackling the problem of uniqueness, let us state two interpolation inequali-
ties.

Lemma 4.1. Let 1 < p,q,7,5 < 400 satisfy 0 < § — 52 <1 and 1 = %—l—%. The
following inequalities hold true:

1 1-0
IV Fllz gy < CTE2 £ (s » 1112 w2y
T Leo(

Ar

9
VSl ey < CT272 Hflll Dl,%p)HfHLg(WQ,s),

As

for some constant C depending only on Q, N, p, ¢ and r and (1 —0)/p=1/2 —
N/2r.

Proof. The proof is based on the use of embeddings and interpolation results which
may be found in [22].

_2_N _N
For proving the first inequality, we use that (Bio,é’o " ,B;O}JO )o.1 = By 1 (with
0 defined as in the statement of the lemma) and that B, ; < L so that
IVfl= S IV 17ﬂ||Vf|| 1___7~ (56)

oooo OCOQ

2 N

1-1, 2—2 2—2_ .
Remark that D, * P B, p? — Boo,& " (see Prop. 2.5). Hence, according to

(56) and because W1 — Bé;o%, we have

0 r
IIVfILwoo)SC(/ ISP I dt) ,

oooo ocoo

( / ||f||w27||f||p(f,f),, dt) ,

<C
T 0
< CT> ||fH1 Dl—— » Hf”LP (W2r):

Ap

The proof of the second inequality is based on the fact that

2 N

BY, = (Byy’ " Biq" Lo
q,1—( q,p s Bag " o1 —
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Lo o, piot TR
and that W+ (—>qu whereas DA — Bgp”

Then going along the lines of the proof of the first 1nequahty yields the desired
result. O

Proposition 4.2. Let p € (1,00), 7 € (N,400) and g € [r,+o00] with besides
g > N. Denote s def rq/(r+q) (s = r if ¢ = +o00). Let (p*,ut VHl) and

(p?,u?, VII?) be two solutions of (1) with the same data py € W19, uq € DA P

and f € LP(0,T; LT) Assume that (ut, 1Y) and (u?,112) belong to
(O([o T, DYy *7) AW (0, T; L%) 1 L7 (0, T W“)) % LP(0, T; Wh)

and that, in addition, ¥(t,x) € [0,T] x Q, 0 < p < pi(t,z) fori=1,2,

pl € L>=(0,T;L9), Vu'e LP(0,T;L>®), o' +u'-Vul € LP(0,T;L"),
p? € L°°(0,T; Wh9) n CP([0,T); L) for some 8 € (0,1) and u®> € L°>°(0,T;L").
Then (p*,ul, VITY) = (p?,u?, VII?) on [0,T] x €.
Proof. Let dp ef p? — pt, ou 2 — oyt , oIl = )|
satisfies the following system:

0¢0p +ul - Vop = —u - Vp?,

p20:0u + VOII — pAdu = fop — Sp Oput — dput-Vul — p*u?-Véu — p?6u-Vul,

divdu = 0, Jo Ol =0,

(5/)7 5“)\15:0 = (O7O)a 5U|ag =0.

— II*. Remark that (Jp, du, oI1)

(57)
Obviously, we have for all ¢ € [0, T7,

16p(8)]] Lo S/O V0% ()| o 16u(T) ] o dr- (58)

On the other hand, Theorem 3.7 yields for some ‘constant’ C'r depending on T,
N, q, 7, p, i, p and on the norm of p? in L>(0,T; W) N CP(0,T; L>) and all
te 0,17,

180l 2 ay.ey + 15T g .oy + 16

Lo
LE(DZ, )

< Cr(J0p(f = Ot — - V)| o
PP Foul p gy + 16700 Vulll g ie))- (59)
Thanks to Holder inequality, we get, up to a change of Cr,
10wl L2 w2,y + 10T Lo sy + (10wl

1
P
'Y
t A

< CTH(SPHL;”(Lq)”f — Opu' —u' - vulan(L")
+CT(HUQHLgc(U)||V5U||L;’(Lq) + ||V“1||Lf(Loo)||5“||L§°(Ls))- (60)
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If 1/2 — N/2r < 1/p, Lemma 4.1 yields
1_ N
50l gy S 055 (100l a6l po )

(D4,
If 1/2— N/2r > 1/p, we have D;:%’p — W4 so that the above inequality holds
with t». The limit case 1/2 — N/2r = 1/p may be handled by noticing that
we also have ||p2u2-V5u||Lp(L) < pllu? ooty IVOUll ooy with rt (resp.
_) shghtly greater (resp smaller) than r (resp q) and by using the embeddings
D, PP W and D, ? CEg

o [[u? ||5UI| L

L?O(DA‘S Ly (DZ, )
On the other hand, since N/s < 2, we have W%* < L> so that

. We eventually get ||p%u? Véul| p e

) S

10ull pp(rooy S N10ull Lo (rz.sy-
Hence, denoting

def
X0 0Pl e + 100 gy + 10T gy + Iy
t Ag

and coming back to (58, 60), we eventually gather

X(t) < Cr{lf 0’ —ut- V| gy + "G 2 b
Lo (LrnD%. )

HIVu | pr(poey + va’anf’(m)}X(t)' (61)

Now, choosing 7 so small as the term between brackets is less than 1/2 for t = ¢
enables us to conclude that X =0 on [0,7]. As the constant C7 does not depend
on 7, a standard induction argument yields uniqueness on the whole interval [0, T').

O

Remark 4.3. Going along the lines of the proof of Proposition 4.2, one can eas-
ily prove that if (p1,u1,111) and (p2,us,Ils) solve (1) with different initial data
(ps,up) and (p3,u?), and external forces fi and fo, and satisfy the assumptions
of Proposition 4.2 then the following estimate holds true on [0,7] (with obvious
notations):

16p() | Lo + 10wl Ly 2.y + 1ML Lo 1oy + 0u(O] 1,
t t D

< Cr (ool +lBu0ll s+ 161l 1)
As

]
@

Combining with Theorem 1.2, we conclude that for small enough T, the map

(po, uo, f) — (p,u,II) is Lipschitz continuous from bounded sets of W4 x Dp’ P x

LP(0,T; L")N to

o([0,T): L) x (Wl’p(O T; L5)MnLP (0, T; W2*)¥nC ([0, T): D ’S”’))xLP(o,T; W),
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5. Existence on a small time interval
This section is devoted to the proof of Theorem 1.2.

First step: construction of approximate solutions. We initialize the con-

. . . o f f .
struction of approximate solutions by prescribing p° - po and u° - ug. Given

(p™,u™), Propositions 3.1 and 3.7 enable us to define p"*! as the (global) solution
of the transport equation

atp"'H +um - vpn+1 =0, pﬁié = po (62)
and (u"t1 II"*1) as the (global) solution of

pn+1atun+1 _ #Aun+1 + VHnJrl — anrlf _ pn+1un . vun7 fQ HnJrl dr = 0’
divu™t! =0,
uﬁi(lj = uy, u‘%‘gl =0.
(63)
Arguing by induction yields (p",u™, II") € E*" for all positive T.

Second step: uniform bounds for some small fixed 7. We aim at finding a
positive time T independent of n for which (p™, u™, I1"),cn is uniformly bounded
in the space ER7".

Applying Proposition 3.1 to (62) yields

1" @)llsgrra < llpollypgelo 1V e 47, (64)

In addition, for all time ¢, we have
min p"(t,2) = p < minpo(¢) and  maxp™(t,x) = p = maxpo(x). (65
e z€Q € €N

Therefore, if one can prove that p"*+! belongs to C?(0, T; L°°) for some positive 3
then applying Theorem 3.7 to system (63) yields

||atun+1||Lf(L7') + HunHHLf(Ww) + ||Hn+1||Lf(Wln-) + Hu”“HLm 1-
t
< O(lhwoll 1o+ 1 lzpiery + ™ - V"l
Ar

n+1 Re! n41 %
XeCt(HHp loseqwiay) (1410 ”05@00) (66)

for some positive exponent v, depending only on N, p, ¢, r and 3, and a constant
C depending only on p, q, r, N, p, p, 2, p and (.
Remark that interpolating between L>(0,T; W) and W1°(0,T; L*) (with
N
s &f rq/(r + q)) shows that p"*! belongs to C#(0, T’; L) whenever 3 € (0, ;—j{,)
and that
||Pn+1||cf(Loo) S HP”HHL;”(WL«;) + ||8tpn+1||L;>°(Ls)' (67)
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Now, we have 9;p" 1 = —u™ - Vp"*1 so that 9;p" ! € L (RT; L), and for t > 0,

loc
||atpn+1HL§>°(Ls) < Hun”LgO(Lr)”VanrlHLtoO(Lq)-
Hence, inserting the above inequalities in (66), we gather

Hatun-i-l ”Lf(L”‘) + ||un+1 ||Lf(W2"“) + ||Hn+1 ||L€(W1,r) + ||U"+1 ||L°°(D17
t (Da,.

< C(IluOIIDl_%,p + 1Al e oy

Ap
nA41 n 5
+||un||L§°(Lr)||vun||Lf(L00))eCt(1+”p loge )T At lloge ery)” — (gg)
for some positive exponents v and § depending only on N, p, ¢ and 7.
Fix a (large) reference time Ty and define
def

Uu"(t) = ||lu™ 1 + [|u™]| ;» )y
R L T L e

def n def n def
Uo = luoll i-1 + 1fllzg (nrys P7(8) = 112" | e wrr.a) and Po(t) = flpollyyra-
A

To simplif;/, assume from now on that p/2 — Np/2r < 1 so that Lemma 4.1
may be applied to Vu™. We get*

1N 0 1-6
VU || pp(poey S E2720 HUnHLf(Ww)||“n||LN(D17%,p) (69)
t Ay
with 6 such that (1 —0)/p=1/2— N/2r.
Plugging inequality (69) in (64) and (68), we eventually get
UTH(1) < CCTITPTIO? U0 (G bR @ 0)?),  (70)
-
Pn+1(t) S POeCtP U (t) (71)

Inserting (71) in (70) yields
Un+1(t) < CeCt(lJrU"(t))‘s(1+Pg)”’370”
so that, assuming that ¢ is so small as to satisfy
141 N
~Ctr" 72727 <log2,
we get

Ut < Ce2CHHU™ (1) (14-Fo) (Uo +t%_%(U"(t))2> and P l(t) < 2P,

1
4 1If p/2 — Np/2r > 1, we would get t? instead of t372r below.
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Now, if we assume that U™ (t) < 4CUjy on [0, 7] with®
T w7 log 2 ;1,+%1—% 1 %—1% log 2
= min — —_—
"\ yC "\ 16CU, "2C(1 + Po) (1 +4CU)0 |’
easy computations show that U™ (t) < 4CUy on [0,7]. Coming back to (71),
we conclude that the sequence (p™,u", II") is uniformly bounded in EF*". More
precisely, we have for all ¢ € [0, 77:

(72)

P (t) < 2P

and  U™(t) < 4CUj.

(73)

Third step: Convergence of the sequence in small norm. In this part, we
aim at proving that (p™, u™,II"),ey is a Cauchy sequence in the space ER?® with
def
s =rq/(r+ q)
Let du™ &'

w — ) ST S 11 and dpn X prH o7 Define
n def n n n n
SU™(t) = [|(0pdu™, V2ou™, VI Nier ey + llou™]]
The triplet (0p™, du™, 6II™) satisfies

1, .
L&(Dy,”
5/)\7;:0 =0,

1
)
Oybp™ +u™ - Vp" = —u™~t - Vp",

divéu™ =0

PO 6u"™ — pAdu™ + VOII™ = 6p™(f — Oyu™t — u™ - Vu)
Jo oI dx = 0,
oufy_o =0,

pr(u™ - Vour—t 4 dunt . Vurt),
dujpg = 0.

(74)
Hence, according to Theorem 3.7 and by virtue of (73),
oU™ (1) < C (109" (f = D™t = - V) | g
n n—1 n—1 n—1
+ [l - Vou" | pp ey F 16T Ve HLf(Ls))a

< C(H(sanLfO(LQ)(HfHLf(LT)+||atun+1||Lf(LT)+||un||L§°(L7‘)”vunHLf(LOC))
™ e
and(%.

v‘SUTL71||L§“(Lq) + ||5“n71||L§c(Ls)

-1
V'™ HLf(Loo))
for some constant C' depending only on the regularity parameters and on F

Of course, in this step, one can assume with no loss of generality that p(
) < 1. Hence, taking advantage of (69) and (73), we eventually get

n n n— 1_ N n—
U™ (t) < C<H5P HL§°(Lq) +[[Vou 1HL{’(LG) + 272w 1”L§°(Ls)>
5 If £ ]gf > 1, replace

1_

2
1_ N
2 2r

(whenever it appears) with %.

(75)
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Remark that by virtue of the second inequality of Lemma 4.1, we have
IV U™ o o) < CEZ 25U (8).
Plugging this latter inequality in (75), we conclude that
oU™(t) < C (169" |y + 26U (1)) (76)

On the other hand, we obviously have

187 < / (6un=t- V) ()], dr,

IN

L n— n
¥ ||du 1||L§’(L<><>)||VP HL;”(LQ)’

A

e e
Ctv' ||6u 1HL{’(LOO)- (77)

Since N/s = N/r+N/q < 2, the space W?# is embedded in L>°. Hence inequality
(77) rewrites

R
1807 (B)0 < CEF U1 (1)
Inserting this latter inequality in (76), we get for ¢ € [0,T]
SU™ () < C(tﬁ +t%—%)5U"—1(t)
If we choose an 7 € (0,T] such that the condition
1 1 1
c(np' +nf—%) <3 (78)
is fulfilled, it is now clear that (p",u™, II"),cn is a Cauchy sequence in ERTs.
Note that the time of existence 7 (that we shall denote by T from now on)

depends (continuously) on the norms of the data, on the lower bound for the
density, on the domain and on the regularity parameters.

Fourth step: Checking that the limit is a solution. Let (p,u,Il) € EB%®
be the limit of the sequence (p™, u™, I1"),enN-
Passing to the limit in (73) and (65) shows that the density p is bounded by

1
below by p, and by above by p, and that p € L>(0,T; Wh4), u € L>(0,T; Dz_:p)ﬂ
LP(0,T;W?2T), dyu € LP(0,T; L") and IT € LP(0,T; W'P). Combining with the
properties of convergence stated in the previous part of the proof, we gather that
(p™, u™ II"),en converges to (p,u,Il) in E}?q/’l for all ¢ < q and " < r, which
suffices to pass to the limit in equations (63) and (62). The details are left to the
reader.

Last step: Uniqueness and continuity. Since p € L* (O,T; Wl’q) N
N
W1oo(0,T; L*) implies that p belongs to C#(0,T; L) whenever 3 € <0, L_—&),

uniqueness is a mere consequence of Proposition 4.2.
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Finally, as p satisfies a transport equation with data in W19 and u satisfies
poyu — pAu + VIIL € LP(0,T5 L"),
Proposition 3.1 and Theorem 3.7 insure that p € C([0,T]; W) (if ¢ # o) and
we C([0,T]; Dy ™). O

6. Global existence for small initial velocities
6.1. An estimate for ||u||,-

Lemma 6.1. Let p, ¢, r satisfy the usual conditions and let (p,u,II) € ERT" be
a solution to (1) on [0,T] x Q. Then the following inequality holds true for all
tel[0,7T):

=1l =Lir

N(Bu) (B)la < e L””(Hvﬁououm / e " I/ANE e d7>, (79)

where ﬁd:ef llpoll s and A1 stands for the first eigenvalue of the Dirichlet Laplace
operator in €.

1
Proof. Note that p is continuous in (¢,z), and that u € C’([O,T]; Df{r’p> N

LP(0,T;W?T) with r > N > 2 so that u € C([0,T]; H®) N L*(0,T; H'*¢) for
some positive €. This enables us to justify the following computations.

Taking the L? scalar product of the momentum equation in (1) with u and
performing integrations by parts when necessary, we gather

1d 9 9
335 VAUl + Il = [ of -ude
Q
Now, by virtue of Poincaré inequality, we have
2 2
[Vullzz = A fJullze
hence,

1d 2 ,u>\1 2
3 gz IVpullzz + r IVoullpe < IVpullpz Ve fll e -

It is now easy to get (79). O

6.2. A more explicit lower bound for the existence time

A lower bound for the existence time has already been obtained when proving
Theorem 1.2 (see (72) and (78)). It is rather inexplicit though. In this section, we
want to take advantage of (79) in order to get a more accurate lower bound.

Let us first clarify what we call a smooth solution:
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Definition 6.2. Let T* € (0, 400] and (p, u, IT) be a solution to (1) on [0,7%) x
with data (pg, ug, f). The triplet (p,u,II) is called a smooth solution of (1) on
[0, 7%) if it satisfies (1) on [0,7*) x Q in the weak sense and belongs to ER%"
whenever T' < T*. The time T* is called ‘maximal existence time’ if (p,u, IT)
cannot be continued beyond T* into a smooth solution of (1).

Let us first state a continuation criterion:

Lemma 6.3. Let pg, ug and f satisfy the assumptions of Theorem 1.2 and assume
that (1) has a smooth solution on a finite time interval [0, T*) with besides,

1

7P

o0 B 1,q . 00 * P
p € L=, T, WH1), t<T1£,1£:er(t’x)>0 and we€ L>(0,T%,D}; ).

Then (p,u,IT) may be continued beyond T* into a smooth solution of (1).

Proof. Obviously, the existence time given by (72) and (78) has a positive lower
bound 1 when (po, ug, f) remain in a bounded set of
1
Wi x D" x LP(0,T; L")V

with in addition inf, pg(z) > p for a fixed p > 0.

Hence system (1) with initial density p(T* — 1/2), initial velocity u(T* —n/2)
and external force f(- 4 T —n/2) has a unique smooth solution on [0,7]. This
provides us with a continuation of u beyond T*. |

Combining Lemmas 6.1 and 6.3 will enable us to get the following result:

Proposition 6.4. Let pg, ug and f satisfy the assumptions of Theorem 1.2 and
let (p,u,II) denote the corresponding smooth solution of (1). There exists ¢ =
c(p,q,r, 1, Q, p) such that the maximal existence time T* for (p,u, ) satisfies

c

2 Yr7d *
(L4 llpollyra)” Us(T*)

for some positive exponents v and 0 depending only on the regularity parameters,
and

*

oy def
Uo(T") = ||U0||D#,p 1A e iy

A

Proof. Fix a T < T*. We aim at proving that if T < ¢(1 + ||polly1.a) Uy °(T)
for a convenient choice of ¢, v and § then (p,u,II) may be bounded in EZ*" by
a function depending only on the data. Then Proposition 6.3 will entail Proposi-
tion 6.4. et

Let U(t) = ||u||Lf(W2,,.) + H8tu||Lf(L,.) + ||uHLm(D L, + HHHLf(Wlﬂ')' Accord-

—7P
p/
t Ap
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ing to Theorem 3.7 and (67), we have

U(t) S B2) (Uo(t) + - Tl yan ) + Col®)ulpany: (30)

In the definition of C,, we can take e.g. 8 = %(};%;3)

Arguing once again by interpolation, we have for all € > 0

_1 . def 2
lull . < ellullyzr + €70 Jlull . with 0= S NN
2

~
T

(81)

Hence, taking ¢ = ¢C, ' (t) with ¢ suitably small and plugging (81) in (80), we get

U(t) S B2 (Uo(t) + llu- Tullpsry) +CF (Ol p o) (52)

Note that Lemma 6.1 insures that
||“HL;?°(L2) < Uo(t)- (83)
For the sake of simplicity, assume from now on that £ — % < 1 so that Lemma

4.1 may be applied.® We then gather that

Stz

SHTRUA) and [Vl gy ey ST

On the other hand, Proposition 3.1 yields
o) lwra < lpollyps.gefo 1V llzoe dr (85)
so that according to (84) and to the definition of B,,

q
N

BRI =
B,(t) < CeCt 7 U@ (1+ IIpo||W1,q)
Arguing like in (67), we get
lolles ooy S NPl Lo qwray + 1960l oo 15y,
S HPHLgO(Wl,q) + ||VP||Lgo(Lq)||U||Lg°(Lr)’

hence taking advantage of (86), we get for some positive exponents 1 and 7,
depending only on N, p, ¢, r and (3,

ﬁ+l,ﬂT 1 1
C,(t) < et 7 7 U(”((1+||P0||V;/1.q)”1 + (1+||p0||W1,q)V2|p0|5V1‘q(1+U(t))/’>.
(87)
Plugging (83,86,87) in (82), we conclude that for some positive exponents d; and
d2, we have

1 N
27 2r

1y 01 1 1N
O R CI CR PRI (Uo(t)(1+tp(1+U(t))52) b Uz(t))

(83)

6 If this condition is not satisfied, replace everywhere % — 2—1\1 with % in the following compu-

tations.
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Assume that T has been chosen such that
01
(1) < 8C(1+ Ipollwra) Uo(T). (89)

Using the continuity of the function ¢ — U(t), a standard induction argument
shows that (89) is satisfied at time ¢ < T with a strict inequality whenever the
following three inequalities are satisfied:

62 1
(14 8C(1+ [lpollyr.a)™ Up(T)) " 7 <1,
80215?—%_%(1 + [ pollyyr1.q)® Uo(T) < log2,

—_

BC(1L+ [lpollyyr. )™ 27 U (T) < 5.
Hence Proposition 6.3 enables us to continue the solution beyond 7. This com-
pletes the proof of Proposition 6.4. O

6.3. The case of a small initial velocity

Proposition 6.4 insures that the existence time of a smooth solution for (1) goes

1
to infinity (for fixed initial density) when ug (resp. f) tends to 0 in DZT’p (resp.
LP(RT; LT)).

We here aim at stating that (1) has indeed a global smooth solution if ug and
f are suitably small. This will give Theorem 1.4.

Let (p,u,II) be the smooth solution given by Theorem 1.2. Before going into
the heart of the proof, let us stress the fact that it suffices to prove Theorem 1.4
when the viscosity coeflicient © = 1. Indeed, the following change of functions and
variables:

p(t,x) = p/(utvx)’ u(t,x) = HU(Ntax)v
11(t,2) = p2P(ut, ) and (t,2) = pg(pu, )

transform system (1) with viscosity p and data (pg, ug, f) into system (1) with
viscosity p and data (pg,ug,g) (this change of variable does not affect ).

Denote by T* the maximal time of existence for (p,u,II). Define the functions
U and Uy as in the previous section and further denote

t
def T def
Uoz(t) = [[Vpouol| - +/ e [(Vpf)(T)ll 2 dr and Upa(t) = Uoz,0(t)-
0
First, applying Lemma 6.1 yields for ¢ < T,

IVPullp 2y S Uo2(t) and  [|(Vpu)(t)ll 2 < e Uo2(t) (90)

A~

with x & min(y, \1/p)
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Hence, starting from inequality (80), using inequalities (81,90), and the fact
that
[lw- VUHLf(LT) < ||uHLf°(LT)||Vu||Lf(L°°)7
Sl Nullpe ey,
T A A
we end up with
2
2+ N/2—-N/r’
(91)
Once again, the bounds for B, and C, will follow from inequality (85). In contrast

with the previous section however, we are going to take advantage of Lemma 6.1

1,1_ N
to avoid the appearance of the factor TAERED

Indeed, denoting ¢ = (1+%)/(2+% — &) and using once more that (L%, W?7),,
— W1, we gather:
t t —KR(1l— T
Jo IVu(m)ll e dr fole A= Ug 52, (D)) e d,
S Uos, (U#(0).

Now, bounding B, and C, may be done by mimicking the proof of Proposition 6.4
and we eventually conclude that

U(t) < O+ lpollyna) " e7025O O (Uo(0)(1+ V@)™ + U%(1))  (92)

for some positive exponents d; and do depending only on p, ¢, r and N.
Fix a positive T' and assume that

vt €[0,7), U(t) < 8C(1 + [|pollyyr.4)" Uo(T) (93)

If the data are so small as to satisfy

Ut) < C(B;f(t) (Uo(t) +U? (t)) vcr (t)Uw(t)) with %

o]
CULS,(T) (8CQ+lpollyr.0)" UolT))” < log? (94)
then inequality (92) implies
U(t) < 200+ [ pollyr.a)® (To(0) 1+ U(0) + U*(1)).
Now, one can be easily convinced that if in addition
1 52
16C3(1+ ol Uo(T) < 5 and (148001 + lpollyn ) Uo(T)) <2,

then (93) is satisfied with the constant 6C' instead of 8C. A standard bootstrap
argument enables to conclude to Theorem 1.4. O

7. Global existence in dimension N = 2

In dimension N = 2, it is well-known that for all T > 0, the L>(0,7;H') N
L?(0,T; H?) norm of the velocity u may be bounded by the data if ug belongs to
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H' and f € L} (R*; L?). This fact has been noticed by different authors (see [3],
[9] [18] and [20]) and is quite straightforward (at least formally) if the density is
bounded away from 0.

The following inequality may be easily stated in the case of a bounded domain

Q (see the proof in [6] in the case Q = R? or T?):

Proposition 7.1. Let v be divergence-free and satisfy v-n = 0 on Q) and let
(p,u,II) solve

Oip+v-Vp=0,

p(Oru+ v - Vu) — pAu+ VII = pf,

divu =0,

for some divergence-free time-dependent vector field v. There exists a universal
constant C' such that the following a priori estimate holds true:

t 2 9 9 112
Tl + [ <||\/53WIIL2 L A u||L2>dT
0

1 tllpoll e llpoll o0

Clipolioo ft 4 t 2
<o w ollvevllLs d7<||wo||§2 +c/ %m).
0

Gagliardo—Nirenberg inequality enables us to bound H NG From it, we get

s

3
Cllpollze

ool [*) 1 . .
R | Il dr < =R (Ve ) (VA0 s )

Now, if (p,u) solves (1), the basic energy inequality (2) is satisfied so that the
above inequalities eventually yield

t 2 9 5 |12
Va2, + / (Hﬁaunm L IvmE. v u||L2>dT
0

I
7! M”POHLOO ||p0||L°°
u( wol|? 4+ 2 dT) ! ;
<l i) (o, o [ 0P 0). o
0

Let us now turn to the proof of Theorem 1.5. Theorem 1.2 provides us with a
local smooth solution (p,u,II). Let T* denote its maximal existence time.

7.1. The case of smooth data

We first assume that (p,u,II) belongs to Npop« ER?" for some p > 2. Hence in
particular ug € H' and f € L? (R"; L?) so that Proposition 7.1 applies.

Existence of a global H! solution. Taking advantage of the formal inequality
given by Proposition 7.1, one can prove that whenever py € L is bounded away
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from vacuum, ug € H' and f € L} (R*;L?), system (1) has a global solution
(7.7 T0) in

N
L2(RE5 L) x (LS (RT3 HY) A W20, T 1) N L2, (R H))  x L3, (R HY)
which besides satisfies the energy inequality (2) and the inequality given in Propo-

sition 7.1 (see e.g. [3]). Note that the question of uniqueness in the above class
has remained unsolved. On the other hand, as the density p satisfies

Bp+a-Vj=0,
ﬁ\t:O =po € Wl’qa

with w € L} (RT; H?), Theorem 1 in [8] insures that p € C(RT; W7 ) for all
g <gq.

Weak-strong uniqueness. Therefore, we are now given two solutions for (1)
with the same data. The smooth one, (p, u,II) belongs to F%:*" whenever T' < T*
whereas the second one (p, u,II) is global and satisfies for all T' > 0,
(7,0, 11) € Ny o B2 2,
Besides, both p and p are bounded away from 0.
With no loss of generality, one can assume that 2 > rq/(r + q) (indeed, if it

is not the case, one can always take smaller ¢ > r > 2). Hence one can find a

¢~ € (2,q) such that both solutions belong to Ex? *  with s~ def rq~/(r+q7).

Since in addition d:p € L2.(0,7%; L* ), the same interpolation argument as
in (67) shows that p € C#(0,T*; L>) for some 3 > 0. Now, as obviously Vu €
LP(0,T; L), Opu+u-Vu € LP(0,T; L"), and u € L*>°(0,T; L") for all 0 < T < T*,
Proposition 4.2 insures that (p, u, ﬁ) = (p,u,1II) on 0,7 x Q.

Showing that (p, u,II) is global. Assume that the maximal existence time T*
for (p,u,II) is finite. According to the previous step of the proof, p = p on [0,T*)
so that in particular

p € Cy([0,T); Whe )N CZ)B([O,T*);LOO) forall ¢~ <¢ andsome 3>0.
(96)
Now, if ¢ > r, Theorem 3.7 may be applied. From it, we gather that u €

1
L>(0,T%; Df{r’p) N LP(0,T*; W>7). This entails that Vu € L*(0,T*; L°). Hence
Proposition 3.1 shows that no loss of integrability for p occurs: p € L>(0, T*; Wh9).
Then Proposition 6.3 shows that 7" cannot be finite.
In the limit case ¢ = r, repeating the above argument for some r— € (N,r),
-7 P

1
we get w € L*>(0,7*; D5 )N LP(0,T*; W>" ). We thus get Vu € L' (0,T*; L>),
whence p € L®(0,7*;W14). One can now apply Proposition 3.7 with r instead
of r~ and conclude as before.
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7.2. The case of rough data

We now assume that py € W7 has a positive lower bound, that vy € D Zr’p and
that f € LP(0,T; L") N L} (0,T; L?).

Let (p, u,II) be the maximal smooth solution given by Theorem 1.2 and denote
by T the existence time. In order to show that T* = +o00, we are going to proceed
like in [6].

Asu e L} (0,7*; W), one can find some ¢, € (0,T*) such that u(ty) € W2".
Hence u(tg) also belongs to H'.

According to the previous solution, one can find a unique smooth global solution
(p,w,II) for (1) with data p(tg), u(te) and f(- + to).

On the other hand, the weak-strong uniqueness result proved above does not
use the fact that p > 2. Hence (p, u, II) is a global smooth continuation of (p, u, IT).

O
Appendix
A. Poincaré—Wirtinger type inequalities
Let us first state the Poincaré—Wirtinger inequality in a bounded domain €2, star-
shaped with respect to a convex set C' C ). We aim at giving an estimate of the

constant in terms of  and C.

Lemma A.1. For all p € [1,400], the following inequality holds true:

- SN §(C)F(Q)N\
I = Tellia < (2GS ) 0@ 19 ey (01

where f denotes the average of f over the convex set C' and SN™1, the unit sphere
in RN,

Proof. Tt is inspired by [4], page 104.
Fix a x € Q. We have

_ 1 1 _ ~ _
f@) =T = 1 /C/O V(1= )7 +ta) - (z — 7) dt dF, (98)

which yields (97) in the case p = +o0.
For proving the inequality in the case p = 1, make the change of variables
y=2+t(z—2) and p= (1 —t)"|z —y| in (98). We get

flx)—fc = /V, ‘ﬁ : z| |xYJ;(|2jV)1 </|+OO N lw (w+p(ﬁ>> dp)dy, (99)

z—y|

where V,, denotes the convex hull of {z} UC, and w & 1¢/1C).
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Note that for fixed y € V,, the integration is actually restricted to the inter-
section of the half-line [x,y) and C, which is a segment of length less than 6(C).
Besides, as V, C Q, the integration may be restricted to p < §(Q).

Therefore
+oo N—-1
N-1 y—x 5(C)a(€2)
P wlrz+p ) dp < ———. 100
[, Q=) C] (100)

Plugging (100) in (99) yields

= . 0O () V()
flx)—fo| L ——— / ———dy |. 101
| ( ) C| |O| v, |ZC—y|N_1 ( )
Integrating over (2 and using a convolution inequality yields the desired result in
the case p = 1. Interpolation then entails the general case p € [1, +00]. g

Remark A.2. 1. The first term of the left-hand side of (97) is a measurement
of the distortion of € with respect to C. If C is a ball, it reduces to

(3(2)/6(C) 7.

2. If Q itself is convex, one can improve the inequality:
1F = Fall oy < CNO@ IV Fl oo -

with Cy depending only on the dimension N.

Let us mention in passing the following variation on Poincaré-Wirtinger in-
equality.

Lemma A.3. Let Q and C satisfy the above assumptions and let 1 < p < N. The
following inequality holds true:

- S(C)s(Q)N
I = TFel oy g < O (NG ) ¥ sy (102

N—p (Q

Proof. Starting from inequality (101), the desired inequality easily stems from
Hardy—Littlewood—Sobolev inequality. ]

B. Maximal regularity for abstract evolution equations

Let X be a Banach space and A, a non-bounded linear operator in X with domain
D(A). We here want to review a few results on the following abstract evolution
equation:

d S
{ St Au=f € L*(0,T; X), o)
Ujt=0 = Up e X.
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Following Y. Giga and H. Sohr in [15], we make the following assumptions on X
and A:

e (H1) X is a (-convex Banach space,

e (H2) A is a closed nonnegative linear operator in X belonging to E% (X) for
some K > 1 and 6 > 0, namely

— Both the range and the domain of A are dense in X,
— The operator ¢ + A is invertible for ¢ > 0, and sup, [[t(t + A) 7|y < oo,
- Yy eR, ||Ain£(X) < Keflvl,

Remark B.1. Under assumption (Hz) with 6 € [0, 7/2), the operator —A gener-

ates a bounded analytic semi-group (e*m) .
t>0

Definition B.2. For a € (0,1) and s € (1,00), set

+oo H

def - 44y dE\

fulloge ™ ([ I ae g )
0

We then define the homogeneous fractional domains D%® as the completion of
D(A) under Hu||DZ,s.

Remark B.3. 1. Let D(A) be the completion of D(A) in X under || Aul| . One
can show that D}® agrees with (X, D(A))q,s-

2. One can also define non-homogeneous fractional domains D% as the com-
pletion of D(A) under the following norm:

+o0 1

def _ A s dE\ ¢

folloge =+ ([ leae i )
0

And of course, DY® agrees with (X, D(A))q,s.

The main result of this section is the following;:

Theorem B.4. Let X and A satisfy assumptions (H1) and (Hz) for some 6 €
11y .
[0,Z). Let s € (1,00), f € L*(R"; X) and ug € Djl4 2. The abstract evolution
. I P S

problem (L) has a unique solution u in L¥(R*; D(A))NCy(RT; Dll4 ") with dyu €

L*(R*; X). Moreover, there exists a constant C = C(s,0, K, X) such that the
following inequality holds true for all T > 0:

du
|Gan)| e,
L5(X) A

el (T P ]

1—
A
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Proof. As — A generates a bounded analytic semi-group (e*tA) , the solution u
t>0

to (L) writes u = v + w with

t
v(t) d:Cf/ e~ AL dr and  w(t) o o=t 4y,
0

First step: Maximal regularity for the Duhamel term v. Under assump-
tions (H;) and (Hsz), the operator A has the so-called “maximal regularity” prop-
erty (see e.g. [15]), namely

d
EU+AU:f7 v\t:0:07

|C- )

Second step: Additional estimates for wv. Straightforward computations
yield

implies

S 17

Ly (X)

Lyp(X)

+oo s
o yre = ([ Iae o ar)
0

B +o0 T s %
= </ / Ae=FT=DA f(1) dr dt) ,
0 0 X
“+o00 T , s %
= </ / Ae~ 4>Af(T)dT dt')
T 0 X . )
dt’) .
X

400 t’
( / / Ae= A F (1o 1y (7) dT
0 0

Hence, taking advantage of the maximal regularity of the operator A,

[0yt S 101y = W00 (103)

IN

Third step: Estimates for w. Because w(T) = e~ T4ug and (e*tA> is a
>0

bounded semi-group, we have

+oo s 1
||w(T)||D17§,S (/O e T4 Ae™ g df) )

A

s

“+oo
o[ 1 i) = Cluol .
0 e

On the other hand,

T 3
Ly(x) = (/O [ Ae™ M ug| [ dt)

IN

+oo N s 1
< ( [ e uonxdt) ol v
0 D,

[ Awl
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Last step: Time continuity for v and w. Fix a positive T. Let (f")nen be a
sequence of functions in C([0, T]; X)NL*(0,T; X ) which tends to f in L*(0,T; X).
Denote v"(t) = fg e~(=mAfn(r)dr. According to the previous estimates, v"
tends to v in L>°(0, T’ Dz_%’s). On the other hand, f™ belongs to e.g. L?*(0,T; X),
hence by maximal regularity, 9;v™ is in L2%(0, T; X ), and v™ € L*(0,T; Dz_i’%).
Interpolation thus yields v™ € C’([O,T];D}[%’S). As (v")pen converges to v in
L>(0,T; D;%’S), we conclude that v € C([0,T1; Di;é’s).

Since D(A) is dense in Dj{g’s, one can find a sequence (uf),eny € D(A)Y
—tA

yS

tending to ug in D}[% . Denoting w™(t) = e
insures that w" tends to w in L= (R*; D}[%’S).

Using the fact that ujy belongs to D(A) we gather that w™ € L>(R™; Di‘_ﬁ"g/)
and that d,w™ € L¥(R*;X) for all & > s. Hence by interpolation, w™ &

C(Rt; Dz_%’s) which completes the proof. O

ug, the estimate of step three

C. An elliptic equation with Neumann boundary conditions

In this section, we state an estimate for the following elliptic problem:

{ div(7Vu) = h,

where h satisfies the compatibility condition fﬂ h(z)dz = 0.

Proposition C.1. Let r € (N,+o0] and ¢ € (1,7]NR. Let Q be a C? bounded

domain of RN. Assume that h € LY(Q) and that 7 € W17 (Q) satisfies 7 f

inf,eq 7(x) > 0. Then (104) has a solution u € W24(Q) such that
_2r
[Vl 0 < Cxrago 1Pl L <1+ 1% v10g7||;ﬂ),

. El 1 =N
IVl < Oxrgoien |2 Il <1+ Q¥ IIVlongluN)'

Proof. Arguing by dilation, it suffices to prove the inequality in the case |Q] = 1.
The existence of a solution for (104) is stated in e.g. [2]. Of course, uniqueness
in W24 holds true up to a constant.
Remark that
Au=71"th—Vu-Vliogr,

hence, according to e.g. [17] page 105,
IV2ull o S 77 Al + V- Viog 7]l
S ||7'_1hHLq + ||Vu||Ls HVIogTHU )

~
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with 1/r +1/s=1/q.
According to Gagliardo—Nirenberg inequality, we have

1 N1 1
3—F(5-% st3(g—3)

Therefore, thanks to Young inequality
_2r
19%0) 0 < (Il o + 04 I b0 7157l ).
We are left with bounding ||u||;,. Obviously, proving that

Fllullpe < 1AMl Lo (105)

yields the desired inequality for HVZuH .- Then, arguing by interpolation will give
the inequality for [|Vul|,,.

Inequality (105) will be achieved by prescribing appropriate mean for  (in that,
we follow [18]). Of course, changing the mean of u amounts to adding constants
so that Vu and V2u are unchanged.

Case g = 2. Integration by parts yields

7/7'|Vu|2dx:/hudx. (106)
Q Q

Choose u with null mean value. By virtue of Poincaré-Wirtinger inequality, we
conclude that

- 2 - 2
Fllullze S 71Vl < Pl ge ull 22 -

Case 2 < g < 2N/(N —2). We still prescribe null mean value for u. Gagliardo—
Nirenberg inequality thus reduces to

yom o -FHE
lullpe SAVUllz * llull "

VEIVul g2 < \/lIBlle ull e,

s\ FE e
fulln < (P02 )7

Holder inequality enables us to replace L? norms with L? norms in the right-hand
side, which completes the proof.

Now, by virtue of (106),

hence

NP
8=

Case 2N/(N — 2) < g < 4o00. Let £ =¢q(N —2)/(2N). As the function

K — / lu+ k| Hu + k) dz
Q
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is continuous and tends to +0co when k goes to oo, one can find a solution u to

(104) such that v o |u|*~1u has null mean on €.
On the other hand, integrating by parts yields

2
/QT|VU|2dx<2€£—_1)/ﬂh|u|2£18gnudfc,

hence, in view of Sobolev embeddings and Hoélder inequality,

. 20 . qi2 . 2 20-1 20—1
Fllullpe =7l gy, S TIVOIL: S llullze ™ 1AM, s < lullza ™ 120 La -

Case 2N/(N + 2) < q < 2. Let us choose a solution u with null mean value.
We have
full e = s [ ugda. (107)
lall, <1 Jo
Jo g dz=0

Let v be a solution to
div(rVv) =g, /Qv dr =0 and Onvjan = 0.
As 2 < ¢ <2N/(N —2), we already know that
Fllollpe S llgllper -

As of course / ugdx < ||h||;q [|v]| o , one obtains the desired inequality.
Q

Case 1 < g < 2N/(N + 2). Once again, the desired inequality stems from a
duality argument. The solution u is chosen such that [, udz = 0 so that (107)
still holds. Since now ¢’ > 2N/(N — 2) the function v such that div(rVv) = g has
to be normalized in the following way:

/Q|v|4*1vdx:o with ¢ =¢/(N —2)/2N. O
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