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Abstract. We prove the global existence of weak solutions of the Navier–Stokes equations of

compressible flow in a half-space with the boundary condition proposed by Navier: the velocity
on the boundary is proportional to the tangential component of the stress. This boundary

condition allows for the determination of the scalar function in the Helmholtz decomposition of
the acceleration density, which in turn is crucial in obtaining pointwise bounds for the density.
Initial data and solutions are small in energy-norm with nonnegative densities having arbitrarily

large sup-norm. These results generalize previous results for solutions in the whole space and
are the first for solutions in this intermediate regularity class in a region with a boundary.
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1. Introduction

We prove the global existence of weak solutions of the Navier–Stokes equations of
compressible fluid flow

{
ρt + div(ρu) = 0

(ρuj)t + div(ρuju) + P (ρ)xj
= µ∆uj + λdivuxj

+ ρf j
(1.1)

for x in the half-space Ω = {x ∈ R
3 : x3 > 0} with boundary conditions

(u1(x), u2(x), u3(x)) = K(x)(u1
x3

(x), u2
x3

(x), 0), x ∈ ∂Ω, (1.2)

and initial values
(ρ, u)|t=0 = (ρ0, u0). (1.3)

Here ρ and u = (u1, u2, u3) are the unknown functions of x ∈ Ω and t ≥ 0, P =
P (ρ) is the pressure, f is a given external force, µ and λ are viscosity constants, and
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K is a smooth, positive function. The solutions we obtain are in an “intermediate”
regularity class in which densities are bounded and measureable, initial velocities
are in L2, energies are small, but oscillations are arbitrarily large. The results
of the present paper are the first establishing the existence of solutions of the
Navier–Stokes equations in this intermediate class in a region with a boundary,
and generalize and improve upon previous results for solutions in the whole space.

The boundary condition (1.2) was proposed by Navier in [12] and expresses the
condition that the velocity on ∂Ω is proportional to the tangential component of
the stress. Observe that, for the half-space case considered here, (1.2) is equivalent
to

u(x) = −K(x)ωN(x), (1.4)

where ω is the vorticity matrix ωj,k = uj
xk

− uk
xj

and N is the unit outer normal
on ∂Ω. We shall give a complete derivation of the Navier boundary condition for
general regions Ω at the end of this introduction.

Specifically, we fix a positive constant reference density ρ̃ and assume that
(ρ0 − ρ̃, u0) is small in L2 and bounded in Lq for some q > 6, and that ρ0 is
nonnegative and bounded, with no restrictions on its sup-norm. Our existence
result accommodates a wide class of pressures P , including pressures that are
not monotone in ρ. The solutions that we obtain may exhibit discontinuities
in density and velocity gradient across hypersurfaces in Ω and are consequently
much less regular and much more general than those of the small-smooth theories
of Matsumura–Nishida [11] and Danchin [5]. On the other hand, our solutions
are somewhat more regular than those of the large-weak theories of Lions [10]
or Feireisl [6]–[7] in which size restrictions are eliminated altogether, but certain
restrictions are imposed on P . The present work generalizes and improves upon
earlier results of Hoff [8]–[9] in several significant ways: these are the first results for
intermediate-class solutions with these, or any boundary conditions, the restriction
on the L∞ norm of ρ0 − ρ̃ has been elimininated, nonmonotone pressures are
allowed, and various improvements in the analysis allow for weaker restrictions on
q, µ, and λ. We also note that, for the solutions considered here, if ρ is bounded
below away from zero initially, then it remains so for all time. Thus vacuum states
cannot occur if none are present initially. We shall describe the most interesting
features of the analysis below, especially the role of the boundary condition (1.2),
following the statement of our main theorem.

We now give a precise formulation of our results. First, we say that (ρ, u) is a
weak solution of (1.1)–(1.3) if ρ and u are suitably integrable and if

∫

Ω
ρ(x, ·)ϕ(x, ·)dx

∣∣∣∣
t2

t1

=

∫ t2

t1

∫

Ω
(ρϕt + ρu · ∇ϕ)dxdt (1.5)

for all times t2 ≥ t1 ≥ 0 and all ϕ ∈ C1(Ω× [t1, t2]) with supp ϕ(·, t) contained in
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a fixed compact set for t ∈ [t1, t2], and

∫

Ω
(ρu)(x, ·) · ϕ(x, ·)dx

∣∣∣∣
t1

t1

−

∫ t2

t1

∫

Ω
[ρu · ϕt + ρ(∇ϕu) · u + P (ρ)divϕ] dxdt

= −µ

∫ t2

t1

∫

∂Ω
K−1u · ϕdSxdt

−

∫ t2

t1

∫

Ω

[
µuj

xk
ϕj

xk
+ λ(divu)(divϕ)

]
dxdt

+

∫ t2

t1

∫

Ω
ρf · ϕdxdt

(1.6)

for all times t2 ≥ t1 ≥ 0 and all ϕ = (ϕ1, ϕ2, ϕ3), where each ϕj is just as in (1.5)
and ϕ ·N = 0 on ∂Ω. (Summation over repeated indices is understood throughout
the paper.)

Concerning the pressure P , we fix ρ̃ and ρ satisfying 0 < ρ̃ < ρ and assume
that 




P ∈ C2([0, ρ ])

P (0) = 0

P ′(ρ̃) > 0

(ρ − ρ̃)[P (ρ) − P (ρ̃)] > 0, ρ 6= ρ̃, ρ ∈ [0, ρ ].

(1.7)

It follows that, if G is the potential energy density, defined by

G(ρ) = ρ

∫ ρ

ρ̃

P (s) − P (ρ̃)

s2
ds, (1.8)

then for any g ∈ C2([0, ρ]) for which g(ρ̃) = g′(ρ̃) = 0, there is a constant C such
that |g(ρ)| ≤ CG(ρ), ρ ∈ [0, ρ].

The viscosity constants λ and µ are assumed to satisfy

µ > 0, 0 < λ < 5µ/4. (1.9)

It follows that there is a q > 6, which will be fixed throughout, such that

µ

λ
>

(q − 2)2

4(q − 1)
. (1.10)

We assume that {
K ∈ (W 2,∞ ∩ W 1,3)(R2),

K(x) ≥ K > 0
(1.11)

for some positive constant K, and we measure the sizes of the initial data and the
external force by

C0 =

∫

Ω

[
1
2ρ0|u0|

2 + G(ρ0)
]
dx, (1.12)
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Cf = sup
t≥0

|f(·, t)|L2 +

∫ ∞

0

(
|f(·, t)|L2 + σ7|∇f(·, t)|2L4

)
dt

+

∫ ∞

0

∫

Ω

(
|f |2 + σ5|ft|

2
)

dxdt,

(1.13)

where σ(t) = min{1, t}, and

Mq =

∫

Ω
ρ0|u0|

q + sup
t≥0

|f(·, t)|Lq +

∫ ∞

0

∫

Ω
|f |qdxdt, (1.14)

where q is as above in (1.10).
We recall the definition of the vorticity matrix ωj,k = uj

xk
−uk

xj
, and for a given

solution (ρ, u) we define the function

F = (λ + µ)div u − P (ρ) + P (ρ̃). (1.15)

The important roles of ω and F will discussed below following the statement of

Theorem 1.1. We also define the convective derivative
d

dt
by

dw

dt
= ẇ = wt+∇w ·u

for functions w(x, t).
Finally, for functions v : A ⊆ Ω → R

m and for α ∈ (0, 1] we define the Hölder
norm

〈v〉αA = sup
x
1

,x
2
∈A

x
1
6=x

2

|v(x2) − v(x1)|

|x2 − x1|α
;

and for v : A × [t1, t2] → R
m and α, β ∈ (0, 1],

〈v〉α,β

A×[t1,t2]
= sup

|v(x2, t2) − v(x1, t1)|

|x2 − x1|α + |t2 − t1|β
,

the sup being taken over distinct pairs (x1, t1), (x2, t2) ∈ A × [t1, t2].
The following is then the main result of this paper:

Theorem 1.1. Let Ω be either R
3 or the upper half-space in R

3, and let the
hypotheses and notations in (1.7)–(1.10), and in the half-space case (1.11), be in
force. Then given a positive number M (not necessarily small) and given ρ1 ∈
(ρ̃, ρ), there are positive numbers ε and C depending on ρ̃, ρ1, ρ, P, λ, µ, q,M , and
in the half-space case K, and there is a universal positive constant θ, such that,
given initial data (ρ0, u0) and external force f satisfying





0 ≤ infΩ ρ0 ≤ supΩ ρ0 ≤ ρ1,

C0 + Cf ≤ ε,

Mq ≤ M,

(1.16)
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where C0, Cf , and Mq are as above in (1.12)–(1.14), the initial–boundary problem
(1.1)–(1.3) has a global weak solution (ρ, u) in the sense of (1.5)–(1.6) satisfying:

C−1 inf ρ0 ≤ ρ ≤ ρ a.e., (1.17)





ρ − ρ̃ ∈ C([0,∞);H−1(Ω)),

ρu ∈ C([0,∞); H̃1(Ω)∗),

∇u ∈ L2(Ω × [0,∞)),

(1.18)

with ρ = ρ0 and ρu = ρ0u0 at t = 0. Here H̃1(Ω)∗ is the dual of the space
H̃1(Ω) = {ϕ ∈ H1(Ω)3 : ϕ · N = 0 on ∂Ω}. In addition,

〈u〉
1/2,1/4

Ω×[τ,∞)
, 〈F, ω〉

1/2,1/8

Ω×[τ,∞)
≤ C(τ)(C0 + Cf )θ (1.19)

for all τ > 0, where C(τ) depends additionally on τ ,

u(x, t) = −K(x)ωN(x) pointwise for x ∈ ∂Ω, t > 0, (1.20)

and

sup
t>0

∫

Ω

[
1
2ρ(x, t)|u(x, t)|2 + |ρ(x, t) − ρ̃|2 + σ(t)|∇u(x, t)|2

]
dx

+

∫ ∞

0

∫

Ω

[
|∇u|2 + σ

3∑

j=1

(
(ρuj)t + div(ρuju)

)2
+ σ3|∇u̇|2

]
dxdt

≤ C(C0 + Cf )θ, (1.21)

where σ = min{1, t}. Finally, in the case that inf ρ0 > 0, the term

∫ ∞

0

∫

Ω
σ|u̇|2dxdt

may be included on the left side of (1.21).

The proof of Theorem 1.1 consists in the derivation of a priori bounds specific
to this system for smooth solutions corresponding to mollified initial data, and the
application of these bounds in extracting limiting weak solutions as the mollifying
parameter goes to zero. Specifically, in Section 2 we fix a smooth, local-in-time
solution for which 0 < ρ < ρ̄, and we obtain bounds for the functionals

A1(T ) = sup
0≤t≤T

σ(t)

∫

Ω
|∇u(x, t)|2dx +

∫ T

0

∫

Ω
σρ|u̇|2dxdt

and

A2(T ) = sup
0≤t≤T

σ(t)3
∫

ρ(x, t)|u̇(x, t)|2dx +

∫ T

0

∫

Ω
σ3|∇u̇|2dxdt
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of the form A1 + A2 ≤ C(C0 + Cf )θ. Then in Section 3 we prove the con-
verse, that ρ remains in a compact subset of [0, ρ̄) for as long as A1 + A2 ≤
C(C0 + Cf )θ. The smallness hypothesis then enables us to close these estimates,
which are then applied in Section 4 to show that the solution (ρ, u) of Theorem 1.1
can be obtained in the limit as the mollifying parameter goes to zero. Notice that
these a priori bounds give no more than L∞ and L2 control of the approximate
densities, insufficient to conclude more than weak convergence. On the other hand,
an argument of Feireisl [7] based on the renormalizability of the mass equation in
(1.1) can be applied to show that the approximate densities converge strongly, and
therefore that the limit of the approximate solutions is indeed the desired weak
solution.

We now give a somewhat more detailed description of these a priori bounds
and the important role played by the boundary condition (1.2). We begin with
the derivation of pointwise bounds for ρ under the assumption that bounds for A1

and A2 have already been obtained. With some benefit of hindsight we fix a curve
x(t) satisfying ẋ(t) = u(x(t), t) and substitute the definition (1.15) of the function

F into the mass equation
d

dt
ρ(x(t), t) = −ρdiv u to obtain

(λ + µ)
d

dt
log ρ(x(t), t)) + [P (ρ(x(t), t) − P (ρ̃)] = −F. (1.22)

The brackets on the left here is positive when ρ is large and negative when ρ is
close to zero, and so is dissipative at critical values. Pointwise bounds for ρ will
therefore follow from pointwise bounds for F , and these must somehow be derived
from estimates for A1 and A2.

Before proceeding, we remark that a careful application of the standard Ran-
kine–Hugoniot condition to (1.1) shows that discontinuities in ρ, P (ρ), and ∇u
across hypersurfaces in Ω can be expected to persist for all time, but that the
functions F and ω should be relatively smooth in positive time, reflecting a can-
cellation of singularities (see the introduction to [8], for example). The precise
statement is the result in (1.19) of Theorem 1.1, which is one indication of the
important roles of F and ω. These two distinguished variables also arise in the
Helmholtz decomposition of the acceleration density ρu̇: adding and subtracting
terms, we can rewrite the momentum equation in (1.1) in the form

ρu̇j = Fxj
+ µωj,k

xk
+ ρf j . (1.23)

In the case that Ω = R
3, and with sufficient decay at infinity, the first two terms

on the right here are orthogonal in L2. Thus L2 estimates for ρu̇, which we are
anticipating in the definitions of A1 and A2, immediately imply L2 bounds for
∇F and ∇ω. This orthogonality is lost when ∂Ω 6= φ, however, because boundary
integrals arise in the computation of the inner product. Stated differently, the
decomposition (1.23) implies that

∆F = div (ρu̇ − ρf), (1.24)
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which, in the absence of a boundary condition for F , determines F only up to
a harmonic function, enabling interior estimates at best. The no-slip boundary
condition u = 0 on ∂Ω does not seem to be of use here, but the Navier boundary
condition (1.2) does indeed provide the required boundary information for F : for
the half-space case under consideration here, (1.2) implies that u3 = 0, hence
u̇3 = 0 on ∂Ω, and therefore by (1.23) and (1.4) that

Fx3
= µ

[
(K−1u1)x1

+ (K−1u2)x2

]
− ρf3 (1.25)

on ∂Ω. This together with (1.24) is then sufficient to determine F on Ω. In par-
ticular, F can be represented via the Neumann–Green’s function for Ω in terms of
the functions on the right sides of (1.24) and (1.25), and these can be estimated in
terms of A1 and A2. Pointwise bounds for F can then be deduced from this repre-
sentation, and these can then be applied in (1.22) to yield the required pointwise
bounds for ρ.

We also remark on a different point in the analysis in which F and ω play a
crucial role. Certain higher order terms arise in the derivation of bounds for A1

and A2, resulting from nonlinearities in the momentum equation in (1.1). One

such term is

∫ ∫
|∇u|4dxdt. Now, H2 ⊂ W 1,4, so that an estimate for ‖u(·, t)‖H2

would suffice here. But as we indicated above, ∇u can be discontinuous across
hypersurfaces in Ω, in which case u(·, t) /∈ H2. On the other hand, adding and
subtracting terms, we can write

(µ + λ)∆uj = [(µ + λ)divu − P (ρ)]xj
+ (µ + λ)(uj

xk
− uk

xj
)xk

+ (P (ρ) − P̃ )xj

= Fxj
+ (µ + λ)ωj,k

xk
+ (P − P̃ )xj

.

The velocity u therefore satisfies a Poisson equation with a Robin-type boundary
condition (1.2). Standard elliptic theory therefore applies to show that, for fixed
t > 0,

‖∇u‖L4 ≤ C
[
‖F‖L4 + ‖ω‖L4 + ‖P − P̃‖L4

]
.

Bounds for the terms on the right are then available because F, ω ∈ H1 ⊂ L4 via
(1.24) and (1.25), and ρ − ρ̃ ∈ L2 ∩ L∞.

We conclude this introduction with an elementary derivation of an explicit
form of the Navier boundary condition (1.2) for general regions Ω. First recall
that in the derivation of standard fluid models such as (1.1) (see Batchelor [2], for
example), the fluid on one side of a given surface through a given point is regarded
as exerting a force on the fluid on the other side given by the integral over the
surface of the “stress” with respect to surface area. Stress therefore has the units
of pressure, and in the Navier–Stokes equations is taken to be σN , where N is the
unit normal to the surface at the given point and σ is the 3 × 3 matrix

σj,k = µ(uj
xk

+ uk
xj

) + (λdiv u − P (ρ))δj,k. (1.26)
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The boundary condition proposed by Navier [12] is that the velocity at a point on
∂Ω should be proportional to the tangential component of the stress at that point;
that is, that

u = −K(σN)tan = −µK((∇u + ∇ut)N)tan, (1.27)

where the proportionality factor K may vary across ∂Ω. In particular, u · N = 0
on ∂Ω.

To obtain a more explicit and useable expression for the Navier boundary
condition, we suppose that the boundary is given locally by ∂Ω = {x : g(x) = 0},
so that N(x) = ∇g(x)/|∇g(x)| is the unit outer normal. We let x = x(s) be a
curve on ∂Ω and differentiate the relation ∇g(x(s)) · u(x(s), t) = 0 to obtain that
the tangent vector T = ẋ satisfies

(∇utN) · T = −(g′′u) · T/|∇g|.

We now fix a point x ∈ ∂Ω and let {T1, T2} be an orthonormal basis for the tangent
space to ∂Ω at x. Then at x,

(∇utN)tan =
∑

j=1,2

((∇utN) · Tj)Tj

= −
∑

j=1,2

((g′′u) · Tj)Tj/|∇g| ≡ Au

where A is a matrix-valued function of x ∈ ∂Ω determined solely by ∂Ω. Then
from (1.26),

(σN)tan = µ(∇u −∇ut)N + 2µ(∇utN)tan

= µωN + 2µAu,

since (ωN) · N = 0, which implies that (ωN)tan = ωN . The Navier boundary
condition (1.27) then becomes

u = −µK(I + 2µKA)−1ωN. (1.28)

Observe that when ∂Ω is flat, A = 0 and (1.28) reduces to (1.4) with the constant
µ subsumed into the definition of K.

The boundary condition (1.2) for the flat-space case has been applied in a
number of problems, usually for incompressible flows; see Arbogast and Lehr [1],
Beavers and Joseph [3], Caflisch and Rubinstein [4], and Saffman [13], for example.
We also remark that the no-slip boundary condition u = 0 on ∂Ω may be regarded
as the singular limit as K → 0 of the Navier boundary condition (1.28). The
analysis of the present paper is insufficient to justify this limit, but it is likely that
the large-weak solutions discussed in Lions [10] and Feireisl [6]–[7] with no-slip
boundary conditions are indeed these limits for certain pressures.
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2. Energy estimates

In this section we derive a priori bounds for smooth, local-in-time solutions of
(1.1)–(1.2) whose densities are strictly positive and bounded. (The existence of
such solutions will be established later in Proposition 3.2.) We thus fix a smooth
solution (ρ, u) of (1.1)–(1.2) on Ω× [0, T ] for some time T > 0, with smooth initial
data (ρ0, u0) and external force f satisfying all the hypotheses of Theorem 1.1,
and with ρ(x, t) ≤ ρ̄. We let C and θ be generic positive constants as described in
Theorem 1.1 and we write C = C(ρ) to emphasize the assumption that ρ ≤ ρ.

In Proposition 2.1 below we state the standard L2 energy estimate for (ρ, u)
and we establish a bound for ρu in Lq. In Lemma 2.2 we derive preliminary L2

estimates for ∇u and ρu̇ reflecting the parabolic smoothing in the second equation
in (1.1). Higher order terms occur in these estimates, and to control these we need
certain technical embedding results, given in Lemma 2.3. These are then applied
in Proposition 2.4 to complete the regularity estimates for u.

Proposition 2.1. There is a positive constant C = C(ρ) as described in The-
orem 1.1 such that, if (ρ, u) is a smooth solution of (1.1)–(1.2) on Ω × [0, T ] as
described above with 0 < ρ(x, t) ≤ ρ, then

sup
0≤t≤T

∫

Ω

[
1
2ρ(x, t)|u(x, t)|2 + G(ρ(x, t))

]
dx

+

∫ T

0

∫

Ω
|∇u|2dxdt +

∫ T

0

∫

∂Ω
|u|2dSxdt

≤ C(ρ)(C0 + Cf ),

(2.1)

where G is as in (1.8). Also, there is a positive constant C = C(ρ, T ) such that

sup
0≤t≤T

∫

Ω
ρ(x, t)|u(x, t)|qdx +

∫ T

0

∫

Ω
|u|q−2|∇u|2dxdt +

∫ T

0

∫

∂Ω
|u|qdSxdt

≤ C(ρ, T )(C0 + Cf + Mq),

(2.2)

where q is as in (1.10).

Proof. To prove (2.1) we multiply the first equation in (1.1) by G′(ρ) and the second
by uj and integrate, applying the boundary condition (1.2). The computation is
standard, and the details are omitted.

We shall sketch the proof of (2.2), which is similar. First, from the second
equation in (1.1) we obtain that

ρ
[
(|u|q)t + (∇|u|q) · u

]
+ q|u|q−2u · ∇P + µq|u|q−2|∇u|2 + λq|u|q−2(div u)2

= q|u|q−2
[

1
2µ∆|u|2 + λdiv((divu)u) + ρu · f

]
.
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Adding the equation |u|q(ρt + div(ρu)) = 0, integrating, and rearranging, we then
obtain

∫

Ω
ρ|u|qdx

∣∣∣∣
t

0
+

∫ t

0

∫

Ω

{
q|u|q−2[µ|∇u|2 + λ(divu)2 + µ(q − 2)

∣∣∇|u|
∣∣2]

+ qλ(∇|u|q−2) · u divu
}

dxds

=

∫ t

0

∫

∂Ω

1
2µq|u|q−2(∇|u|2) · NdSxds

+

∫ t

0

∫

Ω

[
q div(|u|q−2u)P + q|u|q−2ρu · f

]
dxds.

(2.3)

The integrand in the boundary integral on the right here is

−µq|u|q−2(u1u1
x3

+ u2u2
x3

) = −µqK(x)−1|u|q ≤ 0

by (1.2). Next, since
∣∣∇|u|

∣∣ ≤ |∇u|, we can bound the integrand in the double
integral on the left side of (2.3) from below by

q|u|q−2
[
µ|∇u|2 + λ(div u)2 + µ(q − 2)|∇|u||2 − λ(q − 2)

∣∣∇|u|
∣∣∣∣divu

∣∣
]

= q|u|q−2
[
µ|∇u|2 + λ

(
divu − 1

2 (q − 2)
∣∣∇|u|

∣∣)2
]

+ q|u|q−2
[
µ(q − 2) − 1

4λ(q − 2)2
] ∣∣∇|u|

∣∣2

≥ q|u|q−2
[
µ(q − 1) − 1

4λ(q − 2)2
]
|∇u|2

≥ C−1|u|q−2|∇u|2

by the hypothesis (1.10). Bounds for the remaining two terms on the right side of
(2.3) are similar, and (2.2) then follows from (2.3). ¤

The following lemma contains preliminary versions of L2 bounds for ∇u and
ρu̇:

Lemma 2.2. There is a constant C = C(ρ) as described in the statement of Theo-
rem 1.1 such that, if (ρ, u) is a smooth solution of (1.1)–(1.2) as in Proposition 2.1,
then

sup
0≤t≤T

σ(t)

∫

Ω
|∇u(x, t)|2dx +

∫ T

0

∫

Ω
σρ|u̇|2dxdt

≤ C(ρ)

[
C0 + Cf +

∫ T

0

∫

Ω
σ(|u|2|∇u| + |u||∇u|2)dxdt

+
∑ ∣∣∣

∫ T

0

∫

Ω
σuj1

xk
1

uj2
xk

2

uj3
xk

3

dxdt
∣∣∣
]

,

(2.4)
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where σ(t) = min{1, t} and the (finite) sum on the right is over all combinations
of indices; and

sup
0≤t≤T

σ(t)3
∫

ρ(x, t)|u̇(x, t)|2dx +

∫ T

0

∫

Ω
σ3|∇u̇|2dxdt

≤ C(ρ) [C0 + Cf + A1(T )]

+ C(ρ)

∫ T

0

∫

Ω
σ3

[
|u|4 + |∇u|4 + |u̇||∇u||u| + |u̇||∇u|2

]
dxdt,

(2.5)

where A1(T ) is the left side of (2.4).

Proof. The proofs are nearly the same as those of (2.9) and (2.12) in [8], except
that boundary effects occur here. We therefore restrict attention to representative
boundary integrals arising in what are otherwise routine but somewhat technical
estimates. For example, to prove (2.4), we multiply the second equation in (1.1)
by σu̇j and integrate over Ω× [0, t]. This results in the following boundary integral
on the right:

∫ t

0

∫

∂Ω
σ

[
(P̃ − P )u̇ · N + µuj

xk
u̇jNk + λ(divu)u̇ · N

]
dSxds.

The condition u · N = 0 on Ω implies that the first and third terms here vanish,
and by (1.2) the second term may be written

− µ

∫ t

0

∫

∂Ω
σuj

x3
u̇jdSxds = −µ

∫ t

0

∫

∂Ω
σK−1uj

(
uj

t + uj
xk

uk
)

dSxds

= −1
2µσ(t)

∫

∂Ω
K−1|u(x, t)|2dSx − µ

∫ t

0

∫

∂Ω
σK−1ujukuj

xk
dSxds.

The first term on the right here is nonpositive, and for the second term we apply
the fact that, for h ∈ (C1 ∩ W 1,1)(Ω),

∫

∂Ω
h(x)dSx =

∫

Ω∩{0≤x3≤1}
[h(x) + (x3 − 1)hx3

(x)]dx. (2.6)

Since j, k ∈ {1, 2} in the term in question, we can apply (2.6) and integrate by
parts in the x1 and x2 directions to obtain the bound

∫ t

0

∫

Ω
σ

(
|u|2|∇u| + |u| |∇u|2

)
dxds,

which is included on the right side of (2.4).
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To prove (2.5) we take the convective derivative in the second equation in (1.1),
multiply by σ3u̇j , and integrate. This results in the following boundary integral
on the right:

∫ t

0

∫

∂Ω
σ3

[
(P − P̃ )(∇u̇u) · N + µu̇·(∇utN) − µ(∇u̇u) · (∇uN)

− (λ + µ)(div u)(∇u̇u) · N

]
dSxds,

(2.7)

where the relation u · N = −u3 = 0 on ∂Ω has already been applied. A short
computation shows that (∇u̇u) · N = 0 on ∂Ω, so that the first and last terms in
(2.7) vanish, and we can apply (1.2) to write the second term as

−µ

∫ t

0

∫

∂Ω
σ3u̇juj

x3t = −µ

∫ t

0

∫

∂Ω
σ3K−1u̇juj

t

= −µ

∫ t

0

∫

∂Ω
σ3K−1|u̇|2dSxds + µ

∫ t

0

∫

∂Ω
σ3K−1u̇juj

xk
ukdSxds.

(2.8)

The first term here is nonpositive, and for the second we apply (2.6) and the fact
that j, k ∈ {1, 2}, allowing for integration by parts in the x1 and x2 directions, to
obtain the bound

C

∫ t

0

∫

Ω
σ3

[
|u||∇u||u̇| + |u||∇u||∇u̇| + |∇u|2|u̇|

]
dxds,

which in turn is bounded by terms on the right side of (2.5), modulo a small

multiple of

∫ ∫
σ3|∇u̇|2dxds, which can be absorbed into the left side. The third

term in (2.7) is handled in a similar way. ¤

The following auxiliary estimates will be applied to bound the higher order
terms occurring on the right sides of (2.4) and (2.5):

Lemma 2.3. There is a constant C = C(ρ̄) such that, if (ρ, u) is a smooth solution
of (1.1)–(1.2) on Ω × [0, T ] as in Proposition 2.1, then for 0 ≤ t ≤ T ,

(a)

∫
|u|pdx

≤C(ρ)
[
(C0+Cf )(6−p)/4

(∫
|∇u|2dx

)(3p−6)/4
+(C0+Cf )(6−p)/6

(∫
|∇u|2dx

)p/2]
,

2 ≤ p ≤ 6,

(b)

∫
|∇u|pdx ≤

∫ (
|F |p + |ω|p + |P − P̃ |p + |u|p

)
dx, 1 < p < ∞,

(c)

∫
(|∇F |p + |∇ω|p) dx ≤

∫
(|ρu̇|p + |∇u|p + |u∇K|p + |f |p) dx, 1 < p < ∞,
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(d)

∫
(|F |p + |ω|p)dx ≤ C(ρ)

[(∫
ρ|u̇|2dx

)(3p−6)/4(∫
(|∇u|2 + |P − P̃ |2)dx

)(6−p)/4

+
(∫

(|∇u|2 + |P − P̃ |2 + |f |2)dx
)p/2]

, 2 ≤ p ≤ 6,

where all functions are evaluated at time t and all integrals are over Ω. Also, for
0 ≤ t1 ≤ t2 ≤ T , r ≥ 2, and s ≥ 0,

(e)

∫ t2

t1

∫

Ω
σ(t)s|ρ(x, t)− ρ̃|rdxdt ≤ C(ρ)

[∫ t2

t1

∫

Ω
σ(t)s|F (x, t)|rdxdt + C0 + Cf

]
,

where σ = min{1, t}.

Proof. We first apply the standard embedding

∫

R2

w6dx ≤ C

(∫

R2

w4dx

) (∫

R2

|∇w|2dx

)
,

which holds for w ∈ H1(R2) (Ziemer [14], Theorem 2.4.1) to functions w : Ω → R

for fixed x3, then integrate with respect to x3 ∈ [0,∞) and interpolate the L4

norm between L2 and L6 to obtain

∫

Ω
|w|pdx ≤ C

(∫

Ω
|w|2dx

)(6−p)/4 (∫

Ω
|∇w|2dx

)(3p−6)/4

(2.9)

for p = 6. The same result then holds for p ∈ [2, 6] by interpolation.
To prove (a), we write

ρ̃

∫

Ω
|u|2dx ≤

∫

Ω
ρ|u|2dx +

(∫

Ω
|ρ − ρ̃|2dx

)1/2 (∫
|u|4dx

)1/2

and apply (2.9) and Proposition 2.1 to obtain that

∫

Ω
|u|2dx ≤ C(ρ)

[
(C0 + Cf ) + (C0 + Cf )2/3

∫

Ω
|∇u|2dx

]
. (2.10)

We now apply (2.9) to u and substitute (2.10) on the right to complete the proof
of (a).

To prove (b) we observe that u satisfies the elliptic boundary value problem

(µ + λ)∆uj = [(µ + λ)divu − P (ρ)]xj
+ (µ + λ)(uj

xk
− uk

xj
)xk

+ (P (ρ) − P̃ )xj

= Fxj
+ (µ + λ)ωj,k

xk
+ (P − P̃ )xj

,




u1
x3

= K−1u1,

u2
x3

= K−1u2,

u3 = 0, x ∈ ∂Ω.
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The bounds in (b) then follow from standard elliptic theory.
To prove (c) we compute from the second equation in (1.1) that

µ∆ωj,k = (ρu̇j)xk
− (ρu̇k)xj

+ (ρfk)xj
− (ρf j)xk

.

Thus if H ≡ ω1,3 − K−1u1, for example, then H = 0 on ∂Ω by (1.2), and

µ∆H = (ρu̇j)xk
− (ρu̇k)xj

+ (ρf j)xk
− (ρfk)xj

− µ∆(K−1u1)

in Ω. Standard elliptic theory again yields a bound for ‖∇H‖Lp for 1 < p < ∞
and therefore for ω1,3:

‖∇ω1,3‖Lp(Ω) ≤ C(ρ)
[
‖ρu̇‖Lp + ‖f‖Lp + ‖∇u‖Lp + ‖u‖Lp

]
, 1 < p < ∞ . (2.11)

A similar argument applies to ω2,3. To derive a bound for ω1,2, we differentiate the
j = 1 equation in (1.1) with respect to x2, then reverse the indices and subtract.
The result is that

µ

(
∂2

∂x2
1

+
∂2

∂x2
2

)
ω1,2 = (ρu̇1)x2

−(ρu̇2)x1
+µ(ω2,3

x3,x1
−ω1,3

x3,x2
)+(ρf1)x2

−(ρf2)x1
.

This gives a bound for ‖∇x1,x2
ω1,2(·, ·, x3)‖Lp(R2), and integrating this bound with

respect to x3 and applying (2.11), we obtain that ∇x1,x2
ω1,2 is also bounded by

the right side of (2.11), as is ω1,2
x3

, since

ω1,2
x3

= ω1,3
x2

− ω2,3
x1

.

This proves the bound in (c) for ω, and the bound for ∇F then follows from the
decomposition (1.23).

Part (d) follows from part (c) with p = 2, the bounds in Proposi-
tion 2.1, and (2.9). To prove (e), we multiply the mass equation in (1.1) by
rσ(t)s−1|ρ− ρ̃|r−1sgn(ρ− ρ̃) and substitute the definition (1.15) for divu in terms
of F . The result is that

[Dt + div(u·)] (σs|ρ − ρ̃|r) + (λ + µ)−1σs [(r − 1)ρ + ρ̃] |ρ − ρ̃|r−1|P − P̃ |

= sσs−1σt|ρ − ρ̃|r − (λ + µ)−1σs [(r − 1)ρ + ρ̃] sgn(ρ − ρ̃)|ρ − ρ̃|r−1F.

Integrating, we then obtain

∫

Ω
σs|ρ − ρ̃|dx

∣∣∣
t2

t1
+ C−1

∫ t2

t1

∫

Ω
σs|ρ − ρ̃|rdxdt

≤ C(ρ)

[∫ max{t1,σ(t2)}

t1

∫

Ω
σt|ρ − ρ̃|rdxdt +

∫ t2

t1

∫

Ω
σs|F |rdxdt

]
.
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The bound in (e) then follows from (d) and the results of Proposition 2.1. ¤

We now apply the auxiliary estimates of Lemma 2.3 to close the bounds in
Lemma 2.2:

Proposition 2.4. There exist constants C = C(ρ) and θ as described in Theo-
rem 1.1 such that, if (ρ, u) is a smooth solution of (1.1)–(1.2) on Ω × [0, T ] as in
Proposition 2.1 with ρ ≤ ρ, then

sup
0≤t≤T

∫

Ω

(
1
2ρ|u|2 + |ρ − ρ̃|2 + σ|∇u|2 + σ3ρ|u̇|2

)
dx

+

∫ T

0

∫

Ω

(
|∇u|2 + σ|ρu̇|2 + σ3|∇u̇|2

)
dxdt

≤ C(ρ)(C0 + Cf )θ,

(2.12)

where σ(t) = min{1, t}. In particular, C(ρ) is independent of T , and θ is a
universal positive constant.

Proof. The proof consists in applying the bounds in Lemma 2.3 to estimate the
terms on the right sides of (2.4) and (2.5). We give the details for the term∫∫

σ3|∇u|4 under the assumption that the bound in (2.4) has already been closed,

that is, that the left side of (2.4) has been shown to be bounded by the right side
of (2.12). First, by Lemma 2.2(b),

∫∫
σ3|∇u|4 ≤ C(ρ)

∫∫
σ3[F 4 + |ω|4 + |u|4 + (ρ − ρ̃)4], (2.13)

and by (2.9), Proposition 2.1, Lemma 2.3(a)(c), and our assumption about (2.4),

∫∫
σ3F 4 ≤ C

∫
σ3

(∫
F 2dx

)1/2 (∫
|∇F |2dx

)3/2

dt

≤ C sup
t

(
σ

∫
F 2dx

)1/2

sup
t

(
σ3

∫
|∇F |2dx

)1/2 ∫∫
σ|∇F |2dxdt

≤ C(ρ)(C0 + Cf )θ sup
t

(
σ3

∫ (
ρ|u̇|2 + |∇u|2 + |u|2 + |f |2

)
dx

)

×

∫∫
σ3(ρ|u̇|2 + |∇u|2 + |u|2 + |f |2

)
dxdt

≤ C(ρ)(C0 + Cf )θ
[
1 + A2(T )1/2

]
,

(2.14)
where A2 is the left side of (2.5). The vorticity term in (2.13) is handled in a similar

way, and the same bound for

∫∫
σ3(ρ− ρ̃)4 is immediate from Lemma 2.3(e) and
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(2.14), and for

∫∫
σ3|u|4 from Lemma 2.3(a) and our presumed bound for the left

side of (2.4). We thus obtain from (2.13) that

∫ T

0

∫

Ω
σ3|∇u|4dxdt ≤ C(ρ)(C0 + Cf )θ

[
1 + A2(T )1/2

]
.

Treating the other terms on the right side of (2.5) in a similar way, we conclude
that A2(T ) ≤ C(ρ)(C0 + Cf )θ

[
1 + A2(T )1/2

]
, which proves the required bound

for A2(T ). Combining this with the corresponding bound for the left side of (2.4)
and the result of Proposition 2.1, we then obtain (2.12). ¤

3. Pointwise bounds for the density

In this section we derive a priori pointwise bounds for the density ρ, where (ρ, u) is
the smooth solution discussed in Section 2. These pointwise bounds are proved in
Proposition 3.1 below and are then applied in Proposition 3.2 to show that (ρ, u)
can be extended as a smooth solution for all time.

Proposition 3.1. Given numbers 0 < ρ
2

< ρ
1

< ρ̃ < ρ1 < ρ2 < ρ, there is an
ε > 0 such that, if (ρ, u) is a smooth solution of (1.1)–(1.2) as described at the
beginning of section 2 with C0 + Cf ≤ ε, 0 < ρ0(x) ≤ ρ1, and 0 < ρ(x, t) ≤ ρ for
x ∈ Ω and t ∈ [0, T ], then 0 < ρ(x, t) ≤ ρ2 for (x, t) ∈ Ω × [0, T ]. Similarly if
ρ0(x) ≥ ρ

1
for all x, then ρ(x, t) ≥ ρ

2
for all x and t.

Proof. We fix a curve x(t) satisfying ẋ(t) = u(x(t), t) and substitute the definition

(1.15) of F into the mass equation
d

dt
ρ(x(t), t) = −ρdiv u to obtain

(λ + µ)
d

dt
log(ρ(x(t), t)) + P (ρ(x(t), t)) − P (ρ̃) = −F. (3.1)

We shall replace F here by its representation in terms of quantitites for which
bounds are known from Proposition 2.4. To do this we first observe from (1.23)
that

∆F = div(ρu̇ − ρf), (3.2)

and for x ∈ ∂Ω,

0 = ρu̇3 = Fx3
+ µ

(
ω3,1

x1
+ ω3,2

x2

)
+ ρf3

so that, by (1.2),

Fx3
= µ

[
(K−1u1)x1

+ (K−1u2)x2

]
− ρf3, x ∈ ∂Ω. (3.3)
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Letting g denote the Neumann–Green’s function for the Laplace operator on Ω
and noting that F (·, t) ∈ L2(Ω), we then obtain that, for y ∈ Ω,

F (y, t) = −

∫

Ω
gxj

(x, y)(ρu̇j − ρf j)(x, t)dx

+ µ

∫

∂Ω
g(x, y)

[
(K−1u1)x1

+ (K−1u2)x2

]
(x, t)dSx.

(3.4)

We write ρu̇j = (ρuj)t + div(ρuju) and substitute (3.4) into (3.1) to obtain that

(λ + µ)
d

dt
log ρ(x(t), t) + [P (ρ(x(t), t)) − P (ρ̃)]

=
d

dt

∫

Ω
gxj

(x, x(t))(ρuj)(x, t)dx

−

∫

Ω

{[
gxjyk

(x, x(t))uk(x(t), t) + gxjxk
(x, x(t))uk(x, t)

]
(ρuj)(x, t)

+ gxj
(x, x(t))(ρf j)(x, t)

}
dx

− µ

∫

∂Ω
g(x, x(t))

[
(K−1u1)x1

+ (K−1u2)x2

]
dSx.

(3.5)

As we shall see, the pressure term on the left here is dissipative, so that most of
the proof consists in obtaining bounds for the terms on the right. We examine two
representative terms in detail. First, applying (2.6), we can write the boundary
integral in (3.5) as

−µ

∫

{0≤x3≤1}
[g(K−1u1)x1

+ g(K−1u2)x2
]dx + O

(∫

Ω
|∇xg|(|u||∇K| + |∇u|)dx

)
.

(3.6)
Taking p ∈ (3, 6], we can bound the last term here by

(∫

Bc
1
(x(t))

+

∫

B1(x(t))

)
|∇u(x, t)|dx

|x − x(t)|
2

≤ C [|∇u(·, t)|L2 + |∇u(·, t)|Lp ]

≤ C
[
|∇u(·, t)|L2 + |F (·, t)|Lp + |ω(·, t)|Lp + |u(·, t)|Lp + |P (·, t) − P̃ |Lp

]

by Lemma 2.3(b). Applying Lemma 2.3(a)(d) and estimating the other terms in
(3.6) in a similar way, we obtain the following bound for the expression in (3.6):

C(ρ)

[
(C0 + Cf )θ +

(∫
|∇u|2dx

)1/2

+

(∫
ρ|u̇|2dx

)(3p−6)/4p (∫
|∇u|2dx

)(6−p)/4
] (3.7)
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for some fixed p ∈ (3, 6].
Next we bound the D2g terms on the right side of (3.5). First recall that

g = g1 + g2 where g1(x, y) = Γ(|x − y|) and Γ is the fundamental solution of the
Laplace operator on R

3, and g2(x, y) = Γ(|x − y|) where y is the reflected point
(y1, y2,−y3). The g1 contribution to the D2g terms in (3.5) is therefore bounded
by ∣∣∣∣

∫

Ω
Γxjxk

(|x − x(t)|)
[
uk(x(t), t) − uk(x, t)

]
(ρuj)(x, t)dx

∣∣∣∣

≤ C〈u(·, t)〉β
∫

Ω
|x − x(t)|β−3|(ρu)(x, t)|dx,

where β is to be chosen. The g2 contribution is the same for k 6= 3, but with x(t)
replaced by x(t), and so satisfies the same bound, since |x−x(t)| ≤ |x−x(t)|. For
k = 3 we instead apply the boundary condition u3 = 0 on ∂Ω to get

|u3(x, t)| ≤ 〈u(·, t)〉β |x3|
β ≤ 〈u(·, t)〉β |x − x(t)|β ,

and similarly for u3(x(t), t). The D2g terms in (3.5) are thus bounded by

C〈u(·, t)〉β

(∫

B1(x(t))
+

∫

Bc
1
(x(t))

)
|x − x(t)|β−3|(ρu)(x, t)|dx.

The exterior integral here is bounded by C

∫
ρ|u|2dx ≤ C(C0 + Cf ) and the

interior integral by

C(ρ)〈u(·, t)〉β

(∫ 1

0
τ2+r(β−3)dτ

)1/s (∫
ρ|u|sdx

)1/s

, (3.8)

where s−1+r−1 = 1 and s ∈ (3, 6). We now choose β, s, and r so that r < s/(3−β)
and s ∈ (3/β, q), where q is as in (1.10). The first integral in (3.8) is then finite,
and the second is bounded by C(ρ)(C0 + Cf )θ, by Proposition 2.1 for small time,
and by Lemma 2.3(a) and Proposition 2.4 for t away from zero. Observe that this
argument requires that s ≤ 6, which implies that r ≥ 6/5 and β ≤ 1/2. We may
choose β < 1/2 and p = 3/(1 − β) ∈ (3, 6), so that, by Lemma 2.3,

〈u(·, t)〉β ≤ C‖∇u(·, t)‖Lp

≤ C

[
(C0 + Cf )θ +

(∫
|∇u|2

)1/2

+

(∫
ρ|u̇|2

)(3p−6)/4p (∫
|∇u|2

)(6−p)/4p
]

,

(3.9)
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where p is the same as in (3.7). Combining these bounds and estimating the other
terms in (3.5) in a similar way, we then conclude that

(λ + µ)
d

dt
log ρ(x(t), t) + [P (ρ(x(t)), t) − P (ρ̃)]

=
d

dt

∫

Ω
gxj

(x, x(t))(ρuj)(x, t)dx

+ C(ρ)O

([
(C0 + Cf )θ +

(∫
|∇u|2

)1/2

+

(∫
|∇u|2

)3/4

+ |f |L2 + |f |αL2 |f |
1−α
Lq

+

(∫
ρ|u̇|2

)(3p−6)/4p (∫
|∇u|2

)(6−p)/4p
])

(3.10)

for some fixed p ∈ (3, 6) and α ∈ (0, 1). In addition, a very easy estimate shows
that ∣∣∣∣

∫

Ω
gxj

(x, x(t))(ρuj)(x, t)dx

∣∣∣∣ ≤ C(ρ)(C0 + Cf )θ. (3.11)

The pointwise bounds (3.1) are now derived from (3.10) in two steps. First for
small time we integrate (3.10) with respect to t, controlling the pressure term by
the assumption that ρ ≤ ρ and the first term on the right by the bound in (3.11).
Estimates for the other terms are derived from (2.12). For example, if τ ≤ 1,

∫ τ

0

(∫
ρ|u̇|2dx

)(3p−6)/4p (∫
|∇u|2dx

)(6−p)/4p

dt

≤

(∫ τ

0
t(6−3p)/2pdt

)1/2 (∫ τ

0

∫
tρ|u̇|2dxdt

)(3p−6)/4p(∫ τ

0

∫
|∇u|2dxdt

)(6−p)/4p

≤ C(ρ)(C0 + Cf )θ,

since p < 6. There is thus a small time τ such that, for t ≤ τ ,

inf{log ρ0(x)} − C(C0 + Cf )θ ≤ log ρ(x(t), t) ≤ log ρ1 + C(C0 + Cf )θ,

and the assertions in Proposition 3.1 follow immediately for t ≤ τ .
We shall complete the proof of the upper bound for ρ, the proof of the lower

bound being similar. Fix the above τ > 0, so that

0 < ρ(x(t), t) ≤ ρ1 + 1
3 (ρ̄2 − ρ̄1), t ∈ [0, τ ],

if ε is small. Now define

H(t) = (λ + µ) log ρ(x(t), t) −

∫

Ω
gxj

(x, x(t))(ρuj)(x, t)dx (3.12)
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so that by (3.10) and the results of Proposition 2.4,

dH

dt
+ P (ρ(x(t), t) − P (ρ̃) = O(C(ρ)(C0 + Cf )θ) (3.13)

for t ≥ τ . We now apply a standard maximum principle argument: the right side
of (3.11) can be made arbitrarily small by taking the constant ε in the statement
of Proposition 3.1 sufficiently small, so that H(t) < (λ + µ) log[ρ1 + 2

3 (ρ2 − ρ1)]
on [0, τ ]. If t0 > τ is the first time that equality occurs then ρ(x(t0), t0) ∈ [ρ1 +
1
3 (ρ2 − ρ1), ρ], again by (3.11), so that P (ρ(x(t0), t0)) − P (ρ̃) is bounded below

by a positive constant, by (1.7). But this contradicts (3.13) because
dH

dt
(t0) ≥ 0

and the right side is small. Thus H(t) < (λ + µ) log[ρ1 + 2
3 (ρ2 − ρ1)] for all t, and

therefore ρ(x(t), t) ≤ ρ2, again by (3.12) and (3.11), provided that ε is small. ¤

We can now prove the global existence of smooth solutions of (1.1)–(1.2):

Proposition 3.2. Assume that the hypotheses and notations of Theorem 1.1 are
in force and in addition that ρ0 − ρ̃, u0 ∈ H∞(Ω) with ρ0(x) > 0 for all x, that
P ∈ C∞([0, ρ]), K ∈ H∞(R2), and f ∈ L∞([0,∞);H∞(Ω)). Then there exists
ρ ∈ C1(Ω × [0,∞)) and u ∈ C2(Ω × [0,∞)) satisfying (1.1)–(1.2) pointwise and
for which the conclusions of Propositions 2.4 and 3.1 hold with T = ∞.

Proof. The first step is to obtain a local-in-time solution. This can be done in any
of several ways, one of which we sketch. First fix η > 0 and iterate to solve the
system

{
ρt + div(ρu) = η∆ρ

(ρuj)t + div(ρuju) + P (ρ)xj
= µ∆uj + λdivuxj

+ ρf j
(3.14)

with the given initial data and with boundary conditions (1.2) together with
∂ρ

∂n
= 0. For example, the solution ρ to the problem





ρt = η∆ρ + divA, x ∈ Ω, t > 0

∂ρ

∂n
= 0, x ∈ ∂Ω, t > 0

can be represented via the Neumann–Green’s function for Ω in terms of ρ0 and A,
resulting in the bound

‖ρ(·, t)‖Hk(Ω) ≤ ‖ρ0‖Hk(Ω) + C

∫ t

0
‖A(·, s)‖Hk(Ω)ds. (3.15)
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For the unknown u we need to prove the existence of solutions to equations

(ρuj)t = µ∆uj + λdivuxj
+ divA + B

together with the boundary conditions (1.2), where ρ is a given function which is
smooth and positive. Standard techniques (finite differences, for example) can be
applied to show that a solution u exists and satisfies

‖u(·, t)‖Hk ≤ C‖u0‖Hk + C

∫ t

0
(‖A(·, s)‖Hk + ‖B(·, s)‖Hk) ds, (3.16)

where the constant depends on properties of ρ. The bounds (3.15)–(3.16) then
enable us to solve (3.14) by iteration for small time, obtaining solutions ρ − ρ̃,
u ∈ Hk for large k and up to a positive time which may depend on η. Routine
energy estimates similar to but simpler than those of section 2 can then be applied
to obtain Hk bounds for u, Hk−1 bounds for ρ, and time of existence which are
independent of η. We can then take the limit as η → 0 to obtain a smooth solution
(ρ, u) of (1.1)–(1.2) for small time, and the a priori bounds of Propositions 2.4 and
3.1 then apply to show that this solution can be extended to all time. ¤

4. Proof of Theorem 1.1

Let (ρ0, u0) be as in the statement of Theorem 1.1 and let jδ(x) be a standard
mollifying kernel of width δ. Define approximate initial data (ρδ

0, u
δ
0) by

ρδ
0 = jδ ∗ ρ0 + δ, uδ

0 = jδ ∗ u0.

Assuming that similar smooth approximations have been constructed for the sys-
tem functions P , f , and K, we may then apply Proposition 3.2 to obtain a global
smooth solution (ρδ, uδ) of (1.1)–(1.2) satisfying the bounds in Propositions 2.4
and 3.1 with constants which are independent of δ. The proof then consists in
showing that these bounds are sufficient to extract a solution (ρ, u) in the limit as
δ → 0.

First, the uniform pointwise bounds in Proposition 3.1 imply that there is
a sequence δj → 0 such that ρδj (·, t) converges weakly in L2(K) and strongly
in H−1(K) for all compact K ⊆ Ω and for times t in some countable dense
subset of [0,∞). Also, the bounds in Propositions 2.4 and 3.1 applied in the weak
equation (1.5) show that {ρδj} is equicontinuous in C([0,∞) : H−1(K)), so that
ρδj (·, t) converges weakly in L2

loc(Ω) and strongly in H−1
loc (Ω), say to ρ(·, t), for

all t ∈ [0,∞). We can now apply an argument of Feireisl [7] to show that this
convergence is in fact strong: ρδj (·, t) → ρ(·, t) strongly in L2(K) for all compact
K ⊆ Ω. In particular, P (ρδj (·, t)) → P (ρ(·, t)) pointwise a.e.
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To obtain strong limits of {uδ}, we establish uniform Hölder continuity away
from t = 0. First a standard imbedding result (Ziemer [14], Remark 2.4.3 and
Theorem 2.3.4) shows that, for t ≥ τ > 0,

〈uδ(·, t)〉
1/2

Ω
≤ C‖∇uδ(·, t)‖L6(Ω) ≤ C(τ) (4.1)

independently of δ by the bounds in Lemma 2.3 and Proposition 2.4. To prove
Hölder continuity in time, we fix x ∈ Ω and times t2 > t1 ≥ τ > 0 and let BR be a
ball of radius R centered at x. Then by (4.1) and the bounds in Proposition 2.4,

∣∣∣uδ(x, t2) − uδ(x, t1)
∣∣∣ ≤ |BR ∩ Ω|−1

∫

BR∩Ω

∣∣uδ(y, t2) − uδ(y, t1)
∣∣ dy + C(τ)R1/2

≤ CR−3
∫ t2

t1

∫

BR∩Ω

∣∣uδ
t (y, t)

∣∣ dydt + C(τ)R1/2

≤ CR−1/2|t2 − t1|
1/2

[∫ t2

t1

(∫
|uδ

t |
6dy

)1/3

dt

]1/2

+ C(τ)R1/2

≤ CR−1/2|t2 − t1|
1/2

[∫ t2

t1

∫

Ω

(
|∇u̇|2 + |u|2|∇u|2

)
dydt

]1/2

+ C(τ)R1/2

C(τ)
[
R−1/2|t2 − t1|

1/2 + R1/2
]

≤ C(τ)|t2 − t1|
1/4,

(4.2)
if R = |t2 − t1|

1/4. We have used here a uniform pointwise bound for uδ(x, t) for
t ≥ τ , which follows easily from the bounds in Proposition 2.4. The Ascoli–Arzela
theorem therefore applies to show that there is a further subsequence δj → 0 such
that uδj → u uniformly on compact sets in Ω × (0,∞).

It follows easily from the strong convergence ρδ → ρ, uδ → u, that the limit-
ing functions (ρ, u) are indeed weak solutions of (1.5) and (1.6) with initial data
(ρ0, u0). One has only to check that each term in the weak equations for (ρδj , uδj )
converges as δj → 0 to the corresponding term with (ρδj , uδj ) replaced by (ρ, u).
We do note, however, that for the boundary term in (1.6),

∫

∂Ω
K−1(x)uδj (x, t) · ϕ(x, t)dSx −→

∫

∂Ω
K−1(x)u(x, t) · ϕ(x, t)dSx

for each fixed t > 0 by the local uniform convergence uδj (·, t) → u(·, t). Also,

∫ t

0

∫

∂Ω
K−1uδj · ϕdSxdt −→ 0 as t → 0

at a rate which is uniform in δj by an argument which is similar to and simpler
than that given above beginning in (3.9) for the uniform integrability in time of
〈uδj (·, t)〉β . It therefore follows that
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∫ t2

t1

∫

∂Ω
K−1uδj · ϕdSxdt −→

∫ t2

t1

∫

∂Ω
K−1u · ϕdSxdt

as δj → 0 for test functions ϕ and for all times t2 ≥ t1 ≥ 0.
We have now proven the existence of the solution (ρ, u) satisfying the weak

forms (1.5)–(1.6), the pointwise bounds in (1.17), and the Hölder continuity for
u in (1.19). The statements in (1.18) follow immediately from the weak forms
(1.5)–(1.6), and the bounds in (1.21) follow from Proposition 2.4. For example, if
V is an open set with V ⊆ Ω × (0,∞), then the strong convergence of uδj to u in

V implies that u̇δj = u
δj

t +(∇uδj )uδj → u̇ in D′(V ), so that ∇u̇δj → ∇u̇ in D′(V ).
The bound ∫∫

V

σ(t)3|∇u̇δj (x, t)|2dxdt ≤ C(C0 + Cf )θ (4.3)

in Proposition 2.4 then shows that ∇u̇δj ⇀ ∇u̇ weakly in L2(V ), so that ∇u̇
satisfies (4.3) as well. Since V is arbitrary, we conclude that

∫ ∞

0

∫

Ω
σ3|∇u̇|2dxdt ≤ C(C0 + Cf )θ.

A similar argument applies to the other terms in (1.21). Note that if inf ρ0 > 0,

then

∫∫
σ|u̇δj |2dxdt ≤ C(C0 + Cf )θ, so that

∫∫
σ|u̇|2dxdt ≤ C(C0 + Cf )θ, which

proves the last assertion in the statement of Theorem 1.1.
To complete the proof we need to establish the Hölder continuity in (1.19) for

F and ω, which will then imply the strong form of the boundary condition (1.20)
for t > 0. To do this we first prove the bound

∫
ρδ(x, t)|u̇δ(x, t)|6dx ≤ C(τ) (4.4)

for t ≥ τ > 0, where C(τ) is again independent of δ. The proof of (4.4) is straight-
forward but formidably technical, and parallels the proof of (2.5): we differentiate
the second equation in (1.1) to obtain an evolution equation for |u̇|6, then inte-
grate. We omit the details. Taking (4.4) as given, we then apply Lemma 2.3(c)
and the bounds in Proposition 2.4 to obtain that

〈F δ(·, t), ωδ(·, t)〉
1/2

Ω
≤ C‖∇F δ(·, t),∇ωδ(·, t)‖L6(Ω)

≤ C(τ)

for t ≥ τ > 0. The proof of Hölder continuity in time follows by an argument
similar to that given above in (4.2) for uδ, except that the weaker information

∫ t2

t1

∫

Ω

(
(F δ

t )2 + |ωδ
t |

2
)

dxdt ≤ C(τ)

for t2 ≥ t1 ≥ τ > 0 results in an estimate for the slightly weaker seminorm
〈F δ, ωδ〉1/2,1/8. ¤
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