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Abstract. In this paper we consider the Cauchy problem for incompressible flows governed by
the Navier–Stokes or MHD equations. We give a new proof for the time decay of the spatial L2

norm of the solution, under the assumption that the solution of the heat equation with the same
initial data decays. By first showing decay of the first derivatives of the solution, we avoid some
technical difficulties of earlier proofs based on Fourier splitting.
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1. Introduction

The aim of this paper is to give a new proof for the decay in time of the spatial
L2 norm of the solutions of the incompressible Navier–Stokes or MHD equations
when initial data are given on all space. Up to some limit exponent, the decay rate
is the same as for the solution of the (vector) heat equation with the same initial
data. The main difference from earlier proofs, which used the Fourier splitting
method [8, 11], is that we use a decay estimate of first derivatives in L2. More
precisely, we show that1

H2
1 (t) :=

∑
j

‖Dju(·, t)‖2 ≤ C(1 + t)−1, Dj = ∂/∂xj , (1.1)

in N = 3 space dimensions, and a slightly stronger estimate for N = 2. See
Theorem 1.3. Once this is established, the decay of

H2
0 (t) = ‖u(·, t)‖2 (1.2)

∗Supported by NSF Grant DMS-9971772.
†Supported by DOE Grant DE-FG03-95ER25235.
1 We denote the spatial L2-norm by ‖u‖ = (

∫ |u(x)|2dx)1/2. Here |u| denotes the Euclidean
norm of a vector. Constants C may depend on the initial data u0 but not on t. They may have
different values at different occurrences.
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follows from Duhamel’s principle, standard heat equation estimates, and Gronwall-
type arguments.

To give a more specific outline of the paper, consider the incompressible MHD
equations,

Bt + v · ∇B −B · ∇v =
1

Rm
∆B (1.3)

vt + v · ∇v − SB · ∇B +∇
(
p +

1
2

S|B|2
)

=
1

Re
∆v (1.4)

∇ ·B = ∇ · v = 0 (1.5)

Here B, v, and p denote the non-dimensionalized magnetic field, fluid velocity,
and fluid pressure, respectively. The non-dimensional numbers are the Reynolds
number, Re, the magnetic Reynolds number, Rm, and S = M2/ReRm, where M
is the Hartman number [8]. For simplicity of presentation, and without restriction,
we assume Re = Rm = S = 1.

At t = 0 we prescribe initial data

u(x, 0) :=
(

B(x, 0)
v(x, 0)

)
=

(
B0(x)
v0(x)

)
:= u0(x) . (1.6)

We require u0 ∈ H1, i.e., u0 ∈ L2 and Diu0 ∈ L2, as well as ∇ · B0 = ∇ · v0 = 0.
Under these assumptions the problem (1.3)–(1.6) is known to have a local (in time)
solution u = (B, v), which is C∞ for 0 < t ≤ T and which satisfies Dαu(·, t) ∈ L2

for all derivatives and 0 < t ≤ T . (See, for example, [4, 10] for the development
of a local theory of the Navier–Stokes equations and [3] for derivative estimates.
The same techniques apply to the MHD system.) Since we are interested in decay
for t → ∞, we will always assume existence of a C∞ solution for all t > 0. In
N = 2 space dimensions the existence can be proved (as for the incompressible
Navier–Stokes equations), but for N = 3 and large initial data the problem remains
open.

Our main theorem is the following.

Theorem 1.1. Consider the MHD system (1.3)–(1.6) for N = 2 or N = 3 space
dimensions under the above assumptions. For the solution of the heat equation

ut = ∆u, u(x, 0) = u0(x) , (1.7)

assume the decay estimate

‖e∆tu0‖ ≤ C(1 + t)−κ, t ≥ 0 , (1.8)

for some κ > 0. Then the solution u = (B, v) of (1.3)–(1.6) satisfies

H0(t) = ‖u(·, t)‖ ≤ C(1 + t)−γ , t ≥ 0 , (1.9)

with
γ = min

{
κ,

N

4
+

1
2

}
.
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Sufficient conditions for the decay of the solution of the heat equation are well-
known. For example, in [8] it is shown that the assumption u0 ∈ H1 ∩L1,∇ ·B =
∇· v = 0 yields (1.8) with κ = N

4 + 1
2 . To obtain this result it is important to note

that the spatial average of every component of u0 is zero, a result called Borcher’s
lemma in [8].

We now outline the proof of Theorem 1.1 and the remaining parts of the paper.
First, the following energy equation, which is well-known, can be shown through
integration by parts.

Theorem 1.2. Let u = (B, v) denote the solution of (1.3)–(1.6) where S = Re =
Rm = 1 and let Hj(t) be defined by (1.1), (1.2). Then we have

1
2

d

dt
H2

0 (t) + H2
1 (t) = 0, t ≥ 0 , (1.10)

thus
H0(t) ≤ H0(s) for t ≥ s (1.11)

and ∫ ∞

0

H2
1 (t) dt ≤ 1

2
‖u0‖2 . (1.12)

In addition, by considering (d/dt)H2
1 (t), it is not difficult to prove the following

decay estimate for H2
1 (t).

Theorem 1.3. Under the assumptions of Theorem 1.2 we have

(1 + t)H2
1 (t) ≤ C for N = 2, 3 (1.13)

and
lim

t→∞ tH2
1 (t) = 0 for N = 2 . (1.14)

A proof will be given in Section 2.
As above, denote the solution operator of the (vector) heat equation by e∆t.

We write

u(t) = e∆tu0 +
∫ t

0

e∆(t−s)Q(s) ds (1.15)

where Q contains the nonlinear terms in (1.3), (1.4). Let Q̂(k, t) denote the Fourier
transform of Q(x, t). Then the structure of the nonlinearity Q yields the following
two estimates, for any time s ≥ 0 and any wave vector k:

|Q̂(k, s)| ≤ CH0(s)H1(s) (1.16)

and
|Q̂(k, s)| ≤ C|k|H2

0 (s) . (1.17)

For details, see Section 2.
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Using Parseval’s relation, it is straightforward to show the following estimate
for the solution of the heat equation:

Lemma 1.1. Let û0 ∈ L∞(RN ) and |k|−1û0 ∈ L∞(RN ). Then we have2

‖e∆tu0‖ ≤ Ct−N/4|û0|∞ (1.18)

and
‖e∆tu0‖ ≤ Ct−

N
4 − 1

2 |ŵ0|∞ with ŵ0(k) = |k|−1û0(k) . (1.19)

This auxiliary result is also shown in Section 2.
Now assume decay for the solution of the heat equation with initial data u0,

i.e., assume (1.8). Using (1.15),

‖u(t)‖ ≤ C(1 + t)−κ +
∫ t

0

‖e∆(t−s)Q(s)‖ ds . (1.20)

Lemma 1.1 and the estimates (1.16), (1.17) yield the bounds

‖e∆(t−s)Q(s)‖ ≤ C(t− s)−N/4H0(s)H1(s) (1.21)

and
‖e∆(t−s)Q(s)‖ ≤ C(t− s)−

N
4 − 1

2 H2
0 (s) (1.22)

for the integrand in (1.20). Furthermore, Theorem 1.3 provides a decay estimate
for H1(s), and therefore we obtain two integral inequalities for the function H0(t).
If N = 3, for example, then (1.20), (1.21), and (1.13) yield

H0(t) ≤ C(1 + t)−κ + C

∫ t

0

(t− s)−3/4(1 + s)−1/2H0(s) ds . (1.23)

It is now not difficult to complete the proof of Theorem 1.1 using the stated esti-
mates and Gronwall-type arguments. The details are given in Section 3. Finally,
in Section 4 we briefly discuss extensions of the results and the (minor) simplifi-
cations of the proof that are possible if one is only interested in the Navier–Stokes
equations.

Discussion. The decay results in this paper assume classical, i.e., sufficiently dif-
ferentiable solutions. In particular, in the proof of Theorem 1.3, we use second
space derivatives of the solution. In contrast, Wiegner’s important paper [11] di-
rectly shows decay results for weak solutions of the Navier–Stokes equations. Using
the results of our paper, we can indirectly also obtain decay results for suitably
constructed weak solutions, namely weak solutions that satisfy a generalized en-
ergy inequality, because these weak solutions become classical after a finite time
for N = 3. See [9]. (For N = 2 all weak solutions are classical for t > 0.) The
result for N = 3 follows from the estimates

‖u‖2L3
≤ C‖u‖ ‖Du‖ (1.24)

2 By | · |∞ we denote the supremum norm.
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and
∫∞
0
‖Du‖2 dt < ∞. The integral bound implies that there is a time t0 for

which ‖Du(t0)‖ is small. Then (1.24) implies u(·, t0) to be small in L3. By a
result of Kato [2], the solution starting with the data u(·, t0) at t = t0 is strong
and classical for t > t0 and the generalized energy inequality implies that the weak
and the classical solutions agree for t > t0. In this indirect way, our results also
imply decay for weak solutions. The same arguments apply to the MHD system.

2. Proof of auxiliary results

Proof of Theorem 1.3. Define

H2
2 (t) =

∑
i,j

‖DiDju(·, t)‖2, t > 0 ,

to measure the second derivatives of u in L2. Through integration by parts,
d

dt
H2

1 ≤ C|u|∞H1H2 − 2H2
2 , t > 0 . (2.1)

First let N = 3 and recall the Gagliardo–Nirenberg inequalities ([1, 5])

|u|∞ ≤ CH
1/4
0 H

3/4
2 , H2

1 ≤ CH0H2 . (2.2)

The last estimate yields
H
−1/4
2 ≤ CH

1/4
0 H

−1/2
1 .

Therefore, using (2.1),
d

dt
H2

1 ≤ C|u|∞H1H2 − 2H2
2

≤ CH
1/4
0 H1H

7/4
2 − 2H2

2

= 2H2
2 (CH

1/4
0 H1H

−1/4
2 − 1)

≤ 2H2
2

(
CH

1/2
0 H

1/2
1 − 1

)
(2.3)

We also claim that for any ε > 0 there is a time tε > 0 with

H
1/2
0 (tε)H

1/2
1 (tε) ≤ ε .

For suppose that tε does not exist. Then, for all t ≥ 0,

‖u0‖2H2
1 (t) ≥ H2

0 (t)H2
1 (t) ≥ ε4 > 0 ,

but the lower bound
H2

1 (t) ≥ ε4‖u0‖−2 > 0

contradicts finiteness of the integral,
∫∞
0

H2
1 dt < ∞. See (1.12). Therefore, if

C > 0 is the constant in (2.3) and ε = 1/C, then we have (d/dt)H2
1 (t) ≤ 0 for

t ≥ tε. Thus, for all t > tε,

(t− tε)H2
1 (t) ≤

∫ t

tε

H2
1 ds ≤ C1 < ∞ ,
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which proves tH2
1 (t) ≤ C. Therefore, since we have assumed u0 ∈ H1, the estimate

(1.13) follows for N = 3.
Next let N = 2. Instead of (2.2) we have in 2D

|u|∞ ≤ CH
1/2
0 H

1/2
2 ≤ CH

1/2
2 ,

which yields
d

dt
H2

1 ≤ CH1H
3/2
2 − 2H2

2 .

Using the exponents α = 4, β = 4/3 (satisfying α−1+β−1 = 1) we have by Young’s
inequality

H1H
3/2
2 ≤ CεH

4
1 + εH2

2 ,

and therefore
d

dt
H2

1 ≤ CH4
1 .

Since
∫∞
0

H2
1 dt < ∞ we obtain the bound

H2
1 (t) ≤ CH2

1 (s) for all 0 ≤ s ≤ t ,

or, with γ = 1/C > 0,

H2
1 (s) ≥ γH2

1 (t) for all 0 ≤ s ≤ t .

Now suppose that (1.14) does not hold. Then there is a sequence tn →∞ so that

tnH2
1 (tn) ≥ δ > 0 for all n

and we may assume tn+1 ≥ 2tn. Then we obtain∫ tn+1

tn

H2
1 (s) ds ≥ γ(tn+1 − tn)H2

1 (tn+1)

≥ γδ(tn+1 − tn)/tn+1

= γδ(1− tn/tn+1)
≥ γδ/2

This contradicts
∫∞
0

H2
1 dt < ∞, and (1.14) is proved.

Proof of (1.16) and (1.17). Note that Q contains nonlinear terms v · ∇B etc. and
∇p. The components of the nonlinear terms v ·∇B etc. are sums of terms uiDjul.
Clearly,

|(uiDjul)̂ (k, s)| ≤
∫
|u(x, s)||Dju(x, s)| dx

≤ H0(s)H1(s)

Also, by (1.4) and (1.5), ∆p equals a sum of terms Di(ujDlum), which yields

|(∇p)̂ | ≤ C|(uDu)̂ | ≤ CH0H1 .
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This proves (1.16). The estimate (1.17) follows similarly if one uses that

v · ∇Bi =
∑

j

Dj(vjBi) ,

i.e., the nonlinearities can be written as sums of derivative terms, Dj(uiul).

Proof of Lemma 1.1. By Parseval’s relation,

‖e∆tu0‖2 =
∫

e−2|k|2t|û0(k)|2 dk

≤ ωN |û0|2∞
∫ ∞

0

rN−1e−2r2t dr

= ωN |û0|2∞ t−N/2

∫ ∞

0

ρN−1e−2ρ2
dρ .

Here ω2 = 2π, ω3 = 4π, and we have used the substitution r = t−1/2ρ. This proves
(1.18). The estimate (1.19) follows in the same way.

3. Proof of Theorem 1.1

We will use the following Gronwall-type lemma. Results of this type are well-
known, of course, but a proof is included for completeness.

Lemma 3.1. Let y(t), t ≥ 0, denote a real, nonnegative, continuous function sat-
isfying

y(t) ≤ C(1 + t)−κ + C

∫ t

0

(t− s)−α(1 + s)−βy(s) ds . (3.1)

Then y(t)(1 + t)κ is bounded provided that

0 < κ ≤ α < 1 < α + β . (3.2)

Proof. Set
E(t) = y(t)(1 + t)κ, Emax(t) = max

0≤s≤t
E(s) (3.3)

and multiply (3.1) by (1 + t)κ to obtain

E(t) ≤ C + CEmax(t)(1 + t)κ

∫ t

0

(t− s)−α(1 + s)−β−κ ds .

A) Assume κ < α. We will show below that the factor multiplying Emax(t)
tends to 0 as t →∞. Therefore, there exists t1 with

E(t) ≤ C +
1
2

Emax(t), t ≥ t1 .
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Since E(t) is bounded for 0 ≤ t ≤ t1 we have

E(t) ≤ C1 +
1
2

Emax(t), t ≥ 0 ,

and therefore,

Emax(t) ≤ C1 +
1
2
Emax(t), t ≥ 0 .

This implies E(t) ≤ Emax(t) ≤ 2C1, i.e., E(t) is bounded.
It remains to show that

(1 + t)κ

∫ t

0

(t− s)−α(1 + s)−β−κ ds

tends to 0 as t →∞. Split the integral into I1 + I2 where

I1 =
∫ t/2

0

(t− s)−α(1 + s)−β−κ ds

≤ Ct−α

∫ t

0

(1 + s)−β−κ ds

≤ Ct−α ·



1 if β + κ > 1
ln(e + t) if β + κ = 1

(1 + t)1−β−κ if β + κ < 1

Thus (1 + t)κI1 → 0 as t →∞ since

κ− α < 0 and 1− α− β < 0 .

Also,

I2 =
∫ t

t/2

(t− s)−α(1 + s)−β−κ ds

≤ C(1 + t)−β−κ t1−α .

Therefore, (1 + t)κI2 → 0 as t →∞ since 1− α− β < 0.
B) Assume κ = α. Choose δ > 0 so small that δ−α−β < −1. We may replace

κ in (3.1) by α− δ and obtain from part A) of the proof that

y(t) ≤ C(1 + t)−α+δ, C = Cδ .

Using this bound in the integral in (3.1), we have
∫ t

0

(t− s)−α(1 + s)−βy(s) ds ≤ C

∫ t

0

(t− s)−α(1 + s)δ−α−β ds .

Since δ − α− β < −1 we have
∫ t/2

0

(t− s)−α(1 + s)δ−α−β ds ≤ Ct−α
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and ∫ t

t/2

(t− s)−α(1 + s)δ−α−β ds ≤ C(1 + t)δ−α−β t1−α

≤ Ct−α .

Therefore (3.1) yields y(t) ≤ C(1 + t)−α, completing the proof of the lemma. ¤

Proof of Theorem 1.1, N = 3. We must show that H0(t) = ‖u(t)‖ ≤ C(1 + t)−κ

for 0 < κ ≤ 5
4 . As noted in the introduction (see (1.23)), we have

H0(t) ≤ C(1 + t)−κ + C

∫ t

0

(t− s)−3/4(1 + s)−1/2H0(s) ds .

A) Let 0 < κ ≤ 3
4 . We can apply Lemma 3.1 and obtain H0(t) ≤ C(1 + t)−κ.

B) Let 3
4 < κ ≤ 5

4 . By A) we know that H0(t) ≤ C(1 + t)−3/4. Also, using
(1.20), (1.19), and (1.17),

H0(t) ≤ C(1+t)−κ+C

∫ t/2

0

(t−s)−5/4H2
0 (s)ds+C

∫ t

t/2

(t−s)−3/4(1+s)−1/2H0(s)ds.

The first integral can be bounded as follows,

I1 ≤
∫ t/2

0

(t− s)−5/4(1 + s)−3/2 ds

≤ Ct−5/4

∫ t

0

(1 + s)−3/2ds

≤ Ct−5/4

Since H0(t) is bounded near t = 0, one obtains

H0(t) ≤ C(1 + t)−κ + C

∫ t

t/2

(t− s)−3/4(1 + s)−1/2H0(s) ds .

Define E(t) and Emax(t) as in (3.3) with y(t) = H0(t) and obtain

E(t) ≤ C + CEmax(t)(1 + t)κ

∫ t

t/2

(t− s)−3/4(1 + s)−
1
2−κ ds .

The integral is bounded by C(1+ t)−
1
2−κ t1/4, and therefore the factor multiplying

Emax(t) tends to zero as t → ∞. As in the proof of Lemma 3.1, this yields
boundedness of E(t), and the proof of Theorem 1.1 is complete for N = 3.

Proof of Theorem 1.1, N = 2. We must show that H0(t) = ‖u(t)‖ ≤ C(1 + t)−κ

for 0 < κ ≤ 1.
A) Assume 0 < κ < 1

2 . By (1.20), (1.18), (1.16), and (1.14) we have,

H0(t) ≤ C(1 + t)−κ + C

∫ t

0

(t− s)−1/2(1 + s)−1/2φ(s)H0(s) ds (3.4)
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where φ(s) → 0 as s → ∞. Note that Lemma 3.1 does not apply here since
α = β = 1

2 in (3.4), but α + β > 1 is required in Lemma 3.1. To overcome the
difficulty, we will use the fact that limφ(t) = 0.

Set
E(t) = H0(t)(1 + t)κ, Emax(t) = max

0≤s≤t
E(s) (3.5)

and obtain
E(t) ≤ C + CEmax(t)J(t)

with

J(t) = (1 + t)κ

∫ t

0

(t− s)−1/2(1 + s)−
1
2−κφ(s) ds .

Once we have shown that limt→∞ J(t) = 0, boundedness of E(t) follows as in the
proof of Lemma 3.1. To prove limt→∞ J(t) = 0 we consider

I(t) =
∫ t

0

(t− s)−1/2(1 + s)−
1
2−κφ(s) ds

=
∫ T0

0

· · · +
∫ t/2

T0

· · · +
∫ t

t/2

· · ·

:= I1(t) + I2(t) + I3(t)

For any fixed T0 and all large t we have I1(t) ≤ C(T0)(t− T0)−1/2, thus

(1 + t)κI1(t) → 0 as t →∞
since κ < 1

2 . Also,

I2(t) =
∫ t/2

T0

(t− s)−1/2(1 + s)−
1
2−κφ(s) ds

≤ C
(
max
s≥T0

φ(s)
)

t−1/2
(
1 +

t

2

) 1
2−κ

,

thus
sup
t≥T0

(1 + t)κ I2(t) ≤ C max
s≥T0

φ(s) ≤ ε (3.6)

if T0 is sufficiently large. Furthermore,

I3(t) =
∫ t

t/2

(t− s)−1/2(1 + s)−
1
2−κφ(s) ds

≤ C
(
max
s≥T0

φ(s)
)(

1 +
t

2

)− 1
2−κ

t1/2 ,

thus an estimate like (3.6) holds with I2 replaced by I3. To summarize, we have
shown J(t) → 0 as t →∞, which implies H0(t) ≤ C(1 + t)−κ for 0 < κ < 1

2 .
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B) Let 1
2 ≤ κ < 1. Fix 0 < γ < 1

2 with γ + κ < 1 and note that, by part A) of
the proof, H0(t) ≤ C(1 + t)−γ . By (1.20) and (1.17) we have

H0(t) ≤ C(1 + t)−κ + C

∫ t/2

0

(t− s)−1H2
0 (s) ds (3.7)

+C

∫ t

t/2

(t− s)−1/2(1 + s)−1/2φ(s)H0(s) ds .

Use the estimate H0(s) ≤ C(1+s)−γ for one of the H0-factors in the first integral.
If E(t) and Emax(t) are defined as in (3.5), then one obtains

E(t) ≤ C + CEmax(t)(1 + t)κ

∫ t/2

0

(t− s)−1(1 + s)−γ−κ ds

+CEmax(t)(1 + t)κ

∫ t

t/2

(t− s)−1/2(1 + s)−
1
2−κφ(s) ds .

We claim that the two factors multiplying Emax(t) tend to zero as t →∞. In fact,

I4(t) :=
∫ t/2

0

(t− s)−1(1 + s)−γ−κ ds

≤ Ct−1
(
1 +

t

2

)1−γ−κ

,

thus (1 + t)κI4(t) → 0 since γ > 0. Finally,

I5(t) :=
∫ t

t/2

(t− s)−1/2(1 + s)−
1
2−κφ(s) ds

≤ max
s≥t/2

φ(s)
∫ t

t/2

(t− s)−1/2(1 + s)−
1
2−κ ds

≤ C max
s≥t/2

φ(s)
(
1 +

t

2

)− 1
2−κ

t1/2 ,

thus
(1 + t)κI5(t) ≤ C max

s≥t/2
φ(s) → 0 as t →∞ .

If t is sufficiently large, then E(t) ≤ C + 1
2Emax(t), and the estimate H0(t) ≤

C(1 + t)−κ follows as above.
C) Let κ = 1. Fix 1

2 < γ < 1 and note that H0(t) ≤ C(1 + t)−γ by part B) of
the proof. Therefore, by (3.7),

H0(t) ≤ C(1 + t)−1 + C

∫ t/2

0

(t− s)−1(1 + s)−2γ ds (3.8)

+C

∫ t

t/2

(t− s)−1/2(1 + s)−1/2φ(s)H0(s) ds .



242 H.-O. Kreiss, T. Hagstrom, J. Lorenz and P. Zingano JMFM

The first integral is bounded by Ct−1
∫ t

0
(1 + s)−2γds ≤ C(1 + t)−1, i.e., it decays

like the first term on the right-hand side of (3.8). The remaining arguments are
the same as in part B) of the proof since the relation (1 + t)κI5(t) → 0 as t →∞
also holds for κ = 1. This completes the proof of Theorem 1.1.

4. Discussion and extensions

1. Simplification of the proof for 2D Navier–Stokes. The proof of the crucial decay
estimate tH2

1 (t) → 0 as t →∞ (see Theorem 1.3) is somewhat simpler for the 2D
Navier–Stokes equations than for the MHD system: If ξ = D1u2 −D2u1 denotes
the vorticity, then ‖ξ(t)‖ = H1(t) and (d/dt)H2

1 (t) = −2‖D2u‖2 ≤ 0. Therefore,

tH2
1 (t) → 0 as t →∞

holds since otherwise there is a sequence tj →∞ with

tjH
2
1 (tj) ≥ δ > 0, tj+1 ≥ 2tj ,

thus ∫ tj+1

tj

H2
1 (t) dt ≥ (tj+1 − tj)δ/tj+1 ≥ δ/2 , (4.1)

which contradicts
∫∞
0

H2
1dt < ∞.

2. Estimates of derivatives. The decay estimates for H2
1 (t) stated in Theorem 1.3

are usually not optimal. We presented the theorem only as a starting point for our
proof of decay of H0(t) = ‖u(·, t)‖. Once Theorems 1.1 and 1.3 are shown, one can
improve the decay estimate for H1(t) and can inductively derive decay estimates
for all derivatives. Such a process is carried out in [7] for the Navier–Stokes
equations. See also [6, 9] for other approaches to decay estimates for derivatives
of the solution of the Navier–Stokes equations. The basic result is as follows: Let
Dα = Dα1

1 . . . DαN

N denote any space derivative, thus

Dαu(t) = Dαe∆tu0 +
∫ t

0

Dαe∆(t−s)Q(s) ds . (4.2)

As in our main theorem, we assume ‖e∆tu0‖ ≤ C(1 + t)−κ for the solution of the
heat equation. Then derivatives decay faster,

‖Dαe∆tu0‖ ≤ C1t
−κ− |α|

2

as can be seen from the Fourier representations of e∆tu0 and Dαe∆tu0. (Decay
of solutions of the heat equation can be characterized in terms of the behavior of
the Fourier transform of the initial function at zero wave vector, k = 0. See, for
example, [8].) Then, using Lq–Lr estimates for the solution of the heat equation
together with Gagliardo–Nirenberg inequalities one obtains inductively from (4.2)
that

‖Dαu(t)‖ ≤ C2t
−γ− |α|

2 ,
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where γ = min{κ, N
4 + 1

2}, as in Theorem 1.1.
We note that these decay estimates for the derivatives allow us to estimate the

difference between u(·, t) and the solution of the vector heat equation with initial
data u0. By Duhamel’s principle,

u(t)− e∆tu0 =
∫ t

0

e∆(t−s)Q(s) ds (4.3)

where Q(s) can be estimated in terms of H0(s) and H1(s). In a generic situation,
and assuming u0 ∈ L1 ∩ H1, the L2 norm of the integral in (4.3) decays at the
same rate as ‖e∆tu0‖, namely like t−

N
4 − 1

2 .

3. Other parabolic systems. Theorem 1.1 and its proof can be extended to other
parabolic systems. To give sufficient conditions, let fj : Rn → Rn, 1 ≤ j ≤ N,
denote smooth vector fields with symmetric Jacobian Aj(u) = Dufj(u) and assume
|fj(u)| ≤ C|u|2. Consider the parabolic system

ut +
∑

j

Aj(u)Dju + Dj(Aj(u)u) = Pu (4.4)

where the first order terms have antisymmetric form and the linear constant coef-
ficient operator P satisfies:

P =
∑

j

RjDj +
∑
i,j

VijDiDj ,

P̂ (k) + P̂ ∗(k) ≤ −c|k|2I, c > 0.

Because of ∫
uT Dj(Aj(u)u) dx = −

∫
(Dju

T )Aj(u)u dx

and Aj = AT
j , the nonlinear terms in (4.4) do not change the energy, i.e., the

energy equation (1.10) holds. The estimates (2.1) as well as (1.16) and (1.17) are
also easily shown and the analogue of Lemma 1.1 holds for P . Here Q denotes the
nonlinear terms in (4.4). Note that Aj(u)Dju = Djfj(u), which is used to show
(1.17). Once the estimates (1.10), (1.16), (1.17), and (2.1) are derived, the result
of Theorem 1.1 follows by the proof given in the paper.
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