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Abstract. This paper continues our development of approximation schemes for steady com-
pressible viscous flow based on an iteration between a Stokes like problem for the velocity and a
transport equation for the density, with the aim of improving their suitability for computations.
Such schemes seem attractive for computations because they offer a reduction to standard prob-
lems for which there is already highly refined software, and because of the guidance that can be
drawn from an existence theory based on them. Our objective here is to modify a recent scheme
of Heywood and Padula [12], to improve its convergence properties. This scheme improved upon
an earlier scheme of Padula [21], [23] through the use of a special “effective pressure” in link-
ing the Stokes and transport problems. However, its convergence is limited for several reasons.
Firstly, the steady transport equation itself is only solvable for general velocity fields if they
satisfy certain smallness conditions. These conditions are met here by using a rescaled variant
of the steady transport equation based on a pseudo time step for the equation of continuity.
Another matter limiting the convergence of the scheme in [12] is that the Stokes linearization,
which is a linearization about zero, has an inevitably small range of convergence. We replace it
here with an Oseen or Newton linearization, either of which has a wider range of convergence,
and converges more rapidly. The simplicity of the scheme offered in [12] was conducive to a rel-
atively simple and clearly organized proof of its convergence. The proofs of convergence for the
more complicated schemes proposed here are structured along the same lines. They strengthen
the theorems of existence and uniqueness in [12] by weakening the smallness conditions that are
needed. The expected improvement in the computational performance of the modified schemes
has been confirmed by Bause [2], in an ongoing investigation.
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1. Introduction

In this paper we suggest and analyze several modifications to an iteration scheme
that was introduced by Heywood and Padula [12] for proving the existence of
steady compressible viscous flow, with the aim now of improving its computational
efficiency. As a further result, the existence and uniqueness theorems of [12] are
reproven under effectively weaker hypotheses. It is expected that many of the
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ideas given here will prove useful in treating related and more general problems,
including nonstationary problems. They can, for example, be combined with the
modifications we made in dealing with the superposition of an additional large
potential force, in [3]. For simplicity, we have restricted our considerations to
isothermal flow. The generalization to other types of barotropic flow is straight
forward, as it should also be to the case of an ideal gas with the addition of an
energy equation.

The Poisson–Stokes equations (often referred to as the “compressible Navier–
Stokes equations”) for an isothermal flow in an open bounded domain Ω ⊂ Rd,
d = 2, 3, are

∇ · (ρv) = 0,

ρv · ∇v − µ4v = −∇p + (λ + µ)∇∇ · v + ρf,

p = kρ,

v|∂Ω = 0,
∫
Ω

ρ dx = ρ |Ω|.

(1)

Here, v denotes the velocity of the fluid, ρ its density, and p its pressure, which are
unknowns to be solved for, while f is a prescribed external force density. The mean
density ρ must also be prescribed, and must be positive. The viscosity coefficients
µ and λ are constants satisfying the conditions µ > 0 and 3λ+2µ ≥ 0. (The latter
condition is sometimes replaced by dλ+2µ ≥ 0 in mathematical papers, and could
be here too.) For isothermal flow, k is a positive constant.

A substantial beginning has been made on the mathematical analysis of this
problem and its generalizations, particularly during the last two decades through
the works of Padula [21], [22], [23], [24], [25], [26], [27], Beirão da Veiga [4], Valli
[30], Farwig [6], Novotny [17], [18], Novotny and Padula [19], Novotny and Pileckas
[20], and Heywood and Padula [12], so that the following existence theorem is well
known:

Theorem 1.1. Let Ω be a bounded subdomain of Rd, d = 2, 3, with boundary of
class C2,1. Suppose f ∈ W 1,2(Ω). Then, if ‖f‖1,2 is sufficiently small depending
on Ω, k, µ, λ and ρ, there exists a solution v, ρ of problem (1) with v ∈ W 3,2(Ω)∩
W 1,2

0 (Ω), ρ ∈ W 2,2(Ω) and infΩ ρ > 0. It is found within and unique within a
certain ball ‖v‖3,2 + ‖ρ− ρ‖2,2 ≤ R.

The paper [12] is based on an iterative scheme that seems to us particularly
suggestive of a numerical procedure. It splits the original complicated system into
two standard problems for which there are already highly refined methods of dis-
cretization; see e.g. [5], [9], [28], [29] regarding the Stokes and Oseen problems, and
[14], [15], [16], regarding the transport equation. To describe it, let the problem
(1) be first normalized by dividing ρ, p, µ and λ by ρ and relabeling, so that ρ = 1.
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Then the perturbation in the density is σ = ρ− 1, and we may rewrite (1) as

∇ · v = −∇ · (σv),

(1 + σ)v · ∇v − µ4v = −∇p + (λ + µ)∇∇ · v + (1 + σ)f,

p = k(1 + σ),

v|∂Ω = 0,
∫
Ω

σdx = 0.

(2)

The iteration scheme introduced in [12] is the following:
Scheme HP: Set v0 = 0, σ0 = 0. For given vn and σn, n ≥ 0, compute vn+1

and σn+1 by carrying out the following steps:
(i) Set

gn = −∇ · (σnvn), Fn = (1 + σn) (f − vn · ∇vn) . (3)

(ii) Find vn+1, πn+1 as the solution of the Stokes problem

∇ · vn+1 = gn,

−µ4vn+1 = −∇πn+1 + Fn,

vn+1|∂Ω = 0,
∫
Ω

πn+1dx = 0.

(4)

(iii) Set
Hn+1 = πn+1 − µ∇ · vn+1. (5)

(iv) Find σn+1 as the solution of the transport equation

kσn+1 + (λ + 2µ)∇ · (σn+1vn+1) = Hn+1. (6)

From a computational point of view there are several weaknesses in this scheme
that must be addressed. The most obvious one is that the Stokes linearization used
in problem (4), wherein the nonlinear term is expressed entirely in terms of the
preceding iterate and included in the inhomogeneous term, is too crude. It has
both a small range and slow rate of convergence. There are similar objections
to its use in computing incompressible flow, where experience has shown that it
performs poorly. The other point that must be addressed is that the transport
equation (6) is not generally solvable if vn+1 is large.

One of the modifications we are proposing to the Scheme HP is that the trans-
port equation (6) should be replaced by a more complicated one

(λ + 2µ + εk) σn+1 + (λ + 2µ)∇ · (σn+1εvn+1) = εHn+1 + (λ + 2µ) σn, (7)

depending on a pseudo time step ε that will be specified later. Clearly the scaled
vector field εvn+1 can be made small by taking ε small. We will discuss the
derivation of (7) later in this section.

The other modification being proposed is a refinement of the linearization in the
momentum equation of problem (4). Among the various ways this might be done,
we have chosen three, each quite different from the others, spanning a breadth of
possibilities. Either:
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(A) Set Fn = (1 + σn)f in (3) and replace the momentum equation in (4) by

(1 + σn)vn · ∇vn+1 +
1
2
∇ · ((1 + σn)vn)vn+1 − µ4vn+1 = −∇πn+1 + Fn. (8)

(B) Set Fn = (1 + σn)f in (3) and replace the momentum equation in (4) by

P ((1 + σn)vn) · ∇vn+1 − µ4vn+1 = −∇πn+1 + Fn (9)

where P is an L2-projection onto solenoidal functions, defined below.
(C) Set Fn = (1+σn) (f + vn · ∇vn) in (3) and replace the momentum equation

in (4) by

(1 + σn)vn · ∇vn+1 + (1 + σn)vn+1 · ∇vn − µ4vn+1 = −∇πn+1 + Fn. (10)

We shall frequently refer to problems (8), (9) and (10), meaning the problems
formed by taking these momentum equations together with the supplementary
conditions of problem (4), i.e., ∇ · vn+1 = gn, vn+1|∂Ω = 0, and

∫
Ω

πn+1dx = 0.
We will refer to the corresponding modifications of the Scheme HP, in which only
problem (4) is modified, as Schemes A, B, and C. If, in addition, the transport
equation (6) is replaced by (7), we will refer to the resulting schemes as Schemes
TA, TB and TC.

The first of the alternative linearizations, (8), is Oseen like, and we refer to
it as an Oseen linearization. Notice that the second term on the left can be
expected to vanish in the limit, in view of the continuity equation for steady
solutions. This second term could be done without, but serves to preserve the
energy estimate during iteration, thereby avoiding a smallness condition in the
analysis of the scheme, and probably improving its numerical performance. The
second alternative is based on another Oseen like linearization; this time the energy
preservation during iteration is achieved by use of a certain projection operator.
This projection is expected to act as the identity operator on the limiting solution.
We have included this second Oseen like scheme because its analogue for the
incompressible equations is reported to be useful by Prohl [28], and there are
interesting features to its analysis. The third alternative is a Newton linearization.
It is likely to perform better than the others because of its quadratic rate of
convergence, but its range of convergence is more problematical, the proof of its
convergence requiring an additional smallness condition. We have not included
compensating terms to preserve energy during its iteration since its rapid rate of
convergence makes that less important. Some suggestion (seemingly confirmed in
[2]) of the relative merits of the Stokes, Oseen and Newton linearizations may be
indicated by solving for the lesser root of the quadratic equation v2 − v = f using
the iterations −vn+1 = f − v2

n, or vnvn+1− vn+1 = f, or 2vnvn+1− vn+1 = f + v2
n,

starting with v0 = 0. Notably, the Stokes like iteration only converges for −1/4 ≤
f ≤ 3/4, while the others converge for all f ≥ −1/4.

Let us return to the discussion of the transport equation (7). Its derivation
is precisely like that given for (6) in [12], provided one substitutes the use of the
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pseudo time discretized continuity equation
σn+1 − σn

ε
+∇ · (σn+1vn+1) = −∇ · vn+1 , (11)

for that of the steady continuity equation ∇ · (σn+1vn+1) = −∇ · vn+1. Indeed,
comparing (4) or one of its proposed alternatives with (2), it follows that if the
resulting scheme converges to a solution, vn → v, σn → σ, πn → π, then kσ− (λ +
µ)∇ · v = π . This suggests that one might try determining σn+1 from

kσn+1 − (λ + µ)∇ · vn+1 = πn+1 , (12)

without any need of a transport equation. The resulting simplified scheme, how-
ever, does not converge, losing regularity for reasons that stem from its disregard
of the hyperbolic character of the equation of continuity. Substituting for ∇· vn+1

in (12) its equivalent from (11) results in a transport equation

(λ + µ)
σn+1 − σn

ε
+ kσn+1 + (λ + µ)∇ · (σn+1vn+1) = πn+1 (13)

that can be iterated successfully, provided that (λ + µ)−1 is small. This is an
unnatural condition on the viscosity coefficients which is needed because of a
linear dependence of the iterates on their predecessors, coming through the term
gn in problem (4); see [12], pp. 175, 180. Modifying (13), by adding µ times (11)
to it, results in the transport equation (7) above that can be iterated without
restricting (λ + µ)−1. The key reason for this is that the inhomogeneous term
Hn+1 has Laplacian 4Hn+1 = ∇ · Fn independent of gn; see again [12].

For a treatment of the steady transport equation

kσ +∇ · (σv) = H (14)

suitable for our purposes see Heywood and Padula [13], which was written as an
accompaniment to [12]. An example given at the end of that article shows the
necessity of a restriction on v in order to guarantee the solvability of the equation.
Both the existence theory given in [13] and the computations of Bause [2] are
based on Galerkin approximation.

Our main results are formulated as new proofs of Theorem 1.1 based on the
convergence of the new schemes. Although we state these new results as before,
simply requiring that the data be “sufficiently small”, the conditions of smallness
that enter the proofs appear to be much milder than in [12].

If the data are small, it is natural to expect that the compressible flow problem
(1) should have only one solution. Yet that remains an open question, as does the
related matter of obtaining a general a priori bound on all possible solutions. The
uniqueness asserted in Theorem 1.1 is local in that it applies only to solutions that
might lie within a certain ball ‖v‖3,2 + ‖σ‖2,2 ≤ R. Each of the iterative schemes
we consider has an associated uniqueness theorem, based on the same splitting of
problem (2) into part problems and the same inequalities and values of B and R
as used in the proof of convergence. We give the complete proof of this only for
Scheme A.
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If the norm ‖f‖1,2 of a given force is bounded by the numbers B corresponding
to two of our schemes, then the two corresponding solutions must coincide because
they are both bounded by the larger of the two corresponding values of R, and
hence both subject to a common uniqueness theorem. Thus we can conclude
that all of the solutions we construct using our various iteration schemes are the
same, provided only that the hypotheses are met under which they are proven
to converge. That conclusion would not be possible using only the uniqueness
theorem associated with one scheme, say that of [12].

We think an analogue of Theorem 1.2 can be proven in the topology W 2,p(Ω)×
W 1,p(Ω), for p > d. It is interesting to reflect, though, on the apparent diffi-
culty of identifying two solutions constructed by different schemes, by using their
associated uniqueness theorems, when these theorems are expressed in different
topologies.

It does not seem worthwhile to make a rigorous comparison of the numbers B
and R that appear in the existence and uniqueness theorems associated with each
of our schemes, since sharp constants are not known for many of the inequalities
that are used in the proofs. However, it seems clear from the proofs, and borne
out in numerical experiments, that those for the new schemes all improve upon
the corresponding ones for the Scheme HP.

The modifications to the momentum equation and the transport equation both
add to the complexity of the convergence proofs. For simplicity and to minimize
redundancy we have chosen to establish first the convergence of the schemes that
result from the modifications (A), (B), and (C) to the momentum equation, while
retaining the simpler transport equation (6), giving full details only for (A). The
new transport equation (7) is dealt with in detail only once, in our final result
for the Scheme TA. Schemes TB and TC could be treated similarly. Our main
results, proven in Lemmas 4.1, 4.2, Remark 4.3 and Lemmas 5.1, 6.1 and 6.3 are
summarized in the following theorem.

Theorem 1.2. Theorem 1.1 can be reproven using any of the Schemes A, B, C
or TA. For each scheme there are numbers B and R such that if ‖f‖1,2 ≤ B, then
the iterates satisfy ‖vn‖3,2 + ‖σn‖2,2 ≤ R and converge in W 2,2(Ω) × W 1,2(Ω),
to a solution v ∈ W 3,2(Ω) ∩W 1,2

0 (Ω), σ ∈ W 2,2(Ω), with normalized density ρ =
1 + σ satisfying infΩ ρ > 0. This solution is unique among all solutions satisfying
‖v‖3,2 + ‖σ‖2,2 ≤ R. For the scheme TA, the existence of a suitable pseudo time
step size ε is asserted along with the numbers B and R.

Concerning Scheme TA, it will be seen in Lemma 6.1 that there exists a choice
of B and R independent of ε, for which ε may be set at a seemingly optimal value
depending on R. This is the largest value of ε for which we can prove convergence.
For smaller values of ε, we need to take also smaller values of B and R. This seems
counter intuitive, and suggests that our analysis may not be optimal.

The assumption about the boundary ∂Ω, that ∂Ω ∈ C2,1, is stronger than
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needed. We require that the Stokes problem (29) and the Neumann problem
for the Laplacian (39) have solutions (vn+1, πn+1) ∈ W 3,2(Ω) × W 2,2(Ω) and
ψ ∈ W 3,2(Ω), respectively, for right sides in W 1,2(Ω). Also, the theory of the
transport equation given in [13] utilized the solvability in W 2,2(Ω) of the homoge-
neous Dirichlet problem for the Laplacian, when the right side is in L2(Ω). These
conditions are certainly all satisfied if ∂Ω ∈ C2,1, but are also satisfied by certain
other classes of domains; see, e.g., [10].

The plan for the paper is as follows. We begin by considering Schemes A, B
and C. In §2 we provide and recall some regularity results for Oseen like problems,
and for the transport equation, in the course of tracing through each step of the
iteration process. In §3 we complete the proof that the iterates of Schemes A,
B and C are well defined by showing their boundedness. Their convergence to a
solution is proven in §4. In §5 the uniqueness of the solutions just constructed is
proven within their balls of existence. Finally, in §6, these matters are carried over
to Scheme TA, involving the modified transport equation.

Our notation is standard. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain.
The Lebesgue and Sobolev spaces Lp(Ω), Wm,p(Ω), Wm,p

0 (Ω), for integers m,

are defined as usual. Further, W−m,p′(Ω) is the space that is dual to Wm,p
0 (Ω),

1/p+1/p′ = 1. These spaces are endowed with the standard norms. L2-norms are
denoted simply by ‖ · ‖, while all other norms are distinguished by subscripts. For
example, ‖·‖p denotes the norm for Lp(Ω), and ‖·‖m,p the norm for Wm,p(Ω). We
employ the notation 〈·, ·〉 for the inner product in L2(Ω). L2

0(Ω) is the subspace
of L2(Ω) consisting of functions with vanishing spatial averages. We do not dis-
tinguish through notation between scalar and vector valued functions, or function
spaces, or norms. We will also need the spaces

J0(Ω) = {v ∈ L2(Ω) | ∇ · v = 0 and v|∂Ω · n = 0, weakly},
J1(Ω) = {v ∈ W 1,2

0 (Ω) | ∇ · v = 0},
which are completions of D(Ω) = {v ∈ C∞

0 (Ω) | ∇ · v = 0} with respect to the
norms in L2(Ω) and W 1,2(Ω), respectively. Finally, the L2-projection onto J0(Ω)
will be denoted by P .

2. Regularity lemmas

To prove Theorem 1.2, we will show that the iteration vn, σn → vn+1, σn+1 remains
bounded in W 3,2(Ω)×W 2,2(Ω), and is a contraction in W 2,2(Ω)×W 1,2(Ω). This
will be based on some estimates for subsidiary problems that are provided below
in Lemmas 2.1 to 2.11. It is tacitly assumed in these lemmas that the boundary
has the regularity assumed in Theorem 1.2. The numbered constants c0, . . . , c9

and the generic constant c which are introduced in these lemmas depend at most
on Ω, k, λ and µ in the normalized problem (2), and on the iteration scheme under
consideration. We emphasize this last dependency because a casual reading of
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Lemma 3.1, particularly, may suggest that the constants B and R are the same
for Schemes A and B, which they are not. Rather we have organized the proofs so
that parts of them can be done in common, with a minimum of redundancy. The
reason for numbering some of the constants is for clarity in the proof of Lemma 3.1,
to dispel any question of circular reasoning. Only the estimates with numbered
constants are needed in §3. In §4 and §5, all the constants are treated as generic.

Lemmas 2.1 to 2.11 will be stated in the course of tracing through the regularity
obtained at each intermediate step of our iterative procedure, to be sure that the
next step is well defined. To that end, we will take the conditions

vn ∈ W 3,2(Ω) ∩W 1,2
0 (Ω), σn ∈ W 2,2(Ω), ∇ · (σnvn) ∈ W 2,2(Ω) ∩W 1,2

0 (Ω)
(15)

as induction hypotheses, and show that they are preserved by our iterative proce-
dure, provided that the norms ‖vn‖3,2 remain bounded by a constant c5 introduced
in Lemma 2.9.

In the next section we will add several estimates to the forgoing induction hy-
potheses and prove the boundedness of the iterates, including the bound ‖vn‖3,2 ≤
c5 that is assumed in this section.

Let us begin now by noting that the conditions (15) are satisfied by v0 = 0 and
σ0 = 0. Taking the conditions (15) as induction hypotheses, they are easily seen
to guarantee that the functions gn and Fn defined by (3) satisfy

gn ∈ W 2,2(Ω) ∩W 1,2
0 (Ω), Fn ∈ W 1,2(Ω).

Here, in verifying that Fn ∈ W 1,2(Ω), we use the inequality

‖σf‖1,2 ≤ c0‖σ‖2,2 ‖f‖1,2, for σ ∈ W 2,2(Ω), f ∈ W 1,2(Ω), (16)

which holds in virtue of the Sobolev embedding inequalities with a constant c0

that depends only on Ω.
In order to simplify the notation we introduce the trilinearform

b(φ, ψ, χ) = 1
2 〈φ · ∇ψ, χ〉 − 1

2 〈φ · ∇χ, ψ〉, φ, ψ, χ ∈ W 1,2(Ω),

which is skew-symmetric with respect to ψ and χ, i.e. b(φ, ψ, χ) = −b(φ, χ, ψ).

Lemma 2.1. Let vn ∈ W 2,2(Ω), σn ∈ W 2,2(Ω), gn ∈ L2
0(Ω) and Fn ∈ W−1,2(Ω)

be given. Then, there exists a unique solution vn+1 ∈ W 1,2
0 (Ω), πn+1 ∈ L2

0(Ω) of

〈∇ · vn+1, χ〉 = 〈gn, χ〉 ∀χ ∈ L2(Ω),

b((1 + σn)vn, vn+1, φ) + µ〈∇vn+1,∇φ〉 = 〈πn+1,∇ · φ〉+ 〈Fn, φ〉 ∀φ ∈ W 1,2
0 (Ω).

(17)
Moreover, vn+1 and πn+1 satisfy the estimates

‖vn+1‖1,2 ≤ c(‖Fn‖−1,2 + An‖gn‖), (18)

‖πn+1‖ ≤ c(An‖vn+1‖1,2 + ‖Fn‖−1,2), (19)

where An = (1 + ‖σn‖∞)‖vn‖1,2 + 1.
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Proof. We look for a solution vn+1 of the form

vn+1 = wn+1 + Vn+1,

where wn+1 ∈ J1(Ω) and Vn+1 ∈ W 1,2
0 (Ω) solves (see [7, p. 135])

∇ · Vn+1 = gn, ‖∇Vn+1‖ ≤ c‖gn‖. (20)

We then conclude that wn+1 has to satisfy

A(wn+1, φ) = G(φ), (21)

for all φ ∈ J1(Ω), where

A(wn+1, φ) = b((1 + σn)vn, wn+1, φ) + µ〈∇wn+1,∇φ〉,
G(φ) = 〈Fn, φ〉 − b((1 + σn)vn, Vn+1, φ)− µ〈∇Vn+1,∇φ〉.

(22)

Since b(·, ·, ·) is skew-symmetric with respect to the last two arguments, we have

A(φ, φ) = µ‖∇φ‖2
for all φ ∈ W 1,2

0 (Ω), where µ > 0 by assumption (see §1). By the generalized
Hölder inequality and Sobolev embedding inequalities we deduce that A(·, ·) is
bounded on W 1,2

0 (Ω). Further, these inequalities imply that

|G(φ)| ≤ c
(‖Fn‖−1,2 + (1 + ‖σn‖∞)‖∇vn‖ ‖∇Vn+1‖+ ‖∇Vn+1‖

)‖∇φ‖
for all φ ∈ W 1,2

0 (Ω). Hence, the existence of wn+1 ∈ J1(Ω), satisfying (21), (22),
follows from the theorem of Lax–Milgram by usual arguments. By (20) we obtain

‖wn+1‖1,2 ≤ c
(‖Fn‖−1,2 +

(
(1 + ‖σn‖∞)‖vn‖1,2 + 1

)‖gn‖
)
. (23)

Together (23) and (20) imply that vn+1 ∈ W 1,2
0 (Ω) and prove the assertion (18).

We now consider the functional

F(φ) = A(wn+1, φ)−G(φ), (24)

which is linear and bounded in φ ∈ W 1,2
0 (Ω). By (21), F(φ) vanishes when φ ∈

J1(Ω). Therefore, there exists (see [7, p. 170]) some πn+1 ∈ L2
0(Ω) with

F(φ) = 〈πn+1,∇ · φ〉 ∀ φ ∈ W 1,2
0 (Ω). (25)

The proof of existence of functions vn+1 ∈ W 1,2
0 (Ω) and πn+1 ∈ L2

0(Ω) satisfying
(17) and (18) is thus established. To prove (19), we consider the problem

∇ ·Ψ = πn+1, Ψ ∈ W 1,2
0 (Ω), ‖Ψ‖1,2 ≤ c‖πn+1‖. (26)

Since πn+1 ∈ L2
0(Ω), problem (26) is solvable (see [7, p. 135]). From (26), (25),

(24) and (22) we then deduce that

‖πn+1‖2 = 〈πn+1,∇ ·Ψ〉 = F(Ψ)

= b((1 + σn)vn, vn+1,Ψ) + µ〈∇vn+1,∇Ψ〉 − 〈Fn,Ψ〉
≤ c

(
((1 + ‖σn‖∞)‖vn‖1,2 + 1)‖vn+1‖1,2 + ‖Fn‖−1,2

)‖Ψ‖1,2.

(27)
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Together, (27) and (26) prove (19). Since the equations are linear, the uniqueness
of vn+1 and πn+1 follows directly from (18) and (19) by standard arguments. ¤

The next two lemmas provide estimates for problem (8) of Scheme A.

Lemma 2.2. Let vn ∈ W 2,2(Ω), σn ∈ W 2,2(Ω), gn ∈ W 1,2(Ω) and Fn ∈ L2(Ω)
be given. Then, there exists a unique strong solution vn+1 ∈ W 2,2(Ω) ∩W 1,2

0 (Ω),
πn+1 ∈ W 1,2(Ω) ∩ L2

0(Ω) of problem (8). Moreover, vn+1 and πn+1 satisfy

‖vn+1‖2,2 + ‖πn+1‖1,2 ≤ c(Bn‖Fn‖+ B2
n‖gn‖1,2), (28)

where Bn = (1 + ‖σn‖2,2)‖vn‖2,2 + 1.

Proof. First, Lemma 2.1 ensures that the equations (17) have a unique solution
vn+1, πn+1 in W 1,2

0 (Ω) × L2
0(Ω). Next, employing integration by parts, we note

that problem (17) is equivalent to the weak form of the Stokes system

∇ · vn+1 = G̃, −µ4vn+1 +∇πn+1 = F̃ in Ω,

vn+1|∂Ω = 0,
∫
Ω

πn+1 dx = 0.
(29)

with right sides

G̃ = gn, F̃ = Fn − (1 + σn)vn · ∇vn+1 − 1
2∇ · ((1 + σn)vn

)
vn+1. (30)

Under the assumptions of Lemma 2.2 we have G̃ ∈ W 1,2(Ω). Further, by the
generalized Hölder inequality and Sobolev embedding inequalities it follows that

‖F̃‖ ≤ c
(‖Fn‖+ (1 + ‖σn‖∞)‖vn‖2,2‖vn+1‖1,2 + ‖σn‖2,2‖vn‖1,2‖vn+1‖1,2

)
, (31)

which implies F̃ ∈ L2(Ω). Therefore, the usual regularity results (see [1], Theorem
4) for the Stokes system (29) imply that vn+1 ∈ W 2,2(Ω), πn+1 ∈ W 1,2(Ω) and

‖vn+1‖2,2 + ‖πn+1‖1,2 ≤ c(‖F̃‖+ ‖G̃‖1,2). (32)

Together, the inequalities (32), (31) and (18) prove the assertion (28). This com-
pletes the proof of Lemma 2.2. ¤

Lemma 2.3. Let vn ∈ W 2,2(Ω), σn ∈ W 2,2(Ω), gn ∈ W 2,2(Ω) and Fn ∈ W 1,2(Ω)
be given. Then, there exists a unique solution vn+1 ∈ W 3,2(Ω)∩W 1,2

0 (Ω), πn+1 ∈
W 2,2(Ω) ∩ L2

0(Ω) of problem (8). Moreover, vn+1 and πn+1 satisfy

‖vn+1‖3,2 + ‖πn+1‖2,2 ≤ c1(B2
n‖Fn‖1,2 + B3

n‖gn‖2,2), (33)

where Bn = (1 + ‖σn‖2,2)‖vn‖2,2 + 1.

Proof. Let vn+1 ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω), πn+1 ∈ W 1,2(Ω) ∩ L2

0(Ω) be the unique
solution of problem (8) according to Lemma 2.2. Let G̃ and F̃ be defined by (30).
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By assumption, there holds G̃ ∈ W 2,2(Ω). Further, by the Hölder inequality and
Sobolev embedding inequalities we have

‖∇F̃‖ ≤ c
(‖Fn‖1,2 + (1 + ‖σn‖2,2)‖vn‖2,2‖vn+1‖2,2

)
. (34)

Together with (31), this shows F̃ ∈ W 1,2(Ω). Now, by exactly the same argument
as in the proof of Lemma 2.2 we conclude that vn+1 ∈ W 3,2(Ω), πn+1 ∈ W 2,2(Ω)
and

‖vn+1‖3,2 + ‖πn+1‖2,2 ≤ c(‖F̃‖1,2 + ‖G̃‖2,2). (35)

Combining (35) with (34) and (28) proves the assertion (33). ¤

We now give similar estimates for problem (9) of Scheme B. It needs to be
kept in mind, as mentioned at the beginning of this section, that the constant c1

in the estimate (33) of Lemma 2.4 is different than that of Lemma 2.3.

Lemma 2.4. Let vn ∈ W 2,2(Ω)∩W 1,2
0 (Ω), σn ∈ W 2,2(Ω), gn ∈ W 2,2(Ω) and Fn ∈

W 1,2(Ω) be given. Then, there exists a unique solution vn+1 ∈ W 3,2(Ω)∩W 1,2
0 (Ω),

πn+1 ∈ W 2,2(Ω) ∩ L2
0(Ω) of problem (9). Moreover, vn+1 and πn+1 satisfy the

estimates (28) and (33).

Proof. Suppose, for a moment, that we can show P ((1 + σn)vn) ∈ W 2,2(Ω). Then
it will follow that

〈P ((1 + σn)vn) · ∇φ, φ〉 =
1
2

∫
Ω

P ((1 + σn)vn) · ∇(φ · φ) dx = 0 (36)

for all φ ∈ W 1,2
0 (Ω), since P ((1+σn)vn) is weakly divergence free by the definition

of P . Using (36), the assertions of Lemma 2.4 can be proven in almost exactly
the same way as in Lemma 2.3, beginning with analogues of Lemmas 2.1 and 2.2.
Thus, it only remains to show that P ((1+σn)vn) ∈ W 2,2(Ω) under the assumptions
of this lemma.

First, we note that

∇ · ((1 + σn)vn) ∈ W 1,2(Ω), vn ∈ W 2,2(Ω) ∩W 1,2
0 (Ω), σnvn ∈ W 1,2

0 (Ω). (37)

By assumption, the first two inclusions are obvious. Further, σnvn is the product
of a function belonging to W 1,2(Ω), even to W 2,2(Ω), with a function belonging
to W 2,2(Ω) ∩ W 1,2

0 (Ω). The product of such functions must belong to W 1,2
0 (Ω).

Indeed, given any φ ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω) and any ψ ∈ W 1,2(Ω), we can ap-

proximate ψ in W 1,2(Ω) by functions ψn ∈ C1(Ω). The products ψnφ belong to
W 1,2

0 (Ω), since they belong to W 1,2(Ω)∩C(Ω) and vanish on ∂Ω. Since ψnφ → ψφ
in W 1,2(Ω), it follows that ψφ ∈ W 1,2

0 (Ω).
Next, we recall that (see, e.g., [7, p. 107])

P ((1 + σn)vn) = (1 + σn)vn −∇ψ, (38)
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where ψ is a solution of the Neumann problem

4ψ = ∇ · ((1 + σn)vn) in Ω,
∂ψ

∂ν
= (1 + σn)vn · ν = 0 on ∂Ω. (39)

Since
∫
Ω
∇ · ((1 + σn)vn) dx =

∫
∂Ω

(1 + σn)vn · ν dx = 0, well-known results imply
that problem (39) has a unique solution ψ ∈ W 3,2(Ω) ∩ L2

0(Ω) satisfying

‖ψ‖2+i,2 ≤ c‖∇ · ((1 + σn)vn)‖i,2 (40)

for i ∈ {0, 1}. Together, (38) and (40) imply that P ((1 + σn)vn) ∈ W 2,2(Ω) and

‖P ((1 + σn)vn)‖1+i,2 ≤ c(1 + ‖σn‖2,2)‖vn‖1+i,2 ,

‖P ((1 + σn)vn)‖1+i,2 ≤ c(1 + ‖σn‖1+i,2)‖vn‖2,2 ,
(41)

for i ∈ {0, 1}. This completes the proof of Lemma 2.4. ¤

Finally, we give analogous estimates for problem (10) of Scheme C.

Lemma 2.5. Let vn ∈ W 2,2(Ω), σn ∈ W 2,2(Ω), gn ∈ W 2,2(Ω) and Fn ∈ W 1,2(Ω)
be given. Suppose c2(1 + ‖σn‖2,2)‖vn‖1,2 ≤ αµ for some fixed α ∈ (0, 1), where
c2 is defined in the proof below. Then, there exists a unique solution vn+1 ∈
W 3,2(Ω) ∩ W 1,2

0 (Ω), πn+1 ∈ W 2,2(Ω) ∩ L2
0(Ω) of problem (10). Moreover, vn+1

and πn+1 satisfy the estimates (28) and (33).

Proof. The existence of a unique weak solution of problem (10) can be proven by
standard Galerkin approximation; see, e.g., [8, pp. 14–19] or [11, pp. 650–652]. In
order to understand the smallness condition imposed on vn, σn we do this very
briefly below. The improved regularity together with the estimates (28) and (33)
can then be established in exactly the same way as for the problems (8) and (9).

Analogous to the proof of Lemma 2.1, we look for a weak solution vn+1 of (10)
of the form vn+1 = wn+1 + Vn+1, where wn+1 ∈ J1(Ω), and Vn+1 ∈ W 1,2

0 (Ω) is a
solution of problem (20). We then conclude that wn+1 must satisfy

B(wn+1, φ) + µ〈∇wn+1,∇φ〉 = G(φ), (42)

for all φ ∈ J1(Ω), where

B(wn+1, φ) = 〈(1 + σn)vn · ∇wn+1, φ〉+ 〈(1 + σn)wn+1 · ∇vn, φ〉 ,
G(φ) = 〈Fn, φ〉 − B(Vn+1, φ)− µ〈∇Vn+1,∇φ〉 .

In order to show the existence of a solution wn+1 of (42), we denote by {ψk}
a denumerable set of solenoidal functions of D(Ω) whose linear hull is dense in
J1(Ω). We normalize them so 〈ψj , ψk〉 = δjk. For each m = 1, 2, . . . we then look
for an approximate solution wm

n+1 =
∑m

k=1 ξkmψk that satisfies, for k = 1, . . . , m,
the equations

B(wm
n+1, ψk) + µ〈∇wm

n+1,∇ψk〉 = G(ψk). (43)
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Relation (43) represents a system of linear equations in the m unknowns ξkm,
k = 1, . . . , m. Multiplication of (43) by ξkm and summation gives

µ‖∇wm
n+1‖2 = G(wm

n+1)− B(wm
n+1, w

m
n+1). (44)

By Hölder’s inequality, Sobolev embedding inequalities and the relation (20) we
find

|B(wm
n+1, w

m
n+1)| ≤ c2(1 + ‖σn‖2,2)‖vn‖1,2‖∇wm

n+1‖2,
|G(wm

n+1)| ≤ c
(‖Fn‖−1,2 + (1 + ‖σn‖2,2)‖vn‖1,2‖gn‖+ µ‖gn‖

)‖∇wm
n+1‖.

(45)

Since µ − c2(1 + ‖σn‖2,2)‖vn‖1,2 ≥ (1 − α)µ > 0 by assumption, we conclude
(see, e.g., [7, VIII Lemma 3.2]) from (44) and (45) that problem (43) admits a
solution for all m ∈ N. Moreover, the sequence {wm

n+1} is uniformly bounded
in W 1,2

0 (Ω), and there exists a subsequence, again denoted by {wm
n+1}, and a

field wn+1 ∈ W 1,2
0 (Ω) such that wm

n+1 converges weakly in W 1,2
0 (Ω) to wn+1.

By compactness we choose this subsequence to be one for which wm
n+1 converges

strongly in L2(Ω) to wn+1. Therefore, passing to the limit m → ∞ in (43) and
recalling the density of {ψk} in J1(Ω) we may conclude that wn+1 satisfies (42)
for all φ ∈ J1(Ω). The existence of πn+1 ∈ L2

0(Ω) such that vn+1, πn+1 is a weak
solution of problem (10) then follows by the same arguments as in the proof of
Lemma 2.1. ¤

Next we give estimates for the effective pressure Hn+1 on the right of (5), first
for Schemes A and B.

Lemma 2.6. Suppose vn ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω), σn ∈ W 2,2(Ω), gn ∈ W 2,2(Ω)

and Fn ∈ W 1,2(Ω) are given. Let vn+1 ∈ W 3,2(Ω), πn+1 ∈ W 2,2(Ω) be the unique
solution of problem (8) obtained in Lemma 2.3, or of problem (9) obtained in
Lemma 2.4. Then, Hn+1 defined by (5) belongs to W 2,2(Ω) and satisfies

‖Hn+1‖1,2 ≤ c
(‖Fn‖+

(
(1 + ‖σn‖2,2)‖vn‖1,2 + 1

)‖vn+1‖2,2

)
,

‖Hn+1‖2,2 ≤ c3

(‖Fn‖1,2 +
(
(1 + ‖σn‖2,2)‖vn‖2,2 + 1

)‖vn+1‖3,2

)
,

‖4Hn+1‖ ≤ c4

(‖Fn‖1,2 + (1 + ‖σn‖2,2)‖vn‖2,2‖vn+1‖2,2

)
,

‖4Hn+1‖−1,2 ≤ c
(‖Fn‖+ (1 + ‖σn‖2,2)‖vn‖2,2‖vn+1‖1,2

)
.

(46)

Proof. We give, first, a detailed proof for problem (8) in Scheme A. From inequality
(19) and equation (5) we have

‖Hn+1‖ ≤ c
(‖Fn‖−1,2 +

(
(1 + ‖σ‖∞)‖vn‖1,2 + 1

)‖vn+1‖1,2

)
. (47)

Since −4v = ∇ × ∇ × v − ∇∇ · v, the second equation of (8) together with (5)
implies that

(1 + σn)vn · ∇vn+1+ 1
2∇ · ((1 + σn)vn

)
vn+1+µ∇×∇× vn+1+∇Hn+1 = Fn.

(48)
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Therefore, we deduce by Hölder’s inequality and Sobolev embedding inequalities,

‖∇Hn+1‖ ≤ c
(‖Fn‖+ ‖vn+1‖2,2 + (1 + ‖σn‖2,2)‖vn‖1,2‖vn+1‖2,2

)
(49)

as well as

‖∇2Hn+1‖ ≤ c
(‖Fn‖1,2 + ‖vn+1‖3,2 + (1 + ‖σn‖2,2)‖vn‖2,2‖vn+1‖2,2

)
. (50)

Thus, in virtue of (47) to (50) we have proven the first two inequalities of (46).
Since ∇ · ∇ × w = 0 for any function w ∈ W 2,2(Ω), the identity (48) yields

‖4Hn+1‖ ≤ ‖Fn‖1,2 + c(1 + ‖σn‖2,2)‖vn‖2,2‖vn+1‖2,2,

which proves the third estimate of (46). Finally, using the definition of ‖ · ‖−1,2,
we obtain

‖4Hn+1‖−1,2 ≤ c
(‖Fn‖+ (1 + ‖σn‖2,2)‖vn‖2,2‖vn+1‖1,2

)
.

This completes the proof for Scheme A. Recalling (41), the lemma is proved in
almost exactly the same way for Scheme B. ¤

The estimates (46) are proven similarly also for Scheme C, except that a
smallness condition is required:

Lemma 2.7. In addition to the assumptions of Lemma 2.6 suppose that c2(1 +
‖σn‖2,2)‖vn‖1,2 ≤ αµ is satisfied with α as in Lemma 2.5. Let vn+1 ∈ W 3,2(Ω),
πn+1 ∈ W 2,2(Ω) be the unique solution of problem (10) obtained in Lemma 2.5.
Then, Hn+1 defined by (5) belongs to W 2,2(Ω) and satisfies the estimates (46).

Analyzing the constants in the proof of [13, Theorem 9] carefully, we obtain:

Lemma 2.8. Consider the transport equation

kσ + γ∇ · (σv) = H. (51)

Suppose that v ∈ W 3,2(Ω), v · ν|∂Ω = 0 and k > γ
2 ‖∇ · v‖∞ + 2γ‖Dv‖∞, where

Dv = 1
2

(∇v + (∇v)T
)

and ‖Dv‖∞ = supΩ |
( ∑

i,j(Dv)2i,j
)1/2|. Then, for any

prescribed right side H ∈ W 2,2(Ω), there exists a unique solution σ ∈ W 2,2(Ω) of
equation (51) and it satisfies the estimates

‖σ‖1+i,2 ≤ CD‖H‖1+i,2, i ∈ {0, 1},
‖4σ‖−i,2 ≤ D‖4H‖−i,2 + CD2‖v‖3,2‖H‖2−i,2, i ∈ {0, 1},

with D =
(
k− γ

2 ‖∇·v‖∞−2γ‖Dv‖∞
)−1 and some constants C = C(Ω, γ, ‖v‖3,2,D)

that can be bounded above (monotonically) in terms of Sobolev constants for Ω, γ,
‖v‖3,2 and the constant D.

The reader who checks these constants carefully will find more precisely that
C = c(1 + ‖v‖3,2 + D‖v‖3,2), where c depends on Sobolev constants for Ω and γ.
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However, only the monotonicity of the dependence of C on D and ‖v‖3,2 is needed
in what follows.

Applying now Lemma 2.8 to the transport equation (6) gives:

Lemma 2.9. There exists a positive constant c5, such that if

‖vn+1‖3,2 ≤ c5, (52)

then for any prescribed right side Hn+1 ∈ W 2,2(Ω), there exists a unique solution
σn+1 ∈ W 2,2(Ω) of the transport equation (6), and it satisfies

‖σn+1‖1,2 ≤ c‖Hn+1‖1,2,

‖σn+1‖2,2 ≤ c6‖Hn+1‖2,2,

‖4σn+1‖ ≤ c‖4Hn+1‖+ c‖vn+1‖3,2‖Hn+1‖2,2,

‖4σn+1‖−1,2 ≤ c‖4Hn+1‖−1,2 + c‖vn+1‖3,2‖Hn+1‖1,2.

(53)

Together, equation (6) and the third of these inequalities imply that

‖4∇ · (σn+1vn+1)‖ ≤ c7‖4Hn+1‖+ c8‖vn+1‖3,2‖Hn+1‖2,2. (54)

From the second of the estimates (53) and the transport equation (6), it follows
that∇·(σn+1vn+1) ∈ W 2,2(Ω). Thus, as long as the values of ‖vn+1‖3,2 remain less
than c5, the sequence of functions vn+1, σn+1 will continue to be well defined, and
will satisfy the first two of the induction hypotheses (15), and the first inclusion
of the third hypothesis in (15).

Further, the induction hypothesis ∇ · (σnvn) ∈ W 1,2
0 (Ω) together with the

condition ∇ · vn+1 = −∇ · (σnvn) in the Oseen like problems (8), (9) and (10),
respectively, implies that ∇·vn+1 ∈ W 1,2

0 (Ω). Thus all hypotheses of the following
lemma are satisfied. It guarantees that the second inclusion of the third hypothesis
in (15) is also preserved under iteration.

Lemma 2.10. The conditions vn+1 ∈ W 3,2(Ω) ∩W 1,2
0 (Ω), σn+1 ∈ W 2,2(Ω) and

∇ · vn+1 ∈ W 1,2
0 (Ω) imply that ∇ · (σn+1vn+1) ∈ W 1,2

0 (Ω).

Proof. This is easily proved writing

∇ · (σn+1vn+1) = σn+1∇ · vn+1 + vn+1 · ∇σn+1

and noting that the right side is a sum of terms, each of which is the product of a
function belonging to W 2,2(Ω) ∩W 1,2

0 (Ω) with a function belonging to W 1,2(Ω).
The product of such functions belongs to W 1,2

0 (Ω) which was already shown in the
proof of Lemma 2.4. ¤

This completes the induction argument for the preservation of the conditions
(15), modulo the hypothesis ‖vn+1‖3,2 ≤ c5 of Lemma 2.9, which will be estab-
lished in the next section along with other estimates. There we will also need:
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Lemma 2.11. The solutions vn+1, σn+1 of Lemmas 2.3, 2.4 or 2.5, respectively,
and 2.9 satisfy

‖∇ · (σn+1vn+1)‖2,2 ≤ c9‖4∇ · (σn+1vn+1)‖. (55)

Proof. This is a standard elliptic regularity estimate for ∇· (σn+1vn+1) considered
as the solution ϕ of a Dirichlet problem 4ϕ = ψ ≡ 4∇ · (σn+1vn+1), ϕ|∂Ω = 0.
We know that ψ ∈ L2(Ω) by Lemma 2.9 and that ϕ|∂Ω = 0 by Lemma 2.10. ¤

3. Bounds for the iterates

The following lemma completes the proof that the iterates of the Schemes A and
B are well defined and bounded. The proof is exactly the same for either scheme,
except that the constants c0, . . . , c9 of §2 depend upon the particular scheme under
consideration. In the course of proving it we introduce further constants b1, . . . , b11,
which depend only on Ω, k, λ, and µ in the normalized problem (2), and on the
constants c0, . . . , c9 of §2.

Lemma 3.1. If R,L,B are chosen to satisfy

R ≤ R∗ = min{1, c5/(9c1b1 + 27c1), 1/(2b4), b10, b11}, L = 2b6R
2, B = R2,

(56)
and if ‖f‖1,2 ≤ B, then the iterates vn, σn of the Schemes A and B defined in §1
satisfy the hypothesis (52) of Lemma 2.9 and the estimates

‖vn‖3,2 + ‖σn‖2,2 ≤ R, ‖∇ · (σnvn)‖2,2 ≤ L (57)

as well as the previously considered induction hypotheses (15).

Proof. We take (57) along with (15) as induction hypotheses. During the course
of the proof, we will assume a number of restrictions on the size of L, namely that

L ≤ min{1, R,R/(2b5), 1/(2b7)}. (58)

At the end of the proof, it will be shown that these restrictions are satisfied by L
as defined in (56).

By (3), (16), (56), (57) we have

‖Fn‖1,2 ≤ (1 + c0‖σn‖2,2)‖f‖1,2 ≤ (1 + c0R)‖f‖1,2 ≤ b1R
2,

‖gn‖2,2 = ‖∇ · (σnvn)‖2,2 ≤ L,
(59)

where b1 = 1 + c0. Therefore, the estimate (33), from Lemmas 2.3 and 2.4, yields

‖vn+1‖3,2 ≤ 9c1‖Fn‖1,2 + 27c1‖gn‖2,2 ≤ 9c1b1R
2 + 27c1L. (60)

Using the second of the estimates (46), together with (56), (57), (59) and (60),
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gives
‖Hn+1‖2,2 ≤ c3(‖Fn‖1,2 + 3‖vn+1‖3,2)

≤ c3(b1R
2 + 27c1b1R

2 + 81c1L) = b2R
2 + b3L,

(61)

where b2 = c3(1 + 27c1)b1 and b3 = 81c1c3. The hypothesis of Lemma 2.9, that
‖vn+1‖3,2 ≤ c5, is satisfied in virtue of (60) and the restrictions L ≤ R, R ≤ 1,
and R ≤ c5/(9c1b1 + 27c1). Therefore, from the second of the estimates (53), we
get

‖σn+1‖2,2 ≤ c6b2R
2 + c6b3L. (62)

Combining (60) and (62), we have

‖vn+1‖3,2 + ‖σn+1‖2,2 ≤ b4R
2 + b5L, (63)

where b4 = 9c1b1 + c6b2 and b5 = 27c1 + c6b3. Therefore, vn+1, σn+1 satisfy the
first of the induction estimates (57) in virtue of the restrictions L ≤ R/(2b5) and
R ≤ 1/(2b4).

The second of the estimates (57) is proved by using first Lemma 2.11, then
(54), then the third of the estimates (46) combined with (57) and (59), along with
(61) and (63), and finally the restrictions R ≤ 1, L ≤ 1 and L ≤ R to obtain

‖∇ · (σn+1vn+1)‖2,2 ≤ c9‖4∇ · (σn+1vn+1)‖
≤ c9c7‖4Hn+1‖+ c9c8‖vn+1‖3,2‖Hn+1‖2,2

≤ c9c7c4b1R
2 + 2 c9c7c4R(b4R

2 + b5L) + c9c8(b4R
2 + b5L)(b2R

2 + b3L)

≤ b6R
2 + b7L

2

with suitable definitions of b6 and b7. In virtue of the restriction L ≤ 1/(2b7), we
have b6R

2 + b7L
2 ≤ L, confirming that vn+1, σn+1 satisfy (57), provided that

2b6R
2 ≤ L. (64)

This last requirement is consistent with our preceding restrictions, since those
relating L to R have been linear. Indeed, the restrictions used so far are R ≤
R1 ≡ min{1, c5/(9c1b1 + 27c1), 1/(2b4)} and L ≤ b8 and L ≤ b9R, where b8 =
min{1, 1/(2b7)} and b9 = min{1, 1/(2b5)}. The curve 2b6R

2 = L, bounding the
region (64) in the R,L-plane, intersects L = b8 at R = b10 ≡

√
b8/(2b6), and

intersects L = b9R at R = b11 ≡ b9/(2b6). These then present two additional
restrictions, namely R ≤ b10 and R ≤ b11. If R ≤ R∗ = min{1, c5/(9c1b1 +
27c1), 1/(2b4), b10, b11} and L = 2b6R

2, then L will satisfy all of the restrictions
that have been put upon it.

Therefore, we have reached the desired conclusion that every iterate, either of
Scheme A or of Scheme B, will satisfy (57), provided ‖f‖1,2 ≤ B ≡ R2. This
completes the proof. ¤
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Remark 3.2. In the case of Scheme C we obtain instead of the first inequality in
(59) the estimate

‖Fn‖1,2 ≤ (1 + c0‖σn‖2,2)(‖f‖1,2 + c10‖vn‖22,2),

which then implies ‖Fn‖1,2 ≤ b1R
2 with b1 = 2(1+c0)c10 if ‖f‖1,2 ≤ B = c10R

2 is
supposed. The rest of the proof of Lemma 3.1 also holds for Scheme C. In virtue of
(57) and the restriction R ≤ 1, the solvability condition c2(1 + ‖σn‖2,2)‖vn‖1,2 ≤
αµ of Lemma 2.5 can now be rewritten as R ≤ αµ/(2c2), which then has to be
included in the definition of R∗. Hence, the iterates of Scheme C also satisfy the
hypotheses (15) and the estimates (57). This ensures that they are well defined
and bounded.

4. Convergence of the iterates

It remains to prove the convergence of the iterative schemes. First, we consider
Scheme A. We denote by v′n+1, π′n+1, g′n+1, F ′

n+1, H ′
n+1 and σ′n+1 the differences

v′n+1 ≡ vn+1 − vn etc.. For n ≥ 1, they satisfy the Oseen like problem

∇ · v′n+1 = g′n,

(1 + σn)vn · ∇v′n+1 + 1
2∇ · ((1 + σn)vn)v′n+1 − µ4v′n+1 = −∇π′n+1 + F ′n,

v′n+1|∂Ω = 0,
∫
Ω

π′n+1 dx = 0
(65)

with right sides g′n and F ′n defined by

g′n = −∇ · (σnvn) +∇ · (σn−1vn−1),

F ′n = σ′nf − (1 + σn)v′n · ∇vn − σ′nvn−1 · ∇vn

− 1
2∇ · ((1 + σn)v′n)vn − 1

2∇ · (σ′nvn−1)vn.

(66)

Further, they satisfy the linear equation (5) as well as the transport equation

kσ′n+1 + (λ + 2µ)∇ · (σ′n+1vn+1) = H′n+1, (67)

with right side H′n+1 defined by

H′n+1 = H ′
n+1 − (λ + 2µ)∇ · (σnv′n+1). (68)

Hence, v′n+1, π
′
n+1,H

′
n+1 and σ′n+1 satisfy the estimates of Lemmas 2.2, 2.6 and

2.9, with F ′n replacing Fn in Lemmas 2.2 and 2.6 and H′n+1 replacing H ′
n+1 in

Lemma 2.9.
For convenience, let us also recall from Lemma 3.1, that if R ≤ R∗, and if

‖f‖1,2 ≤ B = R2, (69)

then, for all n ≥ 0 we have

‖vn‖3,2 + ‖σn‖2,2 ≤ R. (70)
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Lemma 4.1. If R and f satisfy the hypotheses of Lemma 3.1 for Scheme A, then

‖v′n+1‖2,2 + ‖σ′n+1‖1,2 ≤ cR
(‖v′n‖2,2 + ‖σ′n‖1,2 + ‖v′n−1‖2,2 + ‖σ′n−1‖1,2

)
, (71)

for all n ≥ 1, where c is a constant that depends only on Ω, k, λ and µ, and
where we have set v′0 ≡ 0 and σ′0 ≡ 0. Under the additional assumption that cR <
1/2, the inequality (71) implies the geometric convergence of the iterates vn, σn of
Scheme A in W 2,2(Ω) × W 1,2(Ω). The limit v, σ belongs to W 3,2(Ω) × W 2,2(Ω)
and satisfies all of the equations and conditions of problem (2).

Proof. From Lemmas 2.2 and 2.9, we have

‖v′n+1‖2,2 ≤ cBn‖F ′n‖+ cB2
n‖g′n‖1,2,

‖σ′n+1‖1,2 ≤ c‖H′n+1‖1,2

(72)

for n ≥ 1, where Bn = (1+‖σn‖2,2)‖vn‖2,2+1. To prove (71) we need to bound the
terms on the right sides of (72) by expressions of the form cR

(‖v′n‖2,2 + ‖σ′n‖1,2 +
‖v′n−1‖2,2 + ‖σ′n−1‖1,2

)
. In the sequel we suppose that R ≤ 1.

Using (69) and (70), we obtain

‖F ′n‖ ≤ c
(‖σ′n‖1,2‖f‖1,2 + (1 + ‖σn‖2,2)‖vn‖2,2‖v′n‖1,2

+‖σ′n‖1,2‖vn−1‖1,2‖vn‖2,2 + ‖σn‖2,2‖vn‖1,2‖v′n‖1,2

+(1 + ‖σn‖2,2)‖vn‖2,2‖v′n‖1,2 + ‖σ′n‖1,2‖vn−1‖2,2‖vn‖2,2

+‖σ′n‖1,2‖vn−1‖2,2‖vn‖1,2

)
≤cR(‖v′n‖1,2 + ‖σ′n‖1,2).

(73)

In estimating g′n, we need to treat separately the case n = 1. Since v0 = 0, and
v′1 = v1, it follows from (66) and (70) that

‖g′1‖1,2 = ‖∇ · (σ1v1)‖1,2 ≤ c‖σ1‖2,2‖v1‖2,2 ≤ cR‖v′1‖2,2, (74)

which provides a suitable estimate for g′1 on the right side of (72).
To estimate g′n for n ≥ 2, we take the difference between the transport equation

(6) for σn and for σn−1 to get

g′n =
k

λ + 2µ
σ′n −

1
λ + 2µ

H ′
n. (75)

Arguing as in the proof of Lemma 2.11, then using (75) and finally the fourth of
the estimates (46) along with (73) and (70), we find

‖g′n‖1,2 ≤ c‖4g′n‖−1,2 ≤ c‖4σ′n‖−1,2 + c‖4H ′
n‖−1,2

≤ c‖4σ′n‖−1,2 + c‖F ′n−1‖+ c(1 + ‖σn−1‖2,2)‖vn−1‖2,2‖v′n‖1,2

≤ c‖4σ′n‖−1,2 + cR(‖v′n−1‖1,2 + ‖σ′n−1‖1,2 + ‖v′n‖1,2).

(76)

The term ‖4σ′n‖−1,2 needs further consideration. From Lemma 2.9 we deduce

‖4σ′n‖−1,2 ≤ c‖4H′n‖−1,2 + c‖vn‖3,2‖H′n‖1,2. (77)



220 M. Bause, J. G. Heywood, A. Novotny and M. Padula JMFM

Substituting (68) into (77) yields

‖4σ′n‖−1,2 ≤ c‖4H ′
n‖−1,2 + c‖4∇ · (σn−1v

′
n)‖−1,2

+c‖vn‖3,2‖H ′
n‖1,2 + c‖vn‖3,2‖∇ · (σn−1v

′
n)‖1,2.

By Lemma 2.6, the inequality ‖∇ · ϕ‖−1,2 ≤ ‖ϕ‖ and (70) we find

‖4σ′n‖−1,2 ≤ c
(‖F ′n−1‖+ (1 + ‖σn−1‖2,2)‖vn−1‖2,2‖v′n‖1,2

)
+c‖σn−1‖2,2‖v′n‖2,2 + c‖vn‖3,2

(‖F ′n−1‖
+((1 + ‖σn−1‖2,2)‖vn−1‖1,2 + 1)‖v′n‖2,2

)
+c‖vn‖3,2‖σn−1‖2,2‖v′n‖2,2

≤ c‖F ′n−1‖+ cR‖v′n‖2,2.

(78)

Substituting (78) into (76) and using (73) gives the desired estimate

‖g′n‖1,2 ≤ cR(‖v′n−1‖1,2 + ‖σ′n−1‖1,2 + ‖v′n‖2,2). (79)

We now obtain the estimate

‖v′n+1‖2,2 ≤ cR(‖v′n‖2,2 + ‖σ′n‖1,2 + ‖v′n−1‖1,2 + ‖σ′n−1‖1,2), (80)

by substituting (73) and (79) into the first of the inequalities (72) and noting (70)
and the restriction R ≤ 1.

It remains to estimate H′n+1 on the right side of (72). Recalling its definition
(68), using Lemma 2.6 and finally (73), (70) and (80), we get

‖H′n+1‖1,2 ≤ ‖H ′
n+1‖1,2 + c‖∇ · (σnv′n+1)‖1,2

≤ c
(‖F ′n‖+ ((1 + ‖σn‖2,2)‖vn‖1,2 + 1)‖v′n+1‖2,2

)
+ c‖σn‖2,2‖v′n+1‖2,2

≤ c‖v′n+1‖2,2 + cR(‖v′n‖1,2 + ‖σ′n‖1,2)

≤ cR(‖v′n‖2,2 + ‖σ′n‖1,2 + ‖v′n−1‖1,2 + ‖σ′n−1‖1,2).
(81)

Together, (80), (72) and (81) imply the assertion (71).
The inequality (71), together with the assumption that cR < 1/2, implies the

geometric convergence of the iterates vn, σn in W 2,2(Ω)×W 1,2(Ω) to a limit v, σ;
see [12], p. 183. Since the iterates are bounded in W 3,2(Ω)×W 2,2(Ω), their limit
must also belong to this space, by a standard argument.

The geometric convergence of (1 + σn)vn · ∇vn+1 and ∇ · ((1 + σn)vn)vn+1 in
L2(Ω) now follows from

‖(1 + σn)vn · ∇vn+1 − (1 + σn−1)vn−1 · ∇vn‖
= ‖(1 + σn)vn · ∇v′n+1 + (1 + σn)v′n · ∇vn + σ′nvn−1 · ∇vn‖
≤ c‖v′n+1‖1,2 + c‖v′n‖1,2 + c‖σ′n‖1,2
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and

‖∇ · ((1 + σn)vn)vn+1 −∇ · ((1 + σn−1)vn−1)vn‖
= ‖∇ · ((1 + σn)vn)v′n+1 +∇ · ((1 + σn)v′n)vn +∇ · (σ′nvn−1)vn‖
≤ c‖v′n+1‖1,2 + c‖v′n‖1,2 + c‖σ′n‖1,2

and the convergence of vn, σn in W 2,2(Ω)×W 1,2(Ω). Further,

‖F ′
n‖ = ‖σ′nf‖ ≤ c‖σ′n‖1,2‖f‖1,2

implies the geometric convergence of Fn in L2(Ω) to some limit F . The convergence
of gn in W 1,2(Ω) to some limit g is a direct consequence of (79) and the convergence
of vn, σn. The geometric convergence of Hn in W 1,2(Ω) to some limit H follows
from Lemma 2.6 combined with (73) and the convergence of vn, σn. Then, equation
(5) yields the convergence of πn in W 1,2(Ω) to some limit π. Thus passing to the
limit in the equations (3), (8), (5) and (6) and setting p = k(1+σ), it is easily seen
that all of the conditions of problem (2) are satisfied. This completes the proof of
Lemma 4.1. ¤

We now consider Scheme B. Instead of (65) and (66) we have

∇ · v′n+1 = g′n,

P
(
(1 + σn)vn

) · ∇v′n+1 − µ4v′n+1 = −∇π′n+1 + F ′n,

v′n+1|∂Ω = 0,
∫
Ω

π′n+1 dx = 0

(82)

with right sides g′n and F ′n defined by

g′n = −∇ · (σnvn) +∇ · (σn−1vn−1),

F ′n = σ′nf − P
(
(1 + σn)v′n

) · ∇vn − P
(
σ′nvn−1

) · ∇vn.
(83)

Further, v′n+1, π′n+1, H ′
n+1 and σ′n+1 satisfy the linear equation (5) as well as the

transport equation (67) with H′n+1 being defined in (68). Therefore, v′n+1, H ′
n+1

and σ′n+1 satisfy the estimates of Lemmas 2.4, 2.6 and 2.9, with F ′n replacing Fn

in Lemmas 2.4 and 2.6 and H′n+1 replacing H ′
n+1 in Lemma 2.9.

Lemma 4.2. If R and f satisfy the hypotheses of Lemma 3.1 for Scheme B, then

‖v′n+1‖2,2 + ‖σ′n+1‖1,2 ≤ cR
(‖v′n‖2,2 + ‖σ′n‖1,2 + ‖v′n−1‖2,2 + ‖σ′n−1‖1,2

)
, (84)

for all n ≥ 1, where c is a constant that depends only on Ω, k, λ and µ, and
where we have set v′0 ≡ 0 and σ′0 ≡ 0. Under the additional assumption that cR <
1/2, the inequality (84) implies the geometric convergence of the iterates vn, σn of
Scheme B in W 2,2(Ω) × W 1,2(Ω). The limit v, σ belongs to W 3,2(Ω) × W 2,2(Ω)
and satisfies all of the equations and conditions of problem (2).
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Proof. Recalling (38) to (41), the assertion (84) can be proven in almost exactly
the same way as its analogue (71) in Lemma 4.1. Hence, it only remains to verify
that P ((1 + σn)vn) · ∇vn+1 converges to (1 + σ)v · ∇v in L2(Ω). Passing to the
limit in the first equation of problem (9) yields that ∇ · ((1 + σ)v) = 0 in L2(Ω).
In virtue of (38) and (39) this implies that P ((1 + σ)v) = (1 + σ)v. Therefore,
recalling (41) we get

‖P ((1 + σn) vn) · ∇vn+1 − (1 + σ)v · ∇v‖
≤ ‖P ((1 + σn)vn) · ∇(vn+1 − v) + P

(
(1 + σn)(vn − v)

) · ∇v‖
+‖P ((σn − σ)v) · ∇v‖

≤ c(1 + ‖σn‖2,2)(‖vn‖2,2‖vn+1 − v‖2,2 + ‖v‖2,2‖vn − v‖2,2)

+c‖σn − σ‖1,2‖v‖22,2

≤ c(‖vn+1 − v‖2,2 + ‖vn − v‖2,2 + ‖σn − σ‖1,2).

In the last inequality we have made use of

‖v‖3,2 + ‖σ‖2,2 ≤ R, (85)

which is a consequence of (57). The convergence of vn, σn in W 2,2(Ω)×W 1,2(Ω)
thus implies that P ((1 + σn)vn) · ∇vn+1 does in fact converge to (1 + σ)v · ∇v in
L2(Ω). This completes the proof of Lemma 4.2. ¤

Remark 4.3. The convergence of Scheme C can be proven in almost exactly the
same way as the convergence of the Schemes A and B in Lemmas 4.1 and 4.2.

In order to be physically reasonable, the density ρ = 1+σ must be everywhere
positive, as claimed in Theorem 1.2 and needed in the proof of uniqueness in §5.
Up to this point, we have not addressed this matter. However, Lemmas 3.1 and
4.1 and Lemmas 3.1 and 4.2, respectively, allow for the setting of further smallness
conditions on the constant R, i.e. on the size of the force. Therefore, we can make
the additional assumption that R is sufficiently small that

‖σ‖2,2 ≤ R implies supΩ |σ| < 1. (86)

Then the positivity of the density is ensured by the conclusion (57) of Lemma 3.1,
which implies (85). This completes the proof of existence claimed in Theorem 1.2.

5. Uniqueness in the ball of existence

The proof of convergence given in Lemmas 4.1 and 4.2, respectively, suggests an
analogous argument for the local uniqueness of the solution that was obtained.
The resulting uniqueness theorem is independent of the existence theorem, in that
it applies to any solutions satisfying the stated hypotheses. The assumption (86)
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can be dropped by simply assuming that the solutions under consideration have
positive densities.

Lemma 5.1. If R and f satisfy the hypotheses of Lemmas 3.1 and 4.1 (Scheme A)
or Lemmas 3.1 and 4.2 (Scheme B) or analogous hypotheses in the case of Scheme
C, respectively, then there can be at most one solution of the problem (2) satisfying
infΩ(1 + σ) > 0 and

‖v‖3,2 + ‖σ‖2,2 ≤ R. (87)

Proof. We only give the proof on the basis of Scheme A, since those for Schemes
B and C are almost exactly the same. Now, given one solution v, σ such as that
obtained in Lemma 4.1 when (86) is assumed, we set

g = −∇ · (σv), F = (1 + σ)f,

p = k(1 + σ), π = p− k − (λ + µ)∇ · v.
(88)

Then, the Oseen like problem

∇ · v = g,

w · ∇v + 1
2 (∇ · w)v − µ4v = −∇π + F,

v|∂Ω = 0,
∫
Ω

π dx = 0

(89)

with w = (1 + σ)v is satisfied. Also, setting

H = π − µ∇ · v, (90)

the transport equation

kσ + (λ + 2µ)∇ · (σv) = H (91)

holds. Although ∇· v = g implies that ∇·w = 0, we retain the term (1/2)(∇·w)v
on the left side of problem (89) in order to have the same type of equations as
those in Lemma 4.1.

If v, σ is a second solution satisfying the hypotheses of the lemma, we define
g, F , p, π,H similarly as in (88) and (90), and then define v′, σ′, g′, F ′, p′, π′,H ′ by
setting v′ = v − v etc.. The differences v′, g′, F ′, π′ satisfy

∇ · v′ = g′,

w · ∇v′ + 1
2 (∇ · w)v′ − µ4v′ = −∇π′ + F ′,

v′|∂Ω = 0,
∫
Ω

π′ dx = 0,

(92)

where w = (1 + σ)v and

g′ = −∇ · (σ v) +∇ · (σv),

F ′ = σ′f − (1 + σ)v′ · ∇v − σ′v · ∇v − 1
2∇ · ((1 + σ)v′)v − 1

2∇ · (σ′v)v.
(93)
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For H ′ an analogue of equation (90) holds. Also, σ′ satisfies the transport equation

kσ′ + (λ + 2µ)∇ · (σ′v) = H′, (94)

with right side
H′ = H ′ − (λ + 2µ)∇ · (σv′). (95)

Repeating step by step the arguments of the previous section from (72) to (81),
we obtain at the end

‖v′‖2,2 + ‖σ′‖1,2 ≤ 2cR(‖v′‖2,2 + ‖σ′‖1,2).

with the constant c defined in (71); for further details see [12, p. 185]. If cR < 1/2,
then v′ = 0 and σ′ = 0. This completes the proof of Lemma 5.1. ¤

6. A relaxed transport equation

The main drawback of the Schemes A, B and C presented in §1 is the requirement
(52) that the velocity field vn+1 has to be small in order to ensure the solvability of
the transport equation (6). We will now show that this restriction can be effectively
eliminated through use of the modified transport equation (7). Its formulation was
suggested by a pseudo-transient interpretation of the time dependent equation of
continuity, as a means of eliminating the condition (52). It can also be viewed as a
numerical relaxation technique applied to the steady state equation of continuity.

In what follows we will prove the convergence of the iterative Scheme TA
obtained by replacing equation (6) in Scheme A with the transport equation (7).
Analogues results can be established for the analogous Schemes TB and TC
in almost exactly the same way. As before, the numbered constants c11, . . . , c18

and b12, . . . , b22 introduced below and the generic constant c depend at most on
Ω, k, λ and µ in the normalized problem (2), and on the particular scheme under
consideration. For clarity of reasoning, we use numbered constants in the proof of
Lemma 6.1. In Lemma 6.3 all the constants are treated as generic.

Lemma 6.1. If R,L,B and ε are chosen to satisfy

R ≤ R∗ = min{1, 1/(2b13), b21, b22}, L = 2b19R
2, B = R2, (96)

ε = ε∗ =
λ + 2µ

c11b12R
, (97)

and if ‖f‖1,2 ≤ B, then the iterates vn, σn of Scheme TA satisfy the estimates

‖vn‖3,2 + ‖σn‖2,2 ≤ R, ‖∇ · (σnvn)‖2,2 ≤ L (98)

as well as the induction hypotheses (15). The smallness assumption about f is
now solely due to the preservation of the bounds (98) under iteration and no longer
dependent solvability requirements for the transport equation (7).
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Proof. We prove that for ε = ε∗ and any prescribed Hn+1 ∈ W 2,2(Ω) the equa-
tion (7) admits a unique solution σn+1 ∈ W 2,2(Ω) without imposing a smallness
condition on vn+1 and, moreover, that the bounds (98) are preserved. As in the
case of Scheme A, it then follows that all of the hypotheses (15) are satisfied. We
take (98) along with (15) as induction hypotheses. Again, we will assume some
restrictions on the size of L, namely that

L ≤ min{1, R,R/(2b14), 1/(2b20)}. (99)

At the end of the proof, it will be shown that these restrictions are satisfied by L
as defined in (96).

Together, (60), (98) and (99) imply that

‖vn+1‖3,2 ≤ 9c1b1R
2 + 27c1L ≤ b12R. (100)

From (61) we get
‖Hn+1‖2,2 ≤ b2R

2 + b3L. (101)

Now, we apply Lemma 2.8 to equation (7) with ε = ε∗. First, by (100) we have
λ+2µ

2 ‖∇ · vn+1‖∞ + 2(λ + 2µ)‖Dvn+1‖∞ ≤ c11‖vn+1‖3,2 ≤ c11b12R

with a suitable definition of c11. Recalling (97), we deduce that

(λ + 2µ + kε∗)− ε∗
(

λ+2µ
2 ‖∇ · vn+1‖∞ + 2(λ + 2µ)‖Dvn+1‖∞

) ≥ kε∗ > 0.

Therefore, it follows that(
(λ + 2µ + kε∗)− (

λ+2µ
2 ‖∇ · (ε∗vn+1)‖∞ + 2(λ + 2µ)‖D(ε∗vn+1)‖∞

))−1

≤ 1
kε∗ .

Hence, according to Lemma 2.8, the modified transport equation (7) has a unique
solution σn+1 ∈ W 2,2(Ω). Moreover, in virtue of (100), the previous inequality
along with (97), and the restriction R ≤ 1, the solution σn+1 satisfies the estimates

‖σn+1‖1+i,2 ≤ c13c14‖Hn+1‖1+i,2 + c13c15R‖σn‖1+i,2,

‖4σn+1‖−i,2 ≤ c14‖4Hn+1‖−i,2 + c15R‖4σn‖−i,2

+c13c14‖vn+1‖3,2(c14‖Hn+1‖2−i,2 + c15R‖σn‖2−i,2)

(102)

for i ∈ {0, 1}, where the constants are defined by

c12 =
c11b12

k(λ + 2µ)
, c13 = C(Ω, λ + 2µ, b12, c12), c14 =

1
k

, c15 =
c11b12

k

with C(·, ·, ·, ·) being introduced in Lemma 2.8. From (102), (101) and (98) we get

‖σn+1‖2,2 ≤ c13(c14b2 + c15)R2 + c13c14b3L. (103)

Together, (100) and (103) yield

‖vn+1‖3,2 + ‖σn+1‖2,2 ≤ b13R
2 + b14L, (104)
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where b13 = 9c1b1+c13(c14b2+c15) and b14 = 27c1+c13c14b3. Therefore, vn+1, σn+1

satisfy the first of the induction estimates (98) in virtue of the restrictions L ≤
R/(2b14) and R ≤ 1/(2b13).

To prove the second of the estimates (98) we first use Lemma 2.11 and then
equation (7) with ε = ε∗ along with (97) and the restriction R ≤ 1 to obtain

‖∇ · (σn+1vn+1)‖2,2 ≤ c9ε
∗−1‖4∇ · (σn+1ε

∗vn+1)‖
≤ c9

λ+2µ‖4Hn+1‖+ c9ε
∗−1‖4σn‖+ c9

λ+2µ (λ + 2µ + kε∗)ε∗−1‖4σn+1‖
≤ c16‖4Hn+1‖+ c17R‖4σn‖+ c18‖4σn+1‖

(105)

with c16 = c9/(λ + 2µ), c17 = c9c11b12/(λ + 2µ) and c18 = c16(c11b12 + k). Next,
from (105) and the second of the estimates (102) we get

‖∇ · (σn+1vn+1)‖2,2 ≤ b15‖4Hn+1‖+ b16R‖4σn‖
+b17‖vn+1‖3,2‖Hn+1‖2,2 + b18R‖vn+1‖3,2‖σn‖2,2,

(106)

where b15 = c16 + c14c18, b16 = c17 + c15c18, b17 = c13c
2
14c18, b18 = c13c14c15c18.

From the third of the estimates (46), (59), (98) and the restriction R ≤ 1 it follows
that

‖4Hn+1‖ ≤ c4b1R
2 + 2c4R‖vn+1‖2,2. (107)

Finally, combining (106) with (107), (104), (101) and (98) and then using the
restrictions L ≤ R and R ≤ 1, we find

‖∇ · (σn+1vn+1)‖2,2 ≤ b19R
2 + b20L

2 (108)

with suitable definitions of b19 and b20. Thus, in virtue of the restriction L ≤
1/(2b20), we have b19R

2 + b20L
2 ≤ L, confirming that vn+1, σn+1 satisfy (98),

provided that 2b19R
2 ≤ L.

Now, by exactly the same arguments as in the proof of Lemma 3.1 we conclude
that if R ≤ R∗ = min{1, 1/(2b13), b21, b22}, where b21 =

√
min{1, 1/(2b20)}/(2b19)

and b22 = min{1, 1/(2b14)}/(2b19), and L = 2b19R
2, then L will satisfy all of the

restrictions that have been put upon it. Therefore, we have reached the desired
conclusion that every iterate of Scheme TA will satisfy (98), provided ‖f‖1,2 ≤ B =
R2. We explicitly note that in the proof of Lemma 6.1 no smallness condition has
been imposed on vn+1 or incorporated in R∗, respectively, in order to ensure the
solvability of the transport equation (7). Its solvability is automatically ensured
by the choice (97) of ε. This completes the proof of Lemma 6.1. ¤

Remark 6.2. (i) From the numerical point of view the choice (97) of ε is not
satisfactory since ε∗ depends on various unknown constants ci = ci(Ω, λ, µ), mainly
Sobolev embedding constants. If ε is chosen as

ε = εn+1 =
1

1
2‖∇ · vn+1‖∞ + 2‖Dvn+1‖∞

, (109)



Vol. 5 (2003) Approximation Schemes for Steady Compressible Viscous Flow 227

then the boundedness (98) and well-posedness of the iterates can be established
in almost exactly the same way as for ε = ε∗. Now the parameter ε = εn+1 no
longer depends on unknown constants. However, the convergence proof given in
Lemma 6.3 below for ε = ε∗ cannot be done in the same way for ε = εn+1. It
remains an open problem to analyze the convergence behavior of the Scheme TA
with ε = εn+1. From the numerical point of view such an “adaptive” choice of the
relaxation parameter ε might be more appropriate and improve the convergence
behavior of the iteration scheme.

(ii) Lemmas 6.1 and 6.3 still hold for

ε = ε∗ ∈
[ 1
N

λ + 2µ

c11b12R
,

λ + 2µ

c11b12R

]
with arbitrary but fixed N ∈ N. Then, R∗ will additionally depend on N . Hence,
since N ∈ N is arbitrary, we may chose ε = ε∗ ∈ (

0, λ+2µ
c11b12R

]
. However, R∗ tends to

zero for increasing N . Therefore, the smallness condition imposed on f will become
stricter the smaller ε∗ is chosen. Since the parameter ε has been interpreted as
a time step size, one would expect that the smallness condition should become
weaker with decreasing ε. Our analysis might not be optimal in this regard.

The following lemma proves the convergence of the Scheme TA with ε = ε∗.

Lemma 6.3. If R, ε and f satisfy the hypotheses of Lemma 6.1, then

‖v′n+1‖2,2 + ‖σ′n+1‖1,2 ≤ cR
(‖v′n‖2,2 + ‖σ′n‖1,2 + ‖v′n−1‖2,2 + ‖σ′n−1‖1,2

)
, (110)

for all n ≥ 1, where c is a constant that depends only on Ω, k, λ, µ and our
choice of scheme, and where we have set v′0 ≡ 0 and σ′0 ≡ 0. Under the additional
assumption that cR < 1/2, the inequality (110) implies the geometric convergence
of the iterates vn, σn of Scheme TA in W 2,2(Ω)×W 1,2(Ω). The limit v, σ belongs
to W 3,2(Ω)×W 2,2(Ω) and satisfies all of the equations and conditions of problem
(2).

Proof. Let v′n+1, π
′
n+1, g

′
n,F ′n,H ′

n+1, H′n+1 and σ′n+1 be defined as in §4. Then,
they satisfy problem (65), (66) and the transport equation

(λ + 2µ + kε∗)σ′n+1+ (λ + 2µ)∇ · (σ′n+1ε
∗vn+1) = ε∗H′n+1+ (λ + 2µ)σ′n. (111)

Hence, v′n+1, π
′
n+1,H

′
n+1 and σ′n+1 satisfy the estimates of Lemmas 2.2 and 2.6

and the inequalities (102), with F ′n replacing Fn in Lemmas 2.2 and 2.6 and H′n+1

replacing H ′
n+1 in (102).

From Lemma 2.2 and the first inequality in (102) we find

‖v′n+1‖2,2 ≤ cBn‖F ′n‖+ cB2
n‖g′n‖1,2,

‖σ′n+1‖1,2 ≤ c‖H′n+1‖1,2 + cR‖σ′n‖1,2

(112)

for n ≥ 1, where Bn = (1 + ‖σn‖2,2)‖vn‖2,2 + 1. As in the proof of Lemma 4.1,
we now need to bound the terms on the right sides of (112) by expressions of the
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form cR
(‖v′n‖2,2 + ‖σ′n‖1,2 + ‖v′n−1‖2,2 + ‖σ′n−1‖1,2

)
. First, by (73) we have

‖F ′n‖ ≤ cR‖v′n‖1,2 + cR2‖σ′n‖1,2. (113)

In estimating g′n, we again treat separately the case n = 1. In virtue of (74),

‖g′1‖1,2 ≤ cR‖v′1‖2,2, (114)

which provides a suitable estimate for g′1 on the right side of (112).
To estimate g′n for n ≥ 2, we take the difference between the transport equation

(7) with ε = ε∗ for σn and for σn−1 to obtain

g′n =
λ + 2µ + kε∗

(λ + 2µ)ε∗
σ′n −

1
λ + 2µ

H ′
n −

1
ε∗

σ′n−1. (115)

Arguing as in the proof of Lemma 2.11 and then using (115) along with (97) and
the restriction R ≤ 1 it follows that

‖g′n‖1,2 ≤ c‖4g′n‖−1,2 ≤ c‖4σ′n‖−1,2 + c‖4H ′
n‖−1,2 + cR‖4σ′n−1‖−1,2.

Applying now the fourth of the estimates (46) along with (113), (98) and the
restriction R ≤ 1, and recalling the inequality ‖∇ · ϕ‖−1,2 ≤ ‖ϕ‖, gives

‖g′n‖1,2 ≤ c‖4σ′n‖−1,2 + cR‖v′n−1‖1,2 + cR‖σ′n−1‖1,2 + cR‖v′n‖1,2. (116)

The term ‖4σ′n‖−1,2 needs further consideration. The second inequality in (102),
with H′n replacing H ′

n, yields

‖4σ′n‖−1,2 ≤ c‖4H ′
n‖−1,2 + c‖4∇ · (σn−1v

′
n)‖−1,2 + cR‖4σ′n−1‖−1,2

+c‖vn‖3,2‖H ′
n‖1,2 + c‖vn‖3,2‖∇ · (σn−1v

′
n)‖1,2 + cR‖vn‖3,2‖σ′n−1‖1,2.

Finally, by Lemma 2.6, the first estimate in (98), and the restriction R ≤ 1, we
find
‖4σ′n‖−1,2 ≤ c

(‖F ′n−1‖+ R‖v′n‖1,2

)
+ c‖σn−1‖2,2‖v′n‖2,2 + cR‖σ′n−1‖1,2

+c‖vn‖3,2(‖F ′n−1‖+ ‖v′n‖2,2) + c‖vn‖3,2‖σn−1‖2,2‖v′n‖2,2

≤ c‖F ′n−1‖+ cR‖v′n‖2,2 + cR‖σ′n−1‖1,2.

(117)

Thus, combining (116), (117), (113) and using the restriction R ≤ 1 yields

‖g′n‖1,2 ≤ cR‖v′n‖2,2 + cR‖v′n−1‖1,2 + cR‖σ′n−1‖1,2. (118)

Together, (112), (113), (114), (118) and the restriction Bn ≤ 3 imply that

‖v′n+1‖1,2 ≤ cR(‖v′n‖2,2 + ‖σ′n‖1,2 + ‖v′n−1‖1,2 + ‖σ′n−1‖1,2). (119)

It remains to estimate H′n+1 in (112). Arguing as in (81), we have

‖H′n+1‖1,2 ≤ c‖v′n+1‖2,2 + cR‖v′n‖2,2 + cR2‖σ′n‖1,2

≤ cR
(‖v′n‖2,2 + ‖σ′n‖1,2 + ‖v′n−1‖1,2 + ‖σ′n−1‖1,2

)
.

(120)

Combining the estimates (119), (112), (120) proves the inequality (110). By the
same arguments as in the proof of Lemma 4.1 we now obtain the convergence of
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vn, σn in W 2,2(Ω) ×W 1,2(Ω) to a solution v, σ of problem (2) with v ∈ W 3,2(Ω)
and σ ∈ W 2,2(Ω). ¤

As we have already seen in Lemma 5.1, the proof of the local uniqueness of
the solution obtained by the iteration procedure can be based on exactly the same
arguments and estimates as used in the existence proof. Therefore, there is no
need to repeat the uniqueness proof again.
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Università di Ferrara
Via Machiavelli 35
44100 Ferrara
Italy
e-mail: pad@dns.unife.it

(accepted: May 17, 2002)


