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Abstract. We improve the classical discrete Hardy inequality for 1 <
p < ∞ for functions on the natural numbers. For integer values of p the
Hardy weight is shown to have a series expansion with strictly positive
coefficients. Notably, this weight is optimal, i.e. critical and null-critical.
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1. Introduction and Main Result

In 1918 Hardy was looking for a simple and elegant proof of Hilbert’s theorem
in the context of the convergence of double sums, [12]. Although it is not
explicitly mentioned, the paper contains the essential argument for his then
famous inequality. In a letter to Hardy in 1921, [20], Landau gave a proof
with the sharp constant

∞∑

n=1

ap
n ≥

(
p − 1

p

)p ∞∑

n=1

(
a1 + a2 + . . . + an

n

)p

for p > 1 where (an) is an arbitrary sequence of non-negative real numbers.
This inequality was first highlighted in [13] and is referred to as a p-Hardy
inequality. Since then various proofs of this inequality were given, where short
and elegant ones are due to Elliott [6] and Ingham, see [13, p. 243] and by
Lefèvre [21]. See also [15] for a beautiful historical survey about the origins
of Hardy’s inequality.

It is not hard to see that the inequality above can be derived from the
following inequality for compactly supported φ ∈ Cc(N) with φ(0) = 0

∞∑

n=1

|φ(n) − φ(n − 1)|p ≥
∞∑

n=1

wH
p (n)|φ(n)|p,

where

wH
p (n) =

(
p − 1

p

)p 1
np

.

In this work, we show that the classical weight wH
p can be replaced by a

pointwise strictly larger weight wp, and the aforementioned Hardy inequality
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holds with wH
p being replaced by wp. Recently, the concept of optimality was

studied for general 1 < p < ∞ on weighted graphs in [7]. Employing these
results, we conclude that wp is optimal, which means that

• for every function w with w ≥ wp and w �= wp, the p-Hardy inequality
does not hold (criticality), and in addition

• u /∈ �p(N, wp), where u(n) = n(p−1)/p, n ∈ N (null-criticality).

The first optimality criterion says that there cannot be a p-Hardy weight
dominating wp. The second optimality criterion says that the underlying
ground state u is not an eigenfunction and so, the Hardy inequality does not
admit a minimizer.

Consequently, by [7, Theorem 2.6], the weight wp is also optimal at
infinity, which means that for every λ > 0 and each finite set K ⊂ N, the
weight (1+λ)wp does not yield a p-Hardy inequality for functions ϕ supported
outside of K. This criterion in particular shows that the constant ((p−1)/p)p

is optimal, a fact already known for a century, cf. [15].
We formulate the main theorem of this paper.

Theorem 1. Let p > 1. Then, for all φ ∈ Cc(N) with φ(0) = 0,
∞∑

n=1

|φ(n) − φ(n − 1)|p ≥
∞∑

n=1

wp(n) |φ(n)|p ,

where wp is a strictly positive function given by

wp(n) =

(
1 −

(
1 − 1

n

) p−1
p

)p−1

−
((

1 +
1
n

) p−1
p

− 1

)p−1

.

Furthermore, wp is optimal, and we have for all n ∈ N

wp(n) > wH
p (n).

Moreover, for integer p ≥ 2, we have wp(n) =
∑

k∈2N0
ckn

−k−p with ck > 0.

Example 2. The case p = 2 was already covered in [16] (with optimality
proven in [17]), and via a different method in [11,19]. In this case one gets
w2(1) = 2 − √

2 and for n ≥ 2

w2(n) = −
∑

k∈2N

(
1/2
k

)
2
nk

=
1
4

1
n2

+
5
64

1
n4

+
21
512

1
n6

+
429

16384
1
n8

+ . . .

In the case p = 3, one obtains w3(1) = 1 − (22/3 − 1)2 and for n ≥ 2

w3(n) =
∑

k∈2N+1

(
2
(

2/3
k

)
−

(
4/3
k

))
2
nk

=
8
27

1
n3

+
8
81

1
n5

+
112
2187

1
n7

+ . . .

In the case p = 4, one gets w4(1) = 1 − (23/4 − 1)3 and for n ≥ 2

w4(n) =
∑

k∈2N+2

(
3
(

3/2
k

)
− 3

(
3/4
k

)
−

(
9/4
k

))
2
nk

=
81
256

1
n4

+
891
8192

1
n6

+
58653

1048576
1
n8

+ . . .
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For general p > 1 one obtains the asymptotics

wp(n) =
(

p − 1
pn

)p (
1 + εp(n)

)
,

where

εp(n) =
(

3
8

− 1
8p

)
1
n2

+
(

215p3 − 38p2 − 31p + 6
1152p3

)
1
n4

+ O

(
1
n6

)
.

From this formula it is clear that wp(n) is strictly larger than the classical
Hardy weight for large n. Note however that the theorem above states that
εp(n) > 0 at all places n ∈ N. It is not hard to check that εp(n) can be
expanded into a power series with respect to 1/n where all odd coefficients
vanish. Theorem 1 states that for integer p ≥ 2 these coefficients are positive.
We conjecture that all these coefficients are strictly positive for all p > 1.

Remark 3. It is easy to see that for 1 < p < ∞, our p-Hardy inequality can
be stated as follows: for every real-valued sequence a = (an), one has

∞∑

n=1

|an|p ≥
(

p − 1
p

)p ∞∑

n=1

(
1 + εp(n)

)
∣∣∣∣∣
1
n

n∑

j=1

aj

∣∣∣∣∣

p

,

where the function εp is as in the previous example. Denoting by C the Cesàro
mean operator on �p(N), defined as C(a) = 1

n

∑n
j=1 aj , the above inequality

says that C : �p(N) → �p(N, ρ) is bounded, where ρ = 1 + εp is understood
as a measure on N. Equivalently, one obtains �p-boundedness of a weighted
version of the Cesàro mean operator. For certain weights, such boundedness
phenomena were studied recently in [22].

2. Proof of the Hardy Inequality

The combinatorial p-Laplacian Δp for real valued functions on N0 is given
by

Δpf(n) =
∑

m=n±1

sgn (f(n) − f(m)) |f(n) − f(m)|p−1

for all functions f and n ≥ 1, where sgn is the function which takes the value
−1 on (−∞, 0), the value 1 on (0,∞) and 0 at 0.

The following proposition shows that the existence of a suitable positive
supersolution of Δpu ≥ 0 implies the non-negativity of the corresponding
energy functional. This is one of the implications of the so-called Allegretto-
Piepenbrink-type theorem (see [1,2,23] for linear versions in the continuum,
[4,18] for a linear version in the discrete setting, [24] for a non-linear version in
the continuum and [8] for a recent version in the quasi-linear discrete setting).
This statement is used to show that the weight wp is in fact a p-Hardy weight.

Proposition 4. Let p > 1 and let u : N0 → [0,∞) be strictly positive on N and
such that u(0) = 0. Suppose that w : N → R satisfies Δpu = wup−1 on N.
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Then for all φ ∈ Cc(N) with φ(0) = 0 we have
∑

n∈N

|φ(n) − φ(n − 1)|p ≥
∑

n∈N

w(n) |φ(n)|p .

The proof follows along the lines of the proof of Proposition 2.2 in [10].

Proof. Let p > 1. From Lemma 2.6 in [10], we obtain for all 0 ≤ t ≤ 1 and
a ∈ C

|a − t|p ≥ (1 − t)p−1(|a|p − t).

Let w be such that Δpu = wup−1. For given ϕ ∈ Cc(N), we can consider
ψ = ϕ/u ∈ Cc(N), by strict positivity of u on N. We assume for a moment
that m,n ∈ N are such that u(n) ≥ u(m) and ψ(m) �= 0. We apply the above
inequality with the choice t = u(m)/u(n) and a = ψ(n)/ψ(m) in order to
obtain
∣∣(uψ)(n) − (uψ)(m)

∣∣p ≥ ∣∣u(n) − u(m)
∣∣p−1(|ψ(n)|pu(n) − |ψ(m)|pu(m)

)
.

Further, since up(n) ≥ |u(n) − u(m)|p−1u(n), the above inequality remains
true even if ψ(m) = 0. Summing over N, we obtain

∑

n∈N

|(uψ)(n) − (uψ)(n − 1)|p

≥
∑

n∈N

sgn(u(n) − u(n − 1)) |u(n) − u(n − 1)|p−1 ·
(|ψ(n)|p u(n) − |ψ(n − 1)|p u(n − 1)

)

=
∑

n∈N

Δpu(n) |ψ(n)|p u(n) =
∑

n∈N

w(n)up(n) |ψ(n)|p .

Note that the latter two equalities follow from rearranging the involved sums
while recalling that u(0) = 0, and using the assumption Δpu = wup−1.
Recalling that φ = uψ, we infer the statement. �

Next we show that for the weight wp on N taken from Theorem 1

wp(n) =
(
1 − (1 − 1/n)(p−1)/p

)p−1

−
(
(1 + 1/n)(p−1)/p − 1

)p−1

,

there is a suitable positive function u such that Δpu = wpu
p−1.

Proposition 5. Let p > 1. Then, the function u : N0 → [0,∞), u(n) = n(p−1)/p

satisfies

Δpu = wpu
p−1 on N.

Proof. One directly checks that for all n ∈ N

Δpu(n)
up−1(n)

=
Δpn

(p−1)/p

n(p−1)2/p
= wp(n)

which immediately yields the statement. �
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The choice of the function u in the previous proposition is motivated by
the so-called supersolution construction which yields optimal p-Hardy weights
both in the continuum case for p > 1, cf. [3,5], as well as for graphs with
p = 2, cf. [17]. Moreover, for p = 2, the function u(n) = n1/2 arises naturally
in the method applied in [11,19] for a proof of the optimal Hardy inequality
on the line graph.

Combining the two propositions above already yields the p-Hardy in-
equality with the weight wp. Next we show that wp is strictly larger than the
classical Hardy weight wH

p (n) =
(
(p − 1)/p

)p
n−p for all n ∈ N.

3. Proof of wp > wH
p

In this section we show that the weight

wp(n) =

(
1 −

(
1 − 1

n

) p−1
p

)p−1

−
((

1 +
1
n

) p−1
p

− 1

)p−1

from the main theorem, Theorem 1, is strictly larger than the classical p-
Hardy weight

wH
p (n) =

(
p − 1

p

)p 1
np

.

In fact, for fixed p ∈ (1,∞), we analyze the function w : [0, 1] → [0,∞)

w(x) =
(
1 − (1 − x)1/q

)p−1

−
(
(1 + x)1/q − 1

)p−1

for x ∈ [0, 1/2] and x = 1, where q ∈ (1,∞) is such that 1/p + 1/q = 1.
Specifically, we show

w(x) >

(
x

q

)p

.

The case x = 1 is simple and is treated at the end of the section. The proof
for x ≤ 1/2 is also elementary but more involved. We proceed by bringing wp

into form for which we then analyze its parts. This will be eventually done
by a case distinction depending on p.

Recall the binomial theorem for r ∈ [0,∞) and 0 ≤ x ≤ 1

(1 ± x)r =
∞∑

k=0

(
r

k

)
(±1)kxk

where
(
r
0

)
= 1,

(
r
1

)
= r and

(
r
k

)
= r(r − 1) · · · (r − k + 1)/k! for k ≥ 2 which

is derived from the Taylor expansion of the function x 
→ (1 ± x)r. Applying
this formula to the function w from above we obtain
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w(x) =

(
−

∞∑

k=1

(
1/q

k

)
(−x)k

)p−1

−
( ∞∑

k=1

(
1/q

k

)
xk

)p−1

=
(

x

q

)p−1
⎛

⎝
(

q

∞∑

k=0

(
1/q

k + 1

)
(−x)k

)p−1

−
(

q

∞∑

k=0

(
1/q

k + 1

)
xk

)p−1
⎞

⎠

To streamline notation we set

g(x) = q
∞∑

k=1

(
1/q

k + 1

)
xk.

Note that since q
(
1/q
1

)
= 1 and q

∣∣∣
(
1/q
k

)∣∣∣ < 1 for k ≥ 2, we have 0 < |g(±x)| < 1

for 0 < x ≤ 1/2. Thus, we can apply the binomial theorem to
(
1+g(±x)

)p−1

in order to get

w(x) =
(

x

q

)p−1 ((
1 + g(−x)

)p−1 − (
1 + g(x)

)p−1
)

=
(

x

q

)p−1
( ∞∑

n=0

(
p − 1

n

)(
gn(−x) − gn(x)

)
)

=
(

x

q

)p−1
((

p − 1
1

)(
g(−x) − g(x)

)
+

∞∑

n=2

(
p − 1

n

)(
gn(−x) − gn(x)

)
)

Thus, we have to show that the second factor on the right hand side is
strictly larger than x/q. Using q = p/(p−1) we compute the first term in the
parenthesis on the left hand side
(

p − 1
1

)(
g(−x) − g(x)

)
= q(p − 1)

∞∑

k=1

(
1/q

k + 1

) (
(−x)k − xk

)

=
q(p − 1)(1/q)(1/q − 1)

2
(−2x) + q(p − 1)

∞∑

k=2

(
1/q

k + 1

)(
(−x)k − xk

)

=
x

q
− 2p

∑

k∈2N+1

(
1/q

k + 1

)
xk

=
x

q
+ Ep(x),

with

Ep(x) = −2p
∑

k∈2N+1

(
1/q

k + 1

)
xk > 0

since −2p
(
1/q
k+1

)
> 0 for odd k and x > 0. So, it remains to show that for the

term

Fp(x) =
∞∑

n=2

(
p − 1

n

)(
gn(−x) − gn(x)

)
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we have for 0 < x ≤ 1/2

Ep(x) + Fp(x) > 0.

Specifically, we then get with the substitution x = 1/n

wp(n) = w(1/n) =
(

1
nq

)p−1 (
1
nq

+ Ep(1/n) + Fp(1/n)
)

>
1

(nq)p
= wH

p (n)

for n ≥ 2.

Remark 6. It is not hard to see that Fp ≥ 0 whenever p ∈ N is integer
valued. Indeed, g(−x) ≥ g(x) as all terms in the sum g(−x) are positive
since −(

1/q
k+1

) ≥ 0 for odd k, while the terms in g(x) alternate, (they are
positive for even k and negative for odd k). Moreover for positive integers
p the binomial coefficients

(
p−1
n

)
are positive. Thus, the Hardy weight we

computed is larger than the classical one for integer p.

Let us now turn to the proof of

Ep(x) + Fp(x) > 0

for p ∈ (1,∞) and 0 < x ≤ 1/2.
We collect the following basic properties of the function g which were

partially already discussed above and will be used subsequently.

Lemma 7. For p ∈ (1,∞) and 0 < x ≤ 1/2, we have

−1 < g(x) < 0 < −g(x) < g(−x) < 1.

Proof. The function g is given by g(x) = q
∑∞

k=1

(
1/q
k+1

)
xk. Since q > 1, the

coefficients bk = q
(
1/q
k+1

)
are negative for odd k and positive for even k. Fur-

thermore, the sequence (|bk|) takes values strictly less than 1 and decays
monotonically. Thus, the asserted inequalities follow easily. �

We distinguish the following three cases depending on p for which the
arguments are quite different:

• p lies between an odd and an even number with the subcases:
• p ∈ [3,∞)
• p ∈ (1, 2]

• p lies between an even and an odd number.

Here, for a, b ∈ N, we say that p is between a and b if a ≤ p ≤ b.
We start with investigating the case of p lying between an odd and an

even number. To this end we consider two subsequent summands as they
appear in the sum given by Fp and show that they are positive. (Indeed the
sum in Fp starts at n = 2 but we also consider the corresponding term for
n = 1.)

Lemma 8. Let p be between an odd and an even integer. Then, for all 0 <
x ≤ 1/2 and odd n ∈ 2N − 1

(
p − 1

n

)(
gn(−x) − gn(x)

)
+

(
p − 1
n + 1

)(
gn+1(−x) − gn+1(x)

) ≥ 0.
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Proof. Let p be between an odd and an even integer. We first consider n <
p−1. In the case k ≤ p−1, we have

(
p−1
k

) ≥ 0. So, the statement for n < p−1
follows directly from Lemma 7 as |g(x)| < 1 for 0 < x ≤ 1/2. (Observe that
n + 1 ≤ p − 1 for n < p − 1 and n ∈ 2N − 1 as p is between an odd and an
even integer.)

On the other hand, for odd n ∈ 2N − 1 with n ≥ p − 1,
(

p − 1
n

)
≥ −

(
p − 1
n + 1

)
≥ 0.

From Lemma 7 we know that gn+1(x) ≥ 0 ≥ gn(x) for odd n ∈ 2N − 1 and
0 ≤ x ≤ 1/2.

We obtain
(

p − 1
n

)(
gn(−x) − gn(x)

)
+

(
p − 1
n + 1

)(
gn+1(−x) − gn+1(x)

)

=
(

p − 1
n

)(
gn(−x) − gn(x)

) −
∣∣∣∣

(
p − 1
n + 1

)∣∣∣∣
(
gn+1(−x) − gn+1(x)

)

≥
(

p − 1
n

)
gn(−x) −

∣∣∣∣

(
p − 1
n + 1

)∣∣∣∣ gn+1(−x)

≥
∣∣∣∣

(
p − 1
n + 1

)∣∣∣∣
(
gn(−x) − gn+1(−x)

)

≥ 0,

where the last inequality follows from 0 ≤ g(−x) < 1 for 0 ≤ x ≤ 1/2 thanks
to Lemma 7. �

With Lemma 8 we can treat the case of p ≥ 3 lying between an odd and
an even number. This is done in the next proposition.

Proposition 9. Let p ≥ 3 be between an odd and an even integer. Then, for
all 0 < x ≤ 1/2 we have Fp(x) ≥ 0 and

Ep(x) + Fp(x) > 0.

In particular, wp(n) > wH
p (n) for n ≥ 2.

Proof. We can write Fp(x) =
∑∞

n=2

(
p−1
n

)(
gn(−x) − gn(x)

)
as

Fp(x) =
(

p − 1
2

)(
g2(−x) − g2(x)

)

+
∞∑

n∈2N+1

((
p − 1

n

)(
gn(−x) − gn(x)

)
+

(
p − 1
n + 1

)(
gn+1(−x) − gn+1(x)

))

By Lemma 8 the terms in the sum on the right hand side are all positive.
Furthermore,

(
p−1
2

) ≥ 0 for p ≥ 3 and g(−x) ≥ |g(x)| by Lemma 7. Thus, also
the first term on the right hand side is positive as well and Fp ≥ 0 follows.
From the discussion in the beginning in the section we take Ep(x) > 0 for
0 < x ≤ 1/2. The ”in particular“ follows from the discussion above Lemma 7.

�
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Note that we cannot treat the case 1 ≤ p ≤ 2 in the same way since
the sum in Fp starts at the index n = 2. Hence, there is still a negative term(
p−1
2

)(
g2(−x) − g2(x)

)
. We deal with this case, 1 ≤ p ≤ 2, next.

We denote the Taylor coefficients of x 
→ g(−x) by ak, i.e.,

g(−x) = q

∞∑

k=1

(
1/q

k + 1

)
(−x)k =

∞∑

k=1

akx
k,

g(x) = q
∞∑

k=1

(
1/q

k + 1

)
xk =

∞∑

k=1

ak(−1)kxk.

The function Ep(x) = −2p
∑

k∈2N+1

(
1/q
k+1

)
xk is odd and, therefore, we have

Ep(x) = 2(p − 1)
∞∑

n=1

a2n+1x
2n+1.

Furthermore, recall that Ep(x) > 0 for x > 0, since −2p
(
1/q
k+1

)
> 0 for odd k.

Lemma 10. Let p ≥ 1 and 0 ≤ x ≤ 1/2. Then,

g(−x) + g(x) ≤ 4
9

· (p + 1)
p2

x2.

Proof. We calculate using a2 ≥ an for n ≥ 2, the geometric series, x ≤ 1/2
and the specific value of the Taylor coefficient a2 = q

(
1/q
3

)
= (p+1)

6p2

g(−x) + g(x) = 2
∞∑

k=1

a2kx
2k ≤ 2a2

x2

1 − x2
≤ 8

3
a2x

2 =
4
9

· (p + 1)
p2

x2. �

With the help of this lemma and Lemma 8 we can treat the case p ∈
(1, 2].

Proposition 11. Let p ∈ (1, 2]. Then, for all 0 < x ≤ 1/2, we have

Ep(x) + Fp(x) > 0.

In particular, wp(n) > wH
p (n) for n ≥ 2.
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Proof. We show Ep + Fp > 0 and deduce the “in particular” from the dis-
cussion above Lemma 7. By Lemma 8 we have for all 0 < x ≤ 1/2

Fp(x) =
(

p − 1
2

)(
g2(−x) − g2(x)

)
+

∞∑

n∈2N+1

((
p − 1

n

)(
gn(−x) − gn(x)

)

+
(

p − 1
n + 1

)(
gn+1(−x) − gn+1(x)

))

≥
(

p − 1
2

)(
g2(−x) − g2(x)

)

=
p − 2

2
(
g(−x) + g(x)

) (
Ep(x) +

p − 1
p

x

)

≥2
9

· (p − 2)(p + 1)
p2

(
Ep(x) +

p − 1
p

x

)
· x2

≥ − 1
9
Ep(x) +

2
9

· (p − 2)(p − 1)(p + 1)
p3

· x3

where we used the definition of Ep, i.e., (p−1)
(
g(−x)−g(x)

)
= Ep(x)+ p−1

p x

and Lemma 10 which is justified since Ep(x) > 0 and p − 2 < 0. Moreover,
in the last step we estimated the coefficient of the first term in its minimum
in p = 1 and x = 1/2.

Now, we use the representation of Ep as a power series to estimate

Ep(x) = −2p
∑

k∈2N+1

(
1/q

k + 1

)
xk ≥ −2p

(
1/q

4

)
x3 =

(p − 1)(p + 1)(2p + 1)
12p3

x3.

Putting this together with the estimate on Fp above, we arrive at

Ep(x) + Fp(x) ≥ 8
9
Ep(x) +

2
9

· (p − 2)(p − 1)(p + 1)
p3

· x3

≥
(

8
9

(p − 1)(p + 1)(2p + 1)
12p3

+
2
9

· (p − 2)(p − 1)(p + 1)
p3

)
· x3

=
10(p − 1)2(p + 1)

27p3
· x3

Hence, it remains to consider the case of p between an even and an odd
integer for which we need the following three lemmas.

Lemma 12. Let p, q ≥ 1 such that 1/p + 1/q = 1 and k ≥ 2. Then,

ak = q

∣∣∣∣

(
1/q

k + 1

)∣∣∣∣ ≥ 1
pk(k + 1)

=
1

q(p − 1)k(k + 1)
.
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Proof. We calculate using 1/p + 1/q = 1

q

∣∣∣∣

(
1/q

k + 1

)∣∣∣∣ =
(1 − 1/q)(2 − 1/q)(3 − 1/q) · · · (k − 1/q)

(k + 1)!

=
1

pk(k + 1)
(1 + 1/p)(2 + 1/p) · · · ((k − 1) + 1/p)

(k − 1)!

=
1

pk(k + 1)

(
1 +

1
p

) (
1 +

1
2p

)
· · ·

(
1 +

1
(k − 1)p

)

≥ 1
pk(k + 1)

.

Lemma 13. Let p, q ∈ (1,∞) such that 1/p+1/q = 1 and k ∈ N, k > p. Then,
∣∣∣∣

(
p − 1

k

)∣∣∣∣ ≤ 1
4(p − 1)

=
(q − 1)

4
.

Proof. Let n ∈ N be such that n − 1 ≤ p ≤ n. Moreover, let γ = p − (n − 1),
i.e., 1 − γ = n − p, so, γ ∈ [0, 1]. Since k > p and n, k ∈ N, we have that
k ≥ n and therefore,

∣∣∣∣

(
p − 1

k

)∣∣∣∣ =
∣∣∣∣
(p − 1)(p − 2) · · · (p − (n − 1))(p − n) · · · (p − k)

k!

∣∣∣∣

=

∣∣∣∣∣

(
p − 1
n − 1

) (
p − 2
n − 2

)
· · ·

(
p − (n − 1)

)

1

(
p − n

n

)
· · ·

(
p − k

k

)∣∣∣∣∣

≤
∣∣∣∣
(p − (n − 1))(p − n)

n

∣∣∣∣ =
γ(1 − γ)

n
≤ 1

4(p − 1)
=

(q − 1)
4

.

Lemma 14. For 0 < x ≤ 1/2 and q > 1, we get

g(−x) ≤ (q − 1)(5q − 1)
6q2

x.

Proof. We calculate using a2 ≥ ak for k ≥ 2

g(−x) = q

(∣∣∣∣

(
1/q

2

)∣∣∣∣ +
∞∑

k=1

∣∣∣∣

(
1/q

k + 2

)∣∣∣∣ xk

)
x

≤ q

(∣∣∣∣

(
1/q

2

)∣∣∣∣ +
∞∑

k=1

∣∣∣∣

(
1/q

k + 2

)∣∣∣∣ 2−k

)
x

≤ q

(∣∣∣∣

(
1/q

2

)∣∣∣∣ +
∣∣∣∣

(
1/q

3

)∣∣∣∣

)
x

=
(q − 1)(5q − 1)

6q2
x.

With the help of these lemmas we can finally treat the case where p lies
between an even and an odd number.
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Proposition 15. Let p ∈ [2,∞) be between an even and an odd integer. Then,
for all 0 < x ≤ 1/2 we have

Ep(x) + Fp(x) > 0.

In particular, wp(n) > wH
p (n) for n ≥ 2.

Proof. Clearly, we have
(
p−1
n

) ≥ 0 for n ≤ p and for n ∈ 2N. Since we have
g(−x) ≥ |g(x)| by Lemma 7, we obtain for the first n ≤ p terms and the
terms for even n in Fp(x) that

(
p − 1

n

)(
gn(−x) − gn(x)

) ≥ 0.

Note that Ep(x) = 2(p − 1)
∑∞

n=1 a2n+1x
2n+1 > 2(p − 1)

∑∞
n=k a2n+1x

2n+1

since the coefficients ak are positive. With the observation made at the be-
ginning of the proof, this leads to

Ep(x) + Fp(x) >
∑

n∈2N+1,n≥p

(
2(p − 1)anxn +

(
p − 1

n

)(
gn(−x) − gn(x)

))
.

We continue to show that all the terms in the sum are strictly positive which
finishes the proof. To this end note that for n ≥ p with n ∈ 2N + 1, we use
g(−x) ≥ |g(x)|, see Lemma 7, as well as

(
p−1
n

) ≤ 0 in the first step and the
estimate on

(
p−1
n

)
, see Lemma 13, and the estimate on g(−x), see Lemma 14,

in the second step in order to get
(

p − 1
n

)(
gn(−x) − gn(x)

) ≥ 2
(

p − 1
n

)
gn(−x)

≥ − (q − 1)
2

(
(q − 1)(5q − 1)

6q2

)n

xn

We use the estimate on an, Lemma 12,

2(p − 1)anxn ≥ 2
1

qn(n + 1)
xn.

Next, we put these two estimates together and find that the minimum in the
coefficient is clearly assumed at q = 2 since p ≥ 2 ≥ q

(
2(p − 1)anxn +

(
p − 1

n

)(
gn(−x) − gn(x)

))

≥ 2
(

1
qn(n + 1)

− (q − 1)
4

(
(q − 1)(5q − 1)

6q2

)n)
xn

≥
(

1
n(n + 1)

− 1
2

(
3
8

)n)
xn ≥

(
1

n(n + 1)
− 1

2n+1

)
xn > 0,

where the positivity follows by a simple induction argument. This concludes
the proof by noticing that the “in particular” part follows from the discussion
above Lemma 7. �

In summary, the above considerations yield

Ep(x) + Fp(x) > 0
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for p ∈ (1,∞) and 0 < x ≤ 1/2. By the discussion at the beginning of the
section this yields wp(n) > wH

p (n) for n ≥ 2.
We finish the section by treating the case n = 1 which corresponds to

x = 1. With this we finally conclude that wp(n) > wH
p (n) for all n ≥ 1 in the

next section.

Proposition 16. Let p ∈ (1,∞). Then, wp(1) > wH
p (1).

Proof. Recall that wp(1) = 1 − (21−1/p − 1)p−1 and wH
p = (1 − 1/p)p. By the

mean value theorem applied to the function [1, 2] → [1, 21−1/p], t 
→ t1−1/p

we find

21−1/p − 1 < 1 − 1
p
.

Therefore,

wp(1) − wH
p (1) > 1 −

(
1 − 1

p

)p−1

−
(

1 − 1
p

)p

.

Now the function ψ : (1,∞) → (0,∞), p 
→ (1 − 1/p)p−1 + (1 − 1/p)p is
strictly monotonically decreasing because

ψ′(p) =
1

p − 1

(
p − 1

p

)p (
(2p − 1) log

(
p − 1

p

)
+ 2

)
< 0,

since θ : p 
→ (2p − 1) log(p − 1)/p is strictly monotonically increasing and we
have limp→∞ θ(p) = −2. Hence, we conclude

wp(1) − wH
p (1) > 1 − ψ(p) > 1 − lim

t→1
ψ(t) = 0.

4. Proof of Theorem 1

Proof of Theorem 1. Combining Propositions 4 and 5 from Sect. 2 yields that
wp satisfies the Hardy inequality. In Sect. 3, one obtains from Proposition 9,
Proposition 11, Proposition 15 and Proposition 16 that wp > wH

p on N.
The optimality of the p-Hardy weight, i.e., for every w � wp the p-Hardy

inequality fails (criticality), and in addition u �∈ �p(N, wp), where u(n) =
n(p−1)/p, n ∈ N (null-criticality) can be deduced from [7, Theorem 2.3]. To
this end one has to check that the function v > 0 which gives rise to the
Hardy weight via the supersolution construction, i.e., u = v(p−1)/p and wp =
Δpu/u(p−1) is proper, i.e., the preimage of every compact set in (0,∞) is
compact, and of bounded oscillation, i.e., C−1 ≤ v(n)/v(n+1) ≤ C for some
C > 0 and all n. These two properties are clearly satisfied for the identity
function id(n) = n which was used in Proposition 5.

Note that given criticality, null-criticality is also a simple consequence
of wp > wH

p on N and since u(n) = n(p−1)/p is not in �p(N, wH
p ). Moreover,

in the remark below, Remark 17, we give a sketch of the proof of criticality
to give the reader an idea of the arguments involved.



24 Page 14 of 17 F. Fischer et al. IEOT

To see the statement about the coefficients in the series expansion of wp

for integer p ≥ 2, recall the function

w(x) =
(
1 − (1 − x)1/q

)p−1 − (
(1 + x)1/q − 1

)p−1

with 1/p + 1/q = 1 on [0, 1] from the previous section. It is easy to check
that the function w+ : x 
→ (

1 − (1 − x)1/q
)p−1 is absolutely monotonic on

[0, 1) for integer p ≥ 2 with strictly positive derivatives. On the other hand,
expanding the function w− : x 
→ (

(1 + x)1/q − 1
)p−1 at x = 0, we observe

that it has the same Taylor coefficients in absolute value as w+. However, the
signs alternate such that for the difference w+ − w− of these two functions
the even/odd coefficients cancel for odd/even p. Furthermore, in the Taylor
expansion of w at x = 0 the first non-zero coefficient is the one for xp (confer
Sect. 3). �

Remark 17. (Sketch of the proof of criticality) Criticality of the weight wp is
equivalent to existence of a null sequence, i.e., existence of 0 ≤ ϕN ∈ Cc(N)
with ϕ(0) = 0, ϕ(1) = 1 and ϕN converging pointwise to u(n) = n1/q and

h(ϕN ) :=
∞∑

n=0

|ϕN (n) − ϕN (n + 1)|p−
∞∑

n=1

wH
p (n)|ϕN (n)|p→0, N → ∞

cf. [8, Theorem 5.1]. We denote a ∨ b = max{a, b} for a, b ∈ R and choose

ϕN = uψN with ψN (n) = 0 ∨
(

1 − log n

log N

)

for n,N ∈ N and u(n) = n1/q. We now use the simplified energy from [9,
Theorem 3.1] which serves as a substitute of a ground state transform for
p �= 2

h(uψ) � hu(ψ) :=
∞∑

n=0

u(n)u(n + 1)|ψ(n) − ψ(n + 1)|2 ·

×
(

(u(n)u(n + 1))
1
2 |ψ(n) − ψ(n + 1)|

+
|ψ(n)| + |ψ(n + 1)|

2
|u(n) − u(n + 1)|

)p−2

,

where � means that there are two sided estimates with positive constants
independent of ψ. We employ u(n) = n1/q and the definition of ϕN , ψN to
obtain

h(ϕN ) � hu(ψN ) ≤ C

logp N

(
N∑

n=1

np−1 logp

(
1 +

1

n

)
+

N∑

n=1

n−1 logp−2

(
N

n

))
,

where we used a(b + c)r ≤ C(abr + acr) for all a, b, c ≥ 0, r ∈ R and some
C = C(r) to split the sum into two sums, |(0 ∨ a) − (0 ∨ b)| ≤ |a − b| for all



IEOT An Improved Discrete p-Hardy Inequality Page 15 of 17 24

a, b ∈ R and |nr − (n + 1)r| � nr−1 for r ∈ (0,∞) cf. e.g. [14, Lemma 2.28].
Now, using log(1 + 1/n) ≤ 1/n and again a(b + c)r ≤ C(abr + acr), we infer

hu(ψN ) ≤ C

logp N

(
log N + logp−1 N

) → 0, N → ∞
which finishes the proof.

While we know that all Taylor coefficients of the Hardy weight wp are
strictly positive for integer p ≥ 2, we only know wp > wH

p for non-integer
p > 1. This leads us to the following conjecture.

Conjecture. We conjecture that x 
→ w(x) as defined in Sect. 3 is absolutely
monotonic.
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Poincaré Anal. Non Linéaire 33(1), 93–118 (2016)

[6] Elliott, E.B.: A simple exposition of some recently proved facts as to conver-
gency. J. London Math. Soc. 1(2), 93–96 (1926)

[7] Fischer, F.: On the Optimality and Decay of p-Hardy Weights on Graphs
(2022). arXiv:2212.07728

[8] Fischer, F.: Quasi-Linear Criticality Theory and Green’s Functions on Graphs
(2022). arXiv:2207.05445

[9] Fischer, F.: A non-local quasi-linear ground state representation and criticality
theory. Calc. Var. Partial Differ. Equ. 62(5), 33 (2023)

[10] Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp
Hardy inequalities. J. Funct. Anal. 255(12), 3407–3430 (2008)
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[13] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University
Press, Cambridge (1934)

[14] Keller, M., Lenz, D., Wojciechowski, R.K: Graphs and discrete Dirichlet spaces,
volume 358 of Grundlehren der mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer, Cham, [2021] c© (2021)

[15] Kufner, A., Maligranda, L., Persson, L.E.: The prehistory of the Hardy in-
equality. Amer. Math. Monthly 113(8), 715–732 (2006)

[16] Keller, Matthias, Pinchover, Yehuda, Pogorzelski, Felix: An improved discrete
Hardy inequality. Amer. Math. Monthly 125(4), 347–350 (2018)

[17] Keller, M., Pinchover, Y., Pogorzelski, F.: Optimal Hardy inequalities for
Schrödinger operators on graphs. Comm. Math. Phys. 358(2), 767–790 (2018)

[18] Keller, M., Pinchover, Y., Pogorzelski, F.: Criticality theory for Schrödinger
operators on graphs. J. Spectr. Theory 10(1), 73–114 (2020)
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