Integr. Equ. Oper. Theory (2023) 95:24 https://doi.org/10.1007/s00020-023-02743-6 Published online September 29, 2023 -c The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Integral Equations and Operator Theory

An Improved Discrete *p***-Hardy Inequality**

Flo[r](http://orcid.org/0000-0002-8324-0354)ian Fischer_®, Matthias Keller and Felix Pogorzelski

Abstract. We improve the classical discrete Hardy inequality for 1 < $p < \infty$ for functions on the natural numbers. For integer values of p the Hardy weight is shown to have a series expansion with strictly positive coefficients. Notably, this weight is optimal, i.e. critical and null-critical.

Mathematics Subject Classification. Primary 26D15, Secondary 47J05.

1. Introduction and Main Result

In 1918 Hardy was looking for a simple and elegant proof of Hilbert's theorem in the context of the convergence of double sums, [\[12](#page-15-0)]. Although it is not explicitly mentioned, the paper contains the essential argument for his then famous inequality. In a letter to Hardy in 1921, [\[20\]](#page-15-1), Landau gave a proof with the sharp constant

$$
\sum_{n=1}^{\infty} a_n^p \ge \left(\frac{p-1}{p}\right)^p \sum_{n=1}^{\infty} \left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^p
$$

for $p > 1$ where (a_n) is an arbitrary sequence of non-negative real numbers. This inequality was first highlighted in [\[13\]](#page-15-2) and is referred to as a p-*Hardy inequality*. Since then various proofs of this inequality were given, where short and elegant ones are due to Elliott $[6]$ $[6]$ and Ingham, see [\[13,](#page-15-2) p. 243] and by Lefèvre $[21]$. See also $[15]$ $[15]$ for a beautiful historical survey about the origins of Hardy's inequality.

It is not hard to see that the inequality above can be derived from the following inequality for compactly supported $\phi \in C_c(\mathbb{N})$ with $\phi(0) = 0$

$$
\sum_{n=1}^{\infty} |\phi(n) - \phi(n-1)|^p \ge \sum_{n=1}^{\infty} w_p^H(n) |\phi(n)|^p,
$$

where

$$
w_p^H(n) = \left(\frac{p-1}{p}\right)^p \frac{1}{n^p}.
$$

In this work, we show that the classical weight w_p^H can be replaced by a
wise strictly larger weight w_p and the aforementioned Hardy inequality pointwise strictly larger weight w_p , and the aforementioned Hardy inequality

holds with w_p^H being replaced by w_p . Recently, the concept of optimality was studied for general $1 < p < \infty$ on weighted graphs in [\[7](#page-15-6)]. Employing these results, we conclude that w_p is *optimal*, which means that

- for every function w with $w \geq w_p$ and $w \neq w_p$, the p-Hardy inequality does not hold (criticality), and in addition
- $u \notin \ell^p(\mathbb{N}, w_n)$, where $u(n) = n^{(p-1)/p}$, $n \in \mathbb{N}$ (null-criticality).

The first optimality criterion says that there cannot be a p -Hardy weight dominating w*^p*. The second optimality criterion says that the underlying ground state u is not an eigenfunction and so, the Hardy inequality does not admit a minimizer.

Consequently, by $[7,$ Theorem 2.6, the weight w_p is also *optimal at infinity*, which means that for every $\lambda > 0$ and each finite set $K \subset \mathbb{N}$, the weight $(1+\lambda)w_p$ does not yield a p-Hardy inequality for functions φ supported outside of K. This criterion in particular shows that the constant $((p-1)/p)^p$ is optimal, a fact already known for a century, cf. [\[15](#page-15-5)].

We formulate the main theorem of this paper.

Theorem 1. *Let* $p > 1$ *. Then, for all* $\phi \in C_c(\mathbb{N})$ *with* $\phi(0) = 0$ *,*

$$
\sum_{n=1}^{\infty} |\phi(n) - \phi(n-1)|^{p} \ge \sum_{n=1}^{\infty} w_{p}(n) |\phi(n)|^{p},
$$

where ^w*^p is a strictly positive function given by*

$$
w_p(n) = \left(1 - \left(1 - \frac{1}{n}\right)^{\frac{p-1}{p}}\right)^{p-1} - \left(\left(1 + \frac{1}{n}\right)^{\frac{p-1}{p}} - 1\right)^{p-1}
$$

Furthermore, w_p *is optimal, and we have for all* $n \in \mathbb{N}$

 $w_p(n) > w_p^H(n)$.

Moreover, for integer $p \geq 2$ *, we have* $w_p(n) = \sum_{k \in 2\mathbb{N}_0} c_k n^{-k-p}$ *with* $c_k > 0$ *.*

Example 2. The case $p = 2$ was already covered in [\[16\]](#page-15-7) (with optimality proven in $[17]$ $[17]$, and via a different method in $[11,19]$ $[11,19]$ $[11,19]$. In this case one gets $w_2(1) = 2 - \sqrt{2}$ and for $n \geq 2$

$$
w_2(n) = -\sum_{k \in 2\mathbb{N}} \binom{1/2}{k} \frac{2}{n^k} = \frac{1}{4} \frac{1}{n^2} + \frac{5}{64} \frac{1}{n^4} + \frac{21}{512} \frac{1}{n^6} + \frac{429}{16384} \frac{1}{n^8} + \dots
$$

In the case $p = 3$, one obtains $w_3(1) = 1 - (2^{2/3} - 1)^2$ and for $n ≥ 2$

$$
w_3(n) = \sum_{k \in 2\mathbb{N}+1} \left(2 \binom{2/3}{k} - \binom{4/3}{k} \right) \frac{2}{n^k} = \frac{8}{27} \frac{1}{n^3} + \frac{8}{81} \frac{1}{n^5} + \frac{112}{2187} \frac{1}{n^7} + \dots
$$

In the case $p = 4$, one gets $w_4(1) = 1 - (2^{3/4} - 1)^3$ and for $n ≥ 2$

$$
w_4(n) = \sum_{k \in 2N+2} \left(3\binom{3/2}{k} - 3\binom{3/4}{k} - \binom{9/4}{k} \right) \frac{2}{n^k}
$$

=
$$
\frac{81}{256} \frac{1}{n^4} + \frac{891}{8192} \frac{1}{n^6} + \frac{58653}{1048576} \frac{1}{n^8} + \dots
$$

For general $p > 1$ one obtains the asymptotics

$$
w_p(n) = \left(\frac{p-1}{pn}\right)^p \left(1 + \epsilon_p(n)\right),
$$

where

$$
\epsilon_p(n) = \left(\frac{3}{8} - \frac{1}{8p}\right) \frac{1}{n^2} + \left(\frac{215p^3 - 38p^2 - 31p + 6}{1152p^3}\right) \frac{1}{n^4} + O\left(\frac{1}{n^6}\right)
$$

From this formula it is clear that $w_p(n)$ is strictly larger than the classical Hardy weight for large n. Note however that the theorem above states that $\epsilon_p(n) > 0$ at all places $n \in \mathbb{N}$. It is not hard to check that $\epsilon_p(n)$ can be expanded into a power series with respect to $1/n$ where all odd coefficients vanish. Theorem [1](#page-1-0) states that for integer $p \geq 2$ these coefficients are positive. We conjecture that all these coefficients are strictly positive for all $p > 1$.

Remark 3. It is easy to see that for $1 < p < \infty$, our p-Hardy inequality can be stated as follows: for every real-valued sequence $a = (a_n)$, one has

$$
\sum_{n=1}^{\infty} |a_n|^p \ge \left(\frac{p-1}{p}\right)^p \sum_{n=1}^{\infty} \left(1 + \epsilon_p(n)\right) \left|\frac{1}{n}\sum_{j=1}^n a_j\right|^p,
$$

where the function ϵ_p is as in the previous example. Denoting by C the Cesaro *mean operator* on $\ell^p(\mathbb{N})$, defined as $C(a) = \frac{1}{n} \sum_{j=1}^n a_j$, the above inequality says that $C: \ell^p(\mathbb{N}) \to \ell^p(\mathbb{N}, \rho)$ is bounded, where $\rho = 1 + \epsilon_p$ is understood as a measure on $\mathbb N$. Equivalently, one obtains ℓ^p -boundedness of a weighted version of the Cesaro mean operator. For certain weights, such boundedness phenomena were studied recently in [\[22](#page-15-11)].

2. Proof of the Hardy Inequality

The *combinatorial* p-Laplacian Δ_p for real valued functions on \mathbb{N}_0 is given by

$$
\Delta_p f(n) = \sum_{m=n\pm 1} \text{sgn} \left(f(n) - f(m) \right) |f(n) - f(m)|^{p-1}
$$

for all functions f and $n \geq 1$, where sgn is the function which takes the value -1 on $(-\infty, 0)$, the value 1 on $(0, \infty)$ and 0 at 0.

The following proposition shows that the existence of a suitable positive supersolution of $\Delta_p u \geq 0$ implies the non-negativity of the corresponding energy functional. This is one of the implications of the so-called Allegretto-Piepenbrink-type theorem (see $\vert 1,2,23 \vert$ $\vert 1,2,23 \vert$ $\vert 1,2,23 \vert$ for linear versions in the continuum, [\[4](#page-14-3)[,18](#page-15-13)] for a linear version in the discrete setting, [\[24](#page-15-14)] for a non-linear version in the continuum and $|8|$ for a recent version in the quasi-linear discrete setting). This statement is used to show that the weight w_p is in fact a p -Hardy weight.

Proposition 4. Let $p > 1$ and let $u: \mathbb{N}_0 \to [0, \infty)$ be strictly positive on \mathbb{N} and *such that* $u(0) = 0$ *. Suppose that* $w: \mathbb{N} \to \mathbb{R}$ *satisfies* $\Delta_p u = w u^{p-1}$ *on* \mathbb{N} *.*

Then for all $\phi \in C_c(\mathbb{N})$ *with* $\phi(0) = 0$ *we have*

$$
\sum_{n\in\mathbb{N}} |\phi(n) - \phi(n-1)|^p \ge \sum_{n\in\mathbb{N}} w(n) |\phi(n)|^p.
$$

The proof follows along the lines of the proof of Proposition 2.2 in [\[10\]](#page-15-16).

Proof. Let $p > 1$. From Lemma 2.6 in [\[10\]](#page-15-16), we obtain for all $0 \le t \le 1$ and $a \in \mathbb{C}$

$$
|a-t|^p \ge (1-t)^{p-1} (|a|^p - t).
$$

Let w be such that $\Delta_p u = w u^{p-1}$. For given $\varphi \in C_c(\mathbb{N})$, we can consider $\psi = \varphi/u \in C_c(\mathbb{N})$, by strict positivity of u on N. We assume for a moment that $m, n \in \mathbb{N}$ are such that $u(n) \ge u(m)$ and $\psi(m) \ne 0$. We apply the above inequality with the choice $t = u(m)/u(n)$ and $a = \psi(n)/\psi(m)$ in order to obtain

$$
|(u\psi)(n) - (u\psi)(m)|^{p} \ge |u(n) - u(m)|^{p-1} (|\psi(n)|^{p} u(n) - |\psi(m)|^{p} u(m)).
$$

Further, since $u^p(n) \ge |u(n) - u(m)|^{p-1} u(n)$, the above inequality remains true even if $\psi(m) = 0$. Summing over N we obtain true even if $\psi(m) = 0$. Summing over N, we obtain

$$
\sum_{n \in \mathbb{N}} |(u\psi)(n) - (u\psi)(n-1)|^p
$$
\n
$$
\geq \sum_{n \in \mathbb{N}} \text{sgn}(u(n) - u(n-1)) |u(n) - u(n-1)|^{p-1}.
$$
\n
$$
(|\psi(n)|^p u(n) - |\psi(n-1)|^p u(n-1))
$$
\n
$$
= \sum_{n \in \mathbb{N}} \Delta_p u(n) |\psi(n)|^p u(n) = \sum_{n \in \mathbb{N}} w(n) u^p(n) |\psi(n)|^p.
$$

Note that the latter two equalities follow from rearranging the involved sums while recalling that $u(0) = 0$, and using the assumption $\Delta_p u = w u^{p-1}$.
Recalling that $\phi = u\psi$ we infer the statement Recalling that $\phi = u\psi$, we infer the statement.

Next we show that for the weight w_p on N taken from Theorem [1](#page-1-0)

$$
w_p(n) = \left(1 - (1 - 1/n)^{(p-1)/p}\right)^{p-1} - \left((1 + 1/n)^{(p-1)/p} - 1\right)^{p-1},
$$

there is a suitable positive function u such that $\Delta_p u = w_p u^{p-1}$.

Proposition 5. *Let* $p > 1$ *. Then, the function* $u: \mathbb{N}_0 \to [0, \infty)$ *,* $u(n) = n^{(p-1)/p}$ *satisfies*

$$
\Delta_p u = w_p u^{p-1} \qquad on \ \mathbb{N}.
$$

Proof. One directly checks that for all $n \in \mathbb{N}$

$$
\frac{\Delta_p u(n)}{u^{p-1}(n)} = \frac{\Delta_p n^{(p-1)/p}}{n^{(p-1)^2/p}} = w_p(n)
$$

which immediately yields the statement. \Box

The choice of the function u in the previous proposition is motivated by the so-called supersolution construction which yields optimal p-Hardy weights
both in the continuum case for $p > 1$, cf. [3,5], as well as for graphs with both in the continuum case for $p > 1$, cf. [\[3](#page-14-4)[,5](#page-15-17)], as well as for graphs with $p = 2$ of [17]. Moreover for $p = 2$ the function $y(n) = p^{1/2}$ grises naturally $p = 2$, cf. [\[17](#page-15-8)]. Moreover, for $p = 2$, the function $u(n) = n^{1/2}$ arises naturally in the method applied in [11, 19] for a proof of the optimal Hardy inequality in the method applied in [\[11,](#page-15-9)[19\]](#page-15-10) for a proof of the optimal Hardy inequality on the line graph.

Combining the two propositions above already yields the p-Hardy inequality with the weight w_p . Next we show that w_p is strictly larger than the classical Hardy weight $w_p^H(n) = ((p-1)/p)^p n^{-p}$ for all $n \in \mathbb{N}$.

 $3. \text{ Proof of } w_p > w_p^H$

In this section we show that the weight

$$
w_p(n) = \left(1 - \left(1 - \frac{1}{n}\right)^{\frac{p-1}{p}}\right)^{p-1} - \left(\left(1 + \frac{1}{n}\right)^{\frac{p-1}{p}} - 1\right)^{p-1}
$$

from the main theorem, Theorem [1,](#page-1-0) is strictly larger than the classical p -Hardy weight

$$
w_p^H(n) = \left(\frac{p-1}{p}\right)^p \frac{1}{n^p}.
$$

In fact, for fixed $p \in (1,\infty)$, we analyze the function $w: [0,1] \to [0,\infty)$

$$
w(x) = \left(1 - (1 - x)^{1/q}\right)^{p-1} - \left((1 + x)^{1/q} - 1\right)^{p-1}
$$

for $x \in [0, 1/2]$ and $x = 1$, where $q \in (1, \infty)$ is such that $1/p + 1/q = 1$. Specifically, we show

$$
w(x) > \left(\frac{x}{q}\right)^p.
$$

The case $x = 1$ is simple and is treated at the end of the section. The proof for $x \leq 1/2$ is also elementary but more involved. We proceed by bringing w_p into form for which we then analyze its parts. This will be eventually done by a case distinction depending on p.

Recall the binomial theorem for $r \in [0,\infty)$ and $0 \leq x \leq 1$

$$
(1 \pm x)^r = \sum_{k=0}^{\infty} \binom{r}{k} (\pm 1)^k x^k
$$

where $\binom{r}{0} = 1$, $\binom{r}{1} = r$ and $\binom{r}{k} = r(r-1)\cdots(r-k+1)/k!$ for $k \geq 2$ which is derived from the Taylor expansion of the function $x \mapsto (1 \pm x)^r$. Applying this formula to the function w from above we obtain this formula to the function w from above we obtain

$$
w(x) = \left(-\sum_{k=1}^{\infty} {1/q \choose k} (-x)^k \right)^{p-1} - \left(\sum_{k=1}^{\infty} {1/q \choose k} x^k \right)^{p-1}
$$

= $\left(\frac{x}{q}\right)^{p-1} \left(\left(q \sum_{k=0}^{\infty} {1/q \choose k+1} (-x)^k \right)^{p-1} - \left(q \sum_{k=0}^{\infty} {1/q \choose k+1} x^k \right)^{p-1} \right)$

To streamline notation we set

$$
g(x) = q \sum_{k=1}^{\infty} {1/q \choose k+1} x^k.
$$

Note that since $q\binom{1/q}{1} = 1$ and $q\left| \binom{1/q}{k} \right| < 1$ for $k \geq 2$, we have $0 < |g(\pm x)| < 1$ $\left| \begin{array}{cc} \left| \begin{array}{cc} k & k \end{array} \right| \end{array} \right|$ for $0 < x \leq 1/2$. Thus, we can apply the binomial theorem to $(1+g(\pm x))^{p-1}$ in order to get

$$
w(x) = \left(\frac{x}{q}\right)^{p-1} \left(\left(1+g(-x)\right)^{p-1} - \left(1+g(x)\right)^{p-1}\right)
$$

=
$$
\left(\frac{x}{q}\right)^{p-1} \left(\sum_{n=0}^{\infty} {p-1 \choose n} (g^n(-x) - g^n(x))\right)
$$

=
$$
\left(\frac{x}{q}\right)^{p-1} \left({p-1 \choose 1} (g(-x) - g(x)) + \sum_{n=2}^{\infty} {p-1 \choose n} (g^n(-x) - g^n(x))\right)
$$

Thus, we have to show that the second factor on the right hand side is strictly larger than x/q . Using $q = p/(p-1)$ we compute the first term in the parenthesis on the left hand side

$$
\binom{p-1}{1}(g(-x) - g(x)) = q(p-1)\sum_{k=1}^{\infty} \binom{1/q}{k+1} ((-x)^k - x^k)
$$

=
$$
\frac{q(p-1)(1/q)(1/q-1)}{2}(-2x) + q(p-1)\sum_{k=2}^{\infty} \binom{1/q}{k+1} ((-x)^k - x^k)
$$

=
$$
\frac{x}{q} - 2p \sum_{k \in 2\mathbb{N}+1} \binom{1/q}{k+1} x^k
$$

=
$$
\frac{x}{q} + E_p(x),
$$

with

$$
E_p(x) = -2p \sum_{k \in 2\mathbb{N}+1} \binom{1/q}{k+1} x^k > 0
$$

since $-2p\binom{1/q}{k+1} > 0$ for odd k and $x > 0$. So, it remains to show that for the term

$$
F_p(x) = \sum_{n=2}^{\infty} {p-1 \choose n} (g^n(-x) - g^n(x))
$$

we have for $0 < x \leq 1/2$

$$
E_p(x) + F_p(x) > 0.
$$

Specifically, we then get with the substitution $x = 1/n$

$$
w_p(n) = w(1/n) = \left(\frac{1}{nq}\right)^{p-1} \left(\frac{1}{nq} + E_p(1/n) + F_p(1/n)\right) > \frac{1}{(nq)^p} = w_p^H(n)
$$

for $n \ge 2$.

Remark 6. It is not hard to see that $F_p \geq 0$ whenever $p \in \mathbb{N}$ is integer valued. Indeed, $g(-x) \ge g(x)$ as all terms in the sum $g(-x)$ are positive since $-\binom{1/q}{k+1} \geq 0$ for odd k, while the terms in $g(x)$ alternate, (they are positive for even k and persitive for odd k). Moreover for positive integers positive for even k and negative for odd k). Moreover for positive integers p the binomial coefficients $\binom{p-1}{n}$ are positive. Thus, the Hardy weight we computed is larger than the classical one for integer n computed is larger than the classical one for integer p .

Let us now turn to the proof of

$$
E_p(x) + F_p(x) > 0
$$

for $p \in (1,\infty)$ and $0 < x < 1/2$.

We collect the following basic properties of the function q which were partially already discussed above and will be used subsequently.

Lemma 7. *For* $p \in (1, \infty)$ *and* $0 < x \leq 1/2$ *, we have* $-1 < q(x) < 0 < -q(x) < q(-x) < 1.$

Proof. The function g is given by $g(x) = q \sum_{k=1}^{\infty} {1/q \choose k+1} x^k$. Since $q > 1$, the coefficients $b_k = q\binom{1/q}{k+1}$ are negative for odd k and positive for even k. Fur-
thermore, the socuration ([b,]) takes values strictly less than 1 and decays thermore, the sequence $(|b_k|)$ takes values strictly less than 1 and decays monotonically. Thus, the asserted inequalities follow easily. monotonically. Thus, the asserted inequalities follow easily.

We distinguish the following three cases depending on p for which the arguments are quite different:

- p lies between an odd and an even number with the subcases:
	- $p \in [3,\infty)$
	- $p \in (1, 2]$

• *p* lies between an even and an odd number.

Here, for $a, b \in \mathbb{N}$, we say that p is between a and b if $a \le p \le b$.

We start with investigating the case of p lying between an odd and an even number. To this end we consider two subsequent summands as they appear in the sum given by F_p and show that they are positive. (Indeed the sum in F_p starts at $n = 2$ but we also consider the corresponding term for $n=1.$

Lemma 8. Let p be between an odd and an even integer. Then, for all $0 <$ $x \leq 1/2$ *and odd* $n \in 2\mathbb{N} - 1$

$$
\binom{p-1}{n}(g^n(-x)-g^n(x))+\binom{p-1}{n+1}(g^{n+1}(-x)-g^{n+1}(x))\geq 0.
$$

On the other hand, for odd $n \in 2\mathbb{N} - 1$ with $n \geq p - 1$,

$$
\binom{p-1}{n} \ge -\binom{p-1}{n+1} \ge 0.
$$

From Lemma [7](#page-6-0) we know that $g^{n+1}(x) \ge 0 \ge g^n(x)$ for odd $n \in 2\mathbb{N} - 1$ and $0 \le r \le 1/2$ $0 \leq x \leq 1/2$.

We obtain

$$
\binom{p-1}{n} (g^n(-x) - g^n(x)) + \binom{p-1}{n+1} (g^{n+1}(-x) - g^{n+1}(x))
$$

=
$$
\binom{p-1}{n} (g^n(-x) - g^n(x)) - \left| \binom{p-1}{n+1} \right| (g^{n+1}(-x) - g^{n+1}(x))
$$

$$
\geq \binom{p-1}{n} g^n(-x) - \left| \binom{p-1}{n+1} \right| g^{n+1}(-x)
$$

$$
\geq \left| \binom{p-1}{n+1} \right| (g^n(-x) - g^{n+1}(-x))
$$

$$
\geq 0,
$$

where the last inequality follows from $0 \le g(-x) < 1$ for $0 \le x \le 1/2$ thanks to Lemma 7. to Lemma [7.](#page-6-0)

With Lemma [8](#page-6-1) we can treat the case of $p \geq 3$ lying between an odd and an even number. This is done in the next proposition.

Proposition 9. Let $p \geq 3$ be between an odd and an even integer. Then, for *all* $0 < x \leq 1/2$ *we have* $F_p(x) \geq 0$ *and*

$$
E_p(x) + F_p(x) > 0.
$$

In particular, $w_p(n) > w_p^H(n)$ *for* $n \geq 2$ *.*

Proof. We can write $F_p(x) = \sum_{n=2}^{\infty} {p-1 \choose n} (g^n(-x) - g^n(x))$ as

$$
F_p(x) = {p-1 \choose 2} (g^2(-x) - g^2(x))
$$

+
$$
\sum_{n \in 2\mathbb{N}+1}^{\infty} \left({p-1 \choose n} (g^n(-x) - g^n(x)) + {p-1 \choose n+1} (g^{n+1}(-x) - g^{n+1}(x)) \right)
$$

By Lemma [8](#page-6-1) the terms in the sum on the right hand side are all positive. Furthermore, $\binom{p-1}{2} \ge 0$ for $p \ge 3$ and $g(-x) \ge |g(x)|$ by Lemma [7.](#page-6-0) Thus, also
the first term on the right hand side is positive as well and $F \ge 0$ follows the first term on the right hand side is positive as well and $F_p \geq 0$ follows. From the discussion in the beginning in the section we take $E_p(x) > 0$ for $0 < x \leq 1/2$. The "in particular" follows from the discussion above Lemma [7.](#page-6-0) \Box

Note that we cannot treat the case $1 \leq p \leq 2$ in the same way since the sum in F_p starts at the index $n = 2$. Hence, there is still a negative term $\binom{p-1}{2}(g^2(-x)-g^2(x))$. We deal with this case, $1 \le p \le 2$, next.

We denote the Taylor coefficients of $x \mapsto g(-x)$ by a_k , i.e.,

$$
g(-x) = q \sum_{k=1}^{\infty} {1/q \choose k+1} (-x)^k = \sum_{k=1}^{\infty} a_k x^k,
$$

$$
g(x) = q \sum_{k=1}^{\infty} {1/q \choose k+1} x^k = \sum_{k=1}^{\infty} a_k (-1)^k x^k.
$$

The function $E_p(x) = -2p \sum_{k \in 2\mathbb{N}+1} {1/q \choose k+1} x^k$ is odd and, therefore, we have

$$
E_p(x) = 2(p-1) \sum_{n=1}^{\infty} a_{2n+1} x^{2n+1}.
$$

Furthermore, recall that $E_p(x) > 0$ for $x > 0$, since $-2p\binom{1/q}{k+1} > 0$ for odd k.

Lemma 10. *Let* $p \ge 1$ *and* $0 \le x \le 1/2$ *. Then,*

$$
g(-x) + g(x) \le \frac{4}{9} \cdot \frac{(p+1)}{p^2} x^2.
$$

Proof. We calculate using $a_2 \ge a_n$ for $n \ge 2$, the geometric series, $x \le 1/2$ and the specific value of the Taylor coefficient $a_2 = q\binom{1/q}{3} = \frac{(p+1)}{6p^2}$

$$
g(-x) + g(x) = 2\sum_{k=1}^{\infty} a_{2k} x^{2k} \le 2a_2 \frac{x^2}{1 - x^2} \le \frac{8}{3} a_2 x^2 = \frac{4}{9} \cdot \frac{(p+1)}{p^2} x^2.
$$

With the help of this lemma and Lemma [8](#page-6-1) we can treat the case $p \in$ $(1, 2]$.

Proposition 11. *Let* $p \in (1, 2]$ *. Then, for all* $0 < x \leq 1/2$ *, we have*

$$
E_p(x) + F_p(x) > 0.
$$

In particular, $w_p(n) > w_p^H(n)$ *for* $n \geq 2$ *.*

Proof. We show $E_p + F_p > 0$ and deduce the "in particular" from the dis-cussion above Lemma [7.](#page-6-0) By Lemma [8](#page-6-1) we have for all $0 < x \leq 1/2$

$$
F_p(x) = {p-1 \choose 2} (g^2(-x) - g^2(x)) + \sum_{n \in 2\mathbb{N}+1}^{\infty} \left({p-1 \choose n} (g^n(-x) - g^n(x)) \right)
$$

+ ${p-1 \choose 2} (g^{n+1}(-x) - g^{n+1}(x))$

$$
\geq {p-1 \choose 2} (g^2(-x) - g^2(x))
$$

$$
= \frac{p-2}{2} (g(-x) + g(x)) \left(E_p(x) + \frac{p-1}{p} x \right)
$$

$$
\geq \frac{2}{9} \cdot \frac{(p-2)(p+1)}{p^2} \left(E_p(x) + \frac{p-1}{p} x \right) \cdot x^2
$$

$$
\geq -\frac{1}{9} E_p(x) + \frac{2}{9} \cdot \frac{(p-2)(p-1)(p+1)}{p^3} \cdot x^3
$$

where we used the definition of E_p , i.e., $(p-1)(g(-x)-g(x)) = E_p(x) + \frac{p-1}{p}$ and Lemma [10](#page-8-0) which is justified since $E_p(x) > 0$ and $p - 2 < 0$. Moreover,
in the last step we estimated the coefficient of the first term in its minimum in the last step we estimated the coefficient of the first term in its minimum in $p = 1$ and $x = 1/2$.

Now, we use the representation of E_p as a power series to estimate

$$
E_p(x) = -2p \sum_{k \in 2\mathbb{N}+1} {1/q \choose k+1} x^k \ge -2p {1/q \choose 4} x^3 = \frac{(p-1)(p+1)(2p+1)}{12p^3} x^3.
$$

Putting this together with the estimate on F_p above, we arrive at

$$
E_p(x) + F_p(x) \ge \frac{8}{9} E_p(x) + \frac{2}{9} \cdot \frac{(p-2)(p-1)(p+1)}{p^3} \cdot x^3
$$

\n
$$
\ge \left(\frac{8}{9} \frac{(p-1)(p+1)(2p+1)}{12p^3} + \frac{2}{9} \cdot \frac{(p-2)(p-1)(p+1)}{p^3}\right) \cdot x^3
$$

\n
$$
= \frac{10(p-1)^2(p+1)}{27p^3} \cdot x^3
$$

Hence, it remains to consider the case of p between an even and an odd integer for which we need the following three lemmas.

Lemma 12. *Let* $p, q \ge 1$ *such that* $1/p + 1/q = 1$ *and* $k \ge 2$ *. Then,*

$$
a_k = q \left| \binom{1/q}{k+1} \right| \ge \frac{1}{pk(k+1)} = \frac{1}{q(p-1)k(k+1)}.
$$

Proof. We calculate using $1/p + 1/q = 1$

$$
q\left| \binom{1/q}{k+1} \right| = \frac{(1-1/q)(2-1/q)(3-1/q)\cdots(k-1/q)}{(k+1)!}
$$

=
$$
\frac{1}{pk(k+1)} \frac{(1+1/p)(2+1/p)\cdots((k-1)+1/p)}{(k-1)!}
$$

=
$$
\frac{1}{pk(k+1)} \left(1+\frac{1}{p}\right) \left(1+\frac{1}{2p}\right) \cdots \left(1+\frac{1}{(k-1)p}\right)
$$

$$
\geq \frac{1}{pk(k+1)}.
$$

Lemma 13. *Let* $p, q \in (1, \infty)$ *such that* $1/p+1/q=1$ *and* $k \in \mathbb{N}, k > p$ *. Then,*

$$
\left| \binom{p-1}{k} \right| \le \frac{1}{4(p-1)} = \frac{(q-1)}{4}.
$$

Proof. Let $n \in \mathbb{N}$ be such that $n - 1 \leq p \leq n$. Moreover, let $\gamma = p - (n - 1)$, i.e., $1 - \gamma = n - p$, so, $\gamma \in [0, 1]$. Since $k > p$ and $n, k \in \mathbb{N}$, we have that $k \geq n$ and therefore,

$$
\left| \binom{p-1}{k} \right| = \left| \frac{(p-1)(p-2)\cdots(p-(n-1))(p-n)\cdots(p-k)}{k!} \right|
$$

=
$$
\left| \left(\frac{p-1}{n-1} \right) \left(\frac{p-2}{n-2} \right) \cdots \frac{(p-(n-1))}{1} \left(\frac{p-n}{n} \right) \cdots \left(\frac{p-k}{k} \right) \right|
$$

$$
\leq \left| \frac{(p-(n-1))(p-n)}{n} \right| = \frac{\gamma(1-\gamma)}{n} \leq \frac{1}{4(p-1)} = \frac{(q-1)}{4}.
$$

Lemma 14. *For* $0 < x \leq 1/2$ *and* $q > 1$ *, we get*

$$
g(-x) \le \frac{(q-1)(5q-1)}{6q^2}x.
$$

Proof. We calculate using $a_2 \geq a_k$ for $k \geq 2$

$$
g(-x) = q\left(\left| \binom{1/q}{2} \right| + \sum_{k=1}^{\infty} \left| \binom{1/q}{k+2} \right| x^k \right) x
$$

\n
$$
\leq q\left(\left| \binom{1/q}{2} \right| + \sum_{k=1}^{\infty} \left| \binom{1/q}{k+2} \right| 2^{-k} \right) x
$$

\n
$$
\leq q\left(\left| \binom{1/q}{2} \right| + \left| \binom{1/q}{3} \right| \right) x
$$

\n
$$
= \frac{(q-1)(5q-1)}{6q^2} x.
$$

With the help of these lemmas we can finally treat the case where p lies between an even and an odd number.

Proposition 15. *Let* $p \in [2, \infty)$ *be between an even and an odd integer. Then, for all* $0 < x \leq 1/2$ *we have*

$$
E_p(x) + F_p(x) > 0.
$$

In particular, $w_p(n) > w_p^H(n)$ *for* $n \geq 2$ *.*

Proof. Clearly, we have $\binom{p-1}{n} \geq 0$ for $n \leq p$ and for $n \in 2\mathbb{N}$. Since we have $a(-x) \geq |a(x)|$ by Lemma 7, we obtain for the first $n \leq p$ terms and the $g(-x) \ge |g(x)|$ by Lemma [7,](#page-6-0) we obtain for the first $n \le p$ terms and the terms for even n in $F_n(x)$ that terms for even *n* in $F_p(x)$ that

$$
\binom{p-1}{n}(g^n(-x) - g^n(x)) \ge 0.
$$

Note that $E_p(x) = 2(p-1) \sum_{n=1}^{\infty} a_{2n+1}x^{2n+1} > 2(p-1) \sum_{n=k}^{\infty} a_{2n+1}x^{2n+1}$ since the coefficients a_k are positive. With the observation made at the beginning of the proof, this leads to

$$
E_p(x) + F_p(x) > \sum_{n \in 2\mathbb{N}+1, n \ge p} \left(2(p-1)a_n x^n + {p-1 \choose n} \left(g^n(-x) - g^n(x) \right) \right).
$$

We continue to show that all the terms in the sum are strictly positive which finishes the proof. To this end note that for $n \geq p$ with $n \in 2\mathbb{N} + 1$, we use $g(-x) \ge |g(x)|$, see Lemma [7,](#page-6-0) as well as $\binom{p-1}{n} \le 0$ in the first step and the estimate on $\binom{p-1}{n}$ see Lemma 14. estimate on $\binom{p-1}{n}$, see Lemma [13,](#page-10-0) and the estimate on $g(-x)$, see Lemma [14,](#page-10-1) in the second step in order to get

$$
\binom{p-1}{n}(g^n(-x) - g^n(x)) \ge 2\binom{p-1}{n}g^n(-x)
$$

$$
\ge -\frac{(q-1)}{2}\left(\frac{(q-1)(5q-1)}{6q^2}\right)^nx^n
$$

We use the estimate on a*ⁿ*, Lemma [12,](#page-9-0)

$$
2(p-1)a_n x^n \ge 2\frac{1}{qn(n+1)}x^n.
$$

 $2(p-1)a_n x^n \geq 2\frac{1}{qn(n+1)}x^n$.
Next, we put these two estimates together and find that the minimum in the coefficient is clearly assumed at $q = 2$ since $p \ge 2 \ge q$

$$
\left(2(p-1)a_n x^n + {p-1 \choose n} (g^n(-x) - g^n(x))\right)
$$

\n
$$
\geq 2\left(\frac{1}{qn(n+1)} - \frac{(q-1)}{4}\left(\frac{(q-1)(5q-1)}{6q^2}\right)^n\right) x^n
$$

\n
$$
\geq \left(\frac{1}{n(n+1)} - \frac{1}{2}\left(\frac{3}{8}\right)^n\right) x^n \geq \left(\frac{1}{n(n+1)} - \frac{1}{2^{n+1}}\right) x^n > 0,
$$

where the positivity follows by a simple induction argument. This concludes the proof by noticing that the "in particular" part follows from the discussion above Lemma [7.](#page-6-0) -

In summary, the above considerations yield

$$
E_p(x) + F_p(x) > 0
$$

for $p \in (1,\infty)$ and $0 < x \leq 1/2$. By the discussion at the beginning of the section this yields $w_p(n) > w_p^H(n)$ for $n \geq 2$.
We finish the section by treating the c

We finish the section by treating the case $n = 1$ which corresponds to $x = 1$. With this we finally conclude that $w_p(n) > w_p^H(n)$ for all $n \ge 1$ in the next section next section.

Proposition 16. *Let* $p \in (1, \infty)$ *. Then,* $w_p(1) > w_p^H(1)$ *.*

Proof. Recall that $w_p(1) = 1 - (2^{1-1/p} - 1)^{p-1}$ and $w_p^H = (1 - 1/p)^p$. By the mean value theorem applied to the function $[1, 2] \rightarrow [1, 2^{1-1/p}]$, $t \mapsto t^{1-1/p}$
we find we find

$$
2^{1-1/p} - 1 < 1 - \frac{1}{p}.
$$

Therefore,

$$
w_p(1) - w_p^H(1) > 1 - \left(1 - \frac{1}{p}\right)^{p-1} - \left(1 - \frac{1}{p}\right)^p.
$$

Now the function $\psi: (1, \infty) \to (0, \infty)$, $p \mapsto (1 - 1/p)^{p-1} + (1 - 1/p)^p$ is
strictly monotonically decreasing because strictly monotonically decreasing because

$$
\psi'(p) = \frac{1}{p-1} \left(\frac{p-1}{p} \right)^p \left((2p-1) \log \left(\frac{p-1}{p} \right) + 2 \right) < 0,
$$

since $\theta: p \mapsto (2p-1)\log(p-1)/p$ is strictly monotonically increasing and we
have $\lim_{x \to \theta(p)} \theta(x) = -2$. Hence we conclude have $\lim_{p\to\infty} \theta(p) = -2$. Hence, we conclude

$$
w_p(1) - w_p^H(1) > 1 - \psi(p) > 1 - \lim_{t \to 1} \psi(t) = 0.
$$

4. Proof of Theorem [1](#page-1-0)

Proof of Theorem [1.](#page-1-0) Combining Propositions [4](#page-2-0) and [5](#page-3-0) from Sect. [2](#page-2-1) yields that w_p satisfies the Hardy inequality. In Sect. [3,](#page-4-0) one obtains from Proposition 9 , Proposition [11,](#page-8-1) Proposition [15](#page-10-2) and Proposition [16](#page-12-0) that $w_p > w_p^H$ on N.
The optimality of the n Hardy woisht i.e. for every $w > w_p$, the n H

The optimality of the *p*-Hardy weight, i.e., for every $w \geq w_p$ the *p*-Hardy ality fails (criticality) and in addition $u \notin \ell^p(\mathbb{N}, w)$, where $u(n)$ inequality fails (criticality), and in addition $u \notin \ell^p(\mathbb{N}, w_p)$, where $u(n) =$ $n^{(p-1)/p}, n \in \mathbb{N}$ (null-criticality) can be deduced from [\[7](#page-15-6), Theorem 2.3]. To this end one has to check that the function $v > 0$ which gives rise to the Hardy weight via the supersolution construction, i.e., $u = v^{(p-1)/p}$ and $w_p =$ $\Delta_p u/u^{(p-1)}$ is proper, i.e., the preimage of every compact set in $(0,\infty)$ is compact, and of bounded oscillation, i.e., $C^{-1} \le v(n)/v(n+1) \le C$ for some $C > 0$ and all n. These two properties are clearly satisfied for the identity function $id(n) = n$ which was used in Proposition [5.](#page-3-0)

Note that given criticality, null-criticality is also a simple consequence of $w_p > w_p^H$ on N and since $u(n) = n^{(p-1)/p}$ is not in $\ell^p(\mathbb{N}, w_p^H)$. Moreover, in the remark below, Bemark 17, we give a sketch of the proof of criticality in the remark below, Remark [17,](#page-13-0) we give a sketch of the proof of criticality to give the reader an idea of the arguments involved.

To see the statement about the coefficients in the series expansion of w_p for integer $p \geq 2$, recall the function

$$
w(x) = (1 - (1 - x)^{1/q})^{p-1} - ((1 + x)^{1/q} - 1)^{p-1}
$$

with $1/p + 1/q = 1$ on [0, 1] from the previous section. It is easy to check [0, 1] for integer $p \geq 2$ with strictly positive derivatives. On the other hand, $\mapsto (1-(1-x)^{1/q})^{p-1}$ is absolutely monotonic on
the strictly positive derivatives. On the other hand [0, 1] for integer $p \geq 2$ with strictly positive derivatives. On the other hand, expanding the function $w = x \mapsto ((1+x)^{1/q} - 1)^{p-1}$ at $x = 0$, we observe that it has the same Taylor coefficients in absolute value as $w =$ However, the that it has the same Taylor coefficients in absolute value as w_+ . However, the signs alternate such that for the difference $w_+ - w_-$ of these two functions the even/odd coefficients cancel for odd/even p. Furthermore, in the Taylor expansion of w at $x = 0$ the first non-zero coefficient is the one for x^p (confer Sect. 3). Sect. [3\)](#page-4-0).

Remark 17. (Sketch of the proof of criticality) Criticality of the weight w_p is equivalent to existence of a null sequence, i.e., existence of $0 \leq \varphi_N \in C_c(N)$ with $\varphi(0) = 0$, $\varphi(1) = 1$ and φ_N converging pointwise to $u(n) = n^{1/q}$ and

$$
h(\varphi_N) := \sum_{n=0}^{\infty} |\varphi_N(n) - \varphi_N(n+1)|^p - \sum_{n=1}^{\infty} w_p^H(n) |\varphi_N(n)|^p \to 0, \quad N \to \infty
$$

cf. [\[8](#page-15-15), Theorem 5.1]. We denote $a \vee b = \max\{a, b\}$ for $a, b \in \mathbb{R}$ and choose

$$
\varphi_N = u\psi_N
$$
 with $\psi_N(n) = 0 \vee \left(1 - \frac{\log n}{\log N}\right)$

for $n, N \in \mathbb{N}$ and $u(n) = n^{1/q}$. We now use the simplified energy from [\[9,](#page-15-18) Theorem 3.1] which serves as a substitute of a ground state transform for $p \neq 2$

$$
h(u\psi) \asymp h_u(\psi) := \sum_{n=0}^{\infty} u(n)u(n+1)|\psi(n) - \psi(n+1)|^2
$$

$$
\times \left((u(n)u(n+1))^{\frac{1}{2}}|\psi(n) - \psi(n+1)| + \frac{|\psi(n)| + |\psi(n+1)|}{2} |u(n) - u(n+1)| \right)^{p-2},
$$

where \geq means that there are two sided estimates with positive constants independent of ψ . We employ $u(n) = n^{1/q}$ and the definition of φ_N, ψ_N to obtain

$$
h(\varphi_N) \asymp h_u(\psi_N) \le \frac{C}{\log^p N} \left(\sum_{n=1}^N n^{p-1} \log^p \left(1 + \frac{1}{n} \right) + \sum_{n=1}^N n^{-1} \log^{p-2} \left(\frac{N}{n} \right) \right),
$$

where we used $a(b+c)^r \leq C(ab^r + ac^r)$ for all $a, b, c \geq 0, r \in \mathbb{R}$ and some $C = C(r)$ to split the sum into two sums, $|(0 \vee a) - (0 \vee b)| \leq |a - b|$ for all

 $a, b \in \mathbb{R}$ and $|n^r - (n+1)^r| \asymp n^{r-1}$ for $r \in (0, \infty)$ cf. e.g. [\[14](#page-15-19), Lemma 2.28]. Now, using $\log(1 + 1/n) \leq 1/n$ and again $a(b+c)^r \leq C(ab^r + ac^r)$, we infer

$$
h_u(\psi_N) \le \frac{C}{\log^p N} \left(\log N + \log^{p-1} N \right) \to 0, \qquad N \to \infty
$$

which finishes the proof.

While we know that all Taylor coefficients of the Hardy weight w_p are strictly positive for integer $p \geq 2$, we only know $w_p > w_p^H$ for non-integer $p > 1$. This leads us to the following conjecture $p > 1$. This leads us to the following conjecture.

Conjecture. We conjecture that $x \mapsto w(x)$ as defined in Sect. [3](#page-4-0) is absolutely monotonic monotonic.

Acknowledgements

The authors gratefully acknowledge inspiring discussions with Y. Pinchover. Moreover, the authors are grateful for the financial support of the DFG. Furthermore, F. F. thanks the Heinrich-Böll-Stiftung for the support. Furthermore, we express our gratitude towards the anonymous referee for helpful suggestions.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this article.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

- [1] Allegretto, W.: On the equivalence of two types of oscillation for elliptic operators. Pac. J. Math. **55**, 319–328 (1974)
- [2] de Monvel, A.B., Lenz, D., Stollmann, P.: Sch'nol's theorem for strongly local forms. Israel J. Math. **173**, 189–211 (2009)
- [3] Devyver, B., Fraas, M., Pinchover, Y.: Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon. J. Funct. Anal. **266**(7), 4422–4489 (2014)
- [4] Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Amer. Math. Soc. **284**(2), 787–794 (1984)
- [5] Devyver, B., Pinchover, Y.: Optimal L*^p* Hardy-type inequalities. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire **33**(1), 93–118 (2016)
- [6] Elliott, E.B.: A simple exposition of some recently proved facts as to convergency. J. London Math. Soc. **1**(2), 93–96 (1926)
- [7] Fischer, F.: On the Optimality and Decay of p-Hardy Weights on Graphs (2022). [arXiv:2212.07728](http://arxiv.org/abs/2212.07728)
- [8] Fischer, F.: Quasi-Linear Criticality Theory and Green's Functions on Graphs (2022). [arXiv:2207.05445](http://arxiv.org/abs/2207.05445)
- [9] Fischer, F.: A non-local quasi-linear ground state representation and criticality theory. Calc. Var. Partial Differ. Equ. **62**(5), 33 (2023)
- [10] Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. **255**(12), 3407–3430 (2008)
- [11] Gerhat, B., Krejčiřík, D., Štampach, F.: An improved discrete Rellich inequality on the half-line. to appear in Israel J. Math (2022). [arXiv:2206.11007](http://arxiv.org/abs/2206.11007)
- [12] Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. **6**(3–4), 314–317 (1920)
- [13] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)
- [14] Keller, M., Lenz, D., Wojciechowski, R.K: Graphs and discrete Dirichlet spaces, volume 358 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham, [2021] (c) (2021)
- [15] Kufner, A., Maligranda, L., Persson, L.E.: The prehistory of the Hardy inequality. Amer. Math. Monthly **113**(8), 715–732 (2006)
- [16] Keller, Matthias, Pinchover, Yehuda, Pogorzelski, Felix: An improved discrete Hardy inequality. Amer. Math. Monthly **125**(4), 347–350 (2018)
- [17] Keller, M., Pinchover, Y., Pogorzelski, F.: Optimal Hardy inequalities for Schrödinger operators on graphs. Comm. Math. Phys. **358**(2), 767–790 (2018)
- [18] Keller, M., Pinchover, Y., Pogorzelski, F.: Criticality theory for Schrödinger operators on graphs. J. Spectr. Theory **10**(1), 73–114 (2020)
- [19] Krejčiřík, D., Štampach, F.: A sharp form of the discrete Hardy inequality and the Keller–Pinchover–Pogorzelski inequality. Amer. Math. Monthly **129**(3), 281–283 (2022)
- [20] Landau, E.: A letter to G. H. Hardy, June 21, 1921 (1921)
- [21] Lefèvre, P.: A short direct proof of the discrete Hardy's inequality. Archiv der Mathematik, pp. 1–4, Oct (2019)
- [22] Lef`evre, P.: Weighted discrete Hardy's inequalities. To appear in Ukr. J. Math (2020)
- [23] Piepenbrink, J.: Nonoscillatory elliptic equations. J. Differ. Equ. **15**, 541–550 (1974)
- [24] Pinchover, Y., Psaradakis, G.: On positive solutions of the (p, A) -Laplacian with potential in Morrey space. Anal. PDE **9**(6), 1317–1358 (2016)

Florian Fischer (\boxtimes) and Matthias Keller Institute of Mathematics University of Potsdam Potsdam Germany e-mail: florifis@uni-potsdam.de

Matthias Keller e-mail: matthias.keller@uni-potsdam.de

Felix Pogorzelski Institute of Mathematics University of Leipzig Leipzig Germany e-mail: felix.pogorzelski@math.uni-leipzig.de

Received: January 12, 2023. Revised: August 23, 2023. Accepted: August 25, 2023.