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Abstract. We give necessary and sufficient conditions for a regular semi-
Dirichlet form to enjoy a new Feller type property, which we call weak
Feller property. Our characterization involves potential theoretic as well
as probabilistic aspects and seems to be new even in the symmetric case.
As a consequence, in the symmetric case, we obtain a new variant of a
decomposition principle of the essential spectrum for (the self-adjoint
operators induced by) regular symmetric Dirichlet forms and a Persson
type theorem, which applies e.g. to Cheeger forms on RCD∗ spaces.
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1. Introduction

Let X be a locally compact separable metrizable space equipped with a pos-
itive Radon measure m with full support. Let E be a regular semi-Dirichlet
form on L2(X) with H the associated sectorial operator and Tt := e−tH

the associated semigroup. Given a subset A ⊂ X we denote by cap(A) the
induced capacity, and given an open subset U ⊂ X we denote by HU the
restriction of H to U with a certain Dirichlet condition, which is a sectorial
operator in L2(U) ⊂ L2(X). We refer the reader to Sect. 2 for detailed defi-
nitions. The starting point for our investigations is the following result from
[19].

Theorem 1.1. Assume E is symmetric and spatially locally compact, in the
sense that 1ATt is compact for all t > 0 and all Borel sets A ⊂ X with m(A) <
∞. Then for all open U ⊂ X with cap(X \ U) < ∞ one has σess(HU ) =
σess(H).

Although the class of U ’s considered in this result is very large (in fact,
somewhat optimal), the restriction on the underlying geometry through the
spatial local compactness assumption is rather strong: for example, there ex-
ist RCD∗ spaces of finite measure such that the (operator induced by the)
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Cheeger form (cf. Example 4.3 for the definitions) does not have a purely dis-
crete spectrum and thus is not spatially locally compact. Nontrivial examples
of such spaces are provided by the natural Dirichlet forms (cf. Example 4.2) of
certain complete Riemannian manifolds with Ricci curvature bounded from
below: indeed, noncompact hyperbolic manifolds with finite volume are never
spatially locally compact (as these always have nonempty essential spectrum
[23]). The main goal of this paper is to obtain a variant of Theorem 1.1,
which allows to treat geometries such as arbitrary RCD∗ spaces. To this end,
we found a surprising connection between such results and probability the-
ory. Namely, we say that E has the weak Feller property, if the following two
properties are satisfied:
(α) with L∞

0 (X) the space of all u ∈ L∞(X) such that for all ε > 0 there
exists K ⊂ X compact such that ‖1X\Ku‖∞ < ε, one has

Tt(L∞
0 (X)) ⊂ L∞

0 (X) for all t > 0.

(β) For any compact K ⊂ X there exists a function 0 ≤ w ∈ L2(X) ∩
L∞
0 (X) with (H + 1)−1w ≥ 1K .

Recall that E is said to induce a Feller semigroup, if

Tt(C0(X)) ⊂ C0(X) for all t > 0, (1.1)
‖Ttφ − φ‖∞ → 0 as t → 0+ for all φ ∈ C0(X), (1.2)

with C0(X) the space of continuous functions on X vanishing at ∞. In gen-
eral, this property implies the weak Feller property and these notions are
equivalent on Riemannian manifolds, but there exist E ’s which have the weak
Feller property but not the Feller property (cf. Sects. 3 and 4). We provide
a list of equivalent characterizations of the weak Feller property under the
above condition (β), one of which is the traditional probabilistic condition
that compact sets are hard to hit from close to infinity by the underlying
diffusion: namely, whenever K is compact and σK denotes the induced first
hitting time, then for all t ≥ 0 one has

P•{σK ≤ t} ∈ L∞
0 (X), (1.3)

keeping in mind that by the seminal work of Azencott [1] it is well-known
that in the Riemannian case, (1.3) is equivalent to the Feller property.
With this definition, one of our main results is:

Theorem 1.2. Let E be symmetric and satisfy the weak Feller property, and
let E be weakly spatially local compact, in the sense that 1KTt is compact for
all compact K ⊂ X and all t > 0. Then for every open U ⊂ X with X \ U
compact one has σess(HU ) = σess(H).

The weak Feller property enters the proof of Theorem 1.2 precisely in
the form (1.3), through a method from [19].

Concerning the assumptions of Theorem 1.2 we remark that the natural
Dirichlet form on a connected Riemannian manifold is automatically weakly
spatially locally compact and satisfies the condition (β), and has the (weak)
Feller property, e.g., if the manifold is complete and its Ricci curvature does
not decay to fast to −∞; likewise, the Cheeger energy of an arbitrary RCD∗
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space as well as many jump diffusion Dirichlet forms satisfy all assumptions
of the above theorem (cf. Examples 4.2, 4.3, 4.4 and Sect. 5).

Finally, we obtain a variant of Persson’s theorem, which states that
under the same assumptions on E as in Theorem 1.2 one has

inf σess(H) = lim
K→X

inf σ(HX\K),

and we show that these assumptions on E are satisfied, if E has the doubly
Feller property in the sense of [17], that is, if E has the Feller property in
addition to Tt(L∞(X)) ⊂ C0(X) for all t > 0.

For completeness, we have also included an “Appendix”, where we show
that every semi-Dirichlet form whose semigroup satisfies (1.1) is automati-
cally regular, a result that comes in handy e.g. for possibly nonsymmetric
jump diffusions.

2. Preliminaries

For the standard terminology concerning Dirichlet forms we refer to [9] for
the symmetric and to [25,26] for the non-symmetric case. In the sequel, ‖·‖p

for p ∈ [1,∞] denotes the norm on Lp(X). Following [26], we say that a
pair (E ,F ) (or shortly E , if there is no danger of confusion) is a (non-
negative definite) semi-Dirichlet form on L2(X), if the following assumptions
are satisfied:

• F is a dense subspace of L2(X) and E : F × F → R is bilinear and
E [u] := E (u, u) ≥ 0.

• Sector condition: there exists a constant K ≥ 1 such that

|E (u, v)| ≤ KE (u, u)
1
2 E (v, v)

1
2 .

• F is complete w.r.t. ‖ · ‖E , where

‖u‖2E := E [u] + ‖u‖22.
• Markovian property: for all u ∈ F , a ≥ 0, one has

u ∧ a ∈ F and E (u ∧ a, u − u ∧ a) ≥ 0. (2.1)
In the above situation, we get a maximally sectorial operator H on

L2(X) associated with E by Kato’s first form representation theorem, [14,
VI,Thm 2.1, p. 322] and for t ≥ 0, α > 0 we write

Tt := e−tH , Gα := (H + α)−1

for the corresponding contraction semigroup and resolvent, respectively, see
[26, Thm 1.1.2, p. 4]. As a consequence of (2.1), the semigroup (Tt; t ≥ 0) is a
sub-Markov semigroup [26, Thm 1.1.5, p. 7] and so extends in a p-consistent
way to a contraction semigroup Lp(X) for all p ∈ [1,∞] which is strongly
continuous for p < ∞ and weak-*-continuous for p = ∞. Likewise, Gα is
bounded in Lp(X) for all p ∈ [1,∞]. To ease notation, we do not distinguish
between these semigroups and the resolvents just write Tt resp. Gα for all of
them.

The semi-Dirichlet form (E ,F ) is called regular, if F ∩ Cc(X) is dense
in F with respect to ‖ · ‖E and in Cc(X) with respect to ‖·‖∞.
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We fix once for all a regular semi-Dirichlet form (E ,F ) on L2(X).
Then E is called symmetric, if one has E (u, v) = E (v, u) for all u, v ∈ F ,

noting that a regular symmetric semi-Dirichlet in our sense is automatically
a regular symmetric Dirichlet form in the standard sense of Fukushima [10].
Moreover, E is called strongly local, if E (u, v) = 0, whenever u, v ∈ F are
such that u is constant on the support of v.

We set
Eα(u, v) := E (u, v) + α

∫
X

uv dm, Eα(u) := Eα(u, u), for all α > 0,

and remark that the induced Choquet capacity is defined on open subsets
U ⊂ X by

cap(U) := inf
{
E1(v)

∣∣ v ∈ F ,1U ≤ v
}
,

with the usual convention inf ∅ = ∞, and for arbitrary A ⊂ X one then sets

cap(A) := inf
{
cap(U)

∣∣ A ⊂ U,U open
}
.

With respect to this capacity, every u ∈ F has a (quasi-)unique quasi-
continuous representative ũ, and keeping this in mind, for every set B one
sets

F̃B,1 :=
{
u ∈ F

∣∣ ũ ≥ 1B q.e.
}
,

so that for open U ⊂ X one has

cap(U) = inf
{
E1(v)

∣∣ v ∈ F̃U,1

}
.

The regularity of E implies (through the existence of cut-off functions) that

cap(K) < ∞ for all compact K ⊂ X.

We will also be concerned with the Hunt process

M := (Ω, (Px;x ∈ X), (Xt; t ≥ 0))

associated with E (see [9,25], [26, Section 3.3] and the groundbreaking [10]),
with lifetime ζ ∈ (0,∞]; it gives the following probabilistic representation for
the semigroup: for all t > 0, f ∈ L2(X) and m-a.e. x ∈ X one has

Ttf(x) = Ex{1{t<ζ}f(Xt)}.

The restriction of E to F ∩ Cc(U)
‖·‖E is a regular semi-Dirichlet form

on L2(U) ⊂ L2(X), [26, Section 3.5, in particular Thm 3.5.7]. This form will
be denoted by EU . The maximally sectorial operator associated to EU will be
denoted by HU and its semigroup with (TU

t ; t ≥ 0).
The first exit time of M from a Borel set B is defined by

τB := inf
{
t > 0

∣∣ Xt �∈ B
}

and the first hitting time of M of B is defined by

σB := inf
{
t > 0

∣∣ Xt ∈ B
}
.

The following form of the Feynman-Kac formula allows a probabilistic inter-
pretation of the semigroup generated by HU : for all f ∈ L2(U), t > 0, m-a.e.
x ∈ U one has

TU
t f(x) = Ex

[
1{t<τU }f(Xt)

]
(2.2)
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(see [26, Theorem 3.5.7, p. 100 and its proof], see also [4], Section 3.3, in
particular Theorem 3.3.8, p. 109f. for the symmetric case). We will view
bounded operators in Lp(U) to be acting on Lp(X), by defining them to be
0 on Lp(X\U).

We finally introduce some potential theoretic notions that will be needed
in the sequel: let u ∈ Lp(X) for some 1 ≤ p ≤ ∞. We say that u is 1-excessive,
if e−tTtu ≤ u for all t > 0.

The 1-equilibrium potential eB for a Borel set B is defined by

eB(x) = Ex(e−σB ). (2.3)

Actually, this is a little shortcut that is convenient for what we have in
mind. Typically, eB is introduced by a variational principle, and (2.3) is then
deduced as an important link between the stochastic and the analytic world.
In this spirit, the right-hand-side of the definition of eB is typically denoted
as p1B(x) or HB1(x), see [4, Lemma 3.1.1] or [26, Lemma 3.4.3].

Remark 2.1. (1) In the symmetric case, for any Borel set B such that
F̃B,1 �= ∅, the function eB is the unique function in F̃B,1 which satisfies

E1(eB , eB) = min
{
E1(u)

∣∣ u ∈ F̃B,1

}
,

and one then has

cap(B) = E1(eB , eB),

see [4, p. 78, p. 105].
(2) In the non-symmetric case, at least for open B, [26, Lemma 3.4.3] gives

an analogous statement, however, the variational problem is somewhat
different then.

(3) [22, Proposition 2.8 (iii)] gives, that for all open B and all 1-excessive
u ∈ F̃B,1 one has eB ≤ u, another variational property of eB that will
be of prime importance later.

(4) If X is a connected Riemannian manifold with m its volume measure
and E is given by

E (u, v) =
∫

X

(∇u,∇v)dm with domain of definition F := W 1,2
0 (X),

where W 1,2
0 (X) is the closure of C∞

c (X) with respect to the norm ‖·‖E ,
then for any open relatively compact U ⊂ X the function eU is the
minimal nonnegative solution of the exterior boundary value problem

Δu = u in X \ U

u > 0 on U c

u = 1 on ∂U.

(2.4)

Here Δ = −H is the Laplace-Beltrami operator.
(5) Let U ⊂ X be open and relatively compact. Then there is a unique

positive σ-finite Borel measure μU on X, supported in U , such that eU

is the 1-potential of μU , that is,

E1(eU , u) =
∫

X

u dμU for all u ∈ F ,
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and one has cap(U) = μU (U). If G1 has an integral kernel κ1(x, y),
then

eU (x) =
∫

X

κ1(x, y) dμU (y). (2.5)

Indeed, let κ∗
1(x, y) := κ1(y, x) and let G∗

1 be the dual resolvent of
G1 (G∗

1 is in fact the resolvent of the dual form E ∗(u, v) = E (v, u)).
Obviously κ∗

1 is the kernel of G∗
1. Let u ∈ L2(X), u ≥ 0. Then

E1(eU , G∗
1u) =

∫
X

G∗
1u(x) dμU (x)

= E ∗
1 (G∗

1u, eU )

=
∫

X

u(y)eU (y) dm(y)

=
∫

X

∫
X

κ∗
1(x, y)u(y) dm(y) dμU (x)

=
∫

X

u(y) ·
(∫

X

κ∗
1(x, y) dμU (x)

)
dm(y),

and the claim follows, by extending the latter identity to every u ∈
L2(X) through u = u+ − u−.

3. The Weak Feller Property

Recall that by definition, if E induces a Feller semigroup, then one has (1.1).
The generalization of this property that we seek for relies on the space

L∞
0 (X) :=

{
u ∈ L∞(X)

∣∣ for all ε > 0, ∃ K ⊂ X

compact s.t. ‖u1X\K‖∞ < ε
}

of bounded functions vanishing at ∞ in the measure theoretic sense.

Definition 3.1. (α) We say that E satisfies the L∞
0 -diffusion property, if

Tt(L∞
0 (X)) ⊂ L∞

0 (X) for all t > 0. (3.1)

(β) We say that E satisfies property (P), if for any compact K ⊂ X there is
w ∈ L2(X) ∩ L∞

0 (X), w ≥ 0 such that G1w ≥ 1K .
(γ) We say that E satisfies the weak Feller property, if it has the L∞

0 -diffusion
property and if (P) holds.

We discuss a number of sufficient conditions:

Remark 3.2. (1) The following property implies (P):
(P”): for any compact K ⊂ X there exists w ∈ L2(X) ∩ L∞

0 (X), w ≥ 0
and t′ > 0 such that for all 0 < t < t′ one has Ttw ≥ 1K , which follows
from

G1f =
∫
[0,∞)

e−tTtfdt, f ∈ Lp(X),

where integral is in the Lp(X)-Bochner sense if p ∈ [1,∞), and in the
weak-*-sense for p = ∞.
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(2) If E induces a Feller semigroup, then it also has the weak Feller prop-
erty: indeed, given a compact K ⊂ X pick 0 ≤ w ∈ Cc(X) with w ≥ c
in K for some c > 0. Then, since t �→ Tt is strongly continuous at t = 0
in C0(X), we can pick a c′ > 0 and t′ > 0 such that Ttw ≥ c′ in K for
all 0 < t < t′, so that property (P) follows from the previous item.
Furthermore by positivity of Tt we get

Tt(1K) ≤ 1
c′ Ttw ∈ C0(X) by (1.1).

Hence Tt(1K) ∈ L∞
0 (X) and the L∞

0 -diffusion property follows from
item (4).

(3) Property (P) is equivalent to:
(P’): there is w ∈ L2(X) ∩ L∞

0 (X), w ≥ 0 such that for any compact
K ⊂ X there is cK > 0 such that

G1w ≥ cK1K . (3.2)

(4) By local compactness and the semigroup property, the L∞
0 -diffusion

property is equivalent to the following property:

Tt1K ∈ L∞
0 (X) for all compact K ⊂ X, 0 < t < 1.

The L∞
0 -diffusion property of the semigroup implies the analogous prop-

erty of the resolvent. This fact is well known for C0(X) instead of L∞
0 , where

it is an equivalence, see, e.g. [17], p. 638 and [15]. Since we have a more
general situation at hand, we present a proof. We thank the referee for the
suggestion to do so:

Proposition 3.3. For the following assertions

(1) E satisfies the L∞
0 -diffusion property.

(2) There is some α > 0 such that Gα(L∞
0 (X)) ⊂ L∞

0 (X).
(3) For all α > 0 one has Gα(L∞

0 (X)) ⊂ L∞
0 (X).

we have that (1)⇒(2)⇔(3).

The proofs we know for C0(X) in place of L∞
0 (X) make use of the

denseness of the range of the resolvent in C0(X) with respect to the uniform
norm, see [18] and the references in there. Such a denseness is not valid for
L∞
0 (X) in many cases, e.g. when the semigroup has the strong Feller property.

Therefore we are not completely convinced that in our setting (3) implies (1).

Proof. Pick an exhaustion (Un)n∈N of X by relatively compact open sets and
set ηn := 1X\Un

for n ∈ N. Obviously, f ∈ L∞
0 (X) if and only f ∈ L∞(X)

and

‖ηnf‖∞ → 0 for n → ∞,

which in turn can be expressed through duality with L1(X). Semigroups and
resolvents are related through:

Gαf =
∫
[0,∞)

e−αtTtfdt (3.3)
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and

Ttf = lim
β→∞

e−βt
∞∑

k=0

(βt)k

k!
(βGβ)kf (3.4)

for f ∈ L∞(X). Note however, that both right hand sides are to be under-
stood in the w-∗- sense and this adds a little subtelty to the argument. If
we had norm convergence in these equations, the equivalence of (1) and (3)
would be not too hard since L∞

0 (X) is a closed subspace of L∞(X).
(1)⇒(3): Fix α and f ∈ L∞

0 (X) and note that by w-∗-continuity of the
semigroup, and the resulting measurability,

‖ηnGαf‖∞ ≤
∫
[0,∞)

e−αt‖ηnTtf‖∞dt → 0 as n → ∞

by dominated convergence, as the integrand is Lebesgue measurable and goes
to 0 pointwise by the L∞

0 -diffusion property.
(3)⇒(2) is clear.
(3)⇐(2): Note that by positivity, it remains to check the convergence

of ηnGαf for given positive f ∈ L∞
0 (X); the ηnGαf are nonincreasing in α,

so whenever Gα(L∞
0 (X)) ⊂ L∞

0 (X), we get the same mapping property for
Gβ , for β > α. Using that

Gβf = lim
T→∞

∫
[0,T ]

e−βtTtfdt

in ‖·‖∞, with the integral understood in the w-∗- sense, and that the integral
can be majorized by e(α−β)T Gαf pointwise, we are done. �

We are now in position to give a characterization of the weak Feller
property:

Theorem 3.4. Under assumption (P), the following assertions are equivalent:
(1) E satisfies the L∞

0 -diffusion property.
(2) For any compact K ⊂ X, t ≥ 0 one has P•{σK ≤ t} ∈ L∞

0 (X).
(3) For any compact K ⊂ X one has eK ∈ L∞

0 (X).
(4) For any compact K ⊂ X there exists a 1-excessive function φ ∈ F with

1K ≤ φ ∈ L∞
0 (X).

(5) There is some α > 0 such that Gα(L∞
0 (X)) ⊂ L∞

0 (X).
(6) For all α > 0 one has Gα(L∞

0 (X)) ⊂ L∞
0 (X).

Proof. (4)⇒(3): Let K as in (3) and pick a relatively compact, open B ⊃ K.
By (4) there exists a 1-excessive φ ∈ L∞

0 (X) ∩ F such that 1B ≤ φ. From
Remark 2.1(3) above, we get that eB ≤ φ and so

eK ≤ eB ∈ L∞
0 (X).

(3)⇒(2): follows from

P•{σK ≤ t} ≤ eteK .

(2)⇒(1): follows from Remark 3.2(4) and

Tt1K = E•[1K ◦ Xt] ≤ P•{σK ≤ t}.
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(1)⇒(6) and (5)⇔(6) are true without (P) as follows from the previous Propo-
sition.

(6)⇒(4): Pick w as in (P) and set

φ := G1w =
∫ ∞

0

e−tTtwdt. (3.5)

Condition (P) ensures that φ ≥ 1K and evidently, φ is 1-excessive and
belongs to F . Finally, by (6) it follows that φ ∈ L∞

0 (X) as asserted. �

Although in most concrete applications (see the next section) the weak
Feller property is most conveniently checked in terms of the semigroup, the
above result allows in principle to check this property directly through the
equilibrium potential. Assume for example that X is a metric space with
metric d(x, y), that G1 has an integral kernel κ1(x, y) and that for every
open relatively compact U ⊂ X the function G11U is bounded from below
by a strictly positive lower semicontinuous function (so that one has property
(P)). If then for any such U there exist constants c, δ, γ > 0 such that

κ1(x, y) ≤ cd(x, y)−γ for all y ∈ U and all x ∈ X with d(x, y) > δ,

(3.6)

then one has eU ∈ L∞
0 (X), which clearly entails the weak Feller property.

Indeed, let n ∈ N be large enough and let

Kn := {x ∈ X : d(x,U) ≤ n}.

From formula (2.5) we obtain that for x �∈ Kn

eU (x) =
∫

X

κ1(x, y) dμU (y) =
∫

U

κ1(x, y) dμU (y) ≤ c

∫
U

d(x, y)−γ dμU (y)

≤ c

nγ
μU (U) =

c

nγ
cap(U),

which, by letting n → ∞ proves the claim. Situations as above can be inferred
for example from results such as [29, Section 5.6], [11, Lemma 7.7] and [5,
Lemma 2.4].

4. Examples of Weakly Feller E ′s

In this section we give some classes of examples to illustrate the weak Feller
property.

Example 4.1. (Multiplication operators) Let h : X → [0,∞) be measurable
and define a regular symmetric Dirichlet form by

F =
{
f ∈ L2(X)

∣∣ h
1
2 f ∈ L2(X)

}

E (f, g) =
∫

X

h · f · g dm.

Then H is the maximally defined multiplication operator induced by h and
Tt is the bounded multiplication operator induced by e−th.
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(i) The L∞
0 -diffusion property always holds, in view of |Ttf | ≤ |f | for all

t ≥ 0.
(ii) Property (P) is equivalent to h ∈ L∞

loc(X).
(iii) The Feller property is equivalent to h ∈ C(X), keeping in my mind that

the required strong continuity in (1.2) automatically follows from Dini’s
theorem.

(iv) One has Tt(C0(X)) ⊂ C0(X) for all t ≥ 0, if and only if Tt(Cb(X)) ⊂
Cb(X) for all t ≥ 0, which in turn is equivalent to h ∈ C(X), as men-
tioned already.

Example 4.2. (Riemannian manifolds) Let X be a connected Riemannian
manifold with m its volume measure, d(x, y) the geodesic distance and E is
the regular strongly local symmetric Dirichlet form in L2(X) given by

E (u, v) =
∫

X

(∇u,∇v)dm with domain of definition F := W 1,2
0 (X).

(4.1)

Then H is the Friedrichs realization of the Laplace-Beltrami operator −Δ
and Tt has a jointly smooth integral kernel pt(x, y) for all t > 0, which is
strictly positive by the parabolic maximum principle. Accordingly, E satisfies
property (P”), as given K ⊂ X compact one has Ttw ≥ 1K for

w :=
(
m(K) inf

x,y∈K
pt(x, y)

)−1
1K .

Moreover, E induces a Feller semigroup, if and only if one has Tt(C0(X)) ⊂
C0(X): indeed, the required strong continuity follows from writing

Ptf − f =
∫ t

0

PsΔfds for all t > 0, f ∈ C∞
c (X),

and using that Ps is a contraction in L∞(X). We have borrowed this argu-
ment from the proof of Proposition 4.3 in [24]. Moreover, E induces a Feller
semigroup, if and only if [27, Theorem 2.2] the unique minimal solution to
(2.4) vanishes at ∞, for all open relatively compact U ⊂ X (see also [33,
Theorem 3.3] for analogous result on graphs). Since by Remark 2.1(4) this
solution is precisely eU , it follows from Theorem 3.4 that E is weakly Feller, if
and only if it has the Feller property. This is the case, e.g., if X is geodesically
complete and its Ricci curvature satisfies [12]

Ric ≥ −C1 − C2d(x, y)2 for some C1, C2 ≥ 0.

Example 4.3. (RCD∗ spaces) Let X be a complete separable geodesic metric
measure space with metric d(x, y) and let m be an inner regular Borel measure
on X with full support, which is finite on all open balls B(x, r). The Cheeger
form

Ch : L2(X) −→ [0,∞]

on X is defined to be the L2-lower semicontinuous relaxation of the functional

C̃h : L2(X) ∩ Lip(X) −→ [0,∞]
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given by

C̃h(f) :=
∫

X

(
lim sup

y→x

|f(x) − f(y)|
d(x, y)

)2

dm(x),

One gets a functional E on L2(X) with domain of definition F given by
all f with Ch(f) < ∞ by setting E (f) := Ch(f) for such f ’s. The metric
measure space X is called infinitesimally Hilbertian, if E is a quadratic form.
For example, if X is a complete connected Riemannian manifold with its
geodesic distance and Riemannian volume measure, then E is given by (4.1).

Next, let us give the following definition of the CD∗(K,N) condition
from [3], which is a slight generalization of the original CD(K,N) condition
from [21,30] having the advantage of admitting a natural local-to-global prin-
ciple: let P(X) denote the set of all Borel probability measures on X and let
P2(X) denote the elements of P(X) that have finite second moments. Given
μ0, μ1 ∈ P2(X), the L2-Wasserstein distance is defined by

W2(μ0, μ1) := inf
{∫

X×X

d(x, y)2dq(x, y) : q ∈ C (μ0, μ1)
}

,

with C (μ0, μ1) the set of all couplings between μ0 and μ1. Any minimizer of
the above infimum is called an optimal coupling of μ0 and μ1. Then P2(X)
together with the L2-Wasserstein distance is again a complete separable ge-
odesic space (as X is so). Given K ∈ R, t ∈ [0, 1], N ∈ [1,∞) define the
function

σ
(t)
K,N : [0,∞) −→ R ∪ {∞}

by

σ
(t)
K,N (θ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞, if Kθ2 ≥ Nπ2

sin(tθ
√

K/N)

sin(θ
√

K/N)
, if 0 < Kθ2 < Nπ2

t, if Kθ2 = 0
sinh(tθ

√
−K/N)

sinh(θ
√

−K/N)
, if Kθ2 < 0.

Given K ∈ R, N ∈ [1,∞), the metric measure space X is called a CD∗(K,N)
space, if for all μ0, μ1 ∈ P(X) with bounded support and μ0, μ1 � m, there
exists an optimal coupling q of them and a geodesic (μt)t∈[0,1] in P2(X)
connecting them, such that

μt � m and μt has a bounded support for all t ∈ [0, 1],

and such that for all N ′ ∈ [N,∞), t ∈ [0, 1] one has∫
X

ρt(x)1−1/N ′
m(dx)

≥
∫

X×X

(
σ
(1−t)
K,N ′ (d(x0, x1))ρ0(x0)−1/N ′

+ σ
(t)
K,N ′(d(x0, x1))ρ1(x1)−1/N ′)

dq(x0, x1),

where ρt denotes the Radon-Nikodym density of μt with respect to m for all
t ∈ [0, 1]. Finally, given K ∈ R, N ∈ [1,∞), the metric measure space X is
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called an RCD∗(K,N) space, if it is an infinitesimally Hilbertian CD∗(K,N)
space. This definition is shown to be equivalent to weak Bochner type inequal-
ity in [8]. Examples of such space include complete connected Riemannian
manifolds of dimension n ≤ N and Ricci curvature bounded from below by K
with their geodesic distance and volume measure, but also possibly very sin-
gular spaces such as Alexandrov spaces of dimension n ≤ N with curvature
≥ K/(n − 1), (≥ 0 if n = 1) and their n-dimensional Hausdorff measure.

We fix an RCD∗(K,N) space X in the sequel.
Then, by the validity of the Bishop-Gromov volume estimate [3], there

exists C > 0 such that for all 0 < r ≤ R and all x ∈ X one has the volume
local doubling

m(x,R)
m(x, r)

≤ CeCR(R/r)N , (4.2)

which implies that X is locally compact. Here, we have set m(y, s) :
= m(B(y, s)). Moreover, by a standard argument one gets the following local
volume comparison inequality from the latter estimate: there is a constant
C ′ > 0 such that for all t > 0, x1, x2 ∈ M and ε > 0,

m(x2,
√

t)
m(x1,

√
t)

≤ C ′e
C′t

ε eε
d(x1,x2)2

t . (4.3)

As shown in [16], E becomes a regular strongly local symmetric Dirichlet
form. The semigroup Tt has a jointly continuous integral kernel pt(x, y) for
all t > 0, which satisfies [13] for all x, y ∈ X, 0 < t < 1 the following Gaussian
bounds

C1m(x,
√

t)−1e− d(x,y)2

C2t ≤ pt(x, y) ≤ C3m(x,
√

t)−1e− d(x,y)2

C4t .

Clearly, this implies pt(x, y) > 0, so that property (P′′) is satisfied as in the
Riemannian case. For the proof of the L∞

0 -diffusion property we can assume
that X is noncompact. We are going to show that Tt1K ∈ L∞

0 (X) for all
0 < t < 1. Indeed, the Gaussian upper bound implies

|Tt1K(x)| ≤ C5C3

∫
K

e
−d(x,y)2

C4t dm(y),

which clearly proves the claim, noting that

C5 := sup
y∈K

m(y,
√

t)−1 < ∞,

as for every fixed z ∈ X \ K, by local volume comparison,

inf
y∈K

m(y,
√

t) ≥ inf
y∈K

C ′e−C′te−d(z,y)2/tm(z,
√

t) > 0.

While the previous two examples were both strongly local and symmet-
ric, we finally provide an example which is nonlocal and nonsymmetric:

Example 4.4. (Nonsymmetric jump diffusions) Assume X = R
m with

Lebesgue measure dx, and fix 0 < α < 2 and a Borel function

κ : Rm × R
m −→ R, with

κ0 ≤ κ(x, z) ≤ κ1, κ(x, z) = κ(x,−z),



IEOT Essential Spectrum and Feller Type Properties Page 13 of 20 12

|κ(x, z) − κ(y, z)| ≤ κ2|x − y|β , for all x, z, y ∈ R
m,

for some constants κ0, κ1, κ2 > 0, 0 < β < 1. Define the operator H̃ on
functions f : Rm → R by

H̃f(x) := lim
ε→0

∫
{|z|>ε}

(f(x + z) + f(z))
κ(x, z)
|z|m+α

dz, (4.4)

whenever the expression makes sense.
Then it follows from Theorem 1.1 in [6] (and a scaling argument) that

there exists a unique jointly continuous function

p : (0,∞) × R
m × R

m −→ [0,∞), (t, x, y) �−→ pt(x, y)

which has the following three properties:

(i) one has

∂tpt(x, y) = H̃pt(•, y)(x), for all t > 0, x �= y,

(ii) for all t0 > 0 there exists a constant c1 > 0 such that for all 0 < t < t0
and all x, y one has

pt(x, y) ≤ c1t(t1/α + |x − y|)−m−α,

(iii) for every 0 < γ < min(α, 1) and t0 > 0 there exists a constant c2 > 0
such that for all x, x′, y ∈ R

m, 0 < t < t0 one has

|pt(x, y) − pt(x′, y)|
≤ c1|x − x′|γt1−γ/α

(
t1/α + min(|x − y|, |x′ − y|)

)−m−α

,

(iv) the map t �→ H̃pt(·, y)(x) is continuous for all x �= y, and for all t0 > 0
there exists a constant c3 > 0 such that for all 0 < t < t0 and all x �= y
one has

|H̃pt(•, y)(x)| ≤ c3(t1/α + |x − y|)−m−α,

(v) for all bounded uniformly continuous functions f : Rm → R one has

lim
t→0+

∥∥∥∥
∫
Rm

pt(•, y)f(y)dy − f

∥∥∥∥
∞

= 0.

Moreover, (t, x, y) �→ pt(x, y) satisfies the Chapman-Kolmogorov identities,
and with

Ttf(x) :=
∫
Rm

pt(x, y)f(y)dy,

the semigroup (Tt; t ≥ 0) is analytic in L2(Rm), and one has the conserva-
tiveness ∫

Rm

pt(x, y)dy = 1 for all t > 0, x, y ∈ R
m.

Assuming that the function κ∗(x, y) := κ(y, x) satisfies the the same assump-
tions as κ, then with H the generator of this semigroup, we can define [25]
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a semi-Dirichlet form E in L2(Rm) by defining F to be the completion of
Dom(H) with respect to the norm

u �−→
√

〈Hu, u〉 + ‖u‖2,
and defining E to be the unique bilinear extension of

(u, v) �−→ 〈Hu, v〉
to F . It follows from the continuity of the heat kernel pt(x, y), (ii), (iii), (v)
and Theorem 6.1 that E is regular and induces a Feller semigroup (and so
a weak Feller semigroup). Moreover, E is symmetric, if and only if κ is so.
This example generalizes the usual α-stable Dirichlet form in R

m, where κ
is a constant. Even more general nonlocal semi-Dirichlet forms have been
treated along the same lines in [18], where the function z �→ |z|−m−α in (4.4)
has been replaced by a general class of functions subject to certain growth
conditions.

5. The Decomposition Principle

Here, we state some spectral theoretic consequences of Feller type properties,
mainly addressing the issue of stability of the essential spectrum. Since func-
tional calculus will be involved, we fix a regular symmetric Dirichlet form E
throughout this section, with H, Tt denoting, as usual, the associated self ad-
joint operator and semigroup and EU , HU , TU

t the corresponding restriction
to an open U ⊂ X, as discussed in Sect. 2. We denote by ‖·‖ the operator
norm in L2(X).

Our main aim is to show that

σess(H) = σess(HX\K)

provided K is compact and H is suitable. The essential spectrum of a self-
adjoint operator S can be characterized as

σess(S) =
{
λ ∈ C

∣∣ S − λ is not a Fredholm operator
}
,

see [28, Chapter XIII.14]. It was introduced by H. Weyl in a slightly different
form in [32], who also proved its essential property, namely that it is invariant
under compact perturbations, see [31].

Definition 5.1. We say that E satisfies the weak spatial local compactness
property, if 1KTt is a compact operator for every compact K ⊂ X and every
t > 0.

Clearly, this property is weaker than spatial local compactness, intro-
duced in [19, Definition 2.1] which requires that 1ATt is a compact operator
for every Borel set A ⊂ X with m(A) < ∞.

The main point is the following variant of the corresponding result in
[19].



IEOT Essential Spectrum and Feller Type Properties Page 15 of 20 12

Lemma 5.2. Let E satisfy the weak Feller property. Let K ⊂ X be compact.
Then there is a sequence (Kn)n∈N of compact sets such that for every t > 0

lim
n→∞

∥∥∥1Kn

(
Tt − T

X\K
t

)
−

(
Tt − T

X\K
t

)∥∥∥ = 0. (5.1)

This result is proved exactly as [19, Corollary 2.5.], where

Kn ⊃ {eK > 1/n}
can be chosen compact in view of the L∞

0 -diffusion property of E , for n large
enough. With exactly the same argument as in [19], one can now prove:

Theorem 5.3. (Decomposition principle) Let E satisfy the weak Feller prop-
erty and H the weak spatial local compactness property. Let K ⊂ X be com-
pact. Then the operator ϕ(HX\K) − ϕ(H) is compact for every ϕ ∈ C0(R).
In particular,

σess(HX\K) = σess(H).

Remark 5.4. The E ’s from Examples 4.2, 4.3 and 4.4 (assuming symmetry
in the last case) are weakly locally compact: indeed, in each case Tt has
a jointly continuous integral kernel, which shows that the Hilbert-Schmidt
norm of the integral operator 1KTt is finite for all compact K ⊂ X, t > 0.
Thus, for RCD∗-spaces and symmetric jump diffusions Theorem 5.3 applies
directly. In the Riemannian case, one has to guarantee the Feller property,
which holds, as noted above, if the manifold is complete with a Ricci curvature
that does not decay to fast to ∞. In fact, as shown in [7] with completely
different methods, the decomposition principle holds in the Riemannian case
without any assumptions on the geometry. From this point of view, the main
strength of Theorem 5.3 stems from the fact that it can deal with many local
and nonlocal situations simultaneously.

We get the following variant of the Persson type theorem from [19],
where limK→X stands for the limit along the net of compact subsets of X:

Theorem 5.5. (Persson’s theorem) Let E satisfy the weak Feller property and
H the weak spatial local compactness property. Then,

inf σess(H) = lim
K→X

inf σ(HX\K).

Finally, we present further results that connect Feller type properties
with the stability of the essential spectrum. The first one shows that the
compactness of ϕ(HX\K) − ϕ(H) deduced in Theorem 5.3 actually implies
the corresponding spatial local compactness property:

Proposition 5.6. Let B ⊂ X be closed, U := X \ B. If the operator ϕ(HU ) −
ϕ(H) is compact for every ϕ ∈ C0(R) then 1BTt is a compact operator as
well.

We have chosen the assumption and the conclusion so as to fit the above
results, many different equivalent formulations are at hand:

Remark 5.7. Let U ⊂ X be open and B ⊂ X be closed.
(1) The following properties are equivalent:
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• ϕ(HU ) − ϕ(H) is compact for every ϕ ∈ C0(R),
• TU

t − Tt is compact for one (every) t > 0,
• Dλ := Gλ − (HU + λ)−1 is compact for one (every) λ > 0.

(2) The following properties are equivalent:
• 1Bϕ(H) is compact for every ϕ ∈ C0(R),
• 1BTt is compact for one (every) t > 0,
• 1BGλ is compact for one (every) λ > 0.

For the proof of the second statement, see [20, Theorem 1.3]; the first
statement can be deduced with the help of the Stone-Weierstrass theorem,
see proof of Theorem 2.3 in [19].

Proof of Prop. 5.6. By [2, Lemma 3]

D1 := G1 − (HU + 1)−1 = (Ȟ1/2JG1)∗Ȟ1/2JG1,

where

J : (F ,E1) → L2(B,1Bm), u �→ u|B ,

and Ȟ is the selfadjoint operator of the trace of E1 w.r.t. the map J . Accord-
ingly, D1 is compact if and only if Ȟ1/2JG1 is compact as well. Since Ȟ ≥ 1,
we get that JG1 is compact, whence the assertion in view of the preceding
remark, part (2). �

Proposition 5.8. Let E satisfy the Feller property. If TV
1 is compact for some

relatively compact open V , then 1KT1 is compact for every compact subset
K ⊂ V . Consequently, if TV

1 is compact for all relatively compact open V ,
then H satisfies the weak spatial local compactness property.

Proof. Let K and V be as in the assertion. By [17, Lemma 2.2] we get:

sup
x∈K

Px {τV ≤ s} → 0 as s ↘ 0.

With an argument just as in [19, Proof of Proposition 2.4] this gives that

‖1K(Ts − TV
s )‖ → 0 as s ↘ 0. (5.2)

Since TV
1 is compact, TV

s is compact as well by Remark 5.7(2), applied to
HV and B = V , we finally conclude that

1KT1 = 1KTsT1−s for s < 1

= lim
s↘0

1KTV
s T1−s

is compact, as a norm limit (see (5.2)) of compact operators.
The second assertion is evident. �

Using a compactness result [17, Corollary 4.1] for doubly Feller forms,
we get:

Corollary 5.9. Let E be doubly Feller, i.e., E induces a semigroup and one
has the smoothing property Tt(L∞(X)) ⊂ Cb(X) for every t > 0. Then H
satisfies the weak spatial local compactness property. In particular, the con-
clusions of Theorems 5.3 and 5.5 hold.
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6. Appendix

Let again X be a locally compact separable metrizable space which is equipped
with a positive Radon measure m with full support. We fix a semi-Dirichlet
form (E ,F ) on L2(X), with H the associated sectorial operator, Tt := e−tH

the semigroup, and Gα the resolvent, both considered to be acting as con-
tractions in Lp(X). Finally, we are going to need the norm

‖u‖E :=
√
E (u, u) + ‖u‖22 on F

and the norm

‖u‖H :=
√

‖Hu‖22 + ‖u‖22 on Dom(H).

Our goal here is to prove the following result, which should be known
to experts:
Theorem 6.1. Assume one has

Tt(C0(X)) ⊂ C0(X) for all t > 0, (6.1)
‖Ttφ − φ‖∞ → 0 as t → 0 + for all φ ∈ C0(X). (6.2)

Then E is regular.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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The proof relies on the following auxiliary results:

Proposition 6.2. The following statements are equivalent:

• E is regular.
• F ∩ C0(X) is dense in (F , ‖•‖E ) and in (C0(X), ‖•‖∞).

Proof. It suffices to show that every φ ∈ F∩C0(X) can be approximated by a
sequence in F ∩ Cc(X) with respect to ‖•‖E . To this end, by the Markovian
property of E , we can assume φ ≥ 0. Then one has φn := (φ − 1/n)+ ∈
F ∩ Cc(X) by the Markovian property, φn → φ in L2(X), and moreover
supn E (φn, φn) < ∞. Thus, a subsequence of φn does the job. �

Proposition 6.3. Under (6.1) and (6.2), the space D0 := Dom(H) ∩ C0(X)
is dense in (Dom(H), ‖•‖H) and in (C0(X), ‖•‖∞).

Proof. Note first that in this situation (Tt; t ≥ 0) becomes a strongly contin-
uous contraction semigroup in (C0(X), ‖•‖∞). Thus, one has

Gαφ =
∫ ∞

0

e−αtTtφ dt for every α > 0, φ ∈ C0(X), (6.3)

where the integral converges in the uniform norm.
(1) With

D1 :=
{
Gαφ

∣∣ φ ∈ Cc(X), α > 0
}
,

in view of (6.3), one has D1 ⊂ D0. Given g ∈ Dom(H) we have f := G−1
1 g ∈

L2(X), so there exists a sequence fn in Cc(X) with fn → f in L2(X). It
follows that with gn := G1fn ∈ D1 we have

gn → g in (Dom(H), ‖•‖H),

showing that D1 is dense in (Dom(H), ‖•‖H).
(2) Given φ ∈ Cc(X) we have αGαφ ∈ D1 for all α > 0 and

αGαφ → φ in (C0(X), ‖•‖∞), as α → ∞,

in view of formula (6.3): indeed, given ε > 0 we can pick δ > 0 such that for all
t ∈ [0, δ] one has ‖Ttφ − φ‖∞ < ε/2. It then follows easily from decomposing
the integral in (6.3) as

∫ ∞
0

· · · =
∫ δ

0
· · · +

∫ ∞
δ

· · · that for all α > 0 one has

‖αGαφ − φ‖∞ ≤ ε/2 + 2 ‖φ‖∞ αe−αδ. �

Proof of Theorem 6.1. As the embedding

(Dom(H), ‖•‖H) ↪→ (F , ‖•‖E )

has a dense image, the second proposition gives that F ∩ C0(X) is dense
in both, (Dom(H), ‖•‖H) and (C0(X), ‖•‖∞), so that the claim follows from
the first proposition. �
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[31] Weyl, H.V.: Über beschränkte quadratische formen, deren differenz vollstetig
ist. Rendiconti del Circolo Matematico di Palermo (1884-1940) 27(1):373–392
(1909)
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