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Abstract. In spectral theory, j-monotonic families of 2 × 2 matrix func-
tions appear as transfer matrices of many one-dimensional operators. We
present a general theory of such families, in the perspective of canonical
systems in Arov gauge. This system resembles a continuum version of
the Schur algorithm, and allows to restore an arbitrary Schur function
along the flow of associated boundary values at infinity. In addition to
results in Arov gauge, this provides a gauge-independent perspective on
the Krein–de Branges formula and the reflectionless property of right
limits on the absolutely continuous spectrum. This work has applications
to inverse spectral problems which have better behavior with respect to
a normalization at an internal point of the resolvent domain.
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1. Introduction

1.1. j-Monotonic Families

For the most famous classes of one-dimensional self-adjoint and unitary oper-
ators, such as Schrödinger, Dirac, Jacobi, and CMV operators [16,21], a basic
object in their study is a 2×2 transfer matrix A(z, t), which describes the evo-
lution of formal eigensolutions at “energy” (spectral parameter) z ∈ C from
values at 0 to values at t. These are sometimes viewed as part of families
A(z, t1, t2) with A(z, t) = A(z, 0, t) and the cocycle condition

A(z, t1, t2)A(z, t2, t3) = A(z, t1, t3)

(we use the convention that matrices act as linear operators by right-
multiplication on row vectors). The exact construction of the transfer matrix
includes some conventions specific to each class of operators, but in all cases,
the standard conventions give matrices which are entire functions of z, obey
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det A(z, t) = 1, ∀z, t

and

A(z, 0) = I, ∀z.

These assumptions will hold throughout our paper. Our primary motivation
here are continuous systems, so we think of t as a continuous parameter and
A(z, t) will be continuous in t.

Another crucial property, first observed by Weyl [22] in the setting of
Schrödinger operators, is the nesting property of certain Weyl disks and an
associated limit point/limit circle dichotomy. This is naturally expressed in
the following language.

Definition 1.1. Let j be a 2×2 matrix such that j = j∗ = j−1. An entire 2×2
matrix valued function A(z) is called j-inner if it obeys j − A(z)jA(z)∗ ≥ 0
for z ∈ C+ = {z ∈ C : Im z > 0} and j − A(z)jA(z)∗ = 0 for z ∈ R.

There is a reflection symmetry: for every j-inner entire function A(z),

A(z̄)∗ = jA(z)−1j, ∀z ∈ C. (1.1)

This holds on R by jA(z)jA(z)∗ = I, and since both sides are entire, it holds
on C.

Definition 1.2. A family of matrix functions A(z, t) parametrized by a real
parameter t is called j-monotonic if A(z, t1)−1A(z, t2) is j-inner whenever
t1 < t2.

To the family A(z, t) we associate for z ∈ C+, t ≥ 0 the Weyl disks

D(z, t) = {w ∈ Ĉ | (
w 1

) A(z, t)jA(z, t)∗ (
w 1

)∗ ≥ 0}. (1.2)

The j-monotonic property implies

A(z, t1)jA(z, t1)∗ ≥ A(z, t2)jA(z, t2)∗, z ∈ C+, t1 < t2

and precisely corresponds to the nesting property of the Weyl disks,
D(z, t2) ⊂ D(z, t1) for t1 < t2.

The exact j-monotonic property depends on the class of operators; for
some classes of self-adjoint operators one has J -monotonicity with

J =
(

0 − i
i 0

)
. (1.3)

However, this matrix can always be changed by a suitable conjugation of the
transfer matrices, so without loss of generality, in this paper we will study
j-monotonic transfer matrices for the choice

j =
(− 1 0

0 1

)
.

Note that with this convention, A(z, 0) = I implies D(z, 0) = D, i.e., our
Weyl disks are subsets of the unit disk. Thus, our choice of j also provides a
convenient compactification. Moreover, for z ∈ R, the values A(z, t) belong
to the group of 2 × 2 matrices

SU(1, 1) = {U | UjU∗ = j and detU = 1}.
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It follows from definitions that Weyl disks are not affected by a transforma-
tion

A(z, t) �→ A(z, t)U(t), U(t) ∈ SU(1, 1). (1.4)

Borrowing terminology from Yang–Mills theory, we say that the family of
transfer matrices has a gauge freedom with the gauge group SU(1, 1), while
the Weyl disks are observables, i.e., gauge independent. In direct spectral
theory, transfer matrices are often normalized by a certain behavior at ∞,
and in the theory of canonical systems, many works have been written in what
we will call Potapov–de Branges gauge (PdB gauge), which is normalized at
z = 0 [4,10,17,20]. However, a different gauge was suggested by Arov, see [9]
for historical remarks:

Definition 1.3. We say the j-monotonic family A(z, t) is:

• in Potapov–de Branges gauge (PdB-gauge) if A(0, t) = I for every t;
• in Arov gauge (A-gauge) if for every t,

A(i, t) =
(

a11 0
a21 a22

)
, a11 > 0, a22 > 0. (1.5)

Every j-monotonic family can be uniquely placed in PdB-gauge, by
choosing U(t) = A(0, t)−1 in (1.4), and that transformation preserves conti-
nuity. Likewise, every j-monotonic family can be uniquely transformed into
A-gauge by (1.4), and the transformation preserves continuity:

Proposition 1.4. Every j-monotonic family can be uniquely placed in Arov
gauge via a transformation (1.4). Moreover, if the family A(z, t) is contin-
uous, so is the corresponding family U(t). Conversely, given a j-monotonic
family A(z, t) in the Arov gauge, the family B(z, t) = A(z, t)A(0, t)−1 is j-
monotonic and satisfies the PdB-gauge.

1.2. Canonical Systems

j-Monotonic families arise in great generality as solutions of canonical sys-
tems, which we first define in a gauge-independent form:

Definition 1.5. A canonical system is an initial value problem of the form

A(z, t)j = j +
∫ t

0

A(z, ξ) (izP(ξ) − Q(ξ)) dν(ξ), z ∈ C, (1.6)

with 2 × 2 matrix valued coefficients P,Q locally integrable with respect to
a positive continuous Borel measure ν on R and such that P ≥ 0, Q = −Q∗,
trace (jP) = trace (jQ) = 0 ν-almost everywhere. In particular, we say the
canonical system (1.6) is:

• in Potapov–de Branges gauge (PdB-gauge) if Q = 0 ν-a.e.,
• in Arov gauge (A-gauge) if P + Q is lower triangular and traceQ = 0

ν-a.e..
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Note that (1.6) is the integral form of the initial value problem

(∂νA)(z, t)j = A(z, t)(izP(t) − Q(t)), A(z, 0) =
(

1 0
0 1

)
, (1.7)

under the regularity assumptions that A is locally absolutely continuous with
respect to ν, ∂νA denotes the Radon–Nikodym derivative with respect to ν,
and equality is assumed ν-almost everywhere. By standard Volterra argu-
ments, this initial value problem has a unique solution on any interval on
which ν is finite; we call this solution the transfer matrix of the canonical
system.

Remark 1.6. Gauge transformations (1.4) can be applied at the level of the
canonical systems (Lemma 2.3). The classical Dirac operator corresponds
to the canonical system (1.7) with P(t) = I, and for a one-dimensional
Schrödinger operator with a locally integrable potential q, transfer matrices
solve the canonical system (1.7) with

P(t) =
1
2

(
1 1
1 1

)
, Q(t) =

i

2

(
q(t) − 1 q(t) + 1
q(t) + 1 q(t) − 1

)
.

In both cases ν(t) = t. These gauges are not universal: not any canonical
system can be reduced to one of these forms. In particular, one of them can
not be reduced to the other by a gauge transform (1.4).

For canonical systems in A-gauge, it follows from the definition that
P + Q is a nonnegative scalar multiple of a matrix of the form

A + B =
(

1 0
− 2a 1

)
. (1.8)

By grouping that multiplier with the measure and changing the notation, we
write canonical systems in A-gauge in the form

A(z, �)j = j +
∫ �

0

A(z, t) (izA(t) − B(t)) dμ(t), z ∈ C. (1.9)

where A ≥ 0 and B∗ = −B, so (1.8) gives

A =
(

1 − a
− a 1

)
, B =

(
0 a

− a 0

)
. (1.10)

and A ≥ 0 implies |a| ≤ 1. Due to this representation, the pair (μ, a) where μ
is a positive measure which is finite on compact subsets of R, and a ∈ L∞(dμ)
with ‖a‖∞ ≤ 1, are the parameters of the canonical system in A-gauge.

In this paper we will denote by the same letter a measure μ, finite on
compact subsets of R, and the corresponding distribution function which is
an increasing function. Thus, we can write, e.g., μ([�1, �2)) = μ(�2) − μ(�1)
for �1 ≤ �2. It is well-known that each non-decreasing continuous function on
R is the distribution function of some nonnegative continuous Borel measure
μ finite on compacts in R.

We will explain in Sect. 2 that our definitions for j-monotonic families
and for canonical systems are precisely compatible. In particular, the solution
of any canonical system in A-gauge is a continuous j-monotonic family A(z, �)
in A-gauge with detA(z, �) = 1 and A(z, 0) = I. Conversely:
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Theorem 1.7. Let A(z, �) be a continuous j-monotonic family in A-gauge with
detA(z, �) = 1 for all z, � and A(z, 0) = I. Then:
(a) A(z, �) is the solution of a canonical system in A-gauge (1.9);
(b) The matrix entry A22(i, �) is a decreasing function of � and the positive

measure μ is determined by its distribution function

μ(�) = logA11(�) = − logA22(i, �).

(c) The function A(i, �) is a.c. with respect to μ and the parameters a are
determined by

A(�) + B(�) =
(

1 0
− 2a(�) 1

)
= − (A(i, �))−1∂μA(i, �)j, μ-a.e. �.

Moreover, |a(�)| ≤ 1 for μ-a.e. �.
(d) at z = i, the solution has the form

A(i, �) =
(

eμ(�) 0
− eμ(�)κ(�) e−μ(�)

)
, (1.11)

where

κ(�) =
∫ �

0

2a(t)e−2μ(t)dμ(t). (1.12)

Among the conclusions of Theorem 1.7, note that it follows from (1.9)
that, if μ([�1, �2)) = 0 for some �1 < �2, then A(z, �) is constant on � ∈ [�1, �2].
In particular, μ is strictly increasing if and only if the family A is, in a sense,
strictly j-monotonic.

1.3. General Results in A-Gauge and Gauge-Independent Applications

Having explained the correspondence between j-monotonic families and
canonical systems in A-gauge, we now turn to a systematic consideration
of their general properties. We consider A-gauge to be a natural point of
view; it allows different proofs, and in some cases provides new proofs of cer-
tain gauge-independent facts previously known in PdB gauge. For instance,
since the Weyl disks are nested, they shrink as � increases to a point or a
disk. This alternative is independent of the choice of z ∈ C+, and determined
in A-gauge completely by μ:

Proposition 1.8. (Limit point/limit circle alternative) Consider a canonical
system in A-gauge (1.9) and the associated Weyl disks. For any z ∈ C+,
∩�>0D(z, �) consists of a single point if and only if sup� μ(�) = ∞.

In the limit point case, the intersection defines a function

{s+(z)} =
⋂

�>0

D(z, �)

which is a Schur function, i.e., an analytic function s+ : C+ → D.
Until now, we were vague about the interval of definition of the j-

monotonic family/canonical system, as the results hold on any interval. From
now on, we always assume the canonical system is defined at least on the
half-line [0,∞), and assume that it is in the limit point case. In other words,
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μ(�) → ∞ as � → ∞. It is also convenient to assume that the j-monotonic
family is not constant on any interval of �; this corresponds to assuming that
μ gives positive measure to any interval.

Coefficient stripping can be implemented on the canonical system by the
usual truncation of the parameters, or directly on the j-monotonic family:
coefficient stripping by length � > 0 is the operation

{A(z, t)}t∈[0,∞) �→ {A(z, �)−1A(z, t + �)}t∈[0,∞).

The coefficient stripped transfer matrices have Schur functions s+(z, �).

Proposition 1.9. (Ricatti equation) For an arbitrary canonical system in A-
gauge, for any z ∈ C+, the family of Schur functions s+(z, �) is absolutely
continuous with respect to μ and

∂μs+(z, �) =
(
s+(z, �) 1

)
(−izA(�) + B(�))

(
1

s+(z, �)

)
. (1.13)

Conversely, the boundary values at ∞ determine the parameters a:

Proposition 1.10. For μ-a.e. � > 0, the Schur functions have the nontangen-
tial boundary values

lim
z→∞

arg z∈[δ,π−δ]

s+(z, �) =
a(�)

1 +
√

1 − |a(�)|2 , ∀δ > 0. (1.14)

Using A-gauge, we give a new proof of the de Branges mean type theo-
rem (see Section 39 in [10]) discovered by Krein [15].

Theorem 1.11. For an arbitrary canonical system (1.6), the exponential type
of the transfer matrix

σ(t) := lim sup
z→∞

log ‖A(z, t)‖
|z| (1.15)

can be computed as

σ(t) =
∫ t

0

√
det P(τ) dν(τ). (1.16)

In particular, in A-gauge (1.16) is of the form

σ(�) =
∫ �

0

√
1 − |a(t)|2dμ(t). (1.17)

Remark 1.12. In discrete systems, the parameter � usually corresponds to
a polynomial degree. Likewise, by the Paley–Wiener theorem for classical
continuous systems � corresponds to the exponential type of A(z, �), i.e.,
σ(�) = �, see also [5,9]. Moreover, the measure μ is absolutely continuous
w.r.t. to � if and only if a(�) ∈ D μ-almost everywhere. In a.c. case, by (1.17)
μ is expressed in terms of the continuous Verblunsky parameter a and the
exponential type � as

μ(�) =
∫ �

0

dt
√

1 − |a(t)|2 .
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There are two associated existence results. One is the existence of a
canonical system on an interval [0, L] corresponding to a prescribed j-inner
function A(z, L); this inverse problem was the main result of Potapov [17],
and was proved in a much more general setting. Another inverse problem,
proved by de Branges [10], is the existence of a canonical system on [0,∞)
with prescribed spectral Schur function s+. Of course, these are not the only
ways of obtaining canonical systems. In [5], we directly construct reflectionless
canonical systems in A-gauge and prove that they have the desired spectral
functions, and we do not use the abstract existence results.

It is common in the theory of canonical systems to parametrize the line
in a special way; in PdB-gauge, the standard parametrization involves taking
trace P = 1 and setting ν to be Lebesgue measure. However, if j-monotonicity
is viewed as the central notion, it is more natural to formulate the theory up
to a reparametrization of the real line; moreover, in direct spectral theory,
the parametrization is already fixed by the underlying operator structure
(and usually corresponds to the exponential type of the transfer matrix of
order one or 1/2); finally, in inverse spectral theory, it will be natural to
use a parametrization which provides a linearization of the shift under the
generalized Abel–Jacobi mapping [5]. For these reasons, our formulations
don’t fix a parametrization. Our formulation for canonical systems offers the
same flexibility: if g : [0,∞) → [0,∞) is a monotone bijection, then the
reparametrization

μ̃(�) = μ(g(�)), ã(�) = a(g(�)) (1.18)

affects the solution by Ã(z, �) = A(z, g(�)). In particular, observables like the
Weyl disks and the Schur function s+(z) do not change. By a deep result of
de Branges, translated into A-gauge, this is the only nonuniqueness:

Theorem 1.13. (de Branges uniqueness theorem in A-gauge) If two canonical
systems in A-gauge with parameters (μ, a) and (μ̃, ã) have the same Schur
function s+, then there exists a monotone bijection g : [0,∞) → [0,∞) such
that (1.18) holds.

1.4. Reflectionless Canonical Systems

Canonical systems can also be considered in a two-sided setting (parametrized
by � ∈ R), with the same definition of PdB-gauge and A-gauge. A reflection
of the real line, which preserves j-monotonicity (see Sect. 3), is given by

{A(z, t)}t∈R �→ {j1A(z,−t)j1}t∈R, j1 =
(

0 1
1 0

)
. (1.19)

This allows us to define s− as the Schur function which corresponds to the
system {j1A(z,−t)j1}t≥0. The operation (1.19) does not preserve A-gauge,
but this can be corrected by an additional factor (see Proposition 3.4).

This paper is also the first part of a series in which we develop a general
theory of reflectionless one-dimensional systems and the interplay between
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the reflectionless property and almost periodicity of parameters of the canon-
ical system. The reflectionless property is a certain pseudocontinuation rela-
tion between the two spectral functions which encode the two half-line restric-
tions of the operator; in the setting for Schur functions, the canonical system
is reflectionless on E if

s+(ξ + i0) = s−(ξ + i0), a.e. ξ ∈ E.

It was first observed as a property of periodic operators and finite gap
quasiperiodic operators; by Kotani theory [13], it is a general feature of
ergodic operators with zero Lyapunov exponent on the spectrum. Remling
proved that the reflectionless property is a general property of right limits
of operators with absolutely continuous spectrum, in the setting of Jacobi
matrices [18] and Schrödinger operators [19], with an extension to canoni-
cal systems in PdB-gauge by Acharya [1]. In the current paper, we extend
Remling’s theorem to canonical systems in a gauge-independent setting. As
a corollary, almost periodicity of canonical system coefficients implies the
reflectionless property on the a.c. spectrum:

Theorem 1.14. Assume that for all L > 0, the functions
∫ t+L

t

P(τ) dν(τ),
∫ t+L

t

Q(τ) dν(τ)

are uniformly almost periodic matrix functions of t. Then the canonical sys-
tem (1.6) is reflectionless on its a.c. spectrum {ξ | |s+(ξ + i0)| < 1} ∪ {ξ |
|s−(ξ + i0)| < 1}.

In particular, Theorem 1.14 applies in A-gauge, and applies to Dirac
operators.

This is the first paper in our theory of reflectionless canonical systems.
In the second paper [5], we consider the opposite direction, and construct
reflectionless canonical systems with a Dirichlet-regular Widom spectrum E
with the DCT property. For this class of spectra E, we prove that reflectionless
canonical systems in A-gauge always have almost periodic parameters, but
that this is not always true in PdB-gauge, nor in a gauge normalized at ∞.
For that problem, A-gauge is the correct general setting, since it corresponds
to a normalization with respect to a point which is always an internal point
of the resolvent domain. In this sense, the current paper also serves as a
foundation for the construction in [5].

1.5. Structure of the Paper

In Sect. 2, we consider j-monotonic families and canonical systems in Arov
gauge, and prove the correspondence between them (Theorem 1.7). In Sect. 3,
we consider their Weyl theory, provide proofs of the limit point/limit cir-
cle alternative (Proposition 1.8) and of de Branges’ uniqueness Theorem for
Arov gauge (Theorem 1.13), and show how the reflection (1.19) for two-sided
systems should be adjusted to Arov gauge. In Sect. 4 we derive coefficient
stripping (Ricatti equation) and asymptotics of Schur functions at infinity
(Propositions 1.9 and 1.10). In Sect. 5 we give a new proof of the Krein–de
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Branges mean type theorem (Theorem 1.11). In Sect. 6 we prove a gauge-
independent version of the Breimesser–Pearson theorem (Theorem 6.1), and
in Sect. 7 we use it to prove a gauge-independent version of Remling’s theo-
rem (Theorem 1.14).

2. Canonical Systems in Arov Gauge and j-Monotonic Families

In this section, we prove the basic facts about j-monotonic families and canon-
ical systems from the introduction. We denote by SL(2,C) the set of all 2×2
complex matrices with unit determinant. A 2 × 2 matrix T is called

• j-expanding, if TjT ∗ − j ≥ 0;
• j-unitary, if TjT ∗ − j = 0;
• j-contractive, if TjT ∗ − j ≤ 0.

Lemma 2.1. A lower triangular matrix T ∈ SL(2,C) with positive diagonal
coefficients is j-contractive if and only if it is of the form

T =
(

λ 0
h λ−1

)

for some λ ≥ 1 and |h| ≤ λ − 1/λ. Moreover, it is j-unitary if and only if
T = I.

Proof. T is obviously of this form for some λ > 0 and h ∈ C. Then

j − TjT ∗ =
(

λ2 − 1 λh̄
λh 1 − λ−2 + |h|2

)
. (2.1)

This matrix is positive definite if and only if λ2−1 ≥ 0 and det(j−TjT ∗) ≥ 0.
Since det(j−TjT ∗) = (1−λ−2)(λ2−1)−|h|2, the criterion for j-contractivity
follows. The criterion for j-unitarity is obvious from (2.1). �

We can now describe the gauge transformation of an arbitrary j-
monotonic family into A-gauge:

Proof of Proposition 1.4. Let us start with a j-contractive matrix T ∈ SL
(2,C). Since TjT ∗ ≤ j, for the vector (a, b) = (1, 0)T we have

− |a|2 + |b|2 = (a, b)j(a, b)∗ ≤ (1, 0)j(1, 0)∗ = − 1.

In particular, |a| > |b| and we can define

U =
1

√|a|2 − |b|2
(

ā − b
− b̄ a

)

It is straightforward to verify that U ∈ SU(1, 1) and that (1, 0)TU = (λ, 0)
with λ =

√|a|2 − |b|2 > 0. Then TU is in lower-triangular form and (TU)11 >
0. Since det(TU) = det T = 1, the diagonal entries of TU are positive.

Note that the construction of U depends continuously on T . If this
construction is applied to T = A(i, t), it gives a one-parameter family U(t) ∈
SU(1, 1). If A(z, t) is continuous, so is U(t).

Assume that T is j-contractive with det T = 1 and U1, U2 ∈ SU(1, 1)
are such that TU1, TU2 are lower triangular with positive diagonal terms.
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Then U = (TU1)−1(TU2) = U−1
1 U2 has the same property and is j-unitary.

By applying Lemma 2.1 we conclude U1 = U2.
For any j-monotonic family A(z, t), the family B(z, t) = A(z, t)A(0, t)−1

is also j-monotonic, and B(0, t) = I so B is in PdB-gauge. �

Now let us take the perspective of canonical systems. The solution of
any canonical system is a continuous j-monotonic family. Indeed, for t1 ≤ t2,

A(z, t1)jA(z, t1)∗ − A(z, t2)jA(z, t2)∗ = 2Im z

∫ t2

t1

A(z, τ)P(τ)A(z, τ)∗ dν(τ)

which implies that A(z, t1)jA(z, t1)∗ ≥ A(z, t2)jA(z, t2)∗ for z ∈ C+ with
equality for z ∈ R. Since trace (Pj) = trace (Qj) = 0, the property detA(z, t)
= 1 for all z, t follows from the formula for the derivative of the determinant
∂ν det A(z, t) = trace (adjA(z, t)∂νA(z, t)), where adj denotes the adjugate
matrix.

The solution A(z, t) of the canonical system will be called the transfer
matrix, and the definitions of PdB-gauge and A-gauge for canonical systems
are compatible with the definitions for j-monotonic families:

Lemma 2.2. The canonical system (1.6) is:
(a) in PdB-gauge if and only if the solution A(z, t) is in PdB-gauge;
(b) in A-gauge if and only if the solution A(z, t) is in A-gauge.

Proof. Assertion (a) follows immediately by taking z = 0 in (1.6). To prove
assertion (b), observe that for z = i the initial problem (1.7) is of the form

(∂νA)(i, t)j = −A(i, t)(P(t) + Q(t)), A(i, 0) = I.

Therefore if P+Q is lower triangular, then so is A(i, ·). Relations trace Q = 0,
trace jQ = 0 are equivalent to the fact that Q has zeroes on the diagonal. In
particular, the diagonal entries of − (P + Q)j are real. It follows that A(i, t)
has nonegative terms on the diagonal.

Conversely, suppose that the family {A(i, t)} satisfies (1.5). Since det
A(i, t) = 1 for all t ∈ R, we have

A(i, t) =
(

ef 0
∗ e−f

)

for some real function f . Then

P(t) + Q(t) = −A(i, t)−1(∂νA)(i, t)j,

=
(

e−f 0
∗ ef

)(
(∂νf)ef 0

∗ (∂νf)e−f

)
,

=
(

∂νf 0
∗ ∂νf

)
,

is lower triangular as well. Moreover, since P ≥ 0, trace Pj = trace Qj = 0,
and Q = −Q∗, we have

P =
(

p ∗
∗ p

)
, Q =

(
iq ∗
∗ iq

)
,



IEOT Reflectionless Canonical Systems Page 11 of 30 4

for some real p, q. Noting that ∂νf is real, we conclude that q = 0 ν-almost
everywhere on R. �

The following lemma describes how a gauge transformation acts at the
level of canonical systems:

Lemma 2.3. For the solution of a canonical system

∂νA(z, t)j = A(z, t)(izP(t) − Q(t)), A(z, 0) = I,

applying the gauge transformation B(z, t) = A(z, t)U(t) with U(0) = I and U
locally absolutely continuous w.r.t. ν (this condition is true for gauge trans-
formations into A-gauge and PdB-gauge) gives the solution of the canonical
system

(∂νB)(z, t)j = B(z, t)(izP1(t) − Q1(t)), B(z, 0) = I, (2.2)

where P1 = U−1P(U∗)−1 and Q1 = U−1Q(U∗)−1 − U−1j.

Proof. Applying the product rule and the differential equation for A gives

(∂νB)(z, t)j = A(z, t)(izP(t) − Q(t))jU(t)j + A(z, t)∂νU(t)j.

As a gauge transformation, U obeys UjU∗ = j, so jUj = (U∗)−1. Using this
and replacing A = BU−1 gives

(∂νB)(z, t)j = B(z, t)U(t)−1(izP(t) − Q(t))(U(t)∗)−1 + B(z, t)U(t)−1∂νU(t)j

which can be organized into the form (2.2).
For a gauge transformation into PdB gauge, we choose U(t) = A(0, t)−1.

If A is locally a.c. w.r.t. ν, taking point evaluations at z = 0 and matrix
inverse shows that U is locally a.c. w.r.t. ν.

For a gauge transformation into A-gauge, we choose U(t) as in the proof
of Proposition 1.4. Applying locally Lipschitz transformations preserves local
absolute continuity, so U is locally a.c. w.r.t. ν. �

We now turn to the other direction, to prove that continuous j-
monotonic families which obey the Arov normalization (1.5) at z = i are
solutions of canonical systems in Arov gauge.

Proof of Theorem 1.7. By Lemma 2.1 applied to A(i, �), we can define func-
tions μ(�), κ(�) so that (1.11) holds for each �. We have

A(i, �)−1 =
(

e−μ(�) 0
eμ(�)κ(�) eμ(�)

)
,

A(i, �2)−1A(i, �1) =
(

eμ(�1)−μ(�2) 0
eμ(�1)+μ(�2)(κ(�2) − κ(�1)) eμ(�2)−μ(�1)

)
.

Lemma 2.1 applied to A(i, �2)−1A(i, �1) for �2 ≥ �1 gives μ(�2) ≥ μ(�1) and

|eμ(�1)+μ(�2)(κ(�1) − κ(�2))| ≤ eμ(�2)−μ(�1) − eμ(�1)−μ(�2),

which can be rewritten in the form

|κ(�1) − κ(�2)| ≤ e−2μ(�1) − e−2μ(�2) = 2
∫ �2

�1

e−2μ(t) dμ(t). (2.3)
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Thus, κ is absolutely continuous with respect to e−2μ dμ, and it can be rep-
resented in the form (1.12) for some Borel measurable function a such that
|a| ≤ 1 almost everywhere with respect to μ. A calculation gives

∂μA(i, �) =
(

eμ(�) 0
− eμ(�)κ(�) − 2a(�)e−μ(�) − e−μ(�)

)
,

−A(i, �)−1∂μA(i, �)j =
(

1 0
− 2a(�) 1

)
= A(�) + B(�) (2.4)

with A,B given by (1.10).
Let us now show that for any z ∈ C, A(z, �) is absolutely continuous

with respect to μ. Schwarz lemma for j-contractive matrix functions [12,17]
says that for every z∗, z ∈ C+ and every j-contractive 2 × 2 matrix function
C on C+ the following block matrix is positive semi-definite:

C =

(
i j−C(z∗)jC(z∗)∗

z∗−z̄∗
i j−C(z∗)jC(z)∗

z∗−z̄

i j−C(z)jC(z∗)∗

z−z̄∗
i j−C(z)jC(z)∗

z−z̄

)

≥ 0. (2.5)

Applying this to C(z) = A(z, �1)−1A(z, �2) for any �1 < �2 gives

C = Cdiag(�1)(CA(�2) − CA(�1))Cdiag(�1)∗ (2.6)

in (2.5), where

Cdiag(�) =
(
A(z∗, �)−1 0

0 A(z, �)−1

)
,

and

CA(�) =

(
i j−A(z∗,�)jA(z∗,�)∗

z∗−z̄∗
i j−A(z∗,�)jA(z,�)∗

z∗−z̄

i j−A(z,�)jA(z∗,�)∗

z−z̄∗
i j−A(z,�)jA(z,�)∗

z−z̄

)

.

It follows from (2.5), (2.6) that the family CA(�) is monotonic. From here we
see that there exists a scalar measure σ and 2 × 2-matrix valued mappings
Cjk such that

CA(�) =
∫

[0,�)

(
C11 C12

C21 C22

)
dσ. (2.7)

From now on, let z∗ = i. Then we have
∫

[0,�)

C11dσ =
j − A(i, �)jA(i, �)∗

2
=

∫

[0,�)

A(i, t)A(l)A(i, t)∗ dμ(t). (2.8)

Let us show that C12 dσ is absolutely continuous with respect to μ. If μ(e) =
0, then (2.7), (2.8) and the monotonicity of CA show that

(
0 ∗
∗ ∗

)
=

∫

e

(
C11 C12

C21 C22

)
dσ ≥ 0.

From here we see that
∫

e
C12 dσ =

∫
e
C21 dσ = 0 by considering quadratic

form of the block matrix above on vectors of the form (xe1, e2), x ∈ R,
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e1,2 ∈ C
2 and using the fact that any sign-definite linear function is identically

constant. Thus, the mapping

� �→
∫

[0,�)

C12 dσ = i
j − A(i, �)jA(z, �)∗

i − z̄

is absolutely continuous with respect to μ. Since we already know that A(i, ·)
is absolutely continuous with respect to μ and A(i, ·) ∈ SL(2,C), from here
we see that the mapping � �→ A(z, �) is absolutely continuous with respect to
μ. It follows that we could have taken σ = μ from the start. In particular, by
denoting

M(z, �) := −A(z, �)−1∂μA(z, �)j (2.9)

we compute

Cdiag(�)∂μCA(�)Cdiag(�)∗ =

( M(i,�)+M(i,�)∗

2 iM(i,�)+M(z,�)∗

i−z̄

iM(z,�)+M(i,�)∗

z+i iM(z,�)+M(z,�)∗

z−z̄

)

≥ 0.

Positivity of the bottom right block implies that

i
M(z, �) + M(z, �)∗

z − z̄
≥ 0 (2.10)

and matrix positivity implies
∥
∥
∥
∥i

M(i, �) + M(z, �)∗

i − z̄

∥
∥
∥
∥

2

≤
∥
∥
∥
∥

M(i, �) + M(i, �)∗

2

∥
∥
∥
∥

∥
∥
∥
∥i

M(z, �) + M(z, �)∗

z − z̄

∥
∥
∥
∥ .

Since ‖M(i, �)‖ ≤ 2 for all �, this implies an upper bound on ‖M(z, �)‖,
uniformly for z in compact subsets of C+ and uniformly in �.

So far, M(z, �) was viewed for each z as a Borel function of �, uniquely
defined up to a zero measure set. Now let us consider it as a function of z.
Fix a simple closed contour γ in C+. For every w in the region enclosed by γ
and every � > 0, we claim that

A(z, �) − A(z, 0) =
∫ �

0

∮

γ

∂μA(w, t)
w − z

dw

2πi
dμ(t). (2.11)

Namely, due to uniform boundedness of the integrand, this follows by apply-
ing Fubini’s theorem to exchange the integrals and using analyticity of A.
Moreover, Fubini’s theorem guarantees that for μ-a.e. �, the contour integral
is well-defined; it is by construction an analytic function of z in the region
enclosed by C. By (2.11), the contour integral can be taken as the new defini-
tion of ∂μA(z, �) and away from a zero measure set of �, ∂μA(z, �) is analytic
in z in the region enclosed by C. By a countable exhaustion of C+, the func-
tions ∂μA(z, �) are analytic in C+ away from a zero measure set of �. Thus,
M(z, �) are analytic in C+ away from a zero measure set of �.

By (2.10), iM(z, �) is a matrix Herglotz function. Using (2.9), we have

j − A(z, �)jA(z, �)∗ =
∫ �

0

A(z, t)(M(z, t) + M(z, t)∗)A(z, t)∗dμ(t).

Evaluating at z = λ + iε and letting ε ↓ 0 gives 0 locally uniformly in λ,
so by Stieltjes’ inversion, the Herglotz representation of iM(z, �) has trivial
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measure on R, and consequently it is of the form iM(z, �) = A(�)z + iB(�)
for some constant matrices A ≥ 0 and B = −B∗. Evaluating M(i, �) =
A(�) + B(�) and M(i)∗ = A(�) − B(�) and using (2.4), we obtain (1.10) and
(1.9) holds for z ∈ C+. Finally, (1.9) holds for all z ∈ C by continuity and
symmetry or by analyticity. �

3. Weyl Theory for j-Monotonic Families

In this section we consider the nested family of Weyl disks (1.2). We begin
by characterizing the limit point case for j-monotonic families in the Arov
gauge.

Proof of Proposition 1.8. A direct calculation using (1.11) describes the Weyl
disk D(i, �) as the set of w such that

|eμ(�)w − eμ(�)κ(�)|2 ≤ e−2μ(�).

Its Euclidean radius is e−2μ(�) and its Euclidean center is κ(�). Therefore, the
disks shrink to a point if and only if μ(�) → ∞, and in this case,

s+(i) = lim
�→∞

κ(�) =
∫ ∞

0

2ae−2μ dμ. (3.1)

Now consider the case where μ is a finite measure on R+ and assume (by
possibly reparametrizing) that it is defined on a finite interval [0, L]. The
initial value problem (1.9)–(1.10) then has a solution {A(z, �)}�∈[0,L]. In this
case,

⋂

�≥0

D(z, �) = D(z, L) = {w | (
w 1

)
A(z, L)jA(z, L)∗ (

w 1
)∗ ≥ 0}

is a nontrivial disk for all z ∈ C+. Thus, if ∩�≥0D(i, �) is a disk, then μ is a
finite measure and ∩�≥0D(z, �) is a nontrivial disk for all z ∈ C+. Then this
holds for all canonical systems (not only in Arov gauge), so this implication
can be reversed by applying it to the transfer matrices Ã(z, �) = A((z −
x)/y, �). �

Note that for every t and every point w ∈ D we have (w, 1)A(z, t)−1 ∈
D(z, t). It follows that in the limit point case we have

(s+(z), 1) � lim
t→+∞(w, 1)A(z, t)−1, z ∈ C+, |w| < 1, (3.2)

where � stands for the projective relation in C
2 \ {0}:

ζ1 � ζ2 if and only if ζ1 = λζ2 for some λ ∈ C, ζ1,2 ∈ C
2 \ {0}.

(3.3)

This shows that in the limit point case the mapping z �→ s+(z) defines an
analytic function s+ of Schur class in C+ (in other words, we have s+(C+) ⊂
D). This function is called the Schur function of the j-monotonic family
{A(z, t)}t∈R.

Let us briefly discuss how just defined Schur functions s+ are related to
the Weyl functions m+, the classical object of spectral theory in Potapov-de
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Branges gauge. Any 2 × 2 matrix J with J = J ∗ = J −1 and J �= ±I
is unitarily equivalent to j. For the choice (1.3), the unitary equivalence is
J = WjW−1 where W =

√
1/2( i i

1 −1 ) corresponds to the Cayley transform.
This makes it trivial to switch between j and J . For instance, a matrix
T is j-expanding if and only if WTW−1 is J -expanding. The inequality(
w 1

) J (
w 1

)∗
> 0 describes the upper half-plane C+. In fact, if we define

T (z, t) = (WA(z, t)W−1)� (3.4)

for a j-monotonic family {A(z, t)}t∈R, then

T (z, t2)∗J T (z, t2) ≥ T (z, t1)∗J T (z, t1), t2 ≥ t1.

The property above is satisfied by transfer matrices of the canonical systems
of the form

J T (z, t)′ = −izH(t)T (z, t).

The standard definition of Weyl disks can be expressed as

D+
T (z, t) = {u | (

u 1
)
T (z, t)�J (T (z, t)�)∗ (

u 1
)∗ ≥ 0},

so for T , A related by (3.4) we have u ∈ D+
T (z, t) if and only if w ∈ DA(z, t)

where
(
w 1

) � (
u 1

)
W , i.e., u, w are related by the Cayley transform:

u = i
1 + w

1 − w
.

In particular, if we were working with J , the Weyl disks would be subsets of
C+, and instead of the Schur function we would obtain the function

{m+(z)} =
⋂

t≥0

DT (z, t), m+ : C+ → C+,

of Herglotz class in C+ (excluding degenerate cases when it is a constant in R∪
{∞}). This function is called the Titchmarsh–Weyl function of {T (z, t)}t∈R.
It is related to the Schur spectral function of {A(z, t)}t∈R by the Cayley
transform:

m+(z) = i
1 + s+(z)
1 − s+(z)

, z ∈ C+.

We must acknowledge a degenerate case: in the terminology of de
Branges, the following corollary corresponds to the case when [0,∞) is a
single singular interval.

Corollary 3.1. The function s+ is a unimodular constant function if and only
if a is a unimodular constant almost everywhere on R+.

Proof. From (3.1) we see that |s+(i)| = 1 if and only if a = c almost every-
where on R for some c ∈ C such that |c| = 1. It remains to use the classical
Schwarz lemma. �

It is now easy to obtain a gauge-independent result about locally uni-
form shrinking of the Weyl disks:
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Proposition 3.2. For any j-monotonic family in the limit point case such that
s+ is not a unimodular constant and for any compact K ⊂ C+, we have

lim
t→∞ sup

z∈K
diamD(z, t) = 0, (3.5)

where diam denotes the diameter in Euclidean distance.

Proof. For an arbitrary j-contractive matrix function A(z)
(
w 1

)
(j − A(z0)jA(z0)∗)

(
w̄
1

)
≥ 0.

On the other hand, if w ∈ T and in the Weyl disk at z0, then
(
w 1

)
(j − A(z0)jA(z0)∗)

(
w̄
1

)
= − (

w 1
)A(z0)jA(z0)∗

(
w̄
1

)
≤ 0.

Thus
(
w 1

)
(j − A(z0)jA(z0)∗)

(
w̄
1

)
= 0.

and by the Schwarz Lemma
(
w 1

) A(z0) =
(
w 1

) A(z) for all z ∈ C+.
If s+ is not a unimodular constant, there exists �1 > 0 such that

D(i, �1) ⊂ D; the above discussion, applied to A(z, �1), shows by contra-
position that D(z, �1) ⊂ D for all z ∈ C+. Thus, z �→ diamD(z, �) for � ≥ �1
are continuous functions on C+. They converge to zero monotonically on C+,
so (3.5) follows from Dini’s theorem. �

Corollary 3.3. Let T =
(

T11 T12
T21 T22

)
be a j-contractive matrix, and let D be its

Weyl disk:

D = {w : (w, 1)TjT ∗(w, 1)∗ ≥ 0}.

Then diamD = 2/(|T11|2 − |T12|2).
Proof. We have

|T11|2 − |T12|2 = −(1, 0)TjT ∗(1, 0)∗.

In particular, this quantity is invariant under the transformation T �→ TU
for every j-unitary matrix U . Using Proposition 1.4, choose U so that TU is
lower-triangular. Then T12 = 0 and the proof of Proposition 1.8 shows that
the diameter is indeed 2/|T11|2 (that is equal, in notation of Proposition 1.8,
to 2e−2μ). Since the Weyl disk is invariant under the transformation T �→ TU ,
U ∈ SU(1, 1), the lemma follows. �

We next translate the famous de Branges’ uniqueness theorem into A-
gauge:

Proof of Theorem 1.13. If the family A(z, �) in A-gauge has the Schur func-
tion s+, passing to PdB-gauge we obtain a family in PdB-gauge A(z, �) =
A(z, �)A(0, �)−1 with the same Schur function. By de Branges’ uniqueness
theorem [10], that describes the family A uniquely up to reparametrization;
thus, the family A is also determined uniquely up to reparametrization by
Proposition 1.4. Thus, the parameters in A-gauge are determined uniquely
up to reparametrization. �
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We now consider the reflection procedure (1.19). Using the relation
j1jj1 = −j, we see that the family Ã(z, t) = j1A(z,−t)j1 is indeed j-
monotonic. We say that the initial family {A(z, t)}t≤0 is in the limit point
case at −∞ if the reflected family {Ã(z, t)}t≥0 is in the limit point case at
+∞. In the latter case, we denote this Schur function by s− and characterize
it by applying (3.2) to Ã(z, t), which gives:

(
s−(z), 1

) � lim
t→+∞

(
w 1

)
j1A(z,−t)−1j1, z ∈ C+. (3.6)

In this way we associate two Schur functions s± to each two-sided j-
monotonic family {A(z, t)}t∈R. This is consistent with the literature on
canonical systems in Potapov-de Branges’ gauge, in which reflection corre-
sponds to the change T̃ (z, x) = jT (z,−t)j, and the J -monotonic transfer
matrices T (z, x) are related to the j-monotonic transfer matrices A(z, t) as
in (3.4). For instance, the definition of the negative half-line Weyl function
m− corresponds to our negative half-line Schur function by m− = i 1+s−

1−s−
.

This reflection procedure does not preserve A-gauge, but this can be
corrected by an additional factor. We denote

v(z) =
z − i

z + i
, z ∈ C.

Proposition 3.4. For a full-line canonical system in A-gauge {A(z, �)}�∈R

with coefficients (μ, a), its Schur function s− is given by s−(z) = v(z)←−s+(z),
where ←−s+ denotes the canonical system in A-gauge

←−
A (z, �) =

(
v(z) 0
0 1

)
j1A(z,−�)j1

(
v(z) 0
0 1

)−1

(3.7)

This system has A-gauge parameters ←−μ (�) = −μ(−�), ←−a (�) = a(−�).

Proof. A direct calculation shows

∂←−μ (j1A(z,−�)j1) = − j1A(z,−�)j1j1(−izA(−�) + B(−�))j1
and

j1(−izA(−�) + B(−�))j1 =
( −iz −a(−�)(−iz + 1)

−a(−�)(−iz − 1) −iz

)
.

Note that this is upper-triangular at z = i instead of lower-triangular, and
(

v(z) 0
0 1

)( −iz −a(−�)(−iz + 1)
−a(−�)(−iz − 1) −iz

)(
v(z) 0
0 1

)−1

=

=
( −iz −a(−�)(−iz − 1)

−a(−�)(−iz + 1) −iz

)

so
←−
A (z, �) defined by (3.7) is a canonical system in the Arov gauge with the

coefficients (←−a ,←−μ ). Comparing the Weyl disks of Ã(z, �) and j1A(z,−�)j1
gives s−(z) = v(z)←−s+(z). �

In summary, a two-sided canonical system in A-gauge is encoded by
two Schur functions s±, which are arbitrary up to the single normalization
condition s−(i) = 0. In [5] this serves as a natural compactification condition.
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4. Ricatti Equation and Spectral Asymptotics

We now study the family of Schur functions generated by the coefficient
stripping

A[�](z, t) = A(z, �)−1A(z, t + �).

Just as the Schur functions s± can be characterized by (3.2), (3.6), the family
of Schur functions s±(z, �) obey

(
s+(z, �), 1

) � lim
t→+∞

(
w 1

)
A[�](z, t)−1 � (

s+(z), 1
)
A(z, �). (4.1)

(
s−(z, �), 1

) � lim
t→+∞

(
w 1

)
(j1A[�](z,−t)j1)−1 � (

s−(z), 1
)
j1A(z, �)j1.

Moreover, for every compact K ⊂ C+, the convergence is uniform with
respect to z ∈ K and w ∈ D. Next result shows that functions s+(z, ·)
satisfy a Ricatti equation for every z ∈ C+.

Proof of Proposition 1.9. Formula (4.1) implies the existence of a non-
vanishing function ϕ(z, ·) such that

(
s+(z) 1

)
A(z, �) = ϕ(z, �)

(
s+(z, �) 1

)
, z ∈ C, � ∈ R. (4.2)

Since A(z, ·) is absolutely continuous with respect to μ, the same is true for

ϕ(z, �) =
(
s+(z) 1

)
A(z, �)

(
0 1

)∗
.

Multiplying (4.2) by j from the right and using ∂μAj = A(izA − B), we
obtain
(
s+(z) 1

)
A(z, �)(izA − B) = ∂μϕ(z, �)

(
s+(z, �) 1

)
j + ϕ(z, �)

(
∂μs+(z, �) 0

)
j,

or, equivalently,

ϕ(z, �)
(
s+(z, �) 1

)
(izA − B)

= ∂μϕ(z, �)
(
s+(z, �) 1

)
j + ϕ(z, �)

(
∂μs+(z, �) 0

)
j. (4.3)

Now right-multiplying the equation by
(

1
s+(z,�)

)
concludes the proof. �

An arbitrary Schur function has nontangential limits Lebesgue-a.e. on
R∪ {∞}, but is not guaranteed to have a nontangential (or normal) limit at
∞. Since a canonical system can have an arbitrary Schur function, there can
be no general statements about the behavior of the Schur function at ∞. In
this sense the situation is very different compared to the Schrödinger or Dirac
cases, in which leading order asymptotic behavior is obtained by comparing
to a certain “free” operator. However, we prove a Lebesgue-type condition
suffices:

Theorem 4.1. For any canonical system in A-gauge such that

lim
�↓0

1
μ([0, �))

∫ �

0

|a(t) − a(0)|dμ(t) = 0, (4.4)

for some a(0) ∈ C, then the Schur function has a nontangential limit at
+i∞,

lim
z→∞

arg z∈[δ,π−δ]

s+(z) =
a(0)

1 +
√

1 − |a(0)|2 , (4.5)
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for any δ > 0.

We note that for PdB gauge the analogous statement was proved in
Theorem 3.1 in [11] by a different method.

The proof of Theorem 4.1 relies on a z-dependent rescaling of the Ricatti
equation, following an idea used for Dirac operators by Clark–Gesztesy [8].
To prepare for this, we first reparametrize the j-monotonic family.

Remark 4.2. (reparametrizing to Lebesgue measure) Consider the j-
contractive family defined by

Ã(z, μ(�)) = A(z, �).

Note that this is well-defined even if μ is not injective, since μ is a contin-
uous increasing function and on any intervals on which μ is constant, A is
constant as well. Comparing with (1.11) shows that Ã has A-gauge param-
eters μ̃(μ(�)) = μ(�), ã(μ(�)) = a(�). In particular, Ã has Lebesgue measure
as its parameter. Conditions and conclusions such as those in Theorem 4.1
are invariant with respect to this reparametrization; in other words, we can
assume throughout the proof that μ is Lebesgue measure.

The Ricatti equation (1.13) takes the form

∂�s+(z, �) = − (
s+(z, �) 1

)
(izA(�) − B(�))

(
1

s+(z, �)

)
.

We introduce a z-dependent “fast variable” r = |z|� and define

s(z, r) = s+ (z, r/|z|) ,

which obeys the differential equation

∂rs(z, r) = − (
s(z, r) 1

)
(

iz

|z|A
(

r

|z|
)

− 1
|z|B

(
r

|z|
))(

1
s(z, r)

)
. (4.6)

We are going to take a limit in (4.6) when z nontangentially tends to +i∞.
For this we need the following lemma.

Lemma 4.3. Assume that μ is Lebesgue measure and (4.4) holds. Define A(0)
by (1.10) using the value a(0). Let a sequence {zk} be such that |zk| → ∞,
arg zk → ϕ + π/2 for some ϕ ∈ (−π/2, π/2), and s(zk, 0) → s0 for some
s0 ∈ D. Then the initial value problem

η′(r) = eiϕ
(
η(r) 1

) P(0)
(

1
η(r)

)
, η(0) = s0 (4.7)

has a global solution which obeys η(r) ∈ D for all r ∈ [0,∞), and the functions
s(zk, ·) converge uniformly on compacts to η as k → ∞.

Proof. Since |a(0)| ≤ 1, there exists c > 0 independent of s0 ∈ D such that
the initial value problem (4.7) has a solution on [0, c] such that |η| ≤ 2. Define
L ∈ (0,+∞] to be the supremum of all such c. Later on, we will work with
r ∈ [0, L) and |z| ≥ 1. Note that for such r, z we have

‖R(z, r)‖ ≤ 3, R(z, r) = − iz

|z|A
(

r

|z|
)

+
1
|z|B

(
r

|z|
)

.
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We also have ‖A(0)‖ ≤ 2 by construction. Using the identity

(T1h1, h1) − (T2h2, h2) = ((T1 − T2)h1, h1) + (T2(h1 − h2), h2)
+ (T2h1, h1 − h2)

for linear operators, we obtain from (4.6), (4.7) the estimate

|f ′(z, r)| ≤ 4
∥
∥R(z, r) − eiϕA(0)

∥
∥ + 10|f(z, r)|, f(z, r) = s(z, r) − η(r),

on [0, L) × {|z| ≥ 1}. Since f is absolutely continuous with respect to r, the
same is true for the function h(z, r) = e−20r|f(z, r)|2. Moreover, we have

h′(r) = 2e−20rRe
(
f(r)f ′(r)

)
− 20e−20r|f(r)|2,

hence

h′(r) ≤ 2e−20r|f(r)| (4∥
∥R(z, r) − eiϕA(0)

∥
∥ + 10|f(z, r)|) − 20e−20r|f(r)|2

≤ 8e−20r|f(r)|∥∥R(z, r) − eiϕP(0)
∥
∥ ≤ 24

∥
∥R(z, r) − eiϕA(0)

∥
∥ .

Integrating last inequality, we obtain

|f(z, r)|2 ≤ e20r

(
|f(z, 0)|2 + 24

∫ r

0

∥
∥R(z, t) − eiϕA(0)

∥
∥ dt

)
. (4.8)

Since 0 is a Lebesgue point for a, we have
∫ r

0

∥
∥R(zk, t) − eiϕA(0)

∥
∥ dt → 0

along any sequence zk with |zk| → ∞ and arg(−izk) → ϕ. Thus, (4.8)
together with our assumption s(zk, 0) → s0 = η(0) implies that s(zk, r) →
η(r) uniformly in r on compact subsets of [0, L). It remains to show that
L = +∞. To this end, note that if this is not the case, we have |η(r0)| = 3/2
for some r0 ∈ [0, L). But the above argument shows that η(r0) = limk s(zk, r0)
is in the unit disk, thus giving a contradiction. �

It turns out that condition η(r) ∈ D, r ≥ 0, for a solution η of (4.7)
determines η uniquely.

Lemma 4.4. Let a ∈ D and ϕ ∈ (−π/2, π/2). If η : [0,∞) → D solves the
differential equation

η′(r) = eiϕ
(
η(r) 1

)
(

1 −a
−a 1

)(
1

η(r)

)
(4.9)

then η(0) = a

1+
√

1−|a|2 . In other words, for any other initial value η(0), the

solution of the initial value problem exits D in finite time.

Proof. If a = 0, then the Ricatti equation reduces to η′(r) = 2eiϕη(r), so the
general solution is η(r) = e2reiϕ

η(0). In particular, any initial value η(0) �= 0
gives an exponentially growing solution.

If a �= 0, the general solution can be found explicitly as η = w1/w2

where w =
(
w1 w2

)
solves the linear equation

w′ = − eiϕw

(
1 − a

− a 1

)
j. (4.10)
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To see this, let us multiply (4.10) by
(
1 −w1/w2

)� from the right,

w′
1 − w1

w2
w′

2 = eiϕw2

(
w1/w2 1

)
(

1 − a
− a 1

)(
1

w1
w2

)
,

and note that this equation is equivalent to (4.9) if η = w1/w2. Put ρ =√
1 − |a|2. Observe that for the matrix

T = −
(

1 − a
− a 1

)
j =

(
1 a

− a − 1

)

we have
(
a 1 ∓ ρ

)
T = ±ρ

(
a 1 ∓ ρ

)
,

so that if 0 < |a| < 1, the general solution of (4.10) has the form
(
w1 w2

)
= c1e

ρreiϕ (
a 1 − ρ

)
+ c2e

−ρreiϕ (
a 1 + ρ

)

for some constants c1, c2. Since |a| > 1 − ρ, we must have c1 = 0 if the
condition |η(r)| ≤ 1 holds for large r ≥ 0. Meanwhile, if c1 = 0 and c2 �= 0,
then η is the constant function a

1+ρ and the result follows. Now consider the
case where |a| = 1. Then the general solution of (4.10) has the form

(
w1 w2

)
= c1

(
a 1

)
+ c2

(
r
(
a 1

)
+ e−iϕ

(
0 −1

))
,

=
(
a(c1 + c2r) c1 + c2 − e−iϕ

)
.

We see that

η(r) =
a(c1 + c2r)

c1 + c2 − c2e−iϕ

is in D for large r if and only if c2 = 0, in which case η is again the constant
function, η(0) = η(r) = a. �

Proof of Theorem 4.1. Since s+ takes values in D, by Lemmas 4.3 and 4.4 it
suffices to show that for fixed δ > 0, the values of s+(z) have only one accu-
mulation point as |z| → ∞, arg z ∈ [δ, π − δ]. For this, assume that s+(zk) is
convergent for some sequence zk → ∞ with arg zk ∈ [δ, π − δ]. By compact-
ness, we can pass to a subsequence such that arg(−izk) converges. Then the
limit of s(zk) is equal to a(0)

1+
√

1−|a(0)|2 . Thus, this is the only accumulation

point, so (4.5) holds. �

Proof of Proposition 1.10. This follows from Theorem 4.1 by the well-known
fact that almost every point of a locally integrable function with respect to
μ is a Lebesgue point of this function with respect to μ. �

Note that the right-hand side of (1.14) determines a(�) uniquely; if we
denote this right-hand side by c(�), we have the mutually inverse formulas

c(�) =
a(�)

1 +
√

1 − |a(�)|2 , a(�) =
2c(�)

1 + |c(�)|2
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which correspond to a continuous bijection from D to itself. For a(�) ∈ D this
corresponds to the following matrix identity

√
V(a(�)) = V(c(�)), V(a) :=

1
√

1 − |a|2
(

1 −ā
−a 1

)
, a ∈ D.

5. Krein–de Branges Formula for Exponential Type

As a corollary of Theorem 4.1, in this section we give a new proof of the de
Branges mean type theorem (see Section 39 in [10]) discovered by Krein [15].

Proof of Theorem 1.11. Using Proposition 1.4, let us pass to the j-monotonic
family in A-gauge A(z, t) = A(z, t)U(t) where U(t) ∈ SU(1, 1). The coeffi-
cients of the new canonical system obey

ν̂ = ν, P̂ = U−1PjUj, Q̂ = U−1QjUj − U−1∂νUj.

Since

lim sup
z→∞

log ‖A(z, t)U(t)‖
|z| = lim sup

z→∞
log ‖A(z, t)‖

|z|
and det P̂(t) = det P(t), it suffices to prove the theorem for j-monotonic
families in A-gauge.

Formula (4.3) in the proof of Proposition 1.9 gives

∂μϕ(z, �) = ϕ(z, �)
(
s+(z, �) 1

)
(

(−iz − 1)a(�)
iz

)

= −ϕ(z, �)((iz + 1)s+(z, �)a(�) − iz).

Since ϕ(z, 0) = 1, integrating and evaluating at z = iy we get

log
1

ϕ(iy, �)
=

∫ �

0

(
(−y + 1)s+(iy, l)a(l) + y

)
dμ(l).

Let us divide both sides by y and pass to the limits as y → +∞. According
to Proposition 1.10, the right hand side will tend to the desired limit

∫ �

0

(

− |a|2
1 +

√
1 − |a|2 + 1

)

dμ =
∫ �

0

√
1 − |a|2 dμ =

∫ �

0

√
det A dμ.

On the other hand, from (4.2) we see that

1
ϕ(z, �)

=
(
s+(z, �) 1

) A−1(z, �)
(

0
1

)

=
(
s+(z, �) 1

)
(

a22 −a12

− a21 a11

) (
0
1

)

= a11(z, �) − a12(z, �)s+(z, �)

= a11(z, �)
(

1 − a12(z, �)
a11(z, �)

s+(z, �)
)

.

Since the family A(z, �) is j-monotonic, we have |a11(z, �)|2 − |a12(z, �)|2 ≥ 1
for all � ≥ 0 and z ∈ C+. It follows that the analytic function 1− a12(·,�)

a11(·,�)s+(·, �)



IEOT Reflectionless Canonical Systems Page 23 of 30 4

has a positive real part in C+ and therefore, it is outer. Since a11(z, �) is an
entire function of bounded characteristic in the upper half plane without
zeros, we have

lim
y→∞

log |a11(iy, �)|
y

= lim
y→∞

1
y

log
1

|ϕ(iy, �)| =
∫ �

0

√
det Adμ.

Since A(z, �) ∈ SL(2,C) is j-contractive, its entries obey in the upper half
plane

1 + |a12(z, �)|2 ≤ |a11(z, �)|2, |a22(z, �)|2 ≤ 1 + |a21(z, �)|2 ≤ |a11(z, �)|2.
Thus, by the symmetry ‖A(z, �)‖ = ‖A(z̄, �)‖,

lim
y→±∞

log ‖A(iy, �)‖
y

=
∫ �

0

√
detA dμ. (5.1)

Finally, since the entries of A(z, �) are entire functions of bounded character-
istic in upper/lower half plane, the normal limit (5.1) implies the unrestricted
limit as z → ∞ (1.15)–(1.16) [6,14,15] and [10, Chapter I, §10]. �

6. Breimesser–Pearson Theorem for j-Monotonic Families

In this section we prove a version of the Breimesser–Pearson theorem [7].
After the seminal work of Remling [18], Breimesser–Pearson theorem became
the standard tool in the study of reflectionless and almost periodic operators.
For canonical systems in Potapov-de Branges gauge it was first proved by
Acharya [1]. In principle, results of this section can be obtained from an
extended version of Acharya’s theorem via the “twisted shifts” technique
used in Section 7 of [20]. However, we prefer to give a direct proof here to
make the paper more self-contained. We discuss only the “spectral part” and
give references to results in function theory appearing in the proof.

Given a j-monotonic family {A(z, �)}�∈R, recall that its Schur spectral
functions s± are given by

(
s+(z), 1

) � lim
τ→+∞

(
w 1

) A(z, τ)−1,
(
s−(z), 1

) � lim
τ→+∞

(
w 1

)
(j1A(z,−τ)j1)−1,

(these limits do not dependent on w ∈ D) and their shifted versions by
(
s+(z, �), 1

) � (
s+(z), 1

) A(z, �),
(
s−(z, �), 1

) � (
s−(z), 1

)
j1A(z, �)j1. (6.1)

Since s± are Schur functions, for Lebesgue almost every x ∈ R there exist
the limits

s±(x) = lim
ε→+0

s±(x + iε).

Define the absolutely continuous spectrum E of the j-monotonic family
{A(z, �)}�∈R to be the essential closure of the set

{
x ∈ R : |s+(x)|+|s−(x)| <
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2
}

with respect to the Lebesgue measure. For z ∈ D, let ωz be the harmonic
measure in D:

ωz(S) =
∫

S

1 − |z|2
|1 − ξ̄z|2 dm(ξ), S ⊂ T,

where m denotes the normalized Lebesgue measure on the unit circle T, S is
a measurable subset of T.

Here is our version of the Breimesser–Pearson theorem.

Theorem 6.1. Let {A(z, �)}�∈R be a j-monotonic family in the limit point
case at ±∞, and let E be its absolutely continuous spectrum. Assume that
|s±(i, �)| < 1 for every � ≥ 0. Then for every Borel subsets e ⊂ E, |e| < ∞,
S ⊂ T, denoting S̄ = {z̄ | z ∈ S}, we have

lim
�→+∞

(∫

e

ωs−(x,�)(S̄) −
∫

e

ωs+(x,�)(S) dx

)
= 0.

Proof. Define the function

γ(w, z) =
2|w − z|

√
1 − |w|2√1 − |z|2 , w, z ∈ D,

which is related to the hyperbolic distance on D. Using the Cayley transform
and the estimate (7.21) in [20] it is easy to check that

|ωw(S) − ωz(S)| ≤ γ(w, z), w, z ∈ D, S ⊂ T. (6.2)

It is also possible to check (directly or using the Cayley transform and Propo-
sition 3 in [7]) that γ is invariant under the Möbius transformations. Let us
fix a finite partition e = ∪N

0 ej and a collection {sj}N
j=1 such that |e0| < ε, for

j ≥ 1 the sets ej are bounded, and

γ(s+(x), sj) < ε, x ∈ ej .

It is possible to choose y∗ > 0 so small that for every function s of Schur
class in C+, for every 0 < y < y∗ and every 1 ≤ j ≤ N we have

sup
S⊂T

∣
∣
∣
∣
∣

∫

ej

ωs(x+iy)(S) −
∫

ej

ωs(x)(S)

∣
∣
∣
∣
∣
≤ ε|ej |. (6.3)

This is the key analytic ingredient of the Breimesser–Pearson theorem, and
we refer the reader to Theorem 1 in [7] or to Theorem 7.6 in [20] for its proof.
One need to use the conformal invariance of the harmonic measure to get
(6.3) from those results. Fix 1 ≤ j ≤ N and consider the function s defined
by

(
s(z, �), 1

) � (
sj , 1

) A(z̄, �), z ∈ C+, � ≥ 0.

For x ∈ ej , we have x = x̄ and

γ
(
s+(x, �), s(x, �)

)
= γ

((
s+(x), 1

)A(x, �),
(
sj , 1

) A(x, �)
)

= γ(
(
s+(x), 1

)
,
(
sj , 1

)
) ≤ ε,
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due to invariance of γ with respect to Möbius transformations (in the formula
above we identified complex numbers with elements of the projective complex
plane so that z ∈ C corresponds to (z, 1)). Using (6.2) we see that

∣
∣
∣ωs+(x,�)(S) − ωs(x,�)(S)

∣
∣
∣ ≤ γ

(
s+(x, �), s(x, �)

)
≤ ε, x ∈ ej .

Integrating this inequality, we get
∣
∣
∣
∣
∣

∫

ej

ωs+(x,�)(S) dx −
∫

e

ωs(x,�)(S) dx

∣
∣
∣
∣
∣
≤ ε|ej |.

Let us show that for large � > 0 we have
∣
∣
∣
∣
∣

∫

ej

ωs−(x,�)(S) −
∫

e

ωs(x,�)(S)

∣
∣
∣
∣
∣
≤ 3ε|ej |,

then the statement will follow. By definition, we have ωw(S) = ωw̄(S). So,
we need to show that

∣
∣
∣
∣
∣

∫

ej

ωs−(x,�)(S) −
∫

ej

ωs(x,�)(S)

∣
∣
∣
∣
∣
≤ 3ε|ej |.

Relation (6.3) reduces this to the inequality
∣
∣
∣
∣
∣

∫

ej

ωs−(x+iy∗,�)(S) −
∫

ej

ωs(x+iy∗,�)(S)

∣
∣
∣
∣
∣
≤ ε|ej |. (6.4)

Estimate (6.2) and our definition of s imply that it suffices to check that

lim
�→+∞

γ((s−(z, �), 1), (w, 1)A(z̄, �)) = 0 (6.5)

for every w ∈ D and every z ∈ C+ (since ωw(S̄) ≤ 1 for every w ∈ D, one can
use Lebesgue dominated convergence theorem and (6.2) to derive (6.4) from
(6.5)). Since A(z, �) ∈ SL(2,C), with J given in (1.3) the standard formula
for inverse of matrices gives

A(z, �)−1 = J A(z, �)�J .

Combining this with (1.1) we get

A(z̄, �) = j1A(z, �)j1, ∀z ∈ C,

where (. . . ) denotes entry by entry complex conjugation. From (6.1) and the
invariance of γ with respect to Möbius transformations we now see that (6.5)
holds if

lim
�→+∞

diamγDB(z, �) = 0, (6.6)

where diamγF = supw1,w2∈F γ(w1, w2) is the diameter of a set F ⊂ D with
respect to γ, and

DB(z, �) = {(w, 1)B(z, �)−1, w ∈ D}
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is the Weyl disk of the j-monotonic family B(z, �) = j1A−1(z, �)j1. Assume
first that z = i and A admits the Arov normalization condition at z = i:

A(i, �) =
(

eμ(�) 0
−eμ(�)κ(�) e−μ(�)

)
,

so

B(i, �) =
(

eμ(�) eμ(�)κ(�)
0 e−μ(�)

)
.

The Euclidean diameter of DB(i, �) is equal to 2/e2μ(�)(1 − κ(�)2) by
Lemma 3.3. Note that we have μ(�) → +∞ and κ(�) → s+(i) as � → +∞
by Lemma 1.8. Since |s+(i)| = |s+(i, 0)| < 1 by our assumption, we see that
the Euclidean diameters of DB(i, �) tend to zero as � → +∞. Since B(i, �)
is upper-triangular, we have 0 ∈ D. Hence, relation (6.6) holds. Moreover,
(3.5) shows that under the Arov gauge normalization we have (6.6) for every
z ∈ C+.

In the general case, Proposition 1.4 gives a j-unitary family {U(�)} such
that Ã = AU(�) obeys the Arov normalization. Then the previous argument
implies that the γ-diameters of the Weyl disks

DB̃(z, �) = {(w, 1)B̃(z, �)−1, w ∈ D}, B̃(z, �) = j1Ã−1(z, �)j1,

tend to zero. Since B̃(z, �)−1 = B(z, �)−1j1U(�)j1 and j1U(�)j1 is j-unitary,
the same is true for the Weyl disks DB(z, �) due to the invariance of γ under
the Möbius transformations. This ends the proof. �

7. Remling’s Theorem for Canonical Systems in the Arov
Form

In this section we are interested in description of coefficients of reflectionless
canonical systems. Recall that a j-monotonic family {A(z, �)}�∈R in the limit
point case at ±∞ is called reflectionless on a set E ⊂ R if its Schur functions
s± satisfy

s+(x) = s−(x) for almost every x ∈ E

in the sense of nontangential boundary values. In the case where E is the
absolutely continuous spectrum (see the beginning of Sect. 6) of {A(z, �)}�∈R

, this family and the canonical system it generates are called reflectionless.
Roughly, the main result of this section says that canonical systems with

almost periodic coefficients are reflectionless. Let us introduce the notion of
almost periodicity we are going to use [5, Section 6.1]. Let μ be a complex
Borel measure on the real line R. The measure μ is called translation bounded
if for any compact subset K ⊂ R we have

‖μ‖K := sup
x∈R

|μ|(x + K) < ∞.

Consider a set of test functions X ⊂ L1(μ) closed under translation: SyX ⊂
X, y ∈ R, where the shift operator Sy is defined by

Syh : x �→ h(x − y), x ∈ R.
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We say that a translation bounded Borel measure μ on R is X-almost periodic
if for all h ∈ X, the convolution

h ∗ μ : x �→
∫

R

h(x − �) dμ(�).

is a uniformly almost periodic function on R (that is, {Sy(h ∗ μ)}y∈R is a
precompact set in the Banach space of bounded continuous functions on R).
It is classical to define almost periodic measures using the space Cc(R) of
continuous functions with compact support as a set X of test functions, see,
e.g., [2,3]. We will use another class X = PCc(R) of piecewise continuous
compactly supported functions. It is easy to see that a translation bounded
complex measure μ without point masses is PCc(R)-almost periodic if and
only if the function

x �→ μ([x, x + �]), x ∈ R,

is uniformly almost periodic for every � > 0. We call a 2 × 2 matrix-valued
mapping PCc(R)-almost periodic if each its entry is PCc(R)-almost periodic.
This allows us to deal with canonical systems with PCc(R)-almost periodic
coefficients. Here is a reformulation of Theorem 1.14 in new terms.

Theorem 7.1. Every canonical system

A(z, �)j = j +
∫ �

0

A(z, t) (izA(t) − B(t)) dμ(t), z ∈ C,

with PCc(R)-almost periodic coefficients Adμ, B dμ is reflectionless.

Our plan is to use the following lemma. The usage of the Breimesser–
Pearson theorem from the previous section in its proof is inspired by [18].

Lemma 7.2. Suppose that {A(z, �)}�∈R is a j-monotonic family in the limit
point case at ±∞, and let {τn} be a sequence converging to +∞ such that
there exists the limit

B(z, �) = lim
n→+∞ A[τn](z, �), A[τn](z, �) = A(z, τn)−1A(z, � + τn).

uniformly on compact subsets of C × R. Then {B(z, �)}�∈R is a j-monotonic
family reflectionless on the absolutely continuous spectrum E of {A(z, �)}�∈R.

Proof. By definition, {B(z, �)}�∈R is a j-monotonic family, and, moreover, we
have sA,±(z, τn) → sB,±(z), z ∈ C+, for the corresponding Schur spectral
functions. It follows that

lim
n→∞

∫

e

ωsA,±(x,τn)(S) dx =
∫

e

ωsB,±(x)(S) dx, S ⊂ T,

for every Borel set e ⊂ R of finite Lebesgue measure. Here we used again
estimate (6.3) for Schur functions, see Theorem 1 in [7] or Theorem 7.6 in [20].
If moreover e is a subset of the a.c. spectrum E of {A(z, �)}, from Theorem
6.1 we get

∫

e

ωsB,−(x)(S̄) dx =
∫

e

ωsB,+(x)(S) dx.
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Using the fact that ωw(S̄) = ωw̄(S) for every w ∈ D, we conclude that
sB,− = sB,+ almost everywhere on E, that is, the system {B(z, �)}�∈R is
reflectionless on E. �

We are ready to prove Theorem 7.1.

Proof. Suppose that A(z, �) is the transfer matrix of a canonical system with
coefficients Adμ, B dμ that are PCc(R)-almost periodic matrix-valued mea-
sures. For τ ≥ 0, n ≥ 0, let

Aτ (�) dμτ (�) = A(� + τ) dμτ , Bτ (�) dμτ = B(� + τ) dμτ , μτ (E) = μ(τ + E),

be the coefficients of the canonical system with the transfer matrix
A[τ ](z, �) = A(z, τ)−1A(z, � + τ). Using almost periodicity, one can choose a
sequence {τn}, lim τn = +∞, such that

lim
n→+∞

∫ �

0

Aτn
(t) dμτn

(t) =
∫ �

0

A(t) dμ(t)

and

lim
n→+∞

∫ �

0

Bτn
(t) dμτn

(t) =
∫ �

0

B(t) dμ(t)

uniformly in � ≥ 0 on each interval [0, T ]. For z ∈ C, let Xz,n denote the
matrix valued measure −(izAτn

−Bτn
)j dμτn

, and let Xz = −(izA−B)j dμ.
Then

A[τn](z, �) = I +
∫ �

0

dXz,n(t1) +
∫ �

0

∫ t1

0

dXz,n(t2)dXz,n(t1) + . . .

where the infinite series in the right hand side converges uniformly on compact
subsets of [0,+∞) ×C because μ is translation bounded. Since the variation
on [0, T ] of Xz,n−Xz tends to zero uniformly on compact subsets of C for each
T ≥ 0, we have A(z, �) = limn→+∞ A[τn](z, �) and conditions of Lemma 7.2
are satisfied for the sequence {τn} and B = A. From Lemma 7.2 we now see
that the family {A(z, �)}�∈R is reflectionless. �
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