Integr. Equ. Oper. Theory (2021) 93:42 https://doi.org/10.1007/s00020-021-02659-z Published online June 30, 2021 -c The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Integral Equations and Operator T[heory](http://crossmark.crossref.org/dialog/?doi=10.1007/s00020-021-02659-z&domain=pdf)

L^p **and** *H*¹ **Boundedness of Oscillatory** Singular Integral Operators with Hölder **Class Kernels**

Yibiao Pa[n](http://orcid.org/0000-0002-2492-1934)o

Abstract. For oscillatory singular integrals with polynomial phases and Hölder class kernels, we establish their uniform boundedness on L^p spaces as well as a sharp logarithmic bound on the Hardy space $H¹$. These results improve the ones in (Pan in Forum Math 31: 535–542, 2019) by removing the restriction that the phase polynomials be quadratic.

Mathematics Subject Classification. Primary 42B20, Secondary 42B35.

Keywords. Oscillatory integrals, Singular integrals, Hardy spaces, *L^p* spaces, Hölder classes.

1. Introduction

Let $n, d \in \mathbb{N}$, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. Let

$$
P(x) = \sum_{|\alpha| \le d} a_{\alpha} x^{\alpha} \tag{1}
$$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ and $a_{\alpha} \in \mathbb{R}$. For each nonconstant polynomial $P(x)$ we let

$$
||P||_o = \frac{\sum_{|\alpha|=1} |a_{\alpha}|}{\sum_{2 \le |\alpha| \le d} |a_{\alpha}|^{1/|\alpha|}}.
$$
 (2)

When $\deg(P) = 1$, the value of $||P||_o$ shall be interpreted as ∞ .

For a Calderón–Zygmund type singular kernel $K(x)$, let $T_{P,K}$ be the oscillatory singular integral operator defined by

$$
T_{P,K}f(x) = \text{p.v.} \int_{\mathbb{R}^n} e^{iP(x-y)} K(x-y)f(y)dy.
$$
 (3)

In [\[7\]](#page-10-0) the author proved the following:

B Birkhäuser

Theorem 1.1. *Suppose that* $deg(P) = 2$ *and there exist* $q > 2$ *and* $\delta > 0$ *such that*

$$
CZ(q,\delta) \quad \begin{cases} \n(a) \left(\int_{s \le |x| \le 2s} |K(x)|^q dx \right)^{1/q} \le As^{-n/q'} \quad \text{for } s > 0; \\
(b) |K(x - y) - K(x)| \le \frac{A|y|^{\delta}}{|x|^{n+\delta}} \quad \text{for } |x| \ge 2|y|; \\
(c) \left| \int_{s_1 \le |x| \le s_2} K(x) dx \right| \le A \quad \text{for } 0 < s_1 < s_2. \n\end{cases}
$$

Then,

(i) *For* $1 < p < \infty$ *, there exists a positive constant* C_p *such that*

$$
||T_{P,K}f||_{L^p(\mathbb{R}^n)} \leq C_p ||f||_{L^p(\mathbb{R}^n)}
$$
\n(4)

for all $f \in L^p(\mathbb{R}^n)$ *. The constant* C_p *may depend on n,* p *,* δ *,* q *and* A *, but is otherwise independent of* K *and the coefficients of* P*;* (ii) *There exists a positive constant* C *such that*

$$
||T_{P,K}f||_{H^1(\mathbb{R}^n)} \le C(1 + \log^+ ||P||_o) ||f||_{H^1(\mathbb{R}^n)}
$$
(5)

for all $f \in H^1(\mathbb{R}^n)$ *. The constant* C *may depend on* n, δ , q and A, but is *otherwise independent of* K *and the coefficients of* P*. The bound given in* [\(5\)](#page-1-0) *is the best possible in the sense that the logarithmic function cannot be replaced by any function with a slower rate of growth.*

The above conditions (a) – (c) are commonly referred to as the size, smoothness and cancellation conditions for singular kernels, respectively. In classical Calder´on–Zygmund theory of singular integrals, one assumes that condition (a) holds for $q = \infty$ together with the C^1 condition $|\nabla K(x)| \leq$ $C|x|^{-n-1}$ instead of the weaker Hölder continuity condition (b), as well as (c).

The restriction that $P(x)$ be quadratic (i.e. deg(P) = 2) in the above theorem is clearly a severe one. For the operator $T_{P,K}$ with a C^1 kernel K, both the L^p bound in (1) and the H^1 bound in (2) have been known to be true when the phase polynomial P is of arbitrary degree (for L^p see [\[8](#page-10-2)]; for H^1 see [\[1](#page-10-3)]). The main purpose of this paper is to show that, for $T_{P,K}$ with a kernel K in the Hölder class, the same L^p and H^1 bounds are true when the degree of the phase polynomial P is arbitrary. We have the following:

Theorem 1.2. *Let* P(x) *be a real-valued polynomial of any positive degree. Suppose that* $K(x)$ *satisfies* $CZ(q, \delta)(a)$ –(c) *for some* $q > 1$ *and* $\delta > 0$ *. Then,* (i) For $1 < p < \infty$, there exists a positive constant C_p such that

$$
||T_{P,K}f||_{L^p(\mathbb{R}^n)} \leq C_p ||f||_{L^p(\mathbb{R}^n)}
$$
\n(6)

for all $f \in L^p(\mathbb{R}^n)$ *. The constant* C_p *may depend on n,* p *,* δ *,* q *,* $\deg(P)$ *and* A*, but is otherwise independent of* K *and the coefficients of* P*;* (ii) *There exists a positive constant* C *such that*

$$
||T_{P,K}f||_{H^1(\mathbb{R}^n)} \leq C(1 + \log^+ ||P||_o) ||f||_{H^1(\mathbb{R}^n)}
$$
\n(7)

for all $f \in H^1(\mathbb{R}^n)$ *. The constant* C *may depend on n*, δ , q , deg(P) and A, *but is otherwise independent of* K *and the coefficients of* P*. The bound given* *in* [\(7\)](#page-1-1) *is the best possible in the sense that the logarithmic function cannot be replaced by any function with a slower rate of growth.*

We point out that, aside from lifting the restriction that $deg(P)=2$ from Theorem [1.1,](#page-0-0) Theorem [1.2](#page-1-2) also improves the range of q from $q > 2$ to the more natural range $q > 1$.

In the rest of the paper we shall use $A \leq B$ to mean that $A \leq cB$ for a certain constant c which depends on some essential parameters only. A subscript may be added to the symbol \lesssim to indicate a particular dependence as appropriate.

2. *Lp* **Boundedness**

In this section we will establish part (i) of Theorem [1.2.](#page-1-2) For $u \in \mathbb{R}^n$ and $r > 0$ we let $B(u,r)$ denote the ball $\{x \in \mathbb{R}^n : |x - u| \leq r\}$. An important tool will be the following lemma from [\[6\]](#page-10-4).

Lemma 2.1. *Let* $P(x)$ *be given as in* [\(1\)](#page-0-1)*. Let* $R > 0$ *and let* $\psi : \mathbb{R}^n \to \mathbb{C}$ *be an integrable function supported in* B(0, R/2)*. Then*

$$
\left| \int_{\mathbb{R}^n} e^{iP(x)} \psi(x) dx \right| \lesssim_{d,n} \sup_{v \in B(0,R\Lambda^{-1/d})} \int_{\mathbb{R}^n} |\psi(x) - \psi(x - v)| dx, \quad (8)
$$

where $\Lambda := \sum_{1 \leq |\alpha| \leq d} |a_{\alpha}| R^{|\alpha|}$.

For $h > 0$, we let $T_{P,K,h}$ denote the truncation of $T_{P,K}$ given by

$$
T_{P,K,h}f(x) = \text{p.v.} \int_{|x-y| \le h} e^{iP(x-y)} K(x-y)f(y) dy.
$$
 (9)

We will establish the following uniform L^p boundedness theorem:

Theorem 2.1. Let $P(x)$ be a real-valued polynomial of any degree and $h > 0$. *Suppose that* $K(x)$ *satisfies* $CZ(q, \delta)(a)$ –(c) *for some* $q > 1$ *and* $\delta > 0$ *. Then, for* $1 < p < \infty$ *, there exists a positive constant* C_p *such that*

$$
||T_{P,K,h}f||_{L^{p}(\mathbb{R}^{n})} \leq C_{p}||f||_{L^{p}(\mathbb{R}^{n})}
$$
\n(10)

for all $f \in L^p(\mathbb{R}^n)$ *. The constant* C_p *may depend on n,* p *,* δ *,* q *,* $\deg(P)$ *and* A*, but is otherwise independent of* h*,* K *and the coefficients of* P*.*

Proof. Without loss of generality we may assume that $P(x)$ is nonconstant and $P(0) = 0$. In order to prove [\(10\)](#page-2-0) we shall use induction on $deg(P)$. When $\deg(P) = 1$, by $P(x-y) = P(x) - P(y)$, [\(10\)](#page-2-0) follows from the L^p boundedness of singular integrals ([\[4\]](#page-10-5), page 300). Suppose that for a $d \geq 2$, [\(10\)](#page-2-0) holds for all P with deg(P) $\leq d-1$.

We now assume that $deg(P) = d$, i.e.

$$
P(x) = \sum_{|\alpha| \le d} a_{\alpha} x^{\alpha}
$$

with $\sum_{|\alpha|=d} |a_{\alpha}| \neq 0$.

 $\overline{\rm Let}$

$$
R(x) = P(x) - \sum_{|\alpha|=d} a_{\alpha} x^{\alpha}.
$$
 (11)

Then $\deg(R) \leq d-1$ and for $0 < h \leq 8$

$$
|T_{P,K,h}f(x) - T_{R,K,h}f(x)| \lesssim \int_{|x-y| \le 8} |x-y|^d |K(x-y)| |f(y)| dy. \tag{12}
$$

By [\(12\)](#page-3-0), Hölder's inequality and $\mathbf{CZ}(q,\delta)(a)$,

$$
||T_{P,K,h}f - T_{R,K,h}f||_{L^{p}(\mathbb{R}^{n})} \lesssim \left(\int_{|x| \leq 8} |x|^{d} |K(x)| dx\right) ||f||_{L^{p}(\mathbb{R}^{n})}
$$

$$
\lesssim (||f||_{L^{p}(\mathbb{R}^{n})}) \sum_{j=-\infty}^{2} \left(\int_{2^{j} \leq |x| \leq 2^{j+1}} |x|^{dq'} dx\right)^{1/q'}
$$

$$
\times \left(\int_{2^{j} \leq |x| \leq 2^{j+1}} |K(x)|^{q} dx\right)^{1/q}
$$

$$
\lesssim (||f||_{L^{p}(\mathbb{R}^{n})}) \sum_{j=-\infty}^{2} (2^{jdq'} 2^{jn})^{1/q'} 2^{-jn/q'}
$$

$$
\lesssim ||f||_{L^{p}(\mathbb{R}^{n})}.
$$

Thus, for $0 < h \leq 8$

$$
||T_{P,K,h}f||_{L^{p}(\mathbb{R}^{n})} \lesssim ||T_{R,K,h}f||_{L^{p}(\mathbb{R}^{n})} + ||f||_{L^{p}(\mathbb{R}^{n})} \lesssim ||f||_{L^{p}(\mathbb{R}^{n})}.
$$
 (13)

For the rest of this proof we assume that $h > 8$. For $j \leq 2$ let $I_j =$ $[2^j, 2^{j+1}],$

$$
\psi_j(x) = \chi_{I_j}(|x|)K(x)
$$

and let S_j denote the following operator

$$
S_j f(x) = \int_{\mathbb{R}^n} e^{iP(x-y)} \psi_j(x-y) f(y) dy.
$$
 (14)

Then

$$
\widehat{S_j f}(\xi) = m_j(\xi) \widehat{f}(\xi) \tag{15}
$$

where

$$
m_j(\xi) = \int_{\mathbb{R}^n} e^{i(P(x) - 2\pi \xi \cdot x)} \psi_j(x) dx.
$$
 (16)

For each j, we will now apply Lemma [2.1](#page-2-1) to the estimate of $||m_j||_{\infty}$ with $R = 2^{j+2}$. By

$$
P(x) - 2\pi \xi \cdot x = \sum_{k=1}^{n} \left(\frac{\partial P}{\partial x_k}(0) - 2\pi \xi_k \right) x_k + \sum_{2 \le |\alpha| \le d} a_\alpha x^\alpha,
$$

and

$$
\Lambda := \sum_{k=1}^n \left| \frac{\partial P}{\partial x_k}(0) - 2\pi \xi_k \right| R + \sum_{2 \le |\alpha| \le d} |a_\alpha| R^{|\alpha|} \ge \left(\sum_{|\alpha| = d} |a_\alpha| \right) R^d = R^d,
$$

we have $R\Lambda^{-1/d} \leq 1$. Thus, for any $\xi \in \mathbb{R}^n$,

$$
|m_j(\xi)| \lesssim \sup_{v \in B(0,1)} \int_{\mathbb{R}^n} |\psi_j(x) - \psi_j(x - v)| dx. \tag{17}
$$

For any $v \in B(0,1)$, $j \geq 2$ and $x \in B(0, 2^{j+1})\backslash B(0, 2^j)$ we have $|x| \geq$ $2|v|$ and

$$
|B(0,2^{j})\Delta B(v,2^{j})| + |B(0,2^{j+1})\Delta B(v,2^{j+1})| \lesssim 2^{j(n-1)}.
$$
 (18)

Thus, by $CZ(q,\delta)(b)$,

$$
|\psi_j(x) - \psi_j(x - v)| \leq \chi_{I_j}(|x|)|K(x) - K(x - v)|
$$

+
$$
|\chi_{I_j}(|x|) - \chi_{I_j}(|x - v|)||K(x - v)|
$$

$$
\lesssim \chi_{I_j}(|x|) \left(\frac{|v|^{\delta}}{|x|^{n+\delta}}\right)
$$

+ $(\chi_{B(0,2^j)\Delta B(v,2^j)}(x) + \chi_{B(0,2^{j+1})\Delta B(v,2^{j+1})}(x))|K(x-v)|.$ (19) Since $(B(0, 2^{j})\Delta B(v, 2^{j}))\cup(B(0, 2^{j+1})\Delta B(v, 2^{j+1}))\subseteq B(v, 2^{j+2})\backslash B(v, 2^{j-1}),$ by $(17)-(19)$ $(17)-(19)$ $(17)-(19)$ and $CZ(q,\delta)(a)$ we have

$$
|m_j(\xi)| \lesssim \int_{2^j \leq |x| \leq 2^{j+1}} \frac{dx}{|x|^{n+\delta}}
$$

+
$$
\int_{\mathbb{R}^n} (\chi_{B(0,2^j) \Delta B(v,2^j)}(x) + \chi_{B(0,2^{j+1}) \Delta B(v,2^{j+1})}(x))|K(x-v)| dx
$$

$$
\lesssim 2^{-j(n+\delta)} 2^{jn} + (|B(0,2^j) \Delta B(v,2^j)| + |B(0,2^{j+1}) \Delta B(v,2^{j+1})|)^{1/q'}
$$

$$
\times \left(\int_{B(v,2^{j+2}) \backslash B(v,2^{j-1})} |K(x-v)|^q dx \right)^{1/q}
$$

$$
\lesssim 2^{-j\delta} + 2^{j(n-1)/q'} 2^{-jn/q'}
$$

$$
\lesssim 2^{-j\mu}
$$

where $\mu = \min\{\delta, 1/q'\}$. It follows from Plancherel's theorem that

$$
||S_j||_{L^2(\mathbb{R}^n)\to L^2(\mathbb{R}^n)} \lesssim 2^{-j\mu}.
$$
\n(20)

By $\mathbf{CZ}(q, \delta)(a)$, for any t_1, t_2 satisfying $0 < t_1 < t_2$ and $t_2/t_1 \lesssim 1$,

$$
\|\chi_{B(0,t_2)\setminus B(0,t_1)}|K|\|_{L^1(\mathbb{R}^n)} \lesssim 1.
$$
 (21)

Thus,

$$
||S_j||_{L^1(\mathbb{R}^n) \to L^1(\mathbb{R}^n)} + ||S_j||_{L^{\infty}(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)} \lesssim ||\chi_{B(0,2^{j+1}) \setminus B(0,2^{j})} K||_{L^1(\mathbb{R}^n)} \lesssim 1.
$$
 (22)

By the Riesz–Thorin interpolation theorem, for $1 < p < \infty$,

$$
||S_j||_{L^p(\mathbb{R}^n)\to L^p(\mathbb{R}^n)} \lesssim 2^{-j\mu_p},\tag{23}
$$

where

$$
\mu_p = \mu(1 - |1 - 2/p|) > 0.
$$

Let $m = \log_2 h$. Then

$$
|T_{P,K,h}f| \le |T_{P,K,4}f| + \sum_{j=2}^{m-1} |S_jf| + |(\chi_{B(0,h)\setminus B(0,2^m)}|K|) * |f|.
$$
 (24)

It follows from (13) , (21) and (23) that

$$
||T_{P,K,h}f||_{L^{p}(\mathbb{R}^{n})} \lesssim \left(1 + \sum_{j=2}^{m-1} 2^{-j\mu_{p}} + ||\chi_{B(0,h)\setminus B(0,2^{m})}|K|||_{L^{1}(\mathbb{R}^{n})}\right) ||f||_{L^{p}(\mathbb{R}^{n})}
$$

$$
\lesssim ||f||_{L^{p}(\mathbb{R}^{n})}.
$$

The proof of Theorem [2.1](#page-2-2) is now complete. \Box

By using

$$
T_{P,K}f = \lim_{h \to \infty} T_{P,K,h}f
$$

interpreted in the distributional sense, we obtain (6) for all test functions f. Part (i) of Theorem [1.2](#page-1-2) then follows by standard arguments.

3. $H^1 \to H^1$ **Estimates**

As for the L^p boundeness, the H^1 arguments in [\[7](#page-10-0)] relied both on the phase being quadratic as well as the condition $CZ(q, \delta)$ with a $q > 2$. To prove part (ii) of Theorem [1.2,](#page-1-2) we will let the degree of the phase polynomial be any positive integer while assuming that K satisfies $CZ(q, \delta)$ with a $q > 1$.

Lemma 3.1. *Let* $d \geq 2$, $P(x) = \sum_{|\alpha| \leq d} a_{\alpha} x^{\alpha}$ *and* $K(x)$ *satisfy* $\sup_{s>0}$ $s^{n/q'} \|\chi_{B(0,2s)\setminus B(0,s)} K\|_{L^q(\mathbb{R}^n)} \lesssim 1$

for some $q > 1$ *. Then,*

(i) *for any* $0 < a < b$ *and* $\nu \geq 1$ *,*

$$
\int_{a \le |x| \le b} |x|^{\nu} |K(x)| dx \lesssim (b-a)^{1/q'} b^{\nu - 1/q'};
$$
\n(25)

$$
\int_{a \le |x| \le b} |K(x)| dx \lesssim 1 + \ln(b/a); \tag{26}
$$

(ii) *for any* $\lambda \geq 1$,

$$
\int_{|x|\geq \lambda} \left| K(x) \int_{B(0,1)} e^{iP(x-y)} f(y) dy \right| dx
$$
\n
$$
\lesssim \left[\lambda \left(\sum_{2 \leq |\alpha| \leq d} |a_{\alpha}|^{1/|\alpha|} \right)^2 \right]^{-1/(2\gamma'd)} \|f\|_{L^{\gamma'}(B(0,1))}
$$
\n(27)

where $\gamma = \min\{q, 2\}.$

Proof. (i) Let $N = \log_2(b/a)$. Then

$$
\int_{a \leq |x| \leq b} |x|^{\nu} |K(x)| dx \lesssim \left(\int_{a \leq |x| \leq b} |x|^{1-n} dx \right)^{1/q'}
$$
\n
$$
\times \left(\int_{a \leq |x| \leq 2^{N+1} a} |x|^{\left(\nu + (n-1)/q'\right)q}\left|K(x)\right|^{q} dx \right)^{1/q}
$$
\n
$$
\lesssim (b-a)^{1/q'} \left(\sum_{j=0}^{N} (2^{j}a)^{\left(\nu + (n-1)/q'\right)q}\| \chi_{B(0,2^{j+1}a) \setminus B(0,2^{j}a)} K \|_{L^q(\mathbb{R}^n)}^q \right)^{1/q}
$$
\n
$$
\lesssim (b-a)^{1/q'} \left(\sum_{j=0}^{N} (2^{j}a)^{\left(\nu - 1/q'\right)q + nq/q'} ((2^{j}a)^{-n/q'})^q \right)^{1/q}
$$
\n
$$
\lesssim (b-a)^{1/q'} (2^N a)^{\nu - 1/q'} \lesssim (b-a)^{1/q'} b^{\nu - 1/q'},
$$

which proves (25) . The proof of (26) is simpler and will be omitted.

(ii) Since $1 < \gamma \leq q$, we have for any $s > 0$,

$$
\|\chi_{B(0,2s)\backslash B(0,s)}K\|_{L^{\gamma}(\mathbb{R}^n)} \lesssim \|\chi_{B(0,2s)\backslash B(0,s)}K\|_{L^q(\mathbb{R}^n)}|B(0,2s)|^{1/\gamma-1/q}
$$

$$
\lesssim s^{-n/q'+n(1/\gamma-1/q)} = s^{-n/\gamma'}.
$$

For any $\lambda \geq 1$, by Hölder's inequality and applying Lemma 2.3 in [\[1](#page-10-3)] (taking *p* to be $\gamma' \geq 2$),

$$
\int_{|x|\geq \lambda} \left| K(x) \int_{B(0,1)} e^{iP(x-y)} f(y) dy \right| dx
$$
\n
$$
\lesssim \sum_{j=0}^{\infty} \left\| \chi_{B(0,2^{j+1}\lambda) \setminus B(0,2^{j}\lambda)} K \right\|_{L^{\gamma}(\mathbb{R}^{n})}
$$
\n
$$
\times \left(\int_{B(0,2^{j+1}\lambda)} \left| \int_{B(0,1)} e^{iP(x-y)} f(y) dy \right|^{\gamma'} dx \right)^{1/\gamma'}
$$
\n
$$
\lesssim \left(\sum_{j=0}^{\infty} (2^{j}\lambda)^{-n/\gamma'} (2^{j}\lambda)^{(2nd-1)/(2\gamma'd)} \right)
$$
\n
$$
\times \left(\sum_{2 \leq |\alpha| \leq d} |a_{\alpha}|^{1/|\alpha|} \right)^{-1/(\gamma'd)} \|f\|_{L^{\gamma'}(B(0,1))}
$$
\n
$$
\lesssim \left(\sum_{j=0}^{\infty} 2^{-j/(2\gamma'd)} \right) \left[\lambda \left(\sum_{2 \leq |\alpha| \leq d} |a_{\alpha}|^{1/|\alpha|} \right)^{2} \right]^{-1/(2\gamma'd)} \|f\|_{L^{\gamma'}(B(0,1))}
$$
\n
$$
\lesssim \left[\lambda \left(\sum_{2 \leq |\alpha| \leq d} |a_{\alpha}|^{1/|\alpha|} \right)^{2} \right]^{-1/(2\gamma'd)} \|f\|_{L^{\gamma'}(B(0,1))}.
$$

Lemma 3.2. Let $K(x)$ be given as in Lemma [3.1](#page-5-1) and $Q(x)$ be a polynomial *satisfying* $\nabla Q(0) = 0$ *. Let* f *be a Lebesgue measurable function satisfying*

$$
supp(f) \subseteq B(0,1); \tag{28}
$$

 \Box

$$
||f||_{\infty} \le 1;\tag{29}
$$

$$
\int_{B(0,1)} f(y) dy = 0.
$$
\n(30)

Then, there exists a C > 0 *such that*

$$
\int_{|x| \ge 2} \left| K(x) \int_{B(0,1)} e^{iQ(x-y)} f(y) dy \right| dx \le C. \tag{31}
$$

The constant C *may depend on* deg(Q) *but is otherwise independent of the coefficients of* $Q(x)$ *.*

Proof. When $deg(Q) \leq 1$, by $\nabla Q(0) = 0$, [\(31\)](#page-7-0) follows from [\(30\)](#page-6-0) trivially.

Suppose that $d \geq 2$ and [\(31\)](#page-7-0) holds for all $Q(x)$ satisfying deg(Q) $\leq d-1$ and $\nabla Q(0) = 0$.

Assume that $deg(Q) = d$ and $\nabla Q(0) = 0$. Then

$$
Q(x) = \sum_{|\alpha| = d} q_{\alpha} x^{\alpha} + R(x)
$$

where $deg(R) \leq d-1$ and $\nabla R(0) = 0$. Thus,

$$
\int_{|x|\geq 2} \left| K(x) \int_{B(0,1)} e^{iR(x-y)} f(y) dy \right| dx \lesssim 1.
$$

Let

$$
\beta = \max \bigg\{ 2, \bigg(\sum_{|\alpha| = d} |q_{\alpha}| \bigg)^{-1/(d-1)} \bigg\}.
$$

Then

$$
\int_{2\leq |x|\leq \beta} \left| K(x) \int_{B(0,1)} e^{iQ(x-y)} f(y) dy \right| dx
$$
\n
$$
\lesssim \int_{2\leq |x|\leq \beta} \left| K(x) \int_{B(0,1)} \left(e^{iQ(x-y)} - e^{i(\sum_{|\alpha|=d} q_{\alpha} x^{\alpha} + R(x-y))} \right) f(y) dy \right|
$$
\n
$$
dx + 1
$$
\n
$$
\lesssim \left(\sum_{|\alpha|=d} |q_{\alpha}| \right) \int_{2\leq |x|\leq \beta} |x|^{d-1} |K(x)| dx + 1
$$
\n
$$
\lesssim \left(\sum_{|\alpha|=d} |q_{\alpha}| \right) (\beta - 2)^{1/q'} \beta^{d-1-1/q'} + 1 \lesssim 1. \tag{32}
$$

Let $\gamma = \min\{q, 2\}$. By Hölder's inequality, [\(29\)](#page-6-0) and Lemma 4.3 in [\[5\]](#page-10-6) (after interpolating between the $L^2 \to L^2$ bound there and a trivial $L^1 \to L^{\infty}$ bound), we have

$$
\int_{|x|\geq \beta} \left| K(x) \int_{B(0,1)} e^{iQ(x-y)} f(y) dy \right| dx \lesssim \sum_{j=0}^{\infty} \left(\int_{2^j \beta \leq |x| \leq 2^{j+1} \beta} |K(x)|^{\gamma} dx \right)^{1/\gamma}
$$

$$
\times \left(\int_{|x| \leq 2^{j+1} \beta} \left| \int_{B(0,1)} e^{iQ(x-y)} f(y) dy \right| \right)^{\gamma'} dx \right)^{1/\gamma'}
$$

$$
\lesssim \sum_{j=0}^{\infty} (2^j \beta)^{-n/\gamma'} \left[(2^j \beta)^{n/2} \left((2^j \beta)^{d-1} \sum_{|\alpha|=d} |q_\alpha| \right)^{-1/(4(d-1))} \right]^{2/\gamma'} \tag{33}
$$

 $x \|f\|_{L^{\gamma}(B(0,1))}$

$$
\lesssim \bigg[\beta \bigg(\sum_{|\alpha|=d} |q_\alpha|\bigg)^{1/(d-1)}\bigg]^{-1/2\gamma'}\lesssim 1.
$$

Now (31) follows from (32) and (33) .

We will now prove part (ii) of Theorem [1.2.](#page-1-2)

Proof. Let $P(x)$ be a real-valued polynomial of any positive degree. Suppose that $K(x)$ satisfies $CZ(q, \delta)(a)$ –(c) for some $q > 1$ and $\delta > 0$. Let $\gamma =$ $\min\{q, 2\}$. For P with $\deg(P) = 1$, we have $||P||_q = \infty$ in which case [\(7\)](#page-1-1) holds trivially. Thus we may assume that $d = \deg(P) \geq 2$.

Since T_{PK} is translation invariant, by the standard atomic theory of Hardy spaces, it suffices to prove that

$$
||T_{P,K}f||_{L^{1}(\mathbb{R}^{n})} \lesssim 1 + \log^{+} ||P||_{o}
$$
 (34)

holds for every $H^1(\mathbb{R}^n)$ atom $f(\cdot)$ which is supported in a ball centered at the origin (see [\[2,](#page-10-7)[3,](#page-10-8)[9](#page-10-9)[,10](#page-10-10)]). Additionally, due to the invariance of the $CZ(q, \delta)$ conditions under $K(x) \to t^n K(tx)$ and the invariance of $|| \cdot ||_o$ under $P(x) \to$ $P(tx)$, we may assume that f satisfies (28) – (30) .

First we will prove that

$$
\int_{|x| \ge 2} \left| K(x) \int_{B(0,1)} e^{iP(x-y)} f(y) dy \right| dx \lesssim 1 + \log^+ \|P\|_o. \tag{35}
$$

Let

$$
a = \max\bigg\{2, \bigg(\sum_{|\alpha|=1} |a_{\alpha}|\bigg)^{-1}\bigg\}, \qquad b = \max\bigg\{a, \bigg(\sum_{2 \le |\alpha| \le d} |a_{\alpha}|^{1/|\alpha|}\bigg)^{-2}\bigg\}.
$$

By Lemma $3.1(ii)$ $3.1(ii)$ and (29) ,

$$
\int_{|x|\geq b} \left| K(x) \int_{B(0,1)} e^{iP(x-y)} f(y) dy \right| dx
$$
\n
$$
\lesssim \left[b \left(\sum_{2 \leq |\alpha| \leq d} |a_{\alpha}|^{1/|\alpha|} \right)^2 \right]^{-1/(2\gamma'd)} \|f\|_{L^{\gamma'}(B(0,1))} \lesssim 1.
$$
\n(36)

Let

$$
Q(x) = P(0) + \sum_{2 \leq |\alpha| \leq d} a_{\alpha} x^{\alpha}.
$$

By Lemmas 3.2 and $3.1(i)$ $3.1(i)$,

$$
\int_{2 \leq |x| \leq a} \left| K(x) \int_{B(0,1)} e^{iP(x-y)} f(y) dy \right| dx
$$

\n
$$
\lesssim \int_{2 \leq |x| \leq a} \left| K(x) \int_{B(0,1)} \left(e^{iP(x-y)} - e^{iQ(x-y)} \right) f(y) dy \right| dx + 1
$$

$$
\lesssim \left(\sum_{|\alpha|=1} |a_{\alpha}|\right) \int_{2\leq |x|\leq a} |x||K(x)|dx
$$

$$
\lesssim \left(\sum_{|\alpha|=1} |a_{\alpha}|\right) (a-2)^{1/q'} a^{1-1/q'} \lesssim 1.
$$
 (37)

Thus, by [\(36\)](#page-8-0) and [\(37\)](#page-8-1), [\(35\)](#page-8-2) would follow if we can prove that

$$
\int_{a \le |x| \le b} \left| K(x) \int_{B(0,1)} e^{iP(x-y)} f(y) dy \right| dx \lesssim 1 + \log^+ \|P\|_o. \tag{38}
$$

Since [\(38\)](#page-9-0) holds trivially when $a = b$, we may assume that $a < b$. Then

$$
\left(\sum_{|\alpha|=1} |a_{\alpha}| \right)^{-1} \le a < b = \left(\sum_{2 \le |\alpha| \le d} |a_{\alpha}|^{1/|\alpha|} \right)^{-2}.
$$
 (39)

For $y \in B(0,1)$,

$$
\left| e^{iP(x-y)} - e^{i\left(\sum_{|\alpha|=1} a_{\alpha} x^{\alpha} + Q(x-y)\right)} \right| \le \min\left\{ 2, \sum_{|\alpha|=1} |a_{\alpha}| \right\} \lesssim a^{-1}.\tag{40}
$$

By [\(40\)](#page-9-1), [\(29\)](#page-6-0) ,[\(26\)](#page-5-0) and [\(39\)](#page-9-2),

$$
\int_{a \leq |x| \leq b} \left| K(x) \int_{B(0,1)} e^{iP(x-y)} f(y) dy \right| dx
$$
\n
$$
\lesssim \int_{a \leq |x| \leq b} \left| K(x) \int_{B(0,1)} \right|
$$
\n
$$
\times \left(e^{iP(x-y)} - e^{i(\sum_{|\alpha|=1} a_{\alpha} x^{\alpha} + Q(x-y))} \right) f(y) dy \Big| dx + 1
$$
\n
$$
\lesssim a^{-1} \int_{a \leq |x| \leq b} |K(x)| dx + 1 \lesssim a^{-1} \ln(b/a) + 1
$$
\n
$$
\lesssim a^{-1} \ln(b/a^2) + \sup_{t \geq 2} (t^{-1} \ln t) \lesssim 1 + \log^+ \|P\|_o.
$$

This proves (38) and, in turn, (35) .

By part (i) of Theorem [1.2,](#page-1-2) $CZ(q, \delta)(b)$, [\(35\)](#page-8-2) and [\(29\)](#page-6-0),

$$
||T_{P,K}f||_{L^{1}(\mathbb{R}^{n})} \lesssim \int_{|x|\leq 2} |T_{P,K}f(x)|dx
$$

+
$$
\int_{|x|\geq 2} \left| \int_{B(0,1)} e^{iP(x-y)} (K(x-y) - K(x)) f(y) dy \right| dx
$$

+
$$
\int_{|x|\geq 2} \left| K(x) \int_{B(0,1)} e^{iP(x-y)} f(y) dy \right| dx
$$

$$
\lesssim ||T_{P,K}f||_{L^{2}(\mathbb{R}^{n})} + \int_{|x|\geq 2} \int_{B(0,1)} \frac{|y|^{\delta} |f(y)|}{|x|^{n+\delta}} dy dx + (1 + \log^{+} ||P||_{o})
$$

$$
\lesssim ||f||_{L^{2}(\mathbb{R}^{n})} + ||f||_{L^{1}(\mathbb{R}^{n})} + (1 + \log^{+} ||P||_{o}) \lesssim + (1 + \log^{+} ||P||_{o}).
$$

The proof of part (ii) of Theorem [1.2](#page-1-2) is now complete. \Box

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Al-Qassem, H., Cheng, L., Pan, Y.: Sharp bounds for oscillatory singular integrals on Hardy spaces. Studia Math. **238**, 121–132 (2017)
- [2] Coifman, R.: A real variable characterization of H^p . Studia Math. **51**, 269–274 (1974)
- [3] Fefferman, C., Stein, E.M.: *H^p* spaces of several variables. Acta Math. **129**, 137–193 (1972)
- [4] Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education Inc, London (2004)
- [5] Hu, Y., Pan, Y.: Boundedness of oscillatory singular integrals on Hardy spaces. Ark. Mat. **30**, 311–320 (1992)
- [6] Mirek, M., Stein, E.M., Zorin-Kranich, P.: A bootstrapping approach to jump inequalities and their applications. Anal. PDE **13**, 527–558 (2020)
- [7] Pan, Y.: Oscillatory singular integral operators with Hölder class kernels on Hardy spaces. Forum Math. **31**, 535–542 (2019)
- [8] Ricci, F., Stein, E.M.: Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals. J. Funct. Anal. **73**, 179–194 (1987)
- [9] Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
- [10] Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

Yibiao Pan (\boxtimes) Department of Mathematics University of Pittsburgh Pittsburgh PA15260 USA e-mail: yibiao@pitt.edu

Received: April 3, 2021. Revised: June 16, 2021.