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Abstract. For oscillatory singular integrals with polynomial phases and
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spaces as well as a sharp logarithmic bound on the Hardy space H1.
These results improve the ones in (Pan in Forum Math 31: 535–542,
2019) by removing the restriction that the phase polynomials be qua-
dratic.

Mathematics Subject Classification. Primary 42B20, Secondary 42B35.

Keywords. Oscillatory integrals, Singular integrals, Hardy spaces, Lp
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1. Introduction

Let n, d ∈ N, x = (x1, . . . , xn) ∈ R
n. Let

P (x) =
∑

|α|≤d

aαxα (1)

where α = (α1, . . . , αn), |α| = α1 + · · · + αn, xα = xα1
1 · · · xαn

n and aα ∈ R.
For each nonconstant polynomial P (x) we let

‖P‖o =

∑
|α|=1 |aα|

∑
2≤|α|≤d |aα|1/|α| . (2)

When deg(P ) = 1, the value of ‖P‖o shall be interpreted as ∞.
For a Calderón–Zygmund type singular kernel K(x), let TP,K be the

oscillatory singular integral operator defined by

TP,Kf(x) = p.v.
∫

Rn

eiP (x−y)K(x − y)f(y)dy. (3)

In [7] the author proved the following:
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Theorem 1.1. Suppose that deg(P ) = 2 and there exist q > 2 and δ > 0 such
that

CZ(q, δ)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(a)
( ∫

s≤|x|≤2s

|K(x)|qdx

)1/q

≤ As−n/q′
for s > 0;

(b) |K(x − y) − K(x)| ≤ A|y|δ
|x|n+δ

for |x| ≥ 2|y|;

(c)
∣∣∣∣
∫

s1≤|x|≤s2

K(x)dx

∣∣∣∣ ≤ A for 0 < s1 < s2.

Then,
(i) For 1 < p < ∞, there exists a positive constant Cp such that

‖TP,Kf‖Lp(Rn) ≤ Cp‖f‖Lp(Rn) (4)

for all f ∈ Lp(Rn). The constant Cp may depend on n, p, δ, q and A, but is
otherwise independent of K and the coefficients of P ;
(ii) There exists a positive constant C such that

‖TP,Kf‖H1(Rn) ≤ C(1 + log+ ‖P‖o)‖f‖H1(Rn) (5)

for all f ∈ H1(Rn). The constant C may depend on n, δ, q and A, but is
otherwise independent of K and the coefficients of P . The bound given in
(5) is the best possible in the sense that the logarithmic function cannot be
replaced by any function with a slower rate of growth.

The above conditions (a)–(c) are commonly referred to as the size,
smoothness and cancellation conditions for singular kernels, respectively. In
classical Calderón–Zygmund theory of singular integrals, one assumes that
condition (a) holds for q = ∞ together with the C1 condition |∇K(x)| ≤
C|x|−n−1 instead of the weaker Hölder continuity condition (b), as well as (c).

The restriction that P (x) be quadratic (i.e. deg(P ) = 2) in the above
theorem is clearly a severe one. For the operator TP,K with a C1 kernel K,
both the Lp bound in (1) and the H1 bound in (2) have been known to be
true when the phase polynomial P is of arbitrary degree (for Lp see [8]; for
H1 see [1]). The main purpose of this paper is to show that, for TP,K with a
kernel K in the Hölder class, the same Lp and H1 bounds are true when the
degree of the phase polynomial P is arbitrary. We have the following:

Theorem 1.2. Let P (x) be a real-valued polynomial of any positive degree.
Suppose that K(x) satisfies CZ(q, δ)(a)–(c) for some q > 1 and δ > 0. Then,
(i) For 1 < p < ∞, there exists a positive constant Cp such that

‖TP,Kf‖Lp(Rn) ≤ Cp‖f‖Lp(Rn) (6)

for all f ∈ Lp(Rn). The constant Cp may depend on n, p, δ, q, deg(P ) and
A, but is otherwise independent of K and the coefficients of P ;
(ii) There exists a positive constant C such that

‖TP,Kf‖H1(Rn) ≤ C(1 + log+ ‖P‖o)‖f‖H1(Rn) (7)

for all f ∈ H1(Rn). The constant C may depend on n, δ, q, deg(P ) and A,
but is otherwise independent of K and the coefficients of P . The bound given
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in (7) is the best possible in the sense that the logarithmic function cannot be
replaced by any function with a slower rate of growth.

We point out that, aside from lifting the restriction that deg(P ) = 2
from Theorem 1.1, Theorem 1.2 also improves the range of q from q > 2 to
the more natural range q > 1.

In the rest of the paper we shall use A � B to mean that A ≤ cB
for a certain constant c which depends on some essential parameters only. A
subscript may be added to the symbol � to indicate a particular dependence
as appropriate.

2. Lp Boundedness

In this section we will establish part (i) of Theorem 1.2. For u ∈ R
n and

r > 0 we let B(u, r) denote the ball {x ∈ R
n : |x − u| ≤ r}. An important

tool will be the following lemma from [6].

Lemma 2.1. Let P (x) be given as in (1). Let R > 0 and let ψ : Rn → C be
an integrable function supported in B(0, R/2). Then

∣∣∣∣
∫

Rn

eiP (x)ψ(x)dx

∣∣∣∣ �d,n sup
v∈B(0,RΛ−1/d)

∫

Rn

|ψ(x) − ψ(x − v)|dx, (8)

where Λ :=
∑

1≤|α|≤d |aα|R|α|.

For h > 0, we let TP,K,h denote the truncation of TP,K given by

TP,K,hf(x) = p.v.
∫

|x−y|≤h

eiP (x−y)K(x − y)f(y)dy. (9)

We will establish the following uniform Lp boundedness theorem:

Theorem 2.1. Let P (x) be a real-valued polynomial of any degree and h > 0.
Suppose that K(x) satisfies CZ(q, δ)(a)–(c) for some q > 1 and δ > 0. Then,
for 1 < p < ∞, there exists a positive constant Cp such that

‖TP,K,hf‖Lp(Rn) ≤ Cp‖f‖Lp(Rn) (10)

for all f ∈ Lp(Rn). The constant Cp may depend on n, p, δ, q, deg(P ) and
A, but is otherwise independent of h, K and the coefficients of P .

Proof. Without loss of generality we may assume that P (x) is nonconstant
and P (0) = 0. In order to prove (10) we shall use induction on deg(P ). When
deg(P ) = 1, by P (x−y) = P (x)−P (y), (10) follows from the Lp boundedness
of singular integrals ([4], page 300). Suppose that for a d ≥ 2, (10) holds for
all P with deg(P ) ≤ d − 1.

We now assume that deg(P ) = d, i.e.

P (x) =
∑

|α|≤d

aαxα

with
∑

|α|=d |aα| 	= 0.
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It is easy to see that for t > 0, tnK(tx) satisfies conditions CZ(q, δ)(a)–
(c) with the same q, δ and A. Thus, by rescaling if necessary we may assume
that

∑
|α|=d |aα| = 1.

Let
R(x) = P (x) −

∑

|α|=d

aαxα. (11)

Then deg(R) ≤ d − 1 and for 0 < h ≤ 8

|TP,K,hf(x) − TR,K,hf(x)| �
∫

|x−y|≤8

|x − y|d|K(x − y)||f(y)|dy. (12)

By (12), Hölder’s inequality and CZ(q, δ)(a),

‖TP,K,hf − TR,K,hf‖Lp(Rn) �
(∫

|x|≤8

|x|d|K(x)|dx

)
‖f‖Lp(Rn)

�
(‖f‖Lp(Rn)

) 2∑

j=−∞

(∫

2j≤|x|≤2j+1
|x|dq′

dx

)1/q′

×
(∫

2j≤|x|≤2j+1
|K(x)|qdx

)1/q

�
(‖f‖Lp(Rn)

) 2∑

j=−∞

(
2jdq′

2jn
)1/q′

2−jn/q′

� ‖f‖Lp(Rn).

Thus, for 0 < h ≤ 8

‖TP,K,hf‖Lp(Rn) � ‖TR,K,hf‖Lp(Rn) + ‖f‖Lp(Rn) � ‖f‖Lp(Rn). (13)

For the rest of this proof we assume that h > 8. For j ≤ 2 let Ij =
[2j , 2j+1],

ψj(x) = χIj
(|x|)K(x)

and let Sj denote the following operator

Sjf(x) =
∫

Rn

eiP (x−y)ψj(x − y)f(y)dy. (14)

Then
Ŝjf(ξ) = mj(ξ)f̂(ξ) (15)

where

mj(ξ) =
∫

Rn

ei(P (x)−2πξ·x)ψj(x)dx. (16)

For each j, we will now apply Lemma 2.1 to the estimate of ‖mj‖∞ with
R = 2j+2. By

P (x) − 2πξ · x =
n∑

k=1

(
∂P

∂xk
(0) − 2πξk

)
xk +

∑

2≤|α|≤d

aαxα,
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and

Λ :=
n∑

k=1

∣∣∣∣
∂P

∂xk
(0) − 2πξk

∣∣∣∣R +
∑

2≤|α|≤d

|aα|R|α| ≥
( ∑

|α|=d

|aα|
)

Rd = Rd,

we have RΛ−1/d ≤ 1. Thus, for any ξ ∈ R
n,

|mj(ξ)| � sup
v∈B(0,1)

∫

Rn

|ψj(x) − ψj(x − v)|dx. (17)

For any v ∈ B(0, 1), j ≥ 2 and x ∈ B(0, 2j+1)\B(0, 2j) we have |x| ≥
2|v| and

|B(0, 2j)ΔB(v, 2j)| + |B(0, 2j+1)ΔB(v, 2j+1)| � 2j(n−1). (18)

Thus, by CZ(q, δ)(b),

|ψj(x) − ψj(x − v)| ≤ χIj
(|x|)|K(x) − K(x − v)|

+|χIj
(|x|) − χIj

(|x − v|)||K(x − v)|

� χIj
(|x|)

( |v|δ
|x|n+δ

)

+ (χB(0,2j)ΔB(v,2j)(x) + χB(0,2j+1)ΔB(v,2j+1)(x))|K(x − v)|. (19)

Since (B(0, 2j)ΔB(v, 2j))∪(B(0, 2j+1)ΔB(v, 2j+1)) ⊆ B(v, 2j+2)\B(v, 2j−1),
by (17)–(19) and CZ(q, δ)(a) we have

|mj(ξ)| �
∫

2j≤|x|≤2j+1

dx

|x|n+δ

+
∫

Rn

(χB(0,2j)ΔB(v,2j)(x) + χB(0,2j+1)ΔB(v,2j+1)(x))|K(x − v)|dx

� 2−j(n+δ)2jn + (|B(0, 2j)ΔB(v, 2j)| + |B(0, 2j+1)ΔB(v, 2j+1)|)1/q′

×
(∫

B(v,2j+2)\B(v,2j−1)

|K(x − v)|qdx

)1/q

� 2−jδ + 2j(n−1)/q′
2−jn/q′

� 2−jμ

where μ = min{δ, 1/q′}. It follows from Plancherel’s theorem that

‖Sj‖L2(Rn)→L2(Rn) � 2−jμ. (20)

By CZ(q, δ)(a), for any t1, t2 satisfying 0 < t1 < t2 and t2/t1 � 1,

‖χB(0,t2)\B(0,t1)|K|‖L1(Rn) � 1. (21)

Thus,

‖Sj‖L1(Rn)→L1(Rn) + ‖Sj‖L∞(Rn)→L∞(Rn)

� ‖χB(0,2j+1)\B(0,2j)K‖L1(Rn) � 1. (22)

By the Riesz–Thorin interpolation theorem, for 1 < p < ∞,

‖Sj‖Lp(Rn)→Lp(Rn) � 2−jμp , (23)
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where

μp = μ(1 − |1 − 2/p|) > 0.

Let m = [log2 h]. Then

|TP,K,hf | ≤ |TP,K,4f | +
m−1∑

j=2

|Sjf | + |(χB(0,h)\B(0,2m)|K|) ∗ |f |. (24)

It follows from (13), (21) and (23) that

‖TP,K,hf‖Lp(Rn) �
(

1 +
m−1∑

j=2

2−jμp + ‖χB(0,h)\B(0,2m)|K|‖L1(Rn)

)
‖f‖Lp(Rn)

� ‖f‖Lp(Rn).

The proof of Theorem 2.1 is now complete. �

By using

TP,Kf = lim
h→∞

TP,K,hf

interpreted in the distributional sense, we obtain (6) for all test functions f .
Part (i) of Theorem 1.2 then follows by standard arguments.

3. H1 → H1 Estimates

As for the Lp boundeness, the H1 arguments in [7] relied both on the phase
being quadratic as well as the condition CZ(q, δ) with a q > 2. To prove part
(ii) of Theorem 1.2, we will let the degree of the phase polynomial be any
positive integer while assuming that K satisfies CZ(q, δ) with a q > 1.

Lemma 3.1. Let d ≥ 2, P (x) =
∑

|α|≤d aαxα and K(x) satisfy

sup
s>0

sn/q′‖χB(0,2s)\B(0,s)K‖Lq(Rn) � 1

for some q > 1. Then,
(i) for any 0 < a < b and ν ≥ 1,

∫

a≤|x|≤b

|x|ν |K(x)|dx � (b − a)1/q′
bν−1/q′

; (25)
∫

a≤|x|≤b

|K(x)|dx � 1 + ln(b/a); (26)

(ii) for any λ ≥ 1,
∫

|x|≥λ

∣∣∣∣K(x)
∫

B(0,1)

eiP (x−y)f(y)dy

∣∣∣∣dx

�
[
λ

( ∑

2≤|α|≤d

|aα|1/|α|
)2]−1/(2γ′d)

‖f‖Lγ′ (B(0,1))

(27)

where γ = min{q, 2}.
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Proof. (i) Let N = [log2(b/a)]. Then
∫

a≤|x|≤b

|x|ν |K(x)|dx �
(∫

a≤|x|≤b

|x|1−ndx

)1/q′

×
(∫

a≤|x|≤2N+1a

|x|(ν+(n−1)/q′)q|K(x)|qdx

)1/q

� (b − a)1/q′
( N∑

j=0

(2ja)(ν+(n−1)/q′)q‖χB(0,2j+1a)\B(0,2ja)K‖q
Lq(Rn)

)1/q

� (b − a)1/q′
( N∑

j=0

(2ja)(ν−1/q′)q+nq/q′
((2ja)−n/q′

)q

)1/q

� (b − a)1/q′
(2Na)ν−1/q′ � (b − a)1/q′

bν−1/q′
,

which proves (25). The proof of (26) is simpler and will be omitted.
(ii) Since 1 < γ ≤ q, we have for any s > 0,

‖χB(0,2s)\B(0,s)K‖Lγ(Rn) � ‖χB(0,2s)\B(0,s)K‖Lq(Rn)|B(0, 2s)|1/γ−1/q

� s−n/q′+n(1/γ−1/q) = s−n/γ′
.

For any λ ≥ 1, by Hölder’s inequality and applying Lemma 2.3 in [1] (taking
p to be γ′ ≥ 2),

∫

|x|≥λ

∣∣∣∣K(x)
∫

B(0,1)

eiP (x−y)f(y)dy

∣∣∣∣dx

�
∞∑

j=0

‖χB(0,2j+1λ)\B(0,2jλ)K‖Lγ(Rn)

×
(∫

B(0,2j+1λ)

∣∣∣∣
∫

B(0,1)

eiP (x−y)f(y)dy

∣∣∣∣
γ′

dx

)1/γ′

�
( ∞∑

j=0

(2jλ)−n/γ′
(2jλ)(2nd−1)/(2γ′d)

)

×
( ∑

2≤|α|≤d

|aα|1/|α|
)−1/(γ′d)

‖f‖Lγ′ (B(0,1))

�
( ∞∑

j=0

2−j/(2γ′d)

)[
λ

( ∑

2≤|α|≤d

|aα|1/|α|
)2]−1/(2γ′d)

‖f‖Lγ′ (B(0,1))

�
[
λ

( ∑

2≤|α|≤d

|aα|1/|α|
)2]−1/(2γ′d)

‖f‖Lγ′ (B(0,1)).

�

Lemma 3.2. Let K(x) be given as in Lemma 3.1 and Q(x) be a polynomial
satisfying ∇Q(0) = 0. Let f be a Lebesgue measurable function satisfying

supp(f) ⊆ B(0, 1); (28)
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‖f‖∞ ≤ 1; (29)∫

B(0,1)

f(y)dy = 0. (30)

Then, there exists a C > 0 such that
∫

|x|≥2

∣∣∣∣K(x)
∫

B(0,1)

eiQ(x−y)f(y)dy

∣∣∣∣dx ≤ C. (31)

The constant C may depend on deg(Q) but is otherwise independent of the
coefficients of Q(x).

Proof. When deg(Q) ≤ 1, by ∇Q(0) = 0, (31) follows from (30) trivially.
Suppose that d ≥ 2 and (31) holds for all Q(x) satisfying deg(Q) ≤ d−1

and ∇Q(0) = 0.
Assume that deg(Q) = d and ∇Q(0) = 0. Then

Q(x) =
∑

|α|=d

qαxα + R(x)

where deg(R) ≤ d − 1 and ∇R(0) = 0. Thus,
∫

|x|≥2

∣∣∣∣K(x)
∫

B(0,1)

eiR(x−y)f(y)dy

∣∣∣∣dx � 1.

Let

β = max
{

2,

( ∑

|α|=d

|qα|
)−1/(d−1)}

.

Then
∫

2≤|x|≤β

∣∣∣∣K(x)
∫

B(0,1)

eiQ(x−y)f(y)dy

∣∣∣∣dx

�
∫

2≤|x|≤β

∣∣∣∣K(x)
∫

B(0,1)

(
eiQ(x−y) − ei(

∑
|α|=d qαxα+R(x−y))

)
f(y)dy

∣∣∣∣

dx + 1

�
( ∑

|α|=d

|qα|
) ∫

2≤|x|≤β

|x|d−1|K(x)|dx + 1

�
( ∑

|α|=d

|qα|
)

(β − 2)1/q′
βd−1−1/q′

+ 1 � 1. (32)

Let γ = min{q, 2}. By Hölder’s inequality, (29) and Lemma 4.3 in [5] (after
interpolating between the L2 → L2 bound there and a trivial L1 → L∞

bound), we have
∫

|x|≥β

∣∣∣∣K(x)
∫

B(0,1)

eiQ(x−y)f(y)dy

∣∣∣∣dx �
∞∑

j=0

(∫

2jβ≤|x|≤2j+1β

|K(x)|γdx

)1/γ

×
(∫

|x|≤2j+1β

∣∣∣∣
∫

B(0,1)

eiQ(x−y)f(y)dy|
∣∣∣∣
γ′

dx

)1/γ′
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�
∞∑

j=0

(2jβ)−n/γ′
[
(2jβ)n/2

(
(2jβ)d−1

∑

|α|=d

|qα|
)−1/(4(d−1))]2/γ′

(33)

×‖f‖Lγ(B(0,1))

�
[
β

( ∑

|α|=d

|qα|
)1/(d−1)]−1/2γ′

� 1.

Now (31) follows from (32) and (33). �

We will now prove part (ii) of Theorem 1.2.

Proof. Let P (x) be a real-valued polynomial of any positive degree. Suppose
that K(x) satisfies CZ (q, δ)(a)–(c) for some q > 1 and δ > 0. Let γ =
min{q, 2}. For P with deg(P ) = 1, we have ‖P‖o = ∞ in which case (7)
holds trivially. Thus we may assume that d = deg(P ) ≥ 2.

Since TP,K is translation invariant, by the standard atomic theory of
Hardy spaces, it suffices to prove that

‖TP,Kf‖L1(Rn) � 1 + log+ ‖P‖o (34)

holds for every H1(Rn) atom f(·) which is supported in a ball centered at
the origin (see [2,3,9,10]). Additionally, due to the invariance of the CZ(q, δ)
conditions under K(x) → tnK(tx) and the invariance of ‖ ‖o under P (x) →
P (tx), we may assume that f satisfies (28)–(30).

First we will prove that
∫

|x|≥2

∣∣∣∣K(x)
∫

B(0,1)

eiP (x−y)f(y)dy

∣∣∣∣dx � 1 + log+ ‖P‖o. (35)

Let

a = max
{

2,

( ∑

|α|=1

|aα|
)−1}

, b = max
{

a,

( ∑

2≤|α|≤d

|aα|1/|α|
)−2}

.

By Lemma 3.1(ii) and (29),
∫

|x|≥b

∣∣∣∣K(x)
∫

B(0,1)

eiP (x−y)f(y)dy

∣∣∣∣dx

�
[
b

( ∑

2≤|α|≤d

|aα|1/|α|
)2]−1/(2γ′d)

‖f‖Lγ′ (B(0,1)) � 1.

(36)

Let

Q(x) = P (0) +
∑

2≤|α|≤d

aαxα.

By Lemmas 3.2 and 3.1(i),
∫

2≤|x|≤a

∣∣∣∣K(x)
∫

B(0,1)

eiP (x−y)f(y)dy

∣∣∣∣dx

�
∫

2≤|x|≤a

∣∣∣∣K(x)
∫

B(0,1)

(
eiP (x−y) − eiQ(x−y)

)
f(y)dy

∣∣∣∣dx + 1
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�
( ∑

|α|=1

|aα|
) ∫

2≤|x|≤a

|x||K(x)|dx

�
( ∑

|α|=1

|aα|
)

(a − 2)1/q′
a1−1/q′ � 1. (37)

Thus, by (36) and (37), (35) would follow if we can prove that
∫

a≤|x|≤b

∣∣∣∣K(x)
∫

B(0,1)

eiP (x−y)f(y)dy

∣∣∣∣dx � 1 + log+ ‖P‖o. (38)

Since (38) holds trivially when a = b, we may assume that a < b. Then
( ∑

|α|=1

|aα|
)−1

≤ a < b =
( ∑

2≤|α|≤d

|aα|1/|α|
)−2

. (39)

For y ∈ B(0, 1),
∣∣∣∣e

iP (x−y) − ei(
∑

|α|=1 aαxα+Q(x−y))

∣∣∣∣ ≤ min
{

2,
∑

|α|=1

|aα|
}

� a−1. (40)

By (40), (29) ,(26) and (39),
∫

a≤|x|≤b

∣∣∣∣K(x)
∫

B(0,1)

eiP (x−y)f(y)dy

∣∣∣∣dx

�
∫

a≤|x|≤b

∣∣∣∣K(x)
∫

B(0,1)

×
(

eiP (x−y) − ei(
∑

|α|=1 aαxα+Q(x−y))

)
f(y)dy

∣∣∣∣dx + 1

� a−1

∫

a≤|x|≤b

|K(x)|dx + 1 � a−1 ln(b/a) + 1

� a−1 ln(b/a2) + sup
t≥2

(t−1 ln t) � 1 + log+ ‖P‖o.

This proves (38) and, in turn, (35).
By part (i) of Theorem 1.2, CZ(q, δ)(b), (35) and (29),

‖TP,Kf‖L1(Rn) �
∫

|x|≤2

|TP,Kf(x)|dx

+
∫

|x|≥2

∣∣∣∣
∫

B(0,1)

eiP (x−y)(K(x − y) − K(x))f(y)dy

∣∣∣∣dx

+
∫

|x|≥2

∣∣∣∣K(x)
∫

B(0,1)

eiP (x−y)f(y)dy

∣∣∣∣dx

� ‖TP,Kf‖L2(Rn) +
∫

|x|≥2

∫

B(0,1)

|y|δ|f(y)|
|x|n+δ

dydx + (1 + log+ ‖P‖o)

� ‖f‖L2(Rn) + ‖f‖L1(Rn) + (1 + log+ ‖P‖o) � +(1 + log+ ‖P‖o).

The proof of part (ii) of Theorem 1.2 is now complete. �
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