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Abstract. In this paper, we study the boundedness and the compact-
ness of the little Hankel operators h, with operator-valued symbols b
between different weighted vector-valued Bergman spaces on the open
unit ball B,, in C". More precisely, given two complex Banach spaces
X,Y,and 0 < p,q < 1, we characterize those operator-valued symbols b :
B, — L£(X,Y) for which the little Hankel operator hy : AZ(B,, X) —
AL (B,,Y), is a bounded operator. Also, given two reflexive complex Ba-
nach spaces X,Y and 1 < p < g < oo, we characterize those operator-
valued symbols b : B, — £(X,Y) for which the little Hankel operator
hy : AL (B,, X) — AL (B,,Y), is a compact operator.
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1. Introducton

It is well known that Hankel operators constitute a very important class
of operators in spaces of analytic functions. The study of these operators on
different analytic spaces is not only motivated by the mathematical challenges
it raises, but also by many applications on applied mathematics and in physics
(see for example [13] for more information). In this paper, we are interested on
the boundedness and the compactness problem of the little Hankel operator
with operator-valued symbols on weighted vector-valued Bergman spaces on
the unit ball.
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Throughout this paper, we fix a nonnegative integer n and let

C"=Cx---xC

denote the n-dimensional Euclidean space. For
2= (21, 2n), w=(wy,..., W),
in C", we define the inner product of z and w by
(z,w) = 21071 + -+ + 2,0y,
where Wy, is the complex conjugate of wy. The resulting norm is then
2l = V{z2) = ]z 4+ -+ [zl

Endowed with the above inner product, C” become a Hilbert space whose
canonical basis consists of the following vectors

er =(1,0,...,0), e3 = (0,1,0,...,0), ..., ep = (0,...,0,1).
The open unit ball in C™ is the set
B, ={z€C":|z| < 1}.
When a > —1, the weighted Lebesgue measure dv,, in B,, is defined by
dvg(2) = ca(1 — |2]2)*dr(2), ze€B,
where dv is the Lebesgue measure in C" and

_In4+a+1)
o= n!l(a+ 1)

is the normalizing constant so that dv, becomes a probability measure on B,,.
A function defined on the unit ball B,, will be called a vector-valued function
when it takes its values in some vector space. If X is a complex Banach space,
a vector-valued function f : B, — X (a X-valued function) is said to be

strongly holomorphic in B, if for every z € B,, and for every k € {1,...,n},
the limit

p ST Aer) — 1(2)

A—0 A

exists in X, where A € C — {0}. The space of all X-valued strongly holo-
morphic functions on B,, will be denoted by H(B,,, X). We will also denote
by H*>(B,,X) the space of all bounded X-valued holomorphic functions.
Let X* denotes the space of all bounded linear functionals z* : X — C
(the topological dual space of X). We say that a vector-valued function
f B, — X is weakly holomorphic if for every z* € X*, the scalar-valued
function z*(f) : B,, — C is holomorphic in the usual sense. An impor-
tant result by Dunford [7] shows that a vector-valued function is strongly
holomorphic if and only if it is weakly holomorphic.
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1.1. The Conjugate X of the Complex Banach Space X

In the sequel, we will need the notion of “conjugate” of a complex Banach
space [11].

We will use the following definition and notation which can be found in
[11]. Let z € X, 2* € X* and A € C. We define

(Az*)(z) = Aa*(x).
We also use the notation
(x,2%) x,x+ = 2" ()

to represent the ‘inner product’ in the complex Banach space X. We have
the following identities

</\$790*>X,X* = /\<$,$*>X,X* = (%Xﬂf*>x,xm

so that we have a regular rule of an inner product. The complex conjugate T
of x € X, is the linear functional on X* defined by

(") = (2, 2%) x x+
for every z* € X*. Therefore,
X={T:2€X}

is called the complex conjugate of the Banach space X. With the norm defined
by

[Z] == sup |z(2")],
lla* | x> =1
X becomes a Banach space. Moreover, we have that ||z||x = ||Z||s for any

r € X, so that X and X are isometrically anti-isomorphic.

1.2. Vector-Valued Bergman Space

In the sequel, we will integrate vector-valued measurable functions in the
sense of Bochner (see [7] for more information). Let X be a complex Ba-
nach space. A measurable function f : B, — X is Bochner-integrable with
respect to the measure v, in the unit ball B,, if and only if the Lebesgue
integral

HmeLx:ié 1£(2) 1 xdva(z)

is finite. For 0 < p < 0o, the Bochner-Lebesgue space L? (B, X) consists of
all vector-valued measurable functions f : B,, — X such that

1 = [ 1) eda(z) < .

By

The vector-valued Bergman space AP (B,,, X) is defined by
AL (B, X) =LY (B,,X)NH(B,,X).
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The weak Bochner-Lebesgue space LP*°(B,,, X') consists of all vector-
valued measurable functions f : B, — X for which

1/p
im0 = (300 (12 € B s 15 > D) < .
>

The weak vector-valued Bergman space A2*°(B,,, X) is defined by
AP (B, X) = H(B,, X) N LE>*(B,, X).

Let X,Y be two complex Banach spaces and o > —1. We have the
following two lemmas whose proofs can be found in [11].

Lemma 1. Let T : X — Y be a bounded linear operator. If f : B, — X
18 Vo -Bochner integrable in the unit ball, then Tf : B, — Y is v,-Bochner
integrable in the unit ball and we have

/Ban( 2)dva(z) = (/f )dva(z )

Lemma 2. If f: B, — X is a vo-Bochner integrable vector-valued function
in the unit ball, then the following inequality holds

Ajumuaxséﬂﬂ@uwmx

1.3. Vector-Valued Lipschitz Spaces and Vector-Valued ~-Bloch Spaces

The radial derivative of a vector-valued holomorphic function f : B, — X
denoted N f is defined for z € B,, by

= szgzi(z). (1.1)

Jj=1

Let f € H(B,,X) and

(z):ka(z), z€B,
k=0

the homogeneous expansion of the function f where f; are homogeneous
holomorphic polynomials of degree k with coefficients in X. For any two real
parameters o and ¢ such that neither n+ « nor n+ «a+t is a negative integer,
we define an invertible operator R : H(B,, X) — H(B,, X) as

Fn+1+a)f(n+14+k+a+t)

Ratf
—~T(n+l+a+t)l(n+1+k+a)

fr(2), (1.2)

where z € B, and F is the classical Euler Gamma function. For v > 0,
we denote by I'y(B,, X) the space of vector-valued holomorphic functions
f B, — X for which there exists an integer k > 7 such that

1f1ly.x = [IF(0)lx + Sup (L= [N f(2)llx < oo,
where N¥ = NoNo---oN k-times. The definition of the space I',(B,,, X)
is independent of the mteger k used. The space I'y(B,,X) will be called
the vector-valued holomorphic Lipschitz space and for v = 0, we write
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B(B,,X) = T'o(B,, X). It is clear that f € B(B,, X) if and only if f is a
vector-valued holomorphic function and

1fllB@..x) = I1F(0)]lx + Seu]é)(l — 2PN (2)llx < oo

That is, B(B,, X) = T'o(B,,, X) is the vector-valued Bloch space. The vector-
valued y-Bloch space B (B,,, X) for v > 0, is defined as the space of vector-
valued holomorphic functions f € H(B,,, X) such that

sup (1 — [2[*)7[|N f(2)] x < oo

zeB,
The little vector-valued y-Bloch space B, (B, X) for v > 0, is the subspace
of B,(B,,, X) consisting of functions f such that

Jim (1= =2V () Lx =0.
It is easy to see that By (B,,X) = B(B,, X). Therefore, the vector-valued -
Bloch spaces with v > 0 generalize the vector-valued Bloch space. Let v > 0.
The generalized vector-valued Lipschitz space A (B,,, X) consists of vector-
valued holomorphic functions f in B,, such that for some nonnegative integer
k > ~, we have

1l @) = sup (1= [2[2)* IR f(2)l|x < oo
zeb,

We consider the following norm on the generalized vector-valued Lipschitz
space Ay (B,,, X) by

1F1a @, x) = sup (1= 2T IRF £ (2)

where k£ > v is a nonnegative integer. Equipped with this norm, the general-
ized vector-valued Lipschitz space A, (B,, X ) becomes a Banach space. The
generalized little vector-valued Lipschitz space A, o(B,,X) is the subspace
of A, (B, X), which consists of functions f € A,(B,, X) such that

lim (1|2 R f(2)]x = 0. (1.3)

|z| =1~

When v = 0 and k& = 1, then A¢(B,, X) = B(B,,X). It is also important
to note that as in the classical case, when 0 < v < 1, we have A, (B,, X) =
Bi—~(B,, X).

1.4. Little Hankel Operator with Operator-Valued Symbol

Given two complex Banach spaces X and Y, we denote by £(X,Y) the space
of all bounded linear operators 7' : X — Y endowed with the following
norm

1Tl cx,yy= sup [Tz|y = sup (T, y")y,y+|,
[lz]l x=1 [zl x=1,]ly* |y =1

where T € L(X,Y). Then L£(X,Y) is a Banach space. We consider an
operator-valued function b : B, — L(X,Y) and we suppose that b €
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H(B,, L(X,Y)). The little Hankel operator with operator-valued symbol b,
denoted h,, is defined for z € B,, by

hyf(z) == /B q _bgzg;)wanadua(w), f e H®(B,, X).

In the sequel, we will assume that the symbol b satisfies the following condi-
tion

16wl £x v
/an = (2, w)[*+17a dve(w) < oo, for every z € B,,. (1.4)
It is easy to check that if b satisfies (1.4), then the little Hankel operator h;
is well defined on H*(B,,, X).

1.5. Problems and Known Results

The boundedness properties of the little Hankel operator in the classical
case (that is, when X =Y = C) have been extensively studied and many
results are now well known. For the case n = 1, important references are
[6,15]. For n > 1, a complete characterization has been obtained by Aline
Bonami and Luo Luo in [4] when p < ¢. In 2015, Pau and Zhao [12] solved
the case 1 < g < p < oo. Indeed, they showed that if b is a holomorphic
symbol, the little Hankel operator h; extends to a bounded operator from
AP (B, C) into A% (B,,C), with 1 < ¢ < p < oo, if and only if the symbol b
belongs to the weighted Bergman space Af,(B,,,C) where 1/t =1/q¢—1/p. We
are here concerned with the question of characterizing the operator-valued
holomorphic symbols b for which the little Hankel operator h; extends into
a bounded operator from A?(B,,, X) into A%(B,,,Y) where 0 < p,q < co. In
[1] Aleman and Constantin solved this problem for the particular case n = 1,
p=qg=2and X =Y = H where H is a separable Hilbert space. They showed
that the little Hankel operator h; extends into a bounded operator from
A% (B, H) into A% (B,,,H) if and only if the symbol b belongs to the Bloch
space B(B,,,L(H)). Constantin also obtained in [5] that the little Hankel
operator hy, is a compact operator from A2 (B,,, H) into A2 (B,,, H) if and only
if the symbol b belongs to the little vector-valued Bloch space By (B,,, K(H)).
Their results extend clearly the one known in the classical case (when H = C).
In [11], Oliver solved this problem in the case 1 < p, ¢ < oo. Mainly, he showed
that for 1 < p < oo, the little Hankel operator hy, is bounded from A2 (B,,, X)
into AP (B,,,Y") if and only if the symbol b belongs to the vector-valued Bloch
space B(B,,, £(X,Y)) and this result clearly generalizes the one obtained by
Aleman and Constantin in [1]. Moreover, for 1 < p < ¢ < oo, Oliver showed
that the little Hankel operator hy, is bounded from AF (B,,, X) into A% (B,,,Y")
if and only if the symbol b belongs to the v-Bloch space B, (B,,, £L(X,Y)) with
vy=1+(n+1+a) (% — %) . Also for 1 < ¢ < p < oo, Oliver showed that the
little Hankel operator hy is bounded from A2 (B,,, X) into AL(B,,Y) if and
only if b € AL (B,,, £L(X,Y)), with 1/t = 1/q—1/p, which generalizes the main
result in [12]. We are also concerned here with the question of characterizing
the operator-valued holomorphic symbols for which h; extends into a compact
operator from A? (B, X) into A%(B,,,Y) where 1 < p < g < o0.
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1.6. Statement of Results

Let X be a complex Banach space and 0 < p < 1. The topological dual
of the Bergman space AP (B,,, X) can be identified with the Lipschitz space
Iy (B,, X*) as follows:

Theorem 3. Let 0 < p < 1. The space (A2 (B, X))* can be identified with
I'y(B,, X*) withy=(n+1+«) (7 - 1) under the pairing

U, o = i / (F(2), Drg()xcx (1= [ Fdva(z),  (15)

n

where Dy, is defined by (2.3), k > =, is an integer, g € T'y(B,, X*) and
f e A2 (B, X). Moreover,

lgllr, @, x = sup [{f,9)ax]-

Hf”Ag(]Bnﬁx):l

Before stating the next results, we need to make another assumption on
the operator-valued symbol b. More precisely, we assume that the operator-
valued holomorphic symbol b satisfies the following condition:

[ Il e o8 (= ) ) < (1.6

Let X and Y be two complex Banach spaces. Our contributions to
the boundedness problem of the little Hankel operator with operator-valued
symbol for 0 < p,q < 1 are the following :

Theorem 4. Suppose 0 < p < 1, and o« > —1. If the little Hankel opera-
tor hy, extends to a bounded operator from AL (B, X) into AL(B,,Y) for
some positive ¢ < 1, then the symbol b is in I'v(B,,L(X,Y)) with v =

(n+1+4+a) (% - 1) . Conversely, if b is in Ty(B,,, L(X,Y)) withy = (n+1+
a) (% - 1) , then the little Hankel operator hy, : AP.(B,, X) — AL>®(B,,Y)

is a bounded operator.
As a direct consequence, we have the following result:

Corollary 5. Suppose 0 < p < 1, and a > —1. The little Hankel operator
hy extends to a bounded operator from AL (B, X) into AL(B,,Y) for some
positive ¢ < 1 if and only if its symbol b belongs to I',(B,,, L(X,Y")), where

'y:(n+1+a)(%—1)

Theorem 6. Let 0 < p < 1, a > -l andy = (n+1+ ) (]19 ) The

little Hankel operator extends to a bounded operator from AP (B,,X) into
AL (B,,,Y) if and only if for some integer k > 7,

C 1 \7!
0w <log T |w|2> weB, (1.7)

IN*o(w)ll g vy <
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Theorem 7. Suppose 1 < p < g < oo. The little Hankel operator hy, : AP,
(B, X) — AL(B,,Y) is a bounded operator if and only if

be Ay, (BTHL(Yy Y)), where o = (n+ 1+ «) (% — é) . Moreover,

1ol 42 (8, x)— 48 B v) = BllAL (B, v))-

If X, Y are reflexive complex Banach spaces, then we have the following
theorem

Theorem 8. Suppose that 1 < p < q < oo, and o > —1 The little Hankel
operator hy : AR (B,,, X) — AL(B,,Y) is a compact operator if and only if

b€ Ay 0(Bn, K(X,Y)),

where A, 0(B,, K(X,Y)) denotes the generalized little vector-valued Lips-

chitz space and vo = (n+ 1+ ) (% — %) , see (1.3).

1.7. Plan of the Paper

The paper is divided into six sections. In Sect. 2, we recall some preliminary
notions on vector-valued holomorphic functions and we also give the proofs of
some important results. Sect. 3 contains the proof of Theorem 3 on the dual
of the vector-valued Bergman space AL (B, X) for 0 < p < 1. In Sect. 4, we
give the proof of Theorem 4 and Corollary 5. In Sect. 5, we give the proof of
Theorem 6. In Sect. 6, We first give some preliminaries results to prepare the
proof of Theorem 8. We recall the result by Oliver [11] of the boundedness of
the little Hankel operator with operator-valued symbol hy from AZ(B,,, X)
into A% (B,,,Y), with 1 < p < ¢ < oo and we generalize it. In the same
section, we give the proof of Theorem 8.

Throughout this paper, when there is no additional condition, X and Y
will denotes two complex Banach spaces, the real parameter o will be chosen
such that o > —1 and ¢ will be a positive constant whose value may change
from one occurrence to the next. We will also adopt the following notation:
we will write A < B whenever there exists a positive constant ¢ such that
A < cB. We also write A~ B when A < B and B < A.

2. Preliminaries

2.1. Vector-Valued Bergman Projection and Integral Estimates

Here we give some definitions and notations which will be used later and can
be found in [4,11].

For f € L (B, X) and z € B, the Bergman projection P, f of f is the
integral operator defined by

P,f(2) ::/]B Ko (z,w) f(w)dv, (w),
1

where K, (z,w) := is the Bergman reproducing kernel of

(1 = (z,w))tite
B,,. In this situation, P, f is also a X-valued holomorphic function.
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Lemma 9. (Density) Suppose that 0 < p < co. Then the space of all bounded
vector-valued holomorphic functions H*(B,,, X) is dense in AP (B, X).

Proof. We are going to give the proof for 0 < p < 1, since the case 1 < p < o0
is [11, Lemma 2.1.4]. Given a function f € AP (B,,X), let f, defined for
z € B, by f,(2) := f(pz), where 0 < p < 1. The function f, is holomorphic
in the set {z € B,, : |z] < 1/p} hence is bounded on B,,. We first recall that
the integral means

My(r, f) == / 1FrOIBdo(c),  0<r<1

are increasing with r, see [14, Corollary 4.21]. Since M, (r, f,) = M,(pr, f),
we have by Minkowski’s inequality that

My (r, fo = f) < My(r, f) + My(r, fp) < 2Mp(r, f).

By the formula of [11, (1.1.1)], (integration in polar coordinates formula) we
get

1
If = follh o x = 2nca/0 MP(r, f, — [)(1 — r2yor2n=ldy. (2.1)

Since f € AL(B,, X), we have that the function MJ(r, f) is integrable over
the interval [0,1) with respect to the measure 2n(1 — 72)®r?"~1dr. It is also
clear that f, — f on any compact subsets of B,, which implies that M2 (r, f,—
f) — 0 for each r € [0,1) as p — 1. Applying the dominated convergence
theorem in (2.1), we obtain that ||f — f,]|? —0,as p— 1. O

Py, X
Corollary 10. For 0 < p <1, the following inclusion is dense
A2 (B, X) C AL (B, X).
Proof. The proof follows directly from Lemma 9. 0

In [3], Oscar Blasco obtained the duality theorem for the vector-valued
Bergman spaces in the unit disc B; without any restriction on the Banach
space. The proof also works for the unit ball B,,. The result is stated as
follows:

Theorem 11. (Duality). Suppose 1 < p < oo. The dual space (AP (B,, X))*
can be identified with A{.’: (B,,, X*), where p' is the conjugate exponent of p
given by % + i =1, under the integral pairing defined by

. Gy = / (2, 9(2) xx- dva(2), (22)

n

for any f € AR (B,, X), g € AZ (B,,, X*).

Remark 12. Suppose 1 < p < oo. If X is a reflexive complex Banach space,
then the vector-valued Bergman space A% (B,,, X) is a reflexive Banach space.

The following reproducing kernel formula also holds for vector-valued
Bergman spaces. The proof can be found in [11, Proposition 2.1.2].
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Proposition 13. Let f € Al (B, X). We have

flw
1) || (),

for any z € B,,.

We have the following pointwise estimate on the vector-valued Bergman
spaces. The proof can be found in [11].

Theorem 14. Let 0 < p < oo. Then
£ llp.or.x

Hf(Z)HX < (1 — |Z|2)(”+1+0‘)/p,
for any f € AR(B,,,X) and z € B,,.

The following lemma is critical for many problems concerning the weighted
vector-valued Bergman spaces AP (B,,, X) whenever 0 < p < 1 and will be
extensively used.

Lemma 15. Let 0 < p < 1. Then
/]E @) x (1= [z E D0 Fdyg (2) < | fllpax,
forall f € A{Z(IB%,L,X).
Proof. Write
IF ) x = I I

and estimate the second factor using Theorem 14. The desired result follows.
|

The following technical result is proved in [4, Lemma 3.1]

Lemma 16. Let 8,6 > 0. For all w € B,,, we have

Io(w) = /B n 1og(11—_<mg>) S e Tk

1= (z,w)[rttFets
where C' is independent of w and log is the principal branch of the logarithm.

dv(z) < C,

In the sequel, we will also need the following lemma which the scalar
version can be found in [8].

Lemma 17. If 0 < ¢ < 1, then the identity i : LL°°(B,,, X) — L4(B,, X) is
continuous in the sense that there exists a constant C(q) > 0 such that for
every f € LL°°(B,, X), we have

1/

The following result will be very useful in many situations. A proof can
be found in [14].

Theorem 18. For § € R, let

._ (1 — Jw]*)*dv(w)
Ia,ﬁ(Z) —/IB ‘1—<Z7w>|”+1+a+67 ZEBn

aa,Xx S C(Q)Hﬂhg’x([&n,x)'
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(i) If B =0, there exists a constant C > 0 such that

I,5(z) < Clog z € B,.

1—[z[*
(ii) If B > 0, there exists a constant C' > 0 such that
1
(1= [z[2)%
(111) If B < 0, there exists a constant C > 0 such that

I, 5(z) < C.

Ia’ﬁ(z) <C z € B,.

2.2. Differential Operators and Equivalent Norms for I',

Given a positive integer k, we define the differential operator Dy by
Dy =24+ N)o(B3[+N)o...o((k+1)I+N), (2.3)

where I is the identity operator and N is the differential operator given in
(1.1).

In the sequel, we denote by P(B,,X) the space of all vector-valued
holomorphic polynomials. The proof of the following lemma is similar as in
the scalar case in [10].

Lemma 19. For all f € P(B,,X) and g € P(B,, X*), we have the following
identity

/ (f(2),9(2)) x,x+dva(2) :Ck/ (f(2), Drg(2))x,x+ (1 — |2]*)Fdva(2),
B, B,

where ¢y, 1s a positive constant depending only on the integer k. The above
identities are valid for vector-valued holomorphic functions when both sides
make sense.

The following lemma will be very useful in the sequel.

Lemma 20. Let {ax} a sequence of positive numbers. For any positive integer
k, let My, the differential operator of order k defined by

My := (apl + N)o (a1l + N)o...o(ap—1I+ N).

Then a vector-valued holomorphic function f belongs to T'y(B,, X) if and
only if there exists an integer k > ~ such that

sup (1= [z[)* My f(2) ] x < o0
zeB,

Proof. Let us assume first that f € I',(B,,X), and we prove the desired
estimate on M. By assumption, there exists an integer k > «v and a positive
constant C such that

IN®f(2)]lx <O —[2*)7F,
for any z € B,,. It is enough to prove that the following inequality
IN? f(2)l|x < C(1 = [2*)77F,
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holds for 0 < j < k, since the assumption give the case j = k. For g €
H(B,, X) and z = rz’, where r = |z|, and 2’ is in the unit sphere. We have
Ng(rz") = ro.g(rz').
Thus,
/ / " s
g(rz') = g(z'/2) = | Ng(sz')—.
3

Now, for g € H(B,,, X) such that [|[Ng(z)|x < C(1—|z|?)"~k. We have that

lg(rz") — g(='/2)l1x §2/1 INg(s2")lxds
< 40/ (1—5%)7""sds

= 720/ —25(1 — s%)77kds

2

—2C "
— 17 2 7,k+1
{’Y—k”rl( ) L
_ -2C 2\ y—k+1 _ _1 y—k+1
_7—k+1{(1 ™) (=7 '

Now, if v — k+ 1 < 0, then

lg(r2") —g(2'/2)[| x <

Ify—k+4+1>0, then
2C 1., _
lg(rz) — g(2'/2)||lx < o {(1 — Z)v kL _ (1 — 2y k+1}

2C 1
71_7’7—]6—‘1-1: /
7—k+1( ) ¢

—-2C

T = G

4 kv
< Chy (L= |27,
where the last inequality is justified using the fact that (1 — |2]2)7=% > 1. It
then follows that
lg(2)llx < C(1 —[2*)77*.

Now, we use this fact inductively for ¢ = N*f, then ¢ = N*71f, ... to
conclude. Conversely, assume that there exists an integer k£ > = and a positive
constant C' such that

1M f()llx < O = [o)7F,

for any z € B,,. To conclude, it is sufficient to prove that for a fixed positive
real a, the inequality

lag(z) + Ng(z)|x < C(1—[2*)77* (2.4)
implies the inequality
INg(2)llx < C(L—[2*)7",
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for any function g € H(B,,, X). Choose a real § such that 5 +~v—k > —1.
By the assumption (2.4), we have that

/ lag(z) + Ng(z)||x (1 — |2[*)?dv(z) < .

Thus, for any z € B,,, we have
_ [ag(w) + Ng(w)]
ag(z) + Ng(z) = cs /Bn (1— <z,w>)”+1+5

Then, differentiating under the integral sign, we obtain that for all 1 <7 < n,
we get

(1 = JwP)?dv(w).

9z lag(2) + Ng(2)]

~ 1400 [ et + R0 ) dv(w).
Therefore,
N (ag(2) + Ng(2))
= (et 1+ pjey [ DRI (1 ().

Applying (2.4), and Theorem 18, we get that for all 1 <1i < n,
(1 — [wp)—*+s
1— <Z7w>‘"+1+’)’_k+5+(k_7+1)

IN (ag(z) + Ng(2) |x < Ces / dv(w)

Z|2)V7k71.

<C(l1-
Thus, the derivative of ag(z) + Ng(z) is bounded by (1 — |z|?)Y=*~1. So, to
prove the inequality above, we are reduced to consider smooth functions ¢ of
one variable € [0,1), and to prove that the inequality

[/ (r)llx < C(L—r)7 =1,
with ¥ (r) = a¢(r) + r¢’(r), implies that
lr¢' (r)|x < C(L—r)*

(here, ¢(r) = g(rz")). Now, differentiating 1, we obtain ¢'(s) = (a+1)¢'(s)+
s¢"(s). Multiplying both sides of the previous inequality by s%, we obtain that
54 (s) = (a + 1)s%¢'(s) + s (s) = [s‘“‘l(ﬁ’(s)]/. Then integrating the
equality above on [0, r], we obtain that

1 .
0(r) = [ 0 (ohs
Therefore, the desired estimate follows at once, since k > ~. O

Remark 21. We shall use extensively this lemma for two particular classes of
differential operators: first the class Dy, then the class Ly, corresponding to
the choice a; = n + a + j + 1. For this choice, we have

n+a+j+1
(= (zu))yFess®’

(a1 + N)(L — (z,w)) "7 71 =
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and inductively,
Lk(]. o <Z7w>)—n—a—1 _ Ck

(T {zw) yeodi T

The proof of Lemma 20 allows us to define an equivalent norm of f in
terms of M}, f. Particularly, we will write the equivalent norms of f in terms
of D f and Ly f. More precisely, we have the following result:

Corollary 22. Let Dy, a differential operator of order k defined in (2.3) and
Ly a differential operator of order k defined in Remark 21. For vector-valued
holomorphic functions, the following assertions are equivalent:

(1) fel,(B,,X).

(2) There exists an integer k >~ such that

sup (1 — [2[%) 77| D f(2) ]| x < oo
z€B,

(3) There exists an integer k > -y such that
sup (1 - 2[2)* N Lef (2) | x < oo
zeBn

Moreover, the following are equivalent
£l 0 x) = 1F(0)[1x + sup (1= [2*)* [ Def(2)llx

z€B,

~ [ F(O)llx + Sup (1= =)Lk f ()] x-

The proof of some of the results obtained in this paper will be based on
the following lemma. A proof is in [11], but for the sake of completeness, we
will recall the proof.

Lemma 23. Let f € H*®(B,,X) and g € H*(B,,,Y*). Ifb € H(B,,, L(X,Y))
is such that (1.4) and (1.6) hold. Then we have
(. 9)ey = [ GTE.ghyer-dvalo) (25)

Proof. Let f € H*(B,,X) and ¢ € H>*(B,,Y™*). By the definition of
(*, Yoy, Fubini’s theorem, Lemma 1 and the reproducing kernel property,
we have:

(). Doy = / B (£)(2), 9(2)) vy dva(2)

B,

= [ WD) e

B, (1 — (z,w))nt+ita ?
_ B b(w)(f (w))dve (w) .
B /Bn 9tz) (/IB (1 — (z,w))n+1+a ) dva(2)
= . b(w)(f(w)) L (-
B /]Bn /]E%n g( ) ((1 — <Z,w>)"+1+a> d a( )d a( )

N / (/ (1- <wg,(zz>))n+1+a d’/a(z)> (b(w)(W)) dvg(w)

n n
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:(/" 9(w) (b(w) (Fw)) ) dv (w)
Bn
= /Bn (b(w) f(w), g(w))y y+dve (w).

It remains to show that the assumption of Fubini’s theorem is fulfilled. In-
deed, since f € H*(B,,X) and g € H*(B,,Y*), by Tonelli’s theorem,
Theorem 18 and relation (1.6) we have that

L

||b ey
/ / e w(‘n+1)+adl/a(w)dua(z)

1
< b(w)|| ps v log | ———= | dvg(w) < .
N4y<mmmgQ_MJ (w)

O

Lemma 24. Let f € H®(B,,,X) and z € B,,. For b € H(B,,,L(X,Y)) satis-
fying (1.4) and (1.6), the function

_ f(w)
9:(w) = (1 — (w, z))n+i+e’

w € B,

belongs to H*(B,,, X) and the following identity holds:

w2 =i [ L (bw) @) ) v,

n

where k is any positive integer and Cy is a positive constant depending only
on k.

Proof. 1t is clear that g, € H*(B,,, X ). By the definition of the little Hankel
operator and the reproducing kernel property, we have

Il
3@\
=
&
N

= <wic’2§>3+l+a+kdm<<>) dva(w)
)

¢
} /IB </B (1- <(§,Z£>)7S+Z+a+k d”a(w)> dva41(¢)
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_ -1 b(w)(g:(¢)) U (w §
o /B" " </Bn (1- <C7w>)"“+ad a >> dva 4k (C)

=it [ L (MO G-0)) dvarn(©)

The assumption of Fubini’s theorem is fulfilled. Indeed by (1.6), we have that

[ H)a-0)

1— (¢, w))n+Fath
< |lg-| Plllecer, (w)dva+x(Q)
g 00, X |1_ w(|"+1+0‘+k fe) a+k

dvg
— gl / ey, % ([ et ) dvatw)

n

1
<ol | 100 ecr ) (108 7= ) o) < o

B

dVch(C)
Y

3. The Proof of Theorem 3
Proof. We first suppose that g € I',(B,,, X*), with y = (n+ 1+ «) (% - 1) .

Given a positive integer k > vy, we define the functional

Ng: AL (B, X) — C
£ ng(F) = e / (F(2), Dig(2)) xx- (1 — [2[2)Fdva (),

where ¢, is the positive constant in Lemma 19. It is clear that A, is linear
and is well defined on AP (B,,, X). Indeed, let f € AP (B,,, X). By Lemma 15,
we have

[ Ag (NI = cx

/B U2, Drg(=)) xx (1 — [22) dva(2)

< Ck/B 1£ () Ix 1Pkg(2)llx+ (1 = [21*) dva(2)
N C’“/ (1= [ Drg(2)llx+ (1 = [2) 1 £ (2) | x dva (2)

n

< cx sup (1 — [[)* [ Dig(2) | x- / (1= 2271 £(2) | xdva(2)

z€By, B,

S ||9||F7(1Bn7x*>/ (1= |25 D0 £(2) xdva(2)

n

S llglie, @ x) 1 Fllp,a,x-
We conclude that A4 is bounded on A% (B,, X) and || Ay || S ll9llr, s, x+)-
Conversely, let A be a bounded linear functional on AP (B,,, X). Let
us show that there exists g € I'y(B,, X*), with v = (n+ 1+ «) (% — 1)
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such that A = A,. Since 4%(B,,X) C AL(B,,X) and A is bounded on
AP (B, X), A is also bounded on A2(B,, X). Then by Theorem 11, there
exists g € A2(B,,, X*) such that

A(f) = / (), 9(2)) xx- dva(2), (3.1)

for all f € A2(B,,X). Since g € A%(B,,, X*), for any positive integer k, we
have Dyg € A2, (B, X*). Applying Lemma 19 in (3.1), we obtain that

AF) = / (F(2), Dig(2)) x.x- (1 — [2[2)Fdva (), (3.2)

n

for all f € A%(B,,, X). Now, we fix x € X, w € B,, and an integer k& > ~. Let

(1 —fw]*)*

(= (e FTFoss

x, zé¢€B,.

flz) =

By Theorem 18, we have that f € A% (B,,, X). Proposition 13 and (3.2), give
us

N / (f(2), Dig(2) xx+ (1 — [2[2) - dva (2)

n

— lwl2)e—
-k /IB%n <(1 —(1<z71|U>|)n)+1+a+kvak9(Z)>X)X*(1 — |21 *dua(2)

CaCl b Dyg(2)
= 1- g AV
Ca+k( [wl]®) <$7/ (1— (w, z))n+itatk < +k(2)>x,X*

CqCL k— ~
= w xZ, D
oy L )57 (@, Dig(w
By Theorem 18, f € A?(B,,,X) and ||f

by duality, we have that

w))x x+-

pa.x S|zl x. Since x is arbitrary,

[Drg(w)||x+ = sup [(x, Drg(w))x x+|

|zl x=1

= ek LA
CaCk ||zfx=1 (1 = [w]?)F=7

S sup [ A I fllpa.x
Jafx=1 (1= [w]?)E=7 oo

| Al

S osup —————|7|lx

ol x=1 (1 = [w]2)k=Y

A
(= w)E
According to Corollary 22, we conclude that
g€ F’Y(BWJX*) and ||g||F7(B X)) R SIIA H

with y = (n+ 1+ «) (]% - 1) . To finish the proof, it remains to show that

(3.1) remains true for functions in A2 (B,,, X) which is a direct consequence
of the density in Corollary 10. O
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4. The Proofs of Theorem 4 and Corollary 5

In this section, we will give the proofs of Theorem 4 and Corollary 5.

4.1. Proof of Theorem 4

Proof. First assume that h; extends to a bounded operator from A2 (B,,, X)
to AL(B,,,Y), with ¢ < 1. Let ||| := [|ho]l az s, x)— a8 (B,,v)- We want to
show that b € T',(B,,, £L(X,Y)). Since hy, : AE(B,,X) — A%L(B,,Y) is a
bounded operator, we have by Theorem 3 that

[ (f), Doy S Nl fllp.a.x 9ll0s B,y +)s

for every f € AE(B,,,X) and g € T'3(B,,,Y™*), with = (n+1+a) <7 1)
Let © € X, y* € Y*, w € B, and an integer k such that k >~y = (n+1+

— |w|? k—~vy
) (% — 1) . Let g(2) = y*, and f(z) = 1 (1<Z,1|U>)n)+1+oc+k

[ € H*(B,,X) and g € T'3(B,,,Y™), with [|gllr,,,v+) = [y*[ly+. We also
have by Theorem 18 that f € AL (B,, X), with || f|lp.a,x S [z]|x. Hence

~

({7 (f)s Goy | S 1ol ]l lyxlly- (4.1)

Applying Lemma 23 and the reproducing kernel property, we have that
[(he(f): 9)a,v |

(1= |wP) .
/IB,L <b(Z) ((1 — (z,w>)”+1+0‘+’f Z) Y >y7y*dya(z)
= (1 —|w|?)* /Bn (b(2) <(1 — <w’;§)n+1+a+k> 7y*>Y7Y*dya(z)
2\ k—ny b(z) (x
= (1~ |wf*)" /JBn <(1 — (wfz) )(nJ)rlJraJrk’y >YY*dVO‘(Z)

)
ok b(z
B .

1—|wf)s b(2) (T )
- % </Bn Ly ((1 - (i,)z(>)3+1+a> Wal2),4 )y
_ A= fw) b(2) (%) .
e <Lk (/]E&n (1 _ (w,z>)n+1+a dyo‘(z)> Y >y7y*

x. It is clear that

ck
— |lwl?2)F—
= L2 ) @) 0y
Thus,
), ghacrl = CDT e 0wy @) )| 42)

From (4.1), (4.2) and the fact that ||z||x = ||Z|/%, we deduce that

(1= w7 |(Li (b(w) (@), 57 )y | S IBolll@lllylly- (43)
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Since x and y* are arbitrary, we get that

sup (1 — |w|*)* | Lib(w)l . x,y+) S sl
weB,
That is, b € I (B, £(X, Y*)) with [bllr. s, ccry S Il

Conversely, assume that b € I',(B,,, £(X,Y)) and let us prove that hy,
extends to a bounded operator from AP (B,,, X) to AL*(B,,Y). Choose a
positive integer k > v, and let f € H*(B,,, X). Taking

_ f(w)
g:(w) = (1 — (w, z))nri+a’

with w € B, and applying Lemma 24, Lemma 2 and the assumption we

obtain
b(w fT
/IBn (1 _(<Z?EU>()'"3‘)1+O¢ dve(w) )

/IB%,L Ly, (b(w)m> AV r(w)

1hof(2)lly =

:Ck

Y

Y

IN

b(w

- /B< (<z,w>n+1+ad”“+k”
()
=

CR/ Ly, (b(w )
B

2, w) )n+1+a otk (w)
n

1-— Lib - <
- ckca+k/ (1 = [wl?)*[| Ly (w)llg(x,y)llf(w)llx Vo (1)
o Ju, 1= (z,w)[rHite

(1~ [0 fw)lx
S bl s, e || o e e )

= [1bllr, 8., 2%,y Pa 9(2),

where the reproducing kernel is justified by (1.4) and

tg(z2) = 9(w) Vo (W
Prot) = [ e e

is the positive Bergman operator of the positive function g(z) = (1 — |z|?)”

1f () x-
Now, let A > 0. We have that

va({z € Bn : [uf(2)lly > A}) < val{z € B : cillbllr, g, cx.v)) Pl 9(2) > A}).

Since the positive Bergman operator P : LL (B,) — L1>°(B,,) is bounded
(cf. e.g [2]), there exists a constant ¢ such that

c
va({z € By : cillbllr, s, coe P 9(2) > A}) < — lgllzs )
ckllbllT, (B, £(X,Y))
CCE

||bHr (Bn,L(X, Y))HQHLl B,)-
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Applying Lemma 15 to the function f, we get that

ol = [ (=121 xdvala)

n

= [ @ RGO o) a2
Bn
<1l
It follows that

Ava({z € B : | f(2)lly > AD) S blle, @, ccxv)llfllp.ax

for all A > 0. Therefore, h; extends into a bounded operator from AL (B,,, X)
to AL°(B,,,Y) with

||hb||A§(]B§n7X)—>A3;°°(]Bn,Y) 5 ||b||F7(IB,L,£(Y,Y))~

By density of H*(B,,, X') on A2 (B,,, X), the proof of the theorem is finished.
O

4.2. Proof of Corollary 5

Proof. Just apply Lemma 17 and the second part of Theorem 4 to conclude.
O

5. The Proof of Theorem 6

This section is devoted to the proof of Theorem 6.

Proof. We first prove the sufficiency of the theorem. We assume that there
exists a constant C’ > 0 such that

-1
HNkb(w)H o < ¢ log 1 .
) = T T up

Likewise by Corollary 22, we have that, there exists a constant C' > 0 such
that

b ey < S (o i)
LOlWw L(X,)Y) = (1 _ |w|2)k—7 g 1— ‘w|2 .
Applying Lemma 24 for any f € H*(B,, X), we get

/ )W) / Lyb(w) (F(w))
B

o dv, :
0= ()i A= (2w e +r(w)

Thus, by the assumption, Lemma 24 and Lemma 15 we have that

Ao fll Az B.,,v)

[ | (Lkb<w><f<w>>

<Z w>)n+1+a
INA T

dVaHC( )

dv,(z)

(1- |w\2)kdl/a(w)d1/a(z)

Lkb (f(w))
)n+1+a
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L
/ / |!k ”Tnfﬁallf( Mz (1 = [w]*)*dva (w)dva(2)

-/, </ T )

IZkb(w)l| 23 1 F () 5 (1 = [w]*)* dvg (w)

1N ey (1 ) L
</ n <1Og1_w|2>||f(w)llx(1_|w|2)k7 (1og1_|w|2) e ()
- / 1)l (1 — [w[2)dve (1)

B,
= / £ ) x (1 — [w2) 3D 4y ()

N ||f||p,0¢7X'

Conversely, we assume that hj, extends into a bounded operator from AP (B,,, X)
to AL(B,,Y). Then for all f € H*(B,,, X) and g € B(B,,Y™*), we have

(7o (f)s Gay | < 1ol fllp.ox |9l B8, ¥+ (5.1)

We choose the particular function g(z) = y*, with y* € Y*. Applying Lemma
23, relation (5.1) becomes

| 1@y dva(2)

_ ‘< /B b(2)F(2)dva(2).y")y .

n

< Ao llllf1lp,e,x [y Iy
Thus

< |lhllll.f

lp.ox [y [y (5.2)

‘/ T )y ydval2)

for all f € H*(B,,X) and y* € Y*. Now, take x € X, y* € Y*, and an
integer k such that k > «. Fix w € B,, and put

P e L O
- (1_ (z,w>)”+1+a+k 9 g - g 9 y 9
where log is the principal branch of the logarithm. Since f € H*(B,,, X) and
g € B(B,,,Y™), by relation (5.1), we have that
[(ho fs 9y < Rl x g™ [y« (5.3)

Applying Lemma 23 for those particular vector-valued holomorphic functions
f and g and using the fact that

log(1 — (w, 2)) = log(1 — |w|?) + log (W) :

we obtain

<hbfv g>a,Y
— |lwl|2)F—
- / <b(z)<(1 _(1<Z’ L>|)n)+1+a+k m),log(l — <z,w>)y*>Y7Y*d1/a(z)

n




28 Page 22 of 46 D. Békollé et al. IEOT

1—|w|?)*71o 1—A{w,z))_ .
- </IB i [( (1 l )(w,z>)§il+aik >)4 dva(2), 4" )y.y-

n

:</ b(2) (@) (1 — |w[*)* 7 log(1 — [wl?)

(1 — (w, >)n+1+a+k d’/a(z)vy*>y,y*

s 0 s () o

T
=<<1—|w|2>k—71og ) [ 2 )>)n+§+l+k7 Ve

o (1= (w,

—|w k vy
+</]B b(z) ((1 _(1< | |n+1+a+k log < > x) d’/a(z)’y*>y,y*

n

it [ i)
+</]B b(z) (f(z) log (11__<|Z1;T12}>>> d’/a(z)7y*>y,y*

= (1—|wl >“log<1—\w| )(Li(b(w) (@), y*) vy~
/b @) dva(2), v ) vy,

1
where ¢(z) = f(z)log (1<21|1}2>> . Therefore, we can write (hyf, g)a,y =
Il + IQ, with
I = (1= [w*)* 7 log(1 — [w[*)(Ly.(b(w)(T)), y") v,y

and

/b 2(2)dva(2). 4" )y ..

Applying Lemma 16 with 6 = p, and 8 = p(k — ), we obtain that
ellp.a,x
Yyt

= (L os (= elara())
- B, 8 1 —|wl? [1— (z,w)|P (n+14+a+k) Tl xdValZz

= |lz||x (/Bn log (11—_('21;?) P(1— |wf? )p(k—w)k : dua(z))l/p

|]_ — <Z,U)>‘n+1+o‘+p( -
S llellx.
According to the relation (5.2), we obtain the following estimation of I
2] < [|Po]lll

Since Iy = (ho f, @Yo,y — I2, by the relation (5.3) and the previous estimates
on I, we have that

(L] < (P fs 9oy |+ L] S N[olllz] x N[y [ly--

o X[y S Nl x [y ™ [y~
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Since z € X, y* € Y* are arbitrary and ||z|x = ||Z|x, we get that

_ 1 SN
2] = (1= P og = ) KEAG) @) bov-
< Clhwlllzl=lly™ Iy
Since T € X and y* € Y* are arbitrary, we deduce that :

ILeb(w)ll ez vy = sup (L (b(w) (7)), y") vy

IZlx=1lly*lly+=1

C 1 -1
< .
S 0wl (log . w|2>

The desired result follows at once using Corollary 22. O

6. Compactness of the Little Hankel Operator, h;, with
Operator-Valued Symbols b From AP (B,,, X)) to
Al (B,,Y), With1 <p < qg< oo
In this section, we are going to characterize those symbols b for whch the little
Hankel operator extends into a bounded compact oparator from A? (B,,, X)

to AL(B,,Y), where 1 < p < g < oo and X, Y are two reflexive complex
Banach spaces.

6.1. Preliminaries Notions

The proof of the following remark can be found in [11, Proposition 1.6.1]

Remark 25. Let t > 0. Then the operator R*! is the unique continuous linear
operator on H(B,,, X) satisfying

Rot T _ T
(1= (z,w)) 1t (1= (2, w))ntitatt’
for every z € B,, and x € X.

We will use the operator R*?, for ¢t > 0, in the vector-valued Bergman
space Al (B, X) as follows:

Proposition 26. Let t > 0 and f € AL(B,, X). Then

ot f w
R = [ S v,

for each z € B,,.

The proof of the following proposition is not quite different to the proof
in [14, Proposition 1.15], but for the sake of completeness, we will recall the
proof.

Proposition 27. Suppose N is a positive integer and o is a real such that n+a«
is not a negative integer. Then RN as an operator acting on H(B,, X) is
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a linear partial differential operator of order N with polynomial coefficients,
that is

[m|
RYfo) = Y om0 2ot (),

ozm
meN” |m|<N

where each p,, is a polynomial.

Proof. Let x € X and w € B,,. By using the multi-nomial formula

k!
k _ —m
(z,w)" = E m!z w™",

|m|=k
it follows that
T
(1 — <Z7w>)n+1+a+N
a1 = (z,w) + (z,w)Y
S (1= (zw))ntttetN

B XN: NU  (z,w)ez (1 — (z,w))NF
L RI(N = k)l (1= (2, w))n+1FatN
B ZN: N! Ko, "
N P k(N — k)! formil m!” (1= (z,w))ntitatk
B zN: Z NI m wnx
g A NV - N° (1= (z,w))nritatk

= H?:o(” Fl4a+H)m(N -k 0zm \ (1 — (z,w))nte )~

Therefore, there exists a constant ¢, such that

fet ((1 —{z, n+1+a> Z 2 cmn” <(1 - (z x>)n+1+a> .

k=0 |m|=k

Thus

N Py
:Z Z cmkzmaz—m.

k=0 |m|=k
O

We will also need the following results whose proofs can be found in
[11].

Lemma 28. Lett > 0. Then

/f () = [ R g ),

n

for all f € AL (B, X) and g € H*(B,,C).
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Lemma 29. Lett > 0 and X a complex Banach space. Then

/ (f(2), 9(2)) x.x+ dva(2) :/ (R f(2),9(2)) x,x* dVatt(2)
Bn IB'”/
:/]B (f(2), R*'g(2)) x,x+ dVare(2),

for every f € AL(B,,, X) and g € H®(B,,, X*).

Corollary 30. Suppose t >0 and 1 < p < co. Ifb € A? (B, L(X,Y)), where
p’ is the conjugate exponent of p, then the following equality holds

/ BT, 9(2) vy dvalz) = / (RO()T(), 9() vy~ Ao (2)
B, B,

for f € H*(B,,X) and g € H*(B,,,Y™).

In the sequel, we will need to interchange the position of the summation
symbol and the integral symbol in a particular situation. That is why we
introduce this lemma.

Lemma 31. Assume 1 <t < oo. Letb(z) = 3 5cnn b(3)2" € AL (B, L(X,Y)).
Then

[ 06 (F) wihvr-dvae) = Y [ 22009) (T i ver- o),
Bn Benn 7 Bn

for every f € H>®(B,,, X) and y} € Y* with ||y§lly+ = 1.

Proof. Since b(2) = 3 5cnn b(3)z" € Al (B, L(X,Y)), we have that

t

lim bz)— Y. (B2’ dvy(z) = 0.

Noo By ﬁEN",\ﬁ\SN [,(Y,Y)
We have
L0 5 w02 q@hi) anes
B BeN™:|BI<N —_—
/ e - Y b 1T el Iy dva(z) =
By, ﬁEN":L@\SN E(?,Y}
/ e - Y b 1) xdvalz) <
Fn BEN™:|BI<N LR

/B bz)— > b(B)F dvg(z) — 0

BEN™:|BI<N 5¢

as N — oo. Therefore, we have that
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[ 06 (7)o a2
o [ (¥ bmﬁ(uU%kwf%w

BEN™:|3|<N

Bn penn: |ﬂ\<N

_ hm/ > (b (f(z)),y6>Y7Y*dya(z)
)

> / (7)) w5, dval).

BEN™
O

In the following lemma, we compute the little Hankel operator when the
operator-valued symbol is a monomial.

Lemma 32. Suppose 1 < p < oo and v € N". Ifa, € L(X,Y), then for every
_ B
flz)= ZﬁeN” cpz” € AL (B, X), we have

Tn+1l+a+|y—70])
ha, v = i
B ﬁza ) =BT+ 1 +ath)

Proof. Since
= Z q;zﬂ € AL (B, X),
BENT

and p > 1 by using [16, Corollary 4], it follows that

p
/ Z cg?P|| dva(2) — 0as N — oco. (6.1)
Bo || 181> N+1 X
Firstly, let us prove that
ZBEN” av(@)m 7
o T e = 3 | = ) 62

Let N € N. We have that
/ > penn @y (Ea)w’ — 37 5 < v a4 (5w
Bn

(1= (z,w))"t1+e
:/ Do1BI> N1 a, (c5)w?
B, || (1— (z,w))"tite

dv, (w)
Y

dv, (w)
Y

ay ()15 n41 (@0
5=
Y
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||%||L(YY)
< AR Al du,
< a1 Y et anw

" ||181=N+1 «

||av||L(Y Y)
J B
< Gope [, | 3 ent] dn

" ||181=N+1 X

P 1/p

||a'y||L(Y Y)
< AR Bl q o
= (1= [z|)ntite /Bn Z cpw Vo (W)

[BI>N+1 x
Therefore
/ 2 genn a'y Cﬂ)wﬁ - Z|B|<N a, (eg)w? dve (1)
<Z,’LU>)”+1+(’Y «
Y
is less than or equal to
P 1/p
||av||c(Y Y)
J B
1~ [2])rti+a /B > cpw?|| dva(w) (6.3)
™ ||1BI=N+1 x
By using (6.1) and (6.3), it follows that
> ay @l = Y ay (@)’
BeN™ IBI<N
/ (1= (z,w))nt1ite dvalw)) =0
Y

as N — oo, and so

ZIBI<N a~ (¢ w”

a~(cs wh
/ ZﬂENn ) dvg(w) = lim
B

(1= (z,w))ntlta o N—oo Jp (1 — (z,w))ntlte

dve (w)

o0
[BI<N
wh

. a~ (G5 wP
A > /B 1 . dva (w)

- <Z, w>)n+1+a

- Z / 1_ :rHadV"(w)’

BENn

which is the desired result. Secondly, let us prove that

/ Z n+1+a+k><z,w>kdua(w):

5, = T(n+1+a)kl
n+1+a+k) k
Z/ T(n+ 1+ a)kl (z, W) dvg (w).

Let N € N. We have
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N
I'n+1+a+k

! (erw)* T'(n+1+ «a)k!

T(n+1+a+k) .
<
<D T 1+ )kl A
_ 1

(L= [t
. 1 1

Since [; A= Japriee dve (w) = 1= |zprrite’
gence theorem, we have that

z:/ n+1+a+khawV¢@W)

I'n+14 a)k!

L Tn+1l+a+k),
=N kZO/B T 1tam oW dalw)

by the dominated conver-

N T+ 1+a+k)
F'(n+1+ a)k!

(z, w>kdua(w)

|
“
g B
—
]

Y Tn+14a+k)
— T(n+1+ a)k!

/ F'n+l+a+k)
T(n+1+a)k!

(z, w)kdya(w)

I
T
f:
=

(z,w)Fdvy (w).

Br k=0
We are now ready to prove our lemma. For f(2) =35\ cpz’ € APR(B,, X),
by using the following multi-nomial formula [14, (1.1)] and the following
formula [14, (1.23)] respectively

1 mT(n+a+1)
k — v rn m|2 —
<Z7w> Z m'z w / |Z ‘ l/a(Z) F(TL+ |m| +a+ 1)’

|m|=k n

we get that, using (6.2) and (6.4)
ha, = f(2)
a w7 (W)
B / (1-

(z,w))ntlte dva (w)

o / 'LU’Y deNn aﬂy(@)wﬁ

— (z,w))ntite Va(w)

uﬂa,y Cﬁ wﬁ
- Z / n+1+ady (w)
ﬁeNn
o0

T(n+1+a+k)

=2 @ / T(n+1+a)k! (e w) " dva(w)

BEN"
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_ i n+1+a+k) &
Z a’Y Cﬂ Z/ n—i—l—l—a)k' <Z,’UJ> dVa(lU)

T(n+l+a+k) ] kK
_ el E moTm
N (%) I'(n+ 1+ a)k! /IB%n v Ik mt” Y dva(w)

= T(n+1+a+k) _
B () =0 I'(n+1+a)k! Z m'/ W, ()

n+1+a+k) m——g
- S ey 3 T v T

BENR k=0 |m

- F(n+1+a+|m|) m —Tm
- a+(c5) z I'(n+1+a)m! : /anvw[ﬁr dva(w)

— _Tn+1+a+py=0]) 4 ,
_ﬁeN"Zﬁo,aW(Cﬁ) L(n+1+a)(y—B)! 27 /an |27 2 dve (w)

_T+l+at|y=p) Mr+l+a) _ 4
= Y () T+ ita) 7B Tintldath)”

BEN™, By
= . — .
Bem8<n (Y =B)(n+1+a+[y])

The goal of the following lemma is to prove that the linear span of the

*
vector-valued Bergman kernel i <w,xz>)”+1+°" where z* € X* and z,w €
B,, form a dense subspace in the vector-valued Bergman space Ag’ (B, X*),

with 1 < p < oo and p’ is the conjugate exponent of p.

Lemma 33. Suppose that 1 < p < co. For each x* € X* and z € B,,, let

x*

€z,2* (U)) = (1 — <w7 Z>)n+1+a;

w € B,.

Then e, z« € A{’x/ (B, X*) and the subspace generated by e, ,« is dense in
AP (B, X*).

(63

Proof. Let ¢ € AP (B,,,X) such that (¢, e, z+)a.x = 0 for all z € B,, and
z* € X*. Let f* € A? (B,,X*). According to the Hahn-Banach theorem,
it suffices to prove that (¢, f*)o,x = 0. For all z € B,, and z* € X*, using
Lemma 1 and the reproducing kernel formula, it follows that

0 = <¢7ez,w*>a,X
= [ (60, cene -t

n

x*

= A7L<¢(w)a (1 — <w7z>)n+1+a>X7X*dya(w)
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d(w *
:/1133 <(1—< ( )n+1+a’m )x,x+dva(w)

. zZ,w))
= (#(2), 2%) x,x

Therefore, for all x* € X*, we have
(¢(2),2") x,x+ = 0.

Thus ¢(z) = 0 for every z € B,,. It follows that for each f* € A? (B,,, X*),
we have that

(6 ) ax = / (6(2), 1* (=) x - dva(2) = 0, 0

n

In the proof of the following lemma, we use the fact that when X is a
reflexive complex Banach space and 1 < p < oo, the dual of the vector-valued
Bergman space Ag/ (B,,, X™*) can be identified with A2 (B,,, X), where p’ is the
conjugate exponent of p.

Lemma 34. Suppose that 1 < p < oo, and X is a reflexive complex Banach
space. Let {f;} C AP (B,,X) such that f; — 0 weakly in AR (B,,X) as
j — oo. Then for each 8 € N, we have that 9°f;(0) — 0 weakly in X as

918!

j — 00, where 9P = 557

Proof. Since for each j € N, f; € A?(B,,, X), using the reproducing kernel
formula we have that

£(2) _/Bn = <£$))n+l+adya(w), 2 €B,.

Differentiating both sides of the previous relation with respect to z, we obtain

fi(w)w”
21 = Cnali) | i

Therefore, we have

97 £,(0) = C(n, . |4 / £ ()T dve (w).

dve (w).

Now, let 2* € X* and let us show that (9° f;(0),2*)x x+ — 0 as j — co. But
we have that

(P £50), 0" xxe = Cln,a|8)) < /E n fj<w>wﬁdya<w>,x*>

X, X+
:/]B (fi(w), *w?) x x+dve (w)
= (fyghax — 0 as j — oo,
with g(z) = 2*2° ¢ Ag’ (B,,, X*). Thus, (85fj(0),x*>X7X* —0asj —oo. O

We recall that the symbol b used in the following lemma satisfies (1.4)
and (1.6).
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Lemma 35. Suppose that X is a reflexive complex Banach space and k is
a nonnegative integer. If the holomorphic mapping z — b(z) maps B,, into
K(X,Y), then the holomorphic mapping z +— R**b(z) also maps B, into
K(X.Y).

Proof. Let z € B,,. Let {f;} a sequence of elements of X which converges
weakly to 0 in X as j tends to infinity. Let us prove that lim; _, || R**b(2) fi|ly =
0. We know that the sequence {f;} is strongly bounded in X. Let j € N, by
using (1.4) for z = 0, we get that the function z — b(2)f; € AL(B,,Y). By
the reproducing kernel formula, it follows that

- b(w)f;

b(z)f; = /B = (z,w>)J”+1+a dve (w). (6.5)

Applying the partial differential operator R** to (6.5), we have
* b(w) f;
2k -
R*b(2)f; —/B = <Z7w>)nf+1+a+k dvg (w).
We also have
1b(w) fjlly 16Cw)ll £z ) 1511 x
<
11— (z,wy|rtitath = (1 — [z|)n+itatk

Cn+1+a)
= [ = Jz))nritark 16(w)l £x,v)»

and

/ (C(n+1+a)

1— |Z‘)n+1+0‘+k ||b(w)||£(Y,Y)dVa(w) < 00.

Therefore, by applying the dominated convergence theorem, we have that

_ b(w) fs
limsup [|R**b(2) f;||y < lim sup/ i 1b(w) £y dvg (w)
; s, |1—

j—00 j—o0 (z, w)|rtiroth

:/ lim; o [|b(w) f ||y dva(w) = 0.
B

o L= (2 w)[rtroth 208

Thus for each z € B,
Tim R4 | = 0.

The following result will be also important in the sequel.

Lemma 36. Suppose By € N", {f;} a sequence of elements of X which con-
verges weakly to 0 as j tends to infinity. For z € B,,, let x;(z) = zﬁofj. Then
{z;} C AL(B,,, X) and {z;} converges weakly to 0 in AP (B,,X).

Proof. Let j € N. Since f; — 0 weakly in X as j — oo, it follows that {f;}
is strongly bounded in X (see [9]). Let By € N® and z;(2) = 2% f;. It is clear
that {z;} C A2 (B, X). For every g € A? (B,,, X*), we have

(@5, g)ax = / (2;(=), 9(=)) x.x+ dva(2)

n
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_ / (2% £, 9(2)) x - v (2)

n

= / 2Po <fj,g(2’)>X,X*dVa(z)'

B,
Since
|27 (i 9(2)) x x| < 12705, 9(2)) x x+ |
< 1 x 9 x-
< Cllg(=)lx-»
and
, 1/p
/ g<z>||X*dua<z><(/ ||g<z>|§pdva<z>) < oo
n B

By using the dominated convergence theorem and the assumption, it follows
that

limsup(z;, g)a,x = / 2% lim (f;,9(2)) x x+dva(z) = 0. O
j—00 B, J——00
6.2. Boundedness of the Little Hankel Operator with Operator-Valued Sym-
bol on Vector-Valued Bergman Spaces

The principal result here is that, the little Hankel operator with operator-
valued symbol hy, is a bounded operator form AP (B,,, X) to AL(B,,,Y) with
1 < p < q < oo if and only if the symbol b belongs to the generalized vector-
valued Lipschitz space A, (B, £(X,Y)), where

'yo—(n+1+a)(1—1).

p q

The result obtained generalize the Oliver’s result [11, Theorem 4.2.2]. In the
following lemma, we first prove that the definition of the generalized vector-
valued Lipschitz space A (B, X), with v > 0 is independent of the integer
k used.

Lemma 37. Let f € H(B,,X). The following conditions are equivalent:
(a) There exists a nonnegative integer k > ~ such that
sup (1 — [2*) 7| R¥F £(2)]|x < oo
zeB,
(b) For every nonnegative integer k > v we have

sup (L= 2R  f(2) ] x < oo

Proof. Tt is clear that (b) = (a). So to complete the proof, we will prove that
(a) = (b). Suppose that there exists an integer k& > - such that
c:= sup (1 —[z[")* VR f(2)]|x < oo
z€B,
We want to prove that

Sup (1= )R f (2)]|x < 0.
z n
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Since ¢ < oo, then f € AL (B, X). Indeed, by [11, Theorem 3.1.2], we have
that

[fl110,x :/ (L= 1) IR f(2) | xdva(2)

n

- / (1= )[R £ x](1— |22 dvia(2)
c — |22 dy(z
< / (1 =) Vdu(z)

n

< o0.

By using Proposition 26, we have that

Ra,k+1f(z) — / f(w) dl/a(w).

5, (L= (2w} Tesist

Applyng Lemma 28, it follows that

R = [

IBTL

Ra,k
(1 - <z, w)){siuljlaqu%»l dVaJrk(w)-

Thus,

_w2k—'y a,ka — lw|?)at
RO F() 5/ [(1— Jw?)* 7 [[R" f (w) | x](1 — [w]*)*F

1= (2 w) [Tt t 1)

dv(w)

< c
~ (1= |22

Therefore, we have that

sup (1= [#f*) VR (2)] xS e < o0
zeB,

Also, if k is a nonnegative integer with k > « such that

¢ = sup (1= [z)F1 Y[ R (2) | x < oo,
z€B,

then

sup (1 — [2[*)" V[ R¥Ff(2)] x < 0.
z€B,

Applying Proposition 26 and Lemma 28 we have that
Ra,kf(z) — / f(w)dvg (w) _ / Ra’k+1f(w)dVa+k+l(w)
B, ( B,

T (o w)) 505~ fy, (T (w)) e
where z € B,,. By using Theorem 18, it follows that

Cla12VEE L=y || pesktl w2yt dy
L B e

_o [ U=l
B

1= (2 ) P iees i)

n

C/

L —
N1 PR
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Since z € B,, is arbitrary, we obtain that

sup (L= [z R (=) x S ¢ < oo -

Proposition 38. Let v > 0 and f € A,(B,,, X). The following conditions are
equivalent:

(i) F € AyolB, X).
(ii) Himg_1~ [|f — fslla, @®,,x) = 0, where fs is the dilation function defined
for z € By, by fs(z) :== f(sz).
(iii) f belongs to the closure of P(B,,X), where P(B,,X) is the space of
vector-valued holomorphic polynomials.

Proof. (i) = (ii). Suppose that 3 <7 < s < 1,and let f,(z) = f(s2), z € B,.
By the definition, we have:

1 = Fsllas @) = sup (L= 2P TIRYM(f = fo)(2)llx

= sup (1 — [2[)" T (RVFf)(2) — (R ) (2) | x

z€B,

= sup (1 — [2[)* (R f)(2) — (R f)(s2) | x

z€B,
= sup (1 — 2]V (R¥F £)(2) — X (2) (R f)(2)

z€B,
X (2) (B ) (2) = (B f)(s2) |1 x
< sup (1 - [2)F TR ) (2) = xe (2) (RO F) (2) |1 x
+ sup (L= 2" (2) (ROF £)(2) — (R*E f) (s2) |,

where X, is the characteristic function of the set {|z| < r}. We first have the
following estimate:

sup (1 - =) IR £)(2) = xe (2)(ROF ) (2)l|x

< Elﬁé(l = )" IR £)(2) = X () (R (2)]lx
+7_<s‘g|p<1(1 = IR £)(2) = X () (R ) (2)]x
= T<S|t;|p<1(1 = )R ) ()] x
< Tgitllzllvd(l = ) NRE 1) () x-

We secondly have the following estimate:

sup (11— =) () (R £)(2) = (RF ) (s2) 1 x

< sup (1= [2)" 7| (2) (RYF ) (2) = (R ) (s2) 1 x

|z|<r

+ osup (1= [ 77 (2)(RVFf) (2) = (RVFf)(s2) | x

r<|zl<1
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= sup (L= 2P T IRYFF)(2) = (RVFF)(s2)llx
z|<r

+ sup (1= [z) (R f)(s2)] x

r<|z|<1

Using the change of variables w = sz, we then obtain

sup (1 — [2)" V|[(R** f)(s2)]|x

r<|z|<1

~ s (—'1"'2)“||<Ra7’“f><w>x

rs<|w|<s 52
1 k—
= swp o (57 )T (R ) ()]
rs<|w|<s
<2207 sup (1= [wP) (R ) (w)]|x-
r2<|w|<1

It follows by using the assumption that

If = follay@axy < Cysupaqpyar (L= [w)* 7 [(ROFF)(w)x
+supyy <, (1= [ (R f)(2) — (ROFf)(s2)] x
with C., = 1+ 22(k=7)_ Since (R*F f)(sz) — (R*Ff)(z) in X uniformly on

the compact set {|z| < r} as s — 17, we have

lim sup (1 — |2|?)*Y||(R¥* f)(2) — R** f(sz)||x = 0.

ST z1<r
It follows that
B (1 = Fulla g, < G limsup(1 = )57 (RO ) (w)]x = 0.

Jw|—1—
(#4) = (iii). Given € > 0, by the assumption, there exists sg € (0,1)
such that

1f = Fsolla, @, x) <e (6.6)

Further note that fs, € H(%En,X) and 1 < 1+230 < i From this, and by

using Taylor’s formula, it follows that for each m € N, there exists a X-valued
polynomial p,,, such that

Jim - sup [ fso(2) = pm(2)[lx = 0.

X ze ﬁlﬂ%n
Therefore, there exists my € N such that

sup_ || fso(2) —pm(2)l[x <, (6.7)

2
zemﬁn

for m > my. By the Cauchy’s inequality, there exists a constant cg, > 0 such
that for each i = 1,...,n we have

0fsy  Opm

sup

1T <y sup |fso(2) — P(2)llx. (6.8)
2€B,

X zE 1_'_2S0Bn
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Suppose k is a nonnegative integer with k > ~. By using (6.8) and Theorem
27, there is a constant ¢ = ¢(sg,n, a, k) such that

sup [[(R" fso)(2) = (B iy ) (2) | x < € sUp_ [|fso(2) = Pma (2)|x-

Zeﬁn ZEWBT,,
(6.9)
It follows by (6.9) and (6.7) that
sup (1 — [2[*) 7[R (foy — Pmo) ()l x
z€B,
< Sup I(R** f50)(2) = (BR**pmy ) (2) ]| x
<c Supi ||f80(z) _pmo('z)HX
Zeﬁmn
< Ce€.
Thus
[ fso = Pmolla, @, x) < ce. (6.10)

Using (6.6) and (6.10), it follows that
If = Pmolla,@.,x) <N = fsolla,®.,x) + 1 fso = Pmolla, B, %)
<e+ce=(1+c)e.

(#91) = (i). Let f in the closure of the set of vector-valued polynomial
P(B,,X), in A,(B,,X). There exists a sequence of vector-valued polyno-
mials {p,, } in P(B,, X) such that

T (1 = Pl ) = 0. (6.11)
Let us prove that for each k > v,

lim (1 —[2[*)*"7|(R**f)(2)]x = 0.

|z|]—1
Let k > ~y. We have that
IRF () x < IR )() = (RFpm) (2)x + [(R*Fpm) (2) ]| x
<R £)(2) = (B pi) (2)]1x + B Fpmloc,x

where |[R¥*p,,|loo.x = max.ep, ||[(R**pm)(2)|x. It follows that for each
m € N, we have

(1= PR ) (2)l1x
< (1= [P MRYFF)(2) = (R pm) (2)[[x + (1= |21 T [ R i [l oo, x
< f = pmllay@a,x) + L= 12T R ppa|oc x-
Letting |z| — 17, we obtain that
l‘in‘ﬂsilp(l — 2P IR F () x < I~ pmllay 8a,)-
for each m € N. Now, letting m — oo on both sides of the previous inequality,
it follows by (6.11) that

limsup(1 — |z|?)* " 7|R** f(2)||x = 0.
|z|—1— -
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Remark 39. One of the consequences of the previous result is that, given
v > 0, the generalized little vector-valued Lipschitz space Ay o(B,,X) is a
closed subspace of the generalized vector-valued Lipschitz space A (B,,, X).

1 _
P
and we consider the generalized vector-valued Lipschitz space A, (B,,, X).

Corollary 40. Suppose 1 <t < oco. Then A, (B,,X) C AL (B,, X).

From now on, we choose 79 = (n+1+a«) ( %) ,with1l < p <g < oo,

Proof. Let k > ~9. Applying [11, Theorem 3.1.2], for f € A, (B,,X), we
have that

I/

[t 2/ [(1 = ) IR*F £ ()] x] dva(2)

By

B / [(1 = [P)* R f(2)l1x]" (1 = |2*)* dva (2)

n

Sl a0y [ (1= [B)™ () < o, -

n

In what follows, we assume that X,Y are reflexives complex Banach
spaces. We first introduce the following proposition which will be used in the
proof of Theorem 8.

Proposition 41. Suppose 1 < p < g < o0, 0<r <1 and~vy € N Ifa, €
K(X,Y), then the little Hankel operator hyy : AR (B, X) — AL(B,,Y) is a
compact operator, where g} (z) = a(rz)? for every z € B,.

Proof. Let {f;} be a sequence in A?(B,, X) such that f; — 0 weakly in
AP (B, X) as j tends to infinity. We want to prove that lim; o ||k f;]

q0nY =

0. Let the Taylor expansion of f; given by f;(z) = Z c}azﬁ € Ar (B, X).
BeEN™

Since f; — 0 weakly in A% (B,, X), applying Lemma 34, using the fact that

cg = &ij(O)/ﬁ!, we have that for all § € N, CJB — 0 weakly in X as j — oo.
By Lemma 32, for every z € B,,, we have

T+ 1 +a+y =B s,
hafi(2) = Y. ay(c) Pl =P17=6,
! el hen (v =B)C(n+1+a+y)

Therefore,

DDA R nakestiests et} O

gl Jilla,e,
Vg gy
q 1/q
dvg
OBt 1 tath) g ("’))

(L Y

=i q 1/q
AN+ 1+ a+ |y = B])llas (ch) ]Iy (r]z)" 7
: (/n ( 2 (Y= B)C(n+1+a+) dva(2)

BeEN™,B<y

BEN™,B<y

T AM(n+14+a+|y— 08| rlz)Y P ! Va(z :
< > (/n (H Wl T 1 a1 ) el ))

BeENT A<y
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1

_ Ty, YT +1+a+|y—8) Iv—Bla )q
- X @ T A U ) o)

- N0+ 1+ ot |y — )
~ (= A+ 1 +a+t )

llasy ()l

BENT, By

where the third line above is justified by the Minkowsky’s inequality for
integrals. Thus,

Y (n+14+a+|y—p5) =
hog fillgay S a()|y. (6.12
Wi filaer S 2, O g+ 1+arpp @ 612

Now, since cé — 0 weakly in X as j — oo, it is clear that gﬁ — 0 weakly in
X as j — oo. By the assumption, we know that a, € K(X,Y). Since CJB — 0
weakly in X as j — oo, we have that ||a7(cé)||y — 0 as j — oo. It follows

that

lim SUD;j o0 ||hglfj||q,a,Y S
. M(n+1+a+|y—8])
PEN"<Y (4 — BN (n+ 1+ a + 7))

lim;—cc [las () v = 0.

Let us state Oliver’s result on the boundedness of the little Hankel op-
erator with operator-valued symbol between vector-valued Bergman spaces.

Theorem 42. Let1 < p < q < oo. The little Hankel operator hy, : AL (B,,, X) —
A% (B,,,Y) is a bounded operator if and only if b € B (B, L(X,Y)), where

1 1
y=14+n+1+a) <—>
qa D

Moreover
17l 4z (B, x)—A%®B,.v) = 1Vll5, @, cx,v)-

Remark 43. Suppose 1 < p < ¢ < oo, and v = 1+(n+1+a)(%—%

Then + is not always positive. Indeed, since 1/¢ — 1/p € (—1,0), then v €
(—n—a, 1). It follows that when v € (—(n+«),0), the vector-valued v-Bloch
space B (B,, £L(X,Y)) is not interesting and does not make sense since the
definition of the vector-valued ~-Bloch space introduced by Oliver only takes
into account the case where v > 0. In Theorem 7, we correct the problem by

replacing the vector-valued y-Bloch space with the generalized vector-valued
Lipschitz space A, (B,,L(X,Y)), where o = (n + 1 + ) (% - %) . Since
v =1 — 7, we see that when 0 < 7y < 1, we have that

B, (Bn, L(X,Y)) = Avyy (B, L(X,Y)).

In what follows, we give the proof of Theorem 7 which generalize the
Theorem 42 and correct the mistake mentionned in Remark 43.
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6.3. Proof of Theorem 7

Let us recall the statement of Theorem 7.

Theorem 44. Suppose 1 < p < q < oo. The little Hankel operator hy :
AP (B,,, X) — AL(B,,Y) is a bounded operator if and only if

be A’yo(BmE(Y, Y)), where yo = (n + 1+ «) (% — %) . Moreover,

1]l A% 8, ) — A% B, v) = PllA, B,,.20%v))-

Proof. Let p’ and ¢ such that 1/p+ 1/p’ =1 and 1/g+ 1/¢' = 1. We first
assume that hj is a bounded operator from AP (B,,, X) to A%(B,,Y) with
norm ||y || = [|hol| az (B, x)— A%, v)- Let © € X and k> (n+ 14 «)/p. Let
z € B,, and put

x

Since k > (n+ 1+ a)/p, by Theorem 18, we have that f € A2 (B,,,X) and

w € B,.

lzllx
||f||p,a,X ~ (- ‘Z|2)k—(n+1+a)/p'

By [11, Proposition 2.1.3 |, we have that

hyf(z) = /an ( b(zu?g;lz?f-)l-f-a dve (w)

1—(z,w))
b(w)(T)
:/ (1 — (2, w))nti+atk dva(w)
= R*Fp(2)(T).
It follows by Theorem 14 that
IR**b(2)@)lly = llhof (2)lly
170 f Nl g,y
= Ry
sl llp.orx
= T Jepynr e
< IANIE P
~ (1 — |2]2)kt(nt1ta)(1/a—1/p)
_ ksl x
(1= |z[)F=n0
Since z € X is arbitrary and ||z| x = ||Z|x we get that

ok 170
R b(z)HL(Y,y) S W

Thus
sup (1 — 2% [R¥*b(2)[| o5 vy S ol

zEB,
By Lemma 37 this means that b € A, (B, £(X,Y)) and 1blla, B,.c%v)) S
(7o
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Conversely, assume that b € A, (B,,L(X,Y)). Let f € A2(B,,X), g €
Agj (B,,,Y*) and k > ~. By Corollary 40, we have that

b€ Ay (B, L(X,Y)) C A% (B, L(X,Y)),
so by [11, Lemma 4.1.1], Corollary 30, and Lemma 37 it follows that

(o f oy | = / (). 9(2))y dvalz)

n

/B (RO TR, g(2))y Do s (2)

S [ IR o [Tl (1 22044

n

S 1PlA 0, xy»/ 1F ) lxllg(2)lly+ (1 = [2*)*F0du(z).

By Hoélder’s inequality the last integral is less than or equal to

(/Bn 1f ()% (1 — |z2)a+qvod1/(z))1/q </Bn o) (1 |z|2)”‘d1/(z))1/ql |

For ¢ = p, we have 7y = 0 and thus

(o fs 9oy | S bllas, @, ey pllfllpaxlglly oy
For ¢ — p > 0, using Theorem 14, we have

17N = 17BN GIE" < 5 _'f(|))”< W =

1 (N F 1l x
(1= z)oe

It follows that

</Bn 1f (5%~ |Z|2)a+q%dy(z)>1/q )

B 1 — |2]2)+avo 1/q
e O e O R

| Z|2)Q’Yo
Therefore, by duality, we obtain that

Iholl az B, x)—a2(B,.v) =

sup |(ho f, g>a,Y| S Hb“AWO(Bn,E(Y7Y))' O
1fllp,a,x=Lillgllgr a,y+=1

6.4. Proof of Theorem 8
We are now ready to give the proof of the main result in this section that is
Theorem 8 that we recall here.

Theorem 45. Let X and Y be two reflexive compler Banach spaces. Sup-
pose that 1 < p < q < oo, and o > —1 The little Hankel operator hy :
AP (B, X) — AL(B,,Y) is a compact operator if and only if

b € A’YU,O(BTH K:(Ya Y))a
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where A, 0(B,, K(X,Y)) denotes the generalized little vector-valued Lips-

chitz space and vo = (n+ 1+ ) (% - %) , see (1.3).

Proof. First assume that b € A, o(B,,, K(X,Y)) and denote by b,.(z) := b(rz)
with z € B,, and 0 < r < 1. Since b € A, o(B,,,K(X,Y)), by Theorem 7, we
have that

P q < ~
1P6]l 4% B, %) — A% B0 v) S PllA,, (B,.cx 7))
Therefore, we have

17 = ho, [ a2 (B, x)— a8 @, v) S 10 = el (B, .c0x.v):

By using Proposition 38, we have that
rlir{lf 1b=brlla, B,.cxv) =0

so to prove that h; is a compact operator, it suffices to prove that hyp, is
a compact operator. Since b, is analytic on a neighbourhood of B,,, it can
be approximated by its Taylor polynomial in the generalized vector-valued
Lipschitz norm. Thus,

A 1br = Prrlla (8,.c0x,v)) = 0: (6.13)
with Py ,(2) = Z b(3)r1P! 2P where b(3) € K(X,Y) are the Taylor
BEN™,|B|<N

coeflicients of b. We also have by Theorem 7 that
e, — hPN,r”Ag(Bn,X)—)AZ(Bn,Y) S Mo — PN,THM0 (B,,,L(X,Y))"

So by (6.13), to prove that hy, is a compact operator, it is enough to prove
that hp, . is a compact operator. Since Py, is a polynomial, it is enough to
do the proof for monomials of the form I;(ﬁ)rw'zﬂ, with 8 € N?, 2 € B,, and
l;(ﬁ) € K(X,Y). Thus, according to Proposition 41, the proof of this part is
complete.

Conversely, for the “only if part”, let us assume that

hy : AP (B, X) — A%(B,,Y)

is a compact operator. Since hy is compact, hy is then bounded and Theorem
7 yields

be Ay, (B, L(X,Y)).

We shall first prove that the Taylor coefficients E(ﬂ), G € N™ of b belongs
to K(X,Y). Let {f;} C X such that f; — 0 weakly in X as j — oo, fix
Bo € N, and let x(z) = 2% f;. By Lemma 36, we have {z;} C A2(B,, X)
and {z,} converges weakly to 0 in A2 (B,,, X). Since
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16(B0) filly = sup [{b(Bo)fj, y" vy ]

lly* [ly»=1

and Y is reflexive, by the Kakutani’s theorem [9, Theorem 3.17] there exists
y; € Y* with [lyf|ly~ = 1 such that

”B(ﬂO)JTjHY = |<B(ﬁo)7j7 Z/J*'>Y,Y*|-

But y; € AP (B,,,Y*). By Lemma 23, we have

oz, hony | = / (b(2)TR(2), 42y v (2)

_ /IEB 29003 2PH(8) Tyt ) vy - dva(2)

BEN™

= | S BT v vy / 2550y, (2)

ﬂENTL Bn

[ / %02 (2)

 BT(n+a+1)
L(n+|Bo| +a+1)
ﬂo'F(n +a+ 1) A~ —
= b . N
where Fubini’s theorem is justified by Lemma 31 with {z;} C H*(B,,X).
Since hy, is compact and {z;} converges weakly to 0 as j tends to infinity, we
have that {hyx;} converges strongly to 0 as j tends to infinity, therefore one
gets that

[(0(50) F: 9} v+

lim (hp2j, Y5 )a,y = 0.
J]—00

Thus

Bo'T'(n+a+1)
i D(n+ 6ol +a+1)

We then obtain

1(B0) 3 lly = 0.

Jim [[b(%0) 55 = 0.

In fact, we have shown that 13(60) belongs to K(X,Y) and as 3, is arbitrary,
this holds for all 3 € N". Let 1 < ¢ < oo. Since b € A, (B, L(X,Y)), we
have that b € A% (B,,, £(X,Y)) and

lim Ib(w) = D~ (B % 5 vy dWalw) = 0.

N—o0
B 1B]<N

Let z € B,,. There exists a constant C, > 0 such that
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1) = 3 B9)P Ny <o [ Ibw) = 32 6310 oy (o)

IBI<N " [BISN

Thus,

hm 16(2) Z b 5||L(Y,Y)) =0.
IBI<N

Since z € B, is arbitrary, we deduce that b(z) € K(X,Y), for each z €
B,,. It remains to show that b satisfy the “little ~y- Lipschitz” condition.
Let # € X and y* € Y*. Since b € A, (B,,L(X,Y)), then the mapping
z + (b(2)T,y*)yy- belongs to AL (B,,C). By using the reproducing kernel
formula, it follows that

Wy = [ BT 5" vy, ). (6.14)

B, (1 — (z,w))"F1te
Let k > 7. Applying the operator R** in (6.14), we obtain that

(ROFD(2)T, 5" )y = /B i <_()(ZZ)Z>Q);>J§I;+kdya(w). (6.15)

Let z € B,. Since ||R0"kb(z)||£(y7y) = SUD||x=1 | R¥*b(2)(Z)||y, and by
Lemma 35, the operator R**b(z) is compact. So there exists z¢(z) € X with
lzo(2)]|x =1 and

IR b(2)ll £x.vy = IRFb(2)a0(2) ]y -
Also

ISR Gl = s (BT 1|

Since Y is reflexive, it follows by the Kakutani’s theorem [9, Theorem 3.17]
that there exists y5(z) € Y* with ||y (2)|ly+~ = 1 such that

IR**b(2) | £ x,vy = [1BF0(2) (20 (2))ly = {R*Fb(2)a0(2), 45 (2)) v,y .
(6.16)
By (6.15) and (6.16) we get

(1= ) IR () vy =

— |2|2)k—0
/ (b(wjao(z), 5 () _(1<Z L!)iﬂm%d%(w) — [(hos, ) ey |

with
zo(2)(1 = [P

0 (waopp 0 Wb

x.(w) =

and
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V(] — |2|2)kH+(n+14a) fq—B
) = BE=12P) wen.
(1w, 2] P #ast=7
where (3 is chosen such that
(n+l4+a)/p<pf<k+n+1+a)/q

By Theorem 18, we have z, € A2 (B,,, X), y; € Agj (B,,,Y™), and

sup ||z |[p,a,x < 00, sup [|yZlq ,a,y+ < o0

zeb, zeB,
Let us prove that

z, — 0 weakly in A2 (B,,,X) as |z] — 1. (6.17)

Since

S 122 . x < 00,
z€B,,

to prove (6.17), by Lemma 33, it suffices to prove that
<(EZ7ew,a*>oc,X — 0 as |Z| B 1_7

where for each a* € X* and w € B,,, we have

1

(1_<<7w>)n+1+aa*, ceBn

Cw,a* €)=

By using the definition of e, o+ and the reproducing kernel formula, it follows

that

(T2 ewarJpax = / (22(0): e () x.x+ dva(O)
1 *
:/ <'TZ(C) (1 — <C w>)n+1+aa >X,X*dya(C)

_</ (1—¢ wC "+1+adV°‘(C)’a*>X,X*

Z(w),a )X, X+

Therefore, we have

(22, €w.ar )p.a.x| = [(z2(w), ") x x|
_ [5[2)8—(n+1ta)/p
A oy e

(1 - [o[2)0 -t/
R ()

as |z| — 17. By using (6.17), the compactness of h; and the fact that

la*|[x+ — 0

sup [[4Zllgr,0,y+ < o0,
z€B,

it follows that
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lim (1= [z R 0(2) | o yy = N

|z|—1—

Hli |<hbx27y:>o¢,Y| = 07

|z|—1

which completes the proof of the theorem. O
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