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Abstract. In this paper, we study the boundedness and the compact-
ness of the little Hankel operators hb with operator-valued symbols b
between different weighted vector-valued Bergman spaces on the open
unit ball Bn in C

n. More precisely, given two complex Banach spaces
X, Y, and 0 < p, q ≤ 1, we characterize those operator-valued symbols b :
Bn → L(X, Y ) for which the little Hankel operator hb : Ap

α(Bn, X) −→
Aq

α(Bn, Y ), is a bounded operator. Also, given two reflexive complex Ba-
nach spaces X, Y and 1 < p ≤ q < ∞, we characterize those operator-
valued symbols b : Bn → L(X, Y ) for which the little Hankel operator
hb : Ap

α(Bn, X) −→ Aq
α(Bn, Y ), is a compact operator.
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1. Introducton

It is well known that Hankel operators constitute a very important class
of operators in spaces of analytic functions. The study of these operators on
different analytic spaces is not only motivated by the mathematical challenges
it raises, but also by many applications on applied mathematics and in physics
(see for example [13] for more information). In this paper, we are interested on
the boundedness and the compactness problem of the little Hankel operator
with operator-valued symbols on weighted vector-valued Bergman spaces on
the unit ball.
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Throughout this paper, we fix a nonnegative integer n and let

C
n = C × · · · × C

denote the n-dimensional Euclidean space. For

z = (z1, . . . , zn), w = (w1, . . . , wn),

in C
n, we define the inner product of z and w by

〈z, w〉 = z1w1 + · · · + znwn,

where wk is the complex conjugate of wk. The resulting norm is then

|z| =
√

〈z, z〉 =
√

|z1|2 + · · · + |zn|2.
Endowed with the above inner product, Cn become a Hilbert space whose
canonical basis consists of the following vectors

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

The open unit ball in C
n is the set

Bn = {z ∈ C
n : |z| < 1}.

When α > −1, the weighted Lebesgue measure dνα in Bn is defined by

dνα(z) = cα(1 − |z|2)αdν(z), z ∈ Bn

where dν is the Lebesgue measure in C
n and

cα =
Γ(n + α + 1)
n!Γ(α + 1)

is the normalizing constant so that dνα becomes a probability measure on Bn.
A function defined on the unit ball Bn will be called a vector-valued function
when it takes its values in some vector space. If X is a complex Banach space,
a vector-valued function f : Bn −→ X (a X-valued function) is said to be
strongly holomorphic in Bn if for every z ∈ Bn and for every k ∈ {1, . . . , n},
the limit

lim
λ−→0

f(z + λek) − f(z)
λ

exists in X, where λ ∈ C − {0}. The space of all X-valued strongly holo-
morphic functions on Bn will be denoted by H(Bn,X). We will also denote
by H∞(Bn,X) the space of all bounded X-valued holomorphic functions.
Let X� denotes the space of all bounded linear functionals x� : X −→ C

(the topological dual space of X). We say that a vector-valued function
f : Bn −→ X is weakly holomorphic if for every x� ∈ X�, the scalar-valued
function x�(f) : Bn −→ C is holomorphic in the usual sense. An impor-
tant result by Dunford [7] shows that a vector-valued function is strongly
holomorphic if and only if it is weakly holomorphic.
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1.1. The Conjugate X of the Complex Banach Space X

In the sequel, we will need the notion of “conjugate” of a complex Banach
space [11].

We will use the following definition and notation which can be found in
[11]. Let x ∈ X, x� ∈ X� and λ ∈ C. We define

(λx�)(x) := λx�(x).

We also use the notation

〈x, x�〉X,X� = x�(x)

to represent the ‘inner product’ in the complex Banach space X. We have
the following identities

〈λx, x�〉X,X� = λ〈x, x�〉X,X� = 〈x, λx�〉X,X� ,

so that we have a regular rule of an inner product. The complex conjugate x
of x ∈ X, is the linear functional on X� defined by

x(x�) = 〈x, x�〉X,X� ,

for every x� ∈ X�. Therefore,

X = {x : x ∈ X}
is called the complex conjugate of the Banach space X. With the norm defined
by

‖x‖ := sup
‖x�‖X�=1

|x(x�)|,

X becomes a Banach space. Moreover, we have that ‖x‖X = ‖x‖X for any
x ∈ X, so that X and X are isometrically anti-isomorphic.

1.2. Vector-Valued Bergman Space

In the sequel, we will integrate vector-valued measurable functions in the
sense of Bochner (see [7] for more information). Let X be a complex Ba-
nach space. A measurable function f : Bn −→ X is Bochner-integrable with
respect to the measure να in the unit ball Bn if and only if the Lebesgue
integral

‖f‖1,α,X =
∫

Bn

‖f(z)‖Xdνα(z)

is finite. For 0 < p < ∞, the Bochner-Lebesgue space Lp
να

(Bn,X) consists of
all vector-valued measurable functions f : Bn −→ X such that

‖f‖p
p,α,X =

∫

Bn

‖f(z)‖p
Xdνα(z) < ∞.

The vector-valued Bergman space Ap
α(Bn,X) is defined by

Ap
α(Bn,X) = Lp

να
(Bn,X) ∩ H(Bn,X).
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The weak Bochner-Lebesgue space Lp,∞
α (Bn,X) consists of all vector-

valued measurable functions f : Bn −→ X for which

‖f‖Lp,∞
α (Bn,X) =

(
sup
λ>0

λpνα ({z ∈ Bn : ‖f(z)‖X > λ})
)1/p

< ∞.

The weak vector-valued Bergman space Ap,∞
α (Bn,X) is defined by

Ap,∞
α (Bn,X) = H(Bn,X) ∩ Lp,∞

α (Bn,X).

Let X,Y be two complex Banach spaces and α > −1. We have the
following two lemmas whose proofs can be found in [11].

Lemma 1. Let T : X −→ Y be a bounded linear operator. If f : Bn −→ X
is να-Bochner integrable in the unit ball, then Tf : Bn −→ Y is να-Bochner
integrable in the unit ball and we have

∫

Bn

Tf(z)dνα(z) = T

(∫

Bn

f(z)dνα(z)
)

.

Lemma 2. If f : Bn −→ X is a να-Bochner integrable vector-valued function
in the unit ball, then the following inequality holds

∥
∥∥∥

∫

Bn

f(z)dνα(z)
∥
∥∥∥

X

≤
∫

Bn

‖f(z)‖Xdνα(z).

1.3. Vector-Valued Lipschitz Spaces and Vector-Valued γ-Bloch Spaces

The radial derivative of a vector-valued holomorphic function f : Bn −→ X
denoted Nf is defined for z ∈ Bn by

Nf(z) :=
n∑

j=1

zj
∂f

∂zj
(z). (1.1)

Let f ∈ H(Bn,X) and

f(z) =
∞∑

k=0

fk(z), z ∈ Bn

the homogeneous expansion of the function f where fk are homogeneous
holomorphic polynomials of degree k with coefficients in X. For any two real
parameters α and t such that neither n+α nor n+α+ t is a negative integer,
we define an invertible operator Rα,t : H(Bn,X) → H(Bn,X) as

Rα,tf(z) :=
∞∑

k=0

Γ(n + 1 + α)Γ(n + 1 + k + α + t)
Γ(n + 1 + α + t)Γ(n + 1 + k + α)

fk(z), (1.2)

where z ∈ Bn and Γ is the classical Euler Gamma function. For γ ≥ 0,
we denote by Γγ(Bn,X) the space of vector-valued holomorphic functions
f : Bn −→ X for which there exists an integer k > γ such that

‖f‖γ,X = ‖f(0)‖X + sup
z∈Bn

(1 − |z|2)k−γ‖Nkf(z)‖X < ∞,

where Nk = N ◦ N ◦ · · · ◦ N k-times. The definition of the space Γγ(Bn,X)
is independent of the integer k used. The space Γγ(Bn,X) will be called
the vector-valued holomorphic Lipschitz space and for γ = 0, we write
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B(Bn,X) = Γ0(Bn,X). It is clear that f ∈ B(Bn,X) if and only if f is a
vector-valued holomorphic function and

‖f‖B(Bn,X) = ‖f(0)‖X + sup
z∈Bn

(1 − |z|2)‖Nf(z)‖X < ∞.

That is, B(Bn,X) = Γ0(Bn,X) is the vector-valued Bloch space. The vector-
valued γ-Bloch space Bγ(Bn,X) for γ > 0, is defined as the space of vector-
valued holomorphic functions f ∈ H(Bn,X) such that

sup
z∈Bn

(1 − |z|2)γ‖Nf(z)‖X < ∞.

The little vector-valued γ-Bloch space Bγ,0(Bn,X) for γ > 0, is the subspace
of Bγ(Bn,X) consisting of functions f such that

lim
|z|→1−

(1 − |z|2)γ‖Nf(z)‖X = 0.

It is easy to see that B1(Bn,X) = B(Bn,X). Therefore, the vector-valued γ-
Bloch spaces with γ > 0 generalize the vector-valued Bloch space. Let γ ≥ 0.
The generalized vector-valued Lipschitz space Λγ(Bn,X) consists of vector-
valued holomorphic functions f in Bn such that for some nonnegative integer
k > γ, we have

‖f‖Λγ(Bn,X) = sup
z∈Bn

(1 − |z|2)k−γ‖Rα,kf(z)‖X < ∞.

We consider the following norm on the generalized vector-valued Lipschitz
space Λγ(Bn,X) by

‖f‖Λγ(Bn,X) = sup
z∈Bn

(1 − |z|2)k−γ‖Rα,kf(z)‖X ,

where k > γ is a nonnegative integer. Equipped with this norm, the general-
ized vector-valued Lipschitz space Λγ(Bn,X) becomes a Banach space. The
generalized little vector-valued Lipschitz space Λγ,0(Bn,X) is the subspace
of Λγ(Bn,X), which consists of functions f ∈ Λγ(Bn,X) such that

lim
|z|→1−

(1 − |z|2)k−γ‖Rα,kf(z)‖X = 0. (1.3)

When γ = 0 and k = 1, then Λ0(Bn,X) = B(Bn,X). It is also important
to note that as in the classical case, when 0 < γ < 1, we have Λγ(Bn,X) =
B1−γ(Bn,X).

1.4. Little Hankel Operator with Operator-Valued Symbol

Given two complex Banach spaces X and Y, we denote by L(X,Y ) the space
of all bounded linear operators T : X −→ Y endowed with the following
norm

‖T‖L(X,Y ) = sup
‖x‖X=1

‖Tx‖Y = sup
‖x‖X=1,‖y�‖Y �=1

|〈Tx, y�〉Y,Y � |,

where T ∈ L(X,Y ). Then L(X,Y ) is a Banach space. We consider an
operator-valued function b : Bn −→ L(X,Y ) and we suppose that b ∈
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H(Bn,L(X,Y )). The little Hankel operator with operator-valued symbol b,
denoted hb is defined for z ∈ Bn by

hbf(z) :=
∫

Bn

b(w)f(w)
(1 − 〈z, w〉)n+1+α

dνα(w), f ∈ H∞(Bn,X).

In the sequel, we will assume that the symbol b satisfies the following condi-
tion

∫

Bn

‖b(w)‖L(X,Y )

|1 − 〈z, w〉|n+1+α
dνα(w) < ∞, for every z ∈ Bn. (1.4)

It is easy to check that if b satisfies (1.4), then the little Hankel operator hb

is well defined on H∞(Bn,X).

1.5. Problems and Known Results

The boundedness properties of the little Hankel operator in the classical
case (that is, when X = Y = C) have been extensively studied and many
results are now well known. For the case n = 1, important references are
[6,15]. For n > 1, a complete characterization has been obtained by Aline
Bonami and Luo Luo in [4] when p ≤ q. In 2015, Pau and Zhao [12] solved
the case 1 < q < p < ∞. Indeed, they showed that if b is a holomorphic
symbol, the little Hankel operator hb extends to a bounded operator from
Ap

α(Bn,C) into Aq
α(Bn,C), with 1 < q < p < ∞, if and only if the symbol b

belongs to the weighted Bergman space At
α(Bn,C) where 1/t = 1/q−1/p. We

are here concerned with the question of characterizing the operator-valued
holomorphic symbols b for which the little Hankel operator hb extends into
a bounded operator from Ap

α(Bn,X) into Aq
α(Bn, Y ) where 0 < p, q < ∞. In

[1] Aleman and Constantin solved this problem for the particular case n = 1,
p = q = 2 and X = Y = H where H is a separable Hilbert space. They showed
that the little Hankel operator hb extends into a bounded operator from
A2

α(Bn,H) into A2
α(Bn,H) if and only if the symbol b belongs to the Bloch

space B(Bn,L(H)). Constantin also obtained in [5] that the little Hankel
operator hb is a compact operator from A2

α(Bn,H) into A2
α(Bn,H) if and only

if the symbol b belongs to the little vector-valued Bloch space B0(Bn,K(H)).
Their results extend clearly the one known in the classical case (when H = C).
In [11], Oliver solved this problem in the case 1 < p, q < ∞. Mainly, he showed
that for 1 < p < ∞, the little Hankel operator hb is bounded from Ap

α(Bn,X)
into Ap

α(Bn, Y ) if and only if the symbol b belongs to the vector-valued Bloch
space B(Bn,L(X,Y )) and this result clearly generalizes the one obtained by
Aleman and Constantin in [1]. Moreover, for 1 < p ≤ q < ∞, Oliver showed
that the little Hankel operator hb is bounded from Ap

α(Bn,X) into Aq
α(Bn, Y )

if and only if the symbol b belongs to the γ-Bloch space Bγ(Bn,L(X,Y )) with

γ = 1+(n+1+α)
(

1
q − 1

p

)
. Also for 1 < q < p < ∞, Oliver showed that the

little Hankel operator hb is bounded from Ap
α(Bn,X) into Aq

α(Bn, Y ) if and
only if b ∈ At

α(Bn,L(X,Y )), with 1/t = 1/q−1/p, which generalizes the main
result in [12]. We are also concerned here with the question of characterizing
the operator-valued holomorphic symbols for which hb extends into a compact
operator from Ap

α(Bn,X) into Aq
α(Bn, Y ) where 1 < p ≤ q < ∞.
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1.6. Statement of Results

Let X be a complex Banach space and 0 < p ≤ 1. The topological dual
of the Bergman space Ap

α(Bn,X) can be identified with the Lipschitz space
Γγ(Bn,X�) as follows:

Theorem 3. Let 0 < p ≤ 1. The space (Ap
α(Bn,X))� can be identified with

Γγ(Bn,X�) with γ = (n + 1 + α)
(

1
p − 1

)
under the pairing

〈f, g〉α,X = ck

∫

Bn

〈f(z),Dkg(z)〉X,X�(1 − |z|2)kdνα(z), (1.5)

where Dk is defined by (2.3), k > γ, is an integer, g ∈ Γγ(Bn,X�) and
f ∈ Ap

α(Bn,X). Moreover,

‖g‖Γγ(Bn,X�) � sup
‖f‖A

p
α(Bn,X)=1

|〈f, g〉α,X |.

Before stating the next results, we need to make another assumption on
the operator-valued symbol b. More precisely, we assume that the operator-
valued holomorphic symbol b satisfies the following condition:

∫

Bn

‖b(z)‖L(X,Y ) log
(

1
1 − |z|2

)
dνα(z) < ∞. (1.6)

Let X and Y be two complex Banach spaces. Our contributions to
the boundedness problem of the little Hankel operator with operator-valued
symbol for 0 < p, q ≤ 1 are the following :

Theorem 4. Suppose 0 < p ≤ 1, and α > −1. If the little Hankel opera-
tor hb extends to a bounded operator from Ap

α(Bn,X) into Aq
α(Bn, Y ) for

some positive q < 1, then the symbol b is in Γγ(Bn,L(X,Y )) with γ =

(n+1+α)
(

1
p − 1

)
. Conversely, if b is in Γγ(Bn,L(X,Y )) with γ = (n+1+

α)
(

1
p − 1

)
, then the little Hankel operator hb : Ap

α(Bn,X) −→ A1,∞
α (Bn, Y )

is a bounded operator.

As a direct consequence, we have the following result:

Corollary 5. Suppose 0 < p ≤ 1, and α > −1. The little Hankel operator
hb extends to a bounded operator from Ap

α(Bn,X) into Aq
α(Bn, Y ) for some

positive q < 1 if and only if its symbol b belongs to Γγ(Bn,L(X,Y )), where

γ = (n + 1 + α)
(

1
p − 1

)
.

Theorem 6. Let 0 < p ≤ 1, α > −1 and γ = (n + 1 + α)
(

1
p − 1

)
. The

little Hankel operator extends to a bounded operator from Ap
α(Bn,X) into

A1
α(Bn, Y ) if and only if for some integer k > γ,

‖Nkb(w)‖L(X,Y ) ≤ C

(1 − |w|2)k−γ

(
log

1
1 − |w|2

)−1

w ∈ Bn. (1.7)
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Theorem 7. Suppose 1 < p ≤ q < ∞. The little Hankel operator hb : Ap
α

(Bn,X) → Aq
α(Bn, Y ) is a bounded operator if and only if

b ∈ Λγ0(Bn,L(X,Y )), where γ0 = (n + 1 + α)
(

1
p − 1

q

)
. Moreover,

‖hb‖Ap
α(Bn,X)→Aq

α(Bn,Y ) � ‖b‖Λγ0 (Bn,L(X,Y )).

If X,Y are reflexive complex Banach spaces, then we have the following
theorem

Theorem 8. Suppose that 1 < p ≤ q < ∞, and α > −1 The little Hankel
operator hb : Ap

α(Bn,X) −→ Aq
α(Bn, Y ) is a compact operator if and only if

b ∈ Λγ0,0(Bn,K(X,Y )),

where Λγ0,0(Bn,K(X,Y )) denotes the generalized little vector-valued Lips-

chitz space and γ0 = (n + 1 + α)
(

1
p − 1

q

)
, see (1.3).

1.7. Plan of the Paper

The paper is divided into six sections. In Sect. 2, we recall some preliminary
notions on vector-valued holomorphic functions and we also give the proofs of
some important results. Sect. 3 contains the proof of Theorem 3 on the dual
of the vector-valued Bergman space Ap

α(Bn,X) for 0 < p ≤ 1. In Sect. 4, we
give the proof of Theorem 4 and Corollary 5. In Sect. 5, we give the proof of
Theorem 6. In Sect. 6, We first give some preliminaries results to prepare the
proof of Theorem 8. We recall the result by Oliver [11] of the boundedness of
the little Hankel operator with operator-valued symbol hb from Ap

α(Bn,X)
into Aq

α(Bn, Y ), with 1 < p ≤ q < ∞ and we generalize it. In the same
section, we give the proof of Theorem 8.

Throughout this paper, when there is no additional condition, X and Y
will denotes two complex Banach spaces, the real parameter α will be chosen
such that α > −1 and c will be a positive constant whose value may change
from one occurrence to the next. We will also adopt the following notation:
we will write A � B whenever there exists a positive constant c such that
A ≤ cB. We also write A � B when A � B and B � A.

2. Preliminaries

2.1. Vector-Valued Bergman Projection and Integral Estimates

Here we give some definitions and notations which will be used later and can
be found in [4,11].

For f ∈ L1
α(Bn,X) and z ∈ Bn, the Bergman projection Pαf of f is the

integral operator defined by

Pαf(z) :=
∫

Bn

Kα(z, w)f(w)dνα(w),

where Kα(z, w) :=
1

(1 − 〈z, w〉)n+1+α
is the Bergman reproducing kernel of

Bn. In this situation, Pαf is also a X-valued holomorphic function.
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Lemma 9. (Density) Suppose that 0 < p < ∞. Then the space of all bounded
vector-valued holomorphic functions H∞(Bn,X) is dense in Ap

α(Bn,X).

Proof. We are going to give the proof for 0 < p < 1, since the case 1 ≤ p < ∞
is [11, Lemma 2.1.4]. Given a function f ∈ Ap

α(Bn,X), let fρ defined for
z ∈ Bn by fρ(z) := f(ρz), where 0 < ρ < 1. The function fρ is holomorphic
in the set {z ∈ Bn : |z| < 1/ρ} hence is bounded on Bn. We first recall that
the integral means

Mp(r, f) :=
∫

Sn

‖f(rζ)‖p
Xdσ(ζ), 0 ≤ r < 1

are increasing with r, see [14, Corollary 4.21]. Since Mp(r, fρ) = Mp(ρr, f),
we have by Minkowski’s inequality that

Mp
p (r, fρ − f) ≤ Mp

p (r, f) + Mp
p (r, fρ) ≤ 2Mp

p (r, f).

By the formula of [11, (1.1.1)], (integration in polar coordinates formula) we
get

‖f − fρ‖p
p,α,X = 2ncα

∫ 1

0

Mp
p (r, fρ − f)(1 − r2)αr2n−1dr. (2.1)

Since f ∈ Ap
α(Bn,X), we have that the function Mp

p (r, f) is integrable over
the interval [0, 1) with respect to the measure 2n(1 − r2)αr2n−1dr. It is also
clear that fρ → f on any compact subsets of Bn which implies that Mp

p (r, fρ−
f) → 0 for each r ∈ [0, 1) as ρ → 1. Applying the dominated convergence
theorem in (2.1), we obtain that ‖f − fρ‖p

p,α,X −→ 0, as ρ → 1. �

Corollary 10. For 0 < p ≤ 1, the following inclusion is dense

A2
α(Bn,X) ⊂ Ap

α(Bn,X).

Proof. The proof follows directly from Lemma 9. �

In [3], Oscar Blasco obtained the duality theorem for the vector-valued
Bergman spaces in the unit disc B1 without any restriction on the Banach
space. The proof also works for the unit ball Bn. The result is stated as
follows:

Theorem 11. (Duality). Suppose 1 < p < ∞. The dual space (Ap
α(Bn,X))�

can be identified with Ap′
α (Bn,X�), where p′ is the conjugate exponent of p

given by 1
p + 1

p′ = 1, under the integral pairing defined by

〈f, g〉α,X :=
∫

Bn

〈f(z), g(z)〉X,X�dνα(z), (2.2)

for any f ∈ Ap
α(Bn,X), g ∈ Ap′

α (Bn,X�).

Remark 12. Suppose 1 < p < ∞. If X is a reflexive complex Banach space,
then the vector-valued Bergman space Ap

α(Bn,X) is a reflexive Banach space.

The following reproducing kernel formula also holds for vector-valued
Bergman spaces. The proof can be found in [11, Proposition 2.1.2].
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Proposition 13. Let f ∈ A1
α(Bn,X). We have

f(z) :=
∫

Bn

f(w)
(1 − 〈z, w〉)n+1+α

dνα(w),

for any z ∈ Bn.

We have the following pointwise estimate on the vector-valued Bergman
spaces. The proof can be found in [11].

Theorem 14. Let 0 < p < ∞. Then

‖f(z)‖X ≤ ‖f‖p,α,X

(1 − |z|2)(n+1+α)/p
,

for any f ∈ Ap
α(Bn,X) and z ∈ Bn.

The following lemma is critical for many problems concerning the weighted
vector-valued Bergman spaces Ap

α(Bn,X) whenever 0 < p ≤ 1 and will be
extensively used.

Lemma 15. Let 0 < p ≤ 1. Then
∫

Bn

‖f(z)‖X(1 − |z|2)( 1
p −1)(n+1+α)dνα(z) ≤ ‖f‖p,α,X ,

for all f ∈ Ap
α(Bn,X).

Proof. Write

‖f(z)‖X = ‖f(z)‖p
X‖f(z)‖1−p

X ,

and estimate the second factor using Theorem 14. The desired result follows.
�

The following technical result is proved in [4, Lemma 3.1]

Lemma 16. Let β, δ > 0. For all w ∈ Bn, we have

Iα(w) :=
∫

Bn

∣
∣∣∣log

(
1 − 〈z, w〉
1 − |w|2

)∣∣∣∣

δ (1 − |w|2)β

|1 − 〈z, w〉|n+1+α+β
dνα(z) ≤ C,

where C is independent of w and log is the principal branch of the logarithm.

In the sequel, we will also need the following lemma which the scalar
version can be found in [8].

Lemma 17. If 0 < q < 1, then the identity i : L1,∞
α (Bn,X) ↪→ Lq

α(Bn,X) is
continuous in the sense that there exists a constant C(q) > 0 such that for
every f ∈ L1,∞

α (Bn,X), we have

‖f‖q,α,X ≤ C(q)‖f‖L1,∞
α (Bn,X).

The following result will be very useful in many situations. A proof can
be found in [14].

Theorem 18. For β ∈ R, let

Iα,β(z) :=
∫

Bn

(1 − |w|2)αdν(w)
|1 − 〈z, w〉|n+1+α+β

, z ∈ Bn.
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(i) If β = 0, there exists a constant C > 0 such that

Iα,β(z) ≤ C log
1

1 − |z|2 , z ∈ Bn.

(ii) If β > 0, there exists a constant C > 0 such that

Iα,β(z) ≤ C
1

(1 − |z|2)β
, z ∈ Bn.

(iii) If β < 0, there exists a constant C > 0 such that

Iα,β(z) ≤ C.

2.2. Differential Operators and Equivalent Norms for Γγ

Given a positive integer k, we define the differential operator Dk by

Dk := (2I + N) ◦ (3I + N) ◦ . . . ◦ ((k + 1)I + N), (2.3)

where I is the identity operator and N is the differential operator given in
(1.1).

In the sequel, we denote by P(Bn,X) the space of all vector-valued
holomorphic polynomials. The proof of the following lemma is similar as in
the scalar case in [10].

Lemma 19. For all f ∈ P(Bn,X) and g ∈ P(Bn,X�), we have the following
identity
∫

Bn

〈f(z), g(z)〉X,X�dνα(z) = ck

∫

Bn

〈f(z),Dkg(z)〉X,X�(1 − |z|2)kdνα(z),

where ck is a positive constant depending only on the integer k. The above
identities are valid for vector-valued holomorphic functions when both sides
make sense.

The following lemma will be very useful in the sequel.

Lemma 20. Let {ak} a sequence of positive numbers. For any positive integer
k, let Mk the differential operator of order k defined by

Mk := (a0I + N) ◦ (a1I + N) ◦ . . . ◦ (ak−1I + N).

Then a vector-valued holomorphic function f belongs to Γγ(Bn,X) if and
only if there exists an integer k > γ such that

sup
z∈Bn

(1 − |z|2)k−γ‖Mkf(z)‖X < ∞.

Proof. Let us assume first that f ∈ Γγ(Bn,X), and we prove the desired
estimate on Mk. By assumption, there exists an integer k > γ and a positive
constant C such that

‖Nkf(z)‖X ≤ C(1 − |z|2)γ−k,

for any z ∈ Bn. It is enough to prove that the following inequality

‖N jf(z)‖X < C(1 − |z|2)γ−k,
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holds for 0 ≤ j < k, since the assumption give the case j = k. For g ∈
H(Bn,X) and z = rz′, where r = |z|, and z′ is in the unit sphere. We have

Ng(rz′) = r∂rg(rz′).

Thus,

g(rz′) − g(z′/2) =
∫ r

1
2

Ng(sz′)
ds

s
.

Now, for g ∈ H(Bn,X) such that ‖Ng(z)‖X ≤ C(1−|z|2)γ−k. We have that

‖g(rz′) − g(z′/2)‖X ≤ 2
∫ r

1
2

‖Ng(sz′)‖Xds

≤ 4C

∫ r

1
2

(1 − s2)γ−ksds

= −2C

∫ r

1
2

−2s(1 − s2)γ−kds

=
[ −2C

γ − k + 1
(1 − s2)γ−k+1

]r

1
2

=
−2C

γ − k + 1

{
(1 − r2)γ−k+1 − (1 − 1

4
)γ−k+1

}
.

Now, if γ − k + 1 < 0, then

‖g(rz′) − g(z′/2)‖X ≤ −2C

γ − k + 1
(1 − r2)γ−k = Ck,γ(1 − |z|2)γ−k.

If γ − k + 1 > 0, then

‖g(rz′) − g(z′/2)‖X ≤ 2C

γ − k + 1

{
(1 − 1

4
)γ−k+1 − (1 − r2)γ−k+1

}

≤ 2C

γ − k + 1
(1 − 1

4
)γ−k+1 = C ′

k,γ

≤ C ′
k,γ(1 − |z|2)γ−k,

where the last inequality is justified using the fact that (1 − |z|2)γ−k > 1. It
then follows that

‖g(z)‖X ≤ C(1 − |z|2)γ−k.

Now, we use this fact inductively for g = Nkf, then g = Nk−1f, . . . to
conclude. Conversely, assume that there exists an integer k > γ and a positive
constant C such that

‖Mkf(z)‖X ≤ C(1 − |z|2)γ−k,

for any z ∈ Bn. To conclude, it is sufficient to prove that for a fixed positive
real a, the inequality

‖ag(z) + Ng(z)‖X ≤ C(1 − |z|2)γ−k (2.4)

implies the inequality

‖Ng(z)‖X ≤ C(1 − |z|2)γ−k,
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for any function g ∈ H(Bn,X). Choose a real β such that β + γ − k > −1.
By the assumption (2.4), we have that

∫

Bn

‖ag(z) + Ng(z)‖X(1 − |z|2)βdν(z) < ∞.

Thus, for any z ∈ Bn, we have

ag(z) + Ng(z) = cβ

∫

Bn

[ag(w) + Ng(w)]
(1 − 〈z, w〉)n+1+β

(1 − |w|2)βdν(w).

Then, differentiating under the integral sign, we obtain that for all 1 ≤ i ≤ n,
we get

∂zi
[ag(z) + Ng(z)]

= (n + 1 + β)cβ

∫

Bn

[ag(w) + Ng(w)]wi

(1 − 〈z, w〉)n+2+β
(1 − |w|2)βdν(w).

Therefore,

N (ag(z) + Ng(z))

= (n + 1 + β)cβ

∫

Bn

[ag(w) + Ng(w)]〈z, w〉
(1 − 〈z, w〉)n+2+β

(1 − |w|2)βdν(w).

Applying (2.4), and Theorem 18, we get that for all 1 ≤ i ≤ n,

‖N (ag(z) + Ng(z)) ‖X ≤ Ccβ

∫

Bn

(1 − |w|2)γ−k+β

|1 − 〈z, w〉|n+1+γ−k+β+(k−γ+1)
dν(w)

≤ C(1 − |z|2)γ−k−1.

Thus, the derivative of ag(z) + Ng(z) is bounded by (1 − |z|2)γ−k−1. So, to
prove the inequality above, we are reduced to consider smooth functions φ of
one variable r ∈ [0, 1), and to prove that the inequality

‖ψ′(r)‖X ≤ C(1 − r)γ−k−1,

with ψ(r) = aφ(r) + rφ′(r), implies that

‖rφ′(r)‖X ≤ C(1 − r)γ−k

(here, φ(r) = g(rz′)). Now, differentiating ψ, we obtain ψ′(s) = (a+1)φ′(s)+
sφ′′(s). Multiplying both sides of the previous inequality by sa, we obtain that
saψ′(s) = (a + 1)saφ′(s) + sa+1φ′′(s) =

[
sa+1φ′(s)

]′
. Then integrating the

equality above on [0, r], we obtain that

φ′(r) =
1

ra+1

∫ r

0

saψ′(s)ds.

Therefore, the desired estimate follows at once, since k > γ. �

Remark 21. We shall use extensively this lemma for two particular classes of
differential operators: first the class Dk, then the class Lk, corresponding to
the choice aj = n + α + j + 1. For this choice, we have

(ajI + N)(1 − 〈z, w〉)−n−α−j−1 =
n + α + j + 1

(1 − 〈z, w〉)n+α+j+2
,
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and inductively,

Lk(1 − 〈z, w〉)−n−α−1 =
ck

(1 − 〈z, w〉)n+α+k+1
.

The proof of Lemma 20 allows us to define an equivalent norm of f in
terms of Mkf. Particularly, we will write the equivalent norms of f in terms
of Dkf and Lkf. More precisely, we have the following result:

Corollary 22. Let Dk a differential operator of order k defined in (2.3) and
Lk a differential operator of order k defined in Remark 21. For vector-valued
holomorphic functions, the following assertions are equivalent:
(1) f ∈ Γγ(Bn,X).
(2) There exists an integer k > γ such that

sup
z∈Bn

(1 − |z|2)k−γ‖Dkf(z)‖X < ∞.

(3) There exists an integer k > γ such that

sup
z∈Bn

(1 − |z|2)k−γ‖Lkf(z)‖X < ∞.

Moreover, the following are equivalent

‖f‖Γγ(Bn,X) � ‖f(0)‖X + sup
z∈Bn

(1 − |z|2)k−γ‖Dkf(z)‖X

� ‖f(0)‖X + sup
z∈Bn

(1 − |z|2)k−γ‖Lkf(z)‖X .

The proof of some of the results obtained in this paper will be based on
the following lemma. A proof is in [11], but for the sake of completeness, we
will recall the proof.

Lemma 23. Let f ∈ H∞(Bn,X) and g ∈ H∞(Bn, Y �). If b ∈ H(Bn,L(X,Y ))
is such that (1.4) and (1.6) hold. Then we have

〈hbf, g〉α,Y =
∫

Bn

〈b(z)f(z), g(z)〉Y,Y �dνα(z). (2.5)

Proof. Let f ∈ H∞(Bn,X) and g ∈ H∞(Bn, Y �). By the definition of
〈·, ·〉α,Y , Fubini’s theorem, Lemma 1 and the reproducing kernel property,
we have:

〈hb(f), g〉α,Y =
∫

Bn

〈hb(f)(z), g(z)〉Y,Y �dνα(z)

=
∫

Bn

〈
∫

Bn

b(w)(f(w))dνα(w)
(1 − 〈z, w〉)n+1+α

, g(z)〉Y,Y �dνα(z)

=
∫

Bn

g(z)

(∫

Bn

b(w)(f(w))dνα(w)
(1 − 〈z, w〉)n+1+α

)

dνα(z)

=
∫

Bn

∫

Bn

g(z)

(
b(w)(f(w))

(1 − 〈z, w〉)n+1+α

)

dνα(w)dνα(z)

=
∫

Bn

(∫

Bn

g(z)
(1 − 〈w, z〉)n+1+α

dνα(z)
)(

b(w)(f(w))
)

dνα(w)
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=
∫

Bn

g(w)
(
b(w)(f(w))

)
dνα(w)

=
∫

Bn

〈b(w)f(w), g(w)〉Y,Y �dνα(w).

It remains to show that the assumption of Fubini’s theorem is fulfilled. In-
deed, since f ∈ H∞(Bn,X) and g ∈ H∞(Bn, Y �), by Tonelli’s theorem,
Theorem 18 and relation (1.6) we have that

∫

Bn

∫

Bn

∣∣∣
∣∣∣

g(z)
(
b(w)(f(w))

)

(1 − 〈z, w〉)n+1+α

∣∣∣
∣∣∣
dνα(w)dνα(z)

�
∫

Bn

∫

Bn

‖b(w)‖L(X,Y )

|1 − 〈z, w〉|n+1+α
dνα(w)dνα(z)

�
∫

Bn

‖b(w)‖L(X,Y ) log
(

1
1 − |w|2

)
dνα(w) < ∞.

�

Lemma 24. Let f ∈ H∞(Bn,X) and z ∈ Bn. For b ∈ H(Bn,L(X,Y )) satis-
fying (1.4) and (1.6), the function

gz(w) :=
f(w)

(1 − 〈w, z〉)n+1+α
, w ∈ Bn

belongs to H∞(Bn,X) and the following identity holds:

hb(f)(z) = Ck

∫

Bn

Lk

(
b(w)(gz(w))

)
dνα+k(w),

where k is any positive integer and Ck is a positive constant depending only
on k.

Proof. It is clear that gz ∈ H∞(Bn,X). By the definition of the little Hankel
operator and the reproducing kernel property, we have

hb(f)(z) =
∫

Bn

b(w)f(w)
(1 − 〈z, w〉)n+1+α

dνα(w)

=
∫

Bn

b(w)

(
f(w)

(1 − 〈w, z〉)n+1+α

)

dνα(w)

=
∫

Bn

b(w)(gz(w))dνα(w)

=
∫

Bn

b(w)

(∫

Bn

gz(ζ)
(1 − 〈w, ζ〉)n+1+α+k

dνα+k(ζ)

)

dνα(w)

=
∫

Bn

(∫

Bn

b(w)(gz(ζ))
(1 − 〈ζ, w〉)n+1+α+k

dνα(w)

)

dνα+k(ζ)
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= c−1
k

∫

Bn

Lk

(∫

Bn

b(w)(gz(ζ))
(1 − 〈ζ, w〉)n+1+α

dνα(w)

)

dνα+k(ζ)

= c−1
k

∫

Bn

Lk

(
b(ζ)(gz(ζ))

)
dνα+k(ζ).

The assumption of Fubini’s theorem is fulfilled. Indeed by (1.6), we have that
∫

Bn

∥∥∥∥∥

∫

Bn

b(w)(gz(ζ))
(1 − 〈ζ, w〉)n+1+α+k

dνα(w)

∥∥∥∥∥
Y

dνα+k(ζ)

≤ ‖gz‖∞,X

∫

Bn

∫

Bn

‖b(w)‖L(X,Y )

|1 − 〈w, ζ〉|n+1+α+k
dνα(w)dνα+k(ζ)

= ‖gz‖∞,X

∫

Bn

‖b(w)‖L(X,Y ) ×
(∫

Bn

dνα+k(ζ)
|1 − 〈w, ζ〉|n+1+α+k

)
dνα(w)

≤ ‖gz‖∞,X

∫

Bn

‖b(w)‖L(X,Y )

(
log

1
1 − |w|2

)
dνα(w) < ∞.

�

3. The Proof of Theorem 3

Proof. We first suppose that g ∈ Γγ(Bn,X�), with γ = (n + 1 + α)
(

1
p − 1

)
.

Given a positive integer k > γ, we define the functional

∧g : Ap
α(Bn,X) −→ C

f �→ ∧g(f) = ck

∫

Bn

〈f(z),Dkg(z)〉X,X�(1 − |z|2)kdνα(z),

where ck is the positive constant in Lemma 19. It is clear that ∧g is linear
and is well defined on Ap

α(Bn,X). Indeed, let f ∈ Ap
α(Bn,X). By Lemma 15,

we have

| ∧g (f)| = ck

∣∣∣
∣

∫

Bn

〈f(z),Dkg(z)〉X,X�(1 − |z|2)kdνα(z)
∣∣∣
∣

≤ ck

∫

Bn

‖f(z)‖X‖Dkg(z)‖X�(1 − |z|2)kdνα(z)

= ck

∫

Bn

(1 − |z|2)k−γ‖Dkg(z)‖X�(1 − |z|2)γ‖f(z)‖Xdνα(z)

≤ ck sup
z∈Bn

(1 − |z|2)k−γ‖Dkg(z)‖X�

∫

Bn

(1 − |z|2)γ‖f(z)‖Xdνα(z)

� ‖g‖Γγ(Bn,X�)

∫

Bn

(1 − |z|2)( 1
p −1)(n+1+α)‖f(z)‖Xdνα(z)

� ‖g‖Γγ(Bn,X�)‖f‖p,α,X .

We conclude that ∧g is bounded on Ap
α(Bn,X) and ‖ ∧g ‖ � ‖g‖Γγ(Bn,X�).

Conversely, let ∧ be a bounded linear functional on Ap
α(Bn,X). Let

us show that there exists g ∈ Γγ(Bn,X�), with γ = (n + 1 + α)
(

1
p − 1

)
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such that ∧ = ∧g. Since A2
α(Bn,X) ⊂ Ap

α(Bn,X) and ∧ is bounded on
Ap

α(Bn,X), ∧ is also bounded on A2
α(Bn,X). Then by Theorem 11, there

exists g ∈ A2
α(Bn,X�) such that

∧ (f) =
∫

Bn

〈f(z), g(z)〉X,X�dνα(z), (3.1)

for all f ∈ A2
α(Bn,X). Since g ∈ A2

α(Bn,X�), for any positive integer k, we
have Dkg ∈ A2

α+k(Bn,X�). Applying Lemma 19 in (3.1), we obtain that

∧ (f) = ck

∫

Bn

〈f(z),Dkg(z)〉X,X�(1 − |z|2)kdνα(z), (3.2)

for all f ∈ A2
α(Bn,X). Now, we fix x ∈ X, w ∈ Bn and an integer k > γ. Let

f(z) =
(1 − |w|2)k−γ

(1 − 〈z, w〉)n+1+α+k
x, z ∈ Bn.

By Theorem 18, we have that f ∈ A2
α(Bn,X). Proposition 13 and (3.2), give

us

∧(f) = ck

∫

Bn

〈f(z),Dkg(z)〉X,X�(1 − |z|2)kdνα(z)

= ck

∫

Bn

〈 (1 − |w|2)k−γ

(1 − 〈z, w〉)n+1+α+k
x,Dkg(z)

〉
X,X�(1 − |z|2)kdνα(z)

=
cαck

cα+k
(1 − |w|2)k−γ

〈
x,

∫

Bn

Dkg(z)
(1 − 〈w, z〉)n+1+α+k

dνα+k(z)
〉

X,X�

=
cαck

cα+k
(1 − |w|2)k−γ

〈
x,Dkg(w)

〉
X,X� .

By Theorem 18, f ∈ Ap
α(Bn,X) and ‖f‖p,α,X � ‖x‖X . Since x is arbitrary,

by duality, we have that

‖Dkg(w)‖X� = sup
‖x‖X=1

|〈x,Dkg(w)〉X,X� |

=
cα+k

cαck
sup

‖x‖X=1

1
(1 − |w|2)k−γ

| ∧ (f)|

� sup
‖x‖X=1

1
(1 − |w|2)k−γ

‖ ∧ ‖‖f‖p,α,X

� sup
‖x‖X=1

‖ ∧ ‖
(1 − |w|2)k−γ

‖x‖X

� ‖ ∧ ‖
(1 − |w|2)k−γ

.

According to Corollary 22, we conclude that

g ∈ Γγ(Bn,X�) and ‖g‖Γγ(Bn,X�) � ‖ ∧ ‖,
with γ = (n + 1 + α)

(
1
p − 1

)
. To finish the proof, it remains to show that

(3.1) remains true for functions in Ap
α(Bn,X) which is a direct consequence

of the density in Corollary 10. �
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4. The Proofs of Theorem 4 and Corollary 5

In this section, we will give the proofs of Theorem 4 and Corollary 5.

4.1. Proof of Theorem 4

Proof. First assume that hb extends to a bounded operator from Ap
α(Bn,X)

to Aq
α(Bn, Y ), with q < 1. Let ‖hb‖ := ‖hb‖Ap

α(Bn,X)−→Aq
α(Bn,Y ). We want to

show that b ∈ Γγ(Bn,L(X,Y )). Since hb : Ap
α(Bn,X) −→ Aq

α(Bn, Y ) is a
bounded operator, we have by Theorem 3 that

|〈hb(f), g〉α,Y | � ‖hb‖‖f‖p,α,X‖g‖Γβ(Bn,Y �),

for every f ∈ Ap
α(Bn,X) and g ∈ Γβ(Bn, Y �), with β = (n + 1 + α)

(
1
q − 1

)
.

Let x ∈ X, y� ∈ Y �, w ∈ Bn and an integer k such that k > γ = (n + 1 +

α)
(

1
p − 1

)
. Let g(z) = y�, and f(z) =

(1 − |w|2)k−γ

(1 − 〈z, w〉)n+1+α+k
x. It is clear that

f ∈ H∞(Bn,X) and g ∈ Γβ(Bn, Y �), with ‖g‖Γβ(Bn,Y �) = ‖y�‖Y � . We also
have by Theorem 18 that f ∈ Ap

α(Bn,X), with ‖f‖p,α,X � ‖x‖X . Hence

|〈hb(f), g〉α,Y | � ‖hb‖‖x‖X‖y�‖Y � , (4.1)

Applying Lemma 23 and the reproducing kernel property, we have that

|〈hb(f), g〉α,Y |

=

∣∣∣
∣∣

∫

Bn

〈
b(z)

(
(1 − |w|2)k−γ

(1 − 〈z, w〉)n+1+α+k
x

)

, y�
〉

Y,Y �dνα(z)

∣∣∣
∣∣

= (1 − |w|2)k−γ

∣∣∣∣

∫

Bn

〈
b(z)

(
x

(1 − 〈w, z〉)n+1+α+k

)
, y�
〉

Y,Y �dνα(z)
∣∣∣∣

= (1 − |w|2)k−γ

∣∣∣∣

∫

Bn

〈 b(z) (x)
(1 − 〈w, z〉)n+1+α+k

, y�
〉

Y,Y �dνα(z)
∣∣∣∣

= (1 − |w|2)k−γ

∣∣∣
∣
〈 ∫

Bn

b(z) (x)
(1 − 〈w, z〉)n+1+α+k

dνα(z), y�
〉

Y,Y �

∣∣∣
∣

=
(1 − |w|2)k−γ

ck

∣∣∣∣
〈 ∫

Bn

Lk

(
b(z) (x)

(1 − 〈w, z〉)n+1+α

)
dνα(z), y�

〉
Y,Y �

∣∣∣∣

=
(1 − |w|2)k−γ

ck

∣∣∣∣
〈
Lk

(∫

Bn

b(z) (x)
(1 − 〈w, z〉)n+1+α

dνα(z)
)

, y�
〉

Y,Y �

∣∣∣∣

=
(1 − |w|2)k−γ

ck

∣
∣∣
〈
Lk (b(w) (x)) , y�

〉
Y,Y �

∣
∣∣ .

Thus,

|〈hb(f), g〉α,Y | =
(1 − |w|2)k−γ

ck

∣
∣∣
〈
Lk (b(w) (x)) , y�

〉
Y,Y �

∣
∣∣ . (4.2)

From (4.1), (4.2) and the fact that ‖x‖X = ‖x‖X , we deduce that

(1 − |w|2)k−γ
∣
∣∣
〈
Lk (b(w) (x)) , y�

〉
Y,Y �

∣
∣∣ � ‖hb‖‖x‖X‖y�‖Y � . (4.3)
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Since x and y� are arbitrary, we get that

sup
w∈Bn

(1 − |w|2)k−γ‖Lkb(w)‖L(X,Y �) � ‖hb‖.

That is, b ∈ Γγ(Bn,L(X,Y �)) with ‖b‖Γγ(Bn,L(X,Y )) � ‖hb‖.

Conversely, assume that b ∈ Γγ(Bn,L(X,Y )) and let us prove that hb

extends to a bounded operator from Ap
α(Bn,X) to A1,∞

α (Bn, Y ). Choose a
positive integer k > γ, and let f ∈ H∞(Bn,X). Taking

gz(w) =
f(w)

(1 − 〈w, z〉)n+1+α
,

with w ∈ Bn and applying Lemma 24, Lemma 2 and the assumption we
obtain

‖hbf(z)‖Y =

∥∥
∥∥∥

∫

Bn

b(w)(f(w))
(1 − 〈z, w〉)n+1+α

dνα(w)

∥∥
∥∥∥

Y

= ck

∥∥
∥∥

∫

Bn

Lk

(
b(w)gz(w)

)
dνα+k(w)

∥∥
∥∥

Y

= ck

∥∥∥∥∥
∥

∫

Bn

Lk

(
b(w)f(w)

)

(1 − 〈z, w〉)n+1+α
dνα+k(w)

∥∥∥∥∥
∥

Y

≤ ck

∫

Bn

∥∥∥∥
∥∥

Lk

(
b(w)f(w)

)

(1 − 〈z, w〉)n+1+α

∥∥∥∥
∥∥

Y

dνα+k(w)

≤ ckcα+k

cα

∫

Bn

(1 − |w|2)k‖Lkb(w)‖L(X ,Y)‖f(w)‖X

|1 − 〈z, w〉|n+1+α
dνα(w)

� ‖b‖Γγ(Bn,L(X,Y ))

∫

Bn

(1 − |w|2)γ‖f(w)‖X

|1 − 〈z, w〉|n+1+α
dνα(w)

= ‖b‖Γγ(Bn,L(X,Y ))P
+
α g(z),

where the reproducing kernel is justified by (1.4) and

P+
α g(z) =

∫

Bn

g(w)
|1 − 〈z, w〉|n+1+α

dνα(w)

is the positive Bergman operator of the positive function g(z) = (1 − |z|2)γ

‖f(z)‖X .
Now, let λ > 0. We have that

να({z ∈ Bn : ‖hbf(z)‖Y > λ}) ≤ να({z ∈ Bn : ck‖b‖Γγ(Bn,L(X,Y ))P
+
α g(z) > λ}).

Since the positive Bergman operator P+
α : L1

α(Bn) −→ L1,∞
α (Bn) is bounded

(cf. e.g [2]), there exists a constant c such that

να({z ∈ Bn : ck‖b‖Γγ(Bn,L(X,Y )P
+
α g(z) > λ}) ≤ c

λ
ck‖b‖Γγ(Bn,L(X,Y ))

‖g‖L1
α(Bn)

=
cck

λ
‖b‖Γγ(Bn,L(X,Y ))‖g‖L1

α(Bn).
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Applying Lemma 15 to the function f, we get that

‖g‖L1
α(Bn) =

∫

Bn

(1 − |z|2)γ‖f(z)‖Xdνα(z)

=
∫

Bn

(1 − |z|2)( 1
p −1)(n+1+α)‖f(z)‖Xdνα(z)

≤ ‖f‖p,α,X .

It follows that

λνα({z ∈ Bn : ‖hbf(z)‖Y > λ}) � ‖b‖Γγ(Bn,L(X,Y ))‖f‖p,α,X

for all λ > 0. Therefore, hb extends into a bounded operator from Ap
α(Bn,X)

to A1,∞
α (Bn, Y ) with

‖hb‖Ap
α(Bn,X)−→A1,∞

α (Bn,Y ) � ‖b‖Γγ(Bn,L(X,Y )).

By density of H∞(Bn,X) on Ap
α(Bn,X), the proof of the theorem is finished.

�

4.2. Proof of Corollary 5

Proof. Just apply Lemma 17 and the second part of Theorem 4 to conclude.
�

5. The Proof of Theorem 6

This section is devoted to the proof of Theorem 6.

Proof. We first prove the sufficiency of the theorem. We assume that there
exists a constant C ′ > 0 such that

‖Nkb(w)‖L(X,Y ) ≤ C ′

(1 − |w|2)k−γ

(
log

1
1 − |w|2

)−1

.

Likewise by Corollary 22, we have that, there exists a constant C > 0 such
that

‖Lkb(w)‖L(X,Y ) ≤ C

(1 − |w|2)k−γ

(
log

1
1 − |w|2

)−1

.

Applying Lemma 24 for any f ∈ H∞(Bn,X), we get
∫

Bn

b(w)(f(w))
(1 − 〈z, w〉)n+1+α

dνα(w) = ck

∫

Bn

Lkb(w)(f(w))
(1 − 〈z, w〉)n+1+α

dνα+k(w).

Thus, by the assumption, Lemma 24 and Lemma 15 we have that

‖hbf‖A1
α(Bn,Y )

=
∫

Bn

∥∥∥∥∥
ck

∫

Bn

Lkb(w)(f(w))
(1 − 〈z, w〉)n+1+α

dνα+k(w)

∥∥∥∥∥
Y

dνα(z)

�
∫

Bn

∫

Bn

∥∥∥∥∥
Lkb(w)(f(w))

(1 − 〈z, w〉)n+1+α

∥∥∥∥∥
Y

(1 − |w|2)kdνα(w)dνα(z)
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�
∫

Bn

∫

Bn

‖Lkb(w)‖L(X,Y )

|1 − 〈z, w〉|n+1+α
‖f(w)‖X(1 − |w|2)kdνα(w)dνα(z)

=
∫

Bn

(∫

Bn

1
|1 − 〈z, w〉|n+1+α

dνα(z)
)

‖Lkb(w)‖L(X,Y )‖f(w)‖X(1 − |w|2)kdνα(w)

�
∫

Bn

(
log

1
1 − |w|2

)
‖f(w)‖X

(1 − |w|2)k

(1 − |w|2)k−γ

(
log

1
1 − |w|2

)−1

dνα(w)

=
∫

Bn

‖f(w)‖X(1 − |w|2)γdνα(w)

=
∫

Bn

‖f(w)‖X(1 − |w|2)( 1
p −1)(n+1+α)dνα(w)

� ‖f‖p,α,X .

Conversely, we assume that hb extends into a bounded operator from Ap
α(Bn,X)

to A1
α(Bn, Y ). Then for all f ∈ H∞(Bn,X) and g ∈ B(Bn, Y �), we have

|〈hb(f), g〉α,Y | ≤ ‖hb‖‖f‖p,α,X‖g‖B(Bn,Y �). (5.1)

We choose the particular function g(z) = y�, with y� ∈ Y �. Applying Lemma
23, relation (5.1) becomes

∣
∣∣∣

∫

Bn

〈
hbf(z), y�

〉
Y,Y �dνα(z)

∣
∣∣∣ =

∣
∣∣∣
〈 ∫

Bn

b(z)f(z)dνα(z), y�
〉

Y,Y �

∣
∣∣∣

≤ ‖hb‖‖f‖p,α,X‖y�‖Y � .

Thus
∣∣∣∣

∫

Bn

〈
b(z)f(z), y�

〉
Y,Y �dνα(z)

∣∣∣∣ ≤ ‖hb‖‖f‖p,α,X‖y�‖Y � (5.2)

for all f ∈ H∞(Bn,X) and y� ∈ Y �. Now, take x ∈ X, y� ∈ Y �, and an
integer k such that k > γ. Fix w ∈ Bn and put

f(z) =
(1 − |w|2)k−γ

(1 − 〈z, w〉)n+1+α+k
x ; g(z) = log(1 − 〈z, w〉)y�,

where log is the principal branch of the logarithm. Since f ∈ H∞(Bn,X) and
g ∈ B(Bn, Y �), by relation (5.1), we have that

|〈hbf, g〉|α,Y ≤ ‖hb‖‖x‖X‖y�‖Y � . (5.3)

Applying Lemma 23 for those particular vector-valued holomorphic functions
f and g and using the fact that

log(1 − 〈w, z〉) = log(1 − |w|2) + log
(

1 − 〈w, z〉
1 − |w|2

)
,

we obtain

〈hbf, g〉α,Y

=
∫

Bn

〈
b(z)

(
(1 − |w|2)k−γ

(1 − 〈z, w〉)n+1+α+k
x

)
, log(1 − 〈z, w〉)y�

〉
Y,Y �dνα(z)
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=
〈 ∫

Bn

b(z)
[
(1 − |w|2)k−γ log(1 − 〈w, z〉)

(1 − 〈w, z〉)n+1+α+k
x

]
dνα(z), y�

〉
Y,Y �

=
〈 ∫

Bn

b(z)(x)(1 − |w|2)k−γ log(1 − |w|2)
(1 − 〈w, z〉)n+1+α+k

dνα(z), y�
〉

Y,Y �

+
〈 ∫

Bn

b(z)
[

(1 − |w|2)k−γ

(1 − 〈w, z〉)n+1+α+k
log
(

1 − 〈w, z〉
1 − |w|2

)
x

]
dνα(z), y�

〉
Y,Y �

=
〈
(1 − |w|2)k−γ log(1 − |w|2)

∫

Bn

b(z)(x)dνα(z)
(1 − 〈w, z〉)n+1+α+k

, y�
〉

Y,Y �

+
〈 ∫

Bn

b(z)

(
(1 − |w|2)k−γ

(1 − 〈z, w〉)n+1+α+k
log
(

1 − 〈z, w〉
1 − |w|2

)
x

)

dνα(z), y�
〉

Y,Y �

= (1 − |w|2)k−γ log(1 − |w|2)〈Lk

(∫

Bn

b(z)(x)
(1 − 〈w, z〉)n+1+α

dνα(z)
)

, y�
〉

Y,Y �

+
〈 ∫

Bn

b(z)

(

f(z) log
(

1 − 〈z, w〉
1 − |w|2

))

dνα(z), y�
〉

Y,Y �

= (1 − |w|2)k−γ log(1 − |w|2)〈Lk(b(w)(x)), y�〉Y,Y �

+〈
∫

Bn

b(z)(ϕ(z))dνα(z), y�〉Y,Y � ,

where ϕ(z) = f(z) log
(

1 − 〈z, w〉
1 − |w|2

)
. Therefore, we can write 〈hbf, g〉α,Y =

I1 + I2, with

I1 = (1 − |w|2)k−γ log(1 − |w|2)〈Lk(b(w)(x)), y�〉Y,Y �

and

I2 =
〈 ∫

Bn

b(z)(ϕ(z))dνα(z), y�
〉

Y,Y � .

Applying Lemma 16 with δ = p, and β = p(k − γ), we obtain that

‖ϕ‖p,α,X

=
(∫

Bn

∣∣∣∣log
(

1 − 〈z, w〉
1 − |w|2

)∣∣∣∣

p (1 − |w|2)p(k−γ)

|1 − 〈z, w〉|p(n+1+α+k)
‖x‖p

Xdνα(z)
)1/p

= ‖x‖X

(∫

Bn

∣∣∣∣log
(

1 − 〈z, w〉
1 − |w|2

)∣∣∣∣

p (1 − |w|2)p(k−γ)

|1 − 〈z, w〉|n+1+α+p(k−γ)
dνα(z)

)1/p

� ‖x‖X .

According to the relation (5.2), we obtain the following estimation of I2

|I2| ≤ ‖hb‖‖ϕ‖p,α,X‖y�‖Y � � ‖hb‖‖x‖X‖y�‖Y � .

Since I1 = 〈hbf, g〉α,Y − I2, by the relation (5.3) and the previous estimates
on I2, we have that

|I1| ≤ |〈hbf, g〉α,Y | + |I2| � ‖hb‖‖x‖X‖y�‖Y � .



IEOT Hankel Operators Between Vector-Valued Bergman Page 23 of 46 28

Since x ∈ X, y� ∈ Y � are arbitrary and ‖x‖X = ‖x‖X , we get that

|I1| = (1 − |w|2)k−γ log
(

1
1 − |w|2

)
|〈Lk(b(w)(x)), y�〉Y,Y � |

≤ C‖hb‖‖x‖X‖y�‖Y � .

Since x ∈ X and y� ∈ Y � are arbitrary, we deduce that :

‖Lkb(w)‖L(X,Y ) = sup
‖x‖X=1,‖y�‖Y �=1

|〈Lk(b(w)(x)), y�〉Y,Y � |

≤ C

(1 − |w|2)k−γ

(
log

1
1 − |w|2

)−1

.

The desired result follows at once using Corollary 22. �

6. Compactness of the Little Hankel Operator, hb , with
Operator-Valued Symbols b From Ap

α(Bn, X) to
Aq

α(Bn, Y ), With 1 < p ≤ q < ∞
In this section, we are going to characterize those symbols b for whch the little
Hankel operator extends into a bounded compact oparator from Ap

α(Bn,X)
to Aq

α(Bn, Y ), where 1 < p ≤ q < ∞ and X,Y are two reflexive complex
Banach spaces.

6.1. Preliminaries Notions

The proof of the following remark can be found in [11, Proposition 1.6.1]

Remark 25. Let t ≥ 0. Then the operator Rα,t is the unique continuous linear
operator on H(Bn,X) satisfying

Rα,t

(
x

(1 − 〈z, w〉)n+1+α

)
=

x

(1 − 〈z, w〉)n+1+α+t
,

for every z ∈ Bn and x ∈ X.

We will use the operator Rα,t, for t > 0, in the vector-valued Bergman
space A1

α(Bn,X) as follows:

Proposition 26. Let t > 0 and f ∈ A1
α(Bn,X). Then

Rα,tf(z) =
∫

Bn

f(w)
(1 − 〈z, w〉)n+1+α+t

dνα(w),

for each z ∈ Bn.

The proof of the following proposition is not quite different to the proof
in [14, Proposition 1.15], but for the sake of completeness, we will recall the
proof.

Proposition 27. Suppose N is a positive integer and α is a real such that n+α
is not a negative integer. Then Rα,N as an operator acting on H(Bn,X) is



28 Page 24 of 46 D. Békollé et al. IEOT

a linear partial differential operator of order N with polynomial coefficients,
that is

Rα,Nf(z) =
∑

m∈Nn,|m|≤N

pm(z)
∂|m|f
∂zm

(z),

where each pm is a polynomial.

Proof. Let x ∈ X and w ∈ Bn. By using the multi-nomial formula

〈z, w〉k =
∑

|m|=k

k!
m!

zmwm,

it follows that
x

(1 − 〈z, w〉)n+1+α+N

=
x(1 − 〈z, w〉 + 〈z, w〉)N

(1 − 〈z, w〉)n+1+α+N

=
N∑

k=0

N !
k!(N − k)!

〈z, w〉kx (1 − 〈z, w〉)N−k

(1 − 〈z, w〉)n+1+α+N

=
N∑

k=0

N !
k!(N − k)!

∑

|m|=k

k!
m!

zm wmx

(1 − 〈z, w〉)n+1+α+k

=
N∑

k=0

∑

|m|=k

N !
m!(N − k)!

zm wmx

(1 − 〈z, w〉)n+1+α+k

=
N∑

k=0

∑

|m|=k

N !
∏k

j=0(n + 1 + α + j)m!(N − k)!
zm ∂k

∂zm

(
x

(1 − 〈z, w〉)n+1+α

)
.

Therefore, there exists a constant cmk such that

Rα,N

(
x

(1 − 〈z, w〉)n+1+α

)
=

N∑

k=0

∑

|m|=k

cmkzm ∂k

∂zm

(
x

(1 − 〈z, w〉)n+1+α

)
.

Thus

Rα,N =
N∑

k=0

∑

|m|=k

cmkzm ∂k

∂zm
.

�

We will also need the following results whose proofs can be found in
[11].

Lemma 28. Let t > 0. Then
∫

Bn

f(z)g(z)dνα(z) =
∫

Bn

Rα,tf(z)g(z)dνα+t(z),

for all f ∈ A1
α(Bn,X) and g ∈ H∞(Bn,C).
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Lemma 29. Let t > 0 and X a complex Banach space. Then
∫

Bn

〈f(z), g(z)〉X,X�dνα(z) =
∫

Bn

〈Rα,tf(z), g(z)〉X,X�dνα+t(z)

=
∫

Bn

〈f(z), Rα,tg(z)〉X,X�dνα+t(z),

for every f ∈ A1
α(Bn,X) and g ∈ H∞(Bn,X�).

Corollary 30. Suppose t > 0 and 1 < p < ∞. If b ∈ Ap′
α (Bn,L(X,Y )), where

p′ is the conjugate exponent of p, then the following equality holds
∫

Bn

〈b(z)f(z), g(z)〉Y,Y �dνα(z) =
∫

Bn

〈Rα,tb(z)f(z), g(z)〉Y,Y �dνα+t(z)

for f ∈ H∞(Bn,X) and g ∈ H∞(Bn, Y �).

In the sequel, we will need to interchange the position of the summation
symbol and the integral symbol in a particular situation. That is why we
introduce this lemma.

Lemma 31. Assume 1 < t < ∞. Let b(z) =
∑

β∈Nn b̂(β)zβ ∈ At
α(Bn,L(X,Y )).

Then
∫

Bn

〈b(z)
(
f(z)

)
, y�

0〉Y,Y �dνα(z) =
∑

β∈Nn

∫

Bn

zβ〈b̂(β)
(
f(z)

)
, y�

0〉Y,Y �dνα(z),

for every f ∈ H∞(Bn,X) and y�
0 ∈ Y � with ‖y�

0‖Y � = 1.

Proof. Since b(z) =
∑

β∈Nn b̂(β)zβ ∈ At
α(Bn,L(X,Y )), we have that

lim
N→∞

∫

Bn

∥∥∥∥∥
∥
b(z) −

∑

β∈Nn,|β|≤N

b̂(β)zβ

∥∥∥∥∥
∥

t

L(X,Y )

dνα(z) = 0.

We have
∣∣
∣∣∣∣

∫

Bn

〈⎛

⎝b(z) −
∑

β∈Nn:|β|≤N

b̂(β)zβ

⎞

⎠ (f(z)), y�
0

〉

Y,Y �

dνα(z)

∣∣
∣∣∣∣
≤

∫

Bn

∥∥∥
∥∥∥
b(z) −

∑

β∈Nn:|β|≤N

b̂(β)zβ

∥∥∥
∥∥∥

L(X,Y )

‖f(z)‖X‖y�
0‖Y �dνα(z) =

∫

Bn

∥∥∥
∥∥∥
b(z) −

∑

β∈Nn:|β|≤N

b̂(β)zβ

∥∥∥
∥∥∥

L(X,Y )

‖f(z)‖Xdνα(z) �

∫

Bn

∥∥∥∥
∥∥
b(z) −

∑

β∈Nn:|β|≤N

b̂(β)zβ

∥∥∥∥
∥∥

t

L(X,Y )

dνα(z) −→ 0

as N → ∞. Therefore, we have that
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∫

Bn

〈b(z)
(
f(z)

)
, y�

0〉Y,Y �dνα(z)

= lim
N→∞

∫

Bn

〈
∑

β∈Nn:|β|≤N

b̂(β)zβ
(
f(z)

)
, y�

0

〉

Y,Y �

dνα(z)

= lim
N→∞

∫

Bn

∑

β∈Nn:|β|≤N

〈
b̂(β)zβ

(
f(z)

)
, y�

0

〉

Y,Y �
dνα(z)

= lim
N→∞

∑

β∈Nn:|β|≤N

∫

Bn

〈
b̂(β)zβ

(
f(z)

)
, y�

0

〉

Y,Y �
dνα(z)

=
∑

β∈Nn

∫

Bn

〈
b̂(β)zβ

(
f(z)

)
, y�

0

〉

Y,Y �
dνα(z).

�

In the following lemma, we compute the little Hankel operator when the
operator-valued symbol is a monomial.

Lemma 32. Suppose 1 < p < ∞ and γ ∈ N
n. If aγ ∈ L(X,Y ), then for every

f(z) =
∑

β∈Nn
cβzβ ∈ Ap

α(Bn,X), we have

haγzγ f(z) =
∑

β∈Nn,β≤γ

aγ(cβ)
γ!Γ(n + 1 + α + |γ − β|)

(γ − β)!Γ(n + 1 + α + |γ|)zγ−β .

Proof. Since

f(z) =
∑

β∈Nn

cβzβ ∈ Ap
α(Bn,X),

and p > 1 by using [16, Corollary 4], it follows that

∫

Bn

∥∥∥∥∥∥

∑

|β|≥N+1

cβzβ

∥∥∥∥∥∥

p

X

dνα(z) → 0 as N → ∞. (6.1)

Firstly, let us prove that
∫

Bn

∑
β∈Nn aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w) =

∑

β∈Nn

∫

Bn

aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w) (6.2)

Let N ∈ N. We have that
∫

Bn

∥∥∥∥
∥

∑
β∈Nn aγ(cβ)wβ −∑|β|≤N aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α

∥∥∥∥
∥

Y

dνα(w)

=
∫

Bn

∥
∥∥∥∥

∑
|β|≥N+1 aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α

∥
∥∥∥∥

Y

dνα(w)

=
∫

Bn

∥
∥∥∥∥∥

aγ

(∑
|β|≥N+1(cβ)wβ

)

(1 − 〈z, w〉)n+1+α

∥
∥∥∥∥∥

Y

dνα(w)
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≤ ‖aγ‖L(X,Y )

(1 − |z|)n+1+α

∫

Bn

∥∥∥∥
∥∥

∑

|β|≥N+1

cβwβ

∥∥∥∥
∥∥

X

dνα(w)

≤ ‖aγ‖L(X,Y )

(1 − |z|)n+1+α

∫

Bn

∥∥
∥∥∥∥

∑

|β|≥N+1

cβwβ

∥∥
∥∥∥∥

X

dνα(w)

≤ ‖aγ‖L(X,Y )

(1 − |z|)n+1+α

⎛

⎝
∫

Bn

∥∥∥∥
∥∥

∑

|β|≥N+1

cβwβ

∥∥∥∥
∥∥

p

X

dνα(w)

⎞

⎠

1/p

.

Therefore
∥∥∥∥∥

∫

Bn

∑
β∈Nn aγ(cβ)wβ −∑|β|≤N aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w)

∥∥∥∥∥
Y

is less than or equal to

‖aγ‖L(X,Y )

(1 − |z|)n+1+α

⎛

⎝
∫

Bn

∥∥∥∥∥∥

∑

|β|≥N+1

cβwβ

∥∥∥∥∥∥

p

X

dνα(w)

⎞

⎠

1/p

. (6.3)

By using (6.1) and (6.3), it follows that
∥
∥∥∥∥∥∥
∥∥

∫

Bn

∑

β∈Nn

aγ(cβ)wβ −
∑

|β|≤N

aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w)

∥
∥∥∥∥∥∥
∥∥

Y

→ 0

as N → ∞, and so

∫

Bn

∑

β∈Nn
aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w) = lim

N→∞

∫

Bn

∑

|β|≤N
aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w)

= lim
N→∞

∑

|β|≤N

∫

Bn

aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w)

=
∑

β∈Nn

∫

Bn

aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w),

which is the desired result. Secondly, let us prove that
∫

Bn

∞∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉kdνα(w) =

∞∑

k=0

∫

Bn

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉kdνα(w). (6.4)

Let N ∈ N. We have
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∣∣∣∣∣

N∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉k

∣∣∣∣∣
≤

N∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

|z|k

≤
∞∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

|z|k

=
1

(1 − |z|)n+1+α
.

Since
∫
Bn

1
(1 − |z|)n+1+α

dνα(w) =
1

(1 − |z|)n+1+α
, by the dominated conver-

gence theorem, we have that
∞∑

k=0

∫

Bn

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉kdνα(w)

= lim
N→∞

N∑

k=0

∫

Bn

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉kdνα(w)

= lim
N→∞

∫

Bn

N∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉kdνα(w)

=
∫

Bn

lim
N→∞

N∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉kdνα(w)

=
∫

Bn

∞∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉kdνα(w).

We are now ready to prove our lemma. For f(z) =
∑

β∈Nn cβzβ ∈ Ap
α(Bn,X),

by using the following multi-nomial formula [14, (1.1)] and the following
formula [14, (1.23)] respectively

〈z, w〉k =
∑

|m|=k

k!
m!

zmwm,

∫

Bn

|zm|2να(z) =
m!Γ(n + α + 1)

Γ(n + |m| + α + 1)
,

we get that, using (6.2) and (6.4)

haγzγ f(z)

=
∫

Bn

aγwγ
(∑

β∈Nn cβwβ
)

(1 − 〈z, w〉)n+1+α
dνα(w)

=
∫

Bn

wγ
∑

β∈Nn
aγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w)

=
∑

β∈Nn

∫

Bn

wγaγ(cβ)wβ

(1 − 〈z, w〉)n+1+α
dνα(w)

=
∑

β∈Nn

aγ(cβ)
∫

Bn

wγwβ

∞∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉kdνα(w)
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=
∑

β∈Nn

aγ(cβ)
∞∑

k=0

∫

Bn

wγwβ
Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

〈z, w〉kdνα(w)

=
∑

β∈Nn

aγ(cβ)
∞∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

∫

Bn

wγwβ
∑

|m|=k

k!
m!

zmwmdνα(w)

=
∑

β∈Nn

aγ(cβ)
∞∑

k=0

Γ(n + 1 + α + k)
Γ(n + 1 + α)k!

∑

|m|=k

k!
m!

∫

Bn

wγwβzmwmdνα(w)

=
∑

β∈Nn

aγ(cβ)
∞∑

k=0

∑

|m|=k

Γ(n + 1 + α + k)
Γ(n + 1 + α)m!

∫

Bn

wγzmwm+βdνα(w)

=
∑

β∈Nn

aγ(cβ)
∑

m∈Nn

Γ(n + 1 + α + |m|)
Γ(n + 1 + α)m!

zm

∫

Bn

wγwβ+mdνα(w)

=
∑

β∈Nn,β≤γ

aγ(cβ)
Γ(n + 1 + α + |γ − β|)
Γ(n + 1 + α)(γ − β)!

zγ−β

∫

Bn

|zγ |2dνα(w)

=
∑

β∈Nn,β≤γ

aγ(cβ)
Γ(n + 1 + α + |γ − β|)
Γ(n + 1 + α)(γ − β)!

γ!Γ(n + 1 + α)
Γ(n + 1 + α + |γ|)zγ−β

=
∑

β∈Nn,β≤γ

aγ(cβ)
γ!Γ(n + 1 + α + |γ − β|)

(γ − β)!Γ(n + 1 + α + |γ|)zγ−β . �

The goal of the following lemma is to prove that the linear span of the

vector-valued Bergman kernel
x�

(1 − 〈w, z〉)n+1+α
, where x� ∈ X� and z, w ∈

Bn form a dense subspace in the vector-valued Bergman space Ap′
α (Bn,X�),

with 1 < p < ∞ and p′ is the conjugate exponent of p.

Lemma 33. Suppose that 1 < p < ∞. For each x� ∈ X� and z ∈ Bn, let

ez,x�(w) =
x�

(1 − 〈w, z〉)n+1+α
; w ∈ Bn.

Then ez,x� ∈ Ap′
α (Bn,X�) and the subspace generated by ez,x� is dense in

Ap′
α (Bn,X�).

Proof. Let φ ∈ Ap
α(Bn,X) such that 〈φ, ez,x�〉α,X = 0 for all z ∈ Bn and

x� ∈ X�. Let f� ∈ Ap′
α (Bn,X�). According to the Hahn-Banach theorem,

it suffices to prove that 〈φ, f�〉α,X = 0. For all z ∈ Bn and x� ∈ X�, using
Lemma 1 and the reproducing kernel formula, it follows that

0 = 〈φ, ez,x�〉α,X

=
∫

Bn

〈φ(w), ez,x�(w)〉X,X�dνα(w)

=
∫

Bn

〈φ(w),
x�

(1 − 〈w, z〉)n+1+α
〉X,X�dνα(w)
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=
∫

Bn

〈 φ(w)
(1 − 〈z, w〉)n+1+α

, x�〉X,X�dνα(w)

= 〈φ(z), x�〉X,X� .

Therefore, for all x� ∈ X�, we have

〈φ(z), x�〉X,X� = 0.

Thus φ(z) = 0 for every z ∈ Bn. It follows that for each f� ∈ Ap′
α (Bn,X�),

we have that

〈φ, f�〉α,X =
∫

Bn

〈φ(z), f�(z)〉X,X�dνα(z) = 0. �

In the proof of the following lemma, we use the fact that when X is a
reflexive complex Banach space and 1 < p < ∞, the dual of the vector-valued
Bergman space Ap′

α (Bn,X�) can be identified with Ap
α(Bn,X), where p′ is the

conjugate exponent of p.

Lemma 34. Suppose that 1 < p < ∞, and X is a reflexive complex Banach
space. Let {fj} ⊂ Ap

α(Bn,X) such that fj → 0 weakly in Ap
α(Bn,X) as

j → ∞. Then for each β ∈ N
n, we have that ∂βfj(0) → 0 weakly in X as

j → ∞, where ∂β = ∂|β|
∂zβ .

Proof. Since for each j ∈ N, fj ∈ Ap
α(Bn,X), using the reproducing kernel

formula we have that

fj(z) =
∫

Bn

fj(w)
(1 − 〈z, w〉)n+1+α

dνα(w), z ∈ Bn.

Differentiating both sides of the previous relation with respect to z, we obtain

∂βfj(z) = C(n, α, |β|)
∫

Bn

fj(w)wβ

(1 − 〈z, w〉)n+1+α+|β| dνα(w).

Therefore, we have

∂βfj(0) = C(n, α, |β|)
∫

Bn

fj(w)wβdνα(w).

Now, let x� ∈ X� and let us show that 〈∂βfj(0), x�〉X,X� → 0 as j → ∞. But
we have that

〈∂βfj(0), x�〉X,X� = C(n, α, |β|)
〈∫

Bn

fj(w)wβdνα(w), x�

〉

X,X�

=
∫

Bn

〈fj(w), x�wβ〉X,X�dνα(w)

= 〈fj , g〉α,X → 0 as j → ∞,

with g(z) = x�zβ ∈ Ap′
α (Bn,X�). Thus, 〈∂βfj(0), x�〉X,X� → 0 as j → ∞. �

We recall that the symbol b used in the following lemma satisfies (1.4)
and (1.6).
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Lemma 35. Suppose that X is a reflexive complex Banach space and k is
a nonnegative integer. If the holomorphic mapping z �→ b(z) maps Bn into
K(X,Y ), then the holomorphic mapping z �→ Rα,kb(z) also maps Bn into
K(X,Y ).

Proof. Let z ∈ Bn. Let {fj} a sequence of elements of X which converges
weakly to 0 in X as j tends to infinity. Let us prove that limj→∞ ‖Rα,kb(z)fj‖Y =
0. We know that the sequence {fj} is strongly bounded in X. Let j ∈ N, by
using (1.4) for z = 0, we get that the function z �→ b(z)fj ∈ A1

α(Bn, Y ). By
the reproducing kernel formula, it follows that

b(z)fj =
∫

Bn

b(w)fj

(1 − 〈z, w〉)n+1+α
dνα(w). (6.5)

Applying the partial differential operator Rα,k to (6.5), we have

Rα,kb(z)fj =
∫

Bn

b(w)fj

(1 − 〈z, w〉)n+1+α+k
dνα(w).

We also have
‖b(w)fj‖Y

|1 − 〈z, w〉|n+1+α+k
≤ ‖b(w)‖L(X,Y )‖fj‖X

(1 − |z|)n+1+α+k

≤ C(n + 1 + α)
(1 − |z|)n+1+α+k

‖b(w)‖L(X,Y ),

and
∫

Bn

C(n + 1 + α)
(1 − |z|)n+1+α+k

‖b(w)‖L(X,Y )dνα(w) < ∞.

Therefore, by applying the dominated convergence theorem, we have that

lim sup
j→∞

‖Rα,kb(z)fj‖Y ≤ lim sup
j→∞

∫

Bn

‖b(w)fj‖Y

|1 − 〈z, w〉|n+1+α+k
dνα(w)

=
∫

Bn

limj→∞ ‖b(w)fj‖Y

|1 − 〈z, w〉|n+1+α+k
dνα(w) = 0.

Thus for each z ∈ Bn

lim
j→∞

‖Rα,kb(z)fj‖Y = 0. �

The following result will be also important in the sequel.

Lemma 36. Suppose β0 ∈ N
n, {fj} a sequence of elements of X which con-

verges weakly to 0 as j tends to infinity. For z ∈ Bn, let xj(z) = zβ0fj . Then
{xj} ⊂ Ap

α(Bn,X) and {xj} converges weakly to 0 in Ap
α(Bn,X).

Proof. Let j ∈ N. Since fj → 0 weakly in X as j → ∞, it follows that {fj}
is strongly bounded in X (see [9]). Let β0 ∈ N

n and xj(z) = zβ0fj . It is clear
that {xj} ⊂ Ap

α(Bn,X). For every g ∈ Ap′
α (Bn,X�), we have

〈xj , g〉α,X =
∫

Bn

〈xj(z), g(z)〉X,X�dνα(z)
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=
∫

Bn

〈zβ0fj , g(z)〉X,X�dνα(z)

=
∫

Bn

zβ0〈fj , g(z)〉X,X�dνα(z).

Since
∣
∣zβ0〈fj , g(z)〉X,X�

∣
∣ ≤ |zβ0〈fj , g(z)〉X,X� |

≤ ‖fj‖X‖g(z)‖X�

≤ C‖g(z)‖X� ,

and
∫

Bn

‖g(z)‖X�dνα(z) ≤
(∫

Bn

‖g(z)‖p′
X�dνα(z)

)1/p′

< ∞.

By using the dominated convergence theorem and the assumption, it follows
that

lim sup
j−→∞

〈xj , g〉α,X =
∫

Bn

zβ0 lim
j−→∞

〈fj , g(z)〉X,X�dνα(z) = 0. �

6.2. Boundedness of the Little Hankel Operator with Operator-Valued Sym-
bol on Vector-Valued Bergman Spaces

The principal result here is that, the little Hankel operator with operator-
valued symbol hb is a bounded operator form Ap

α(Bn,X) to Aq
α(Bn, Y ) with

1 < p ≤ q < ∞ if and only if the symbol b belongs to the generalized vector-
valued Lipschitz space Λγ0(Bn,L(X,Y )), where

γ0 = (n + 1 + α)
(

1
p

− 1
q

)
.

The result obtained generalize the Oliver’s result [11, Theorem 4.2.2]. In the
following lemma, we first prove that the definition of the generalized vector-
valued Lipschitz space Λγ(Bn,X), with γ ≥ 0 is independent of the integer
k used.

Lemma 37. Let f ∈ H(Bn,X). The following conditions are equivalent:
(a) There exists a nonnegative integer k > γ such that

sup
z∈Bn

(1 − |z|2)k−γ‖Rα,kf(z)‖X < ∞.

(b) For every nonnegative integer k > γ we have

sup
z∈Bn

(1 − |z|2)k−γ‖Rα,kf(z)‖X < ∞.

Proof. It is clear that (b) ⇒ (a). So to complete the proof, we will prove that
(a) ⇒ (b). Suppose that there exists an integer k > γ such that

c := sup
z∈Bn

(1 − |z|2)k−γ‖Rα,kf(z)‖X < ∞.

We want to prove that

sup
z∈Bn

(1 − |z|2)k+1−γ‖Rα,k+1f(z)‖X < ∞.
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Since c < ∞, then f ∈ A1
α(Bn,X). Indeed, by [11, Theorem 3.1.2], we have

that

‖f‖1,α,X �
∫

Bn

(1 − |z|2)k‖Rα,kf(z)‖Xdνα(z)

=
∫

Bn

[(1 − |z|2)k−γ‖Rα,kf(z)‖X ](1 − |z|2)γdνα(z)

� c

∫

Bn

(1 − |z|2)α+γdν(z)

< ∞.

By using Proposition 26, we have that

Rα,k+1f(z) =
∫

Bn

f(w)
(1 − 〈z, w〉)n+1+α+k+1

dνα(w).

Applyng Lemma 28, it follows that

Rα,k+1f(z) =
∫

Bn

Rα,kf(w)
(1 − 〈z, w〉)n+1+α+k+1

dνα+k(w).

Thus,

‖Rα,k+1f(z)‖X �
∫

Bn

[(1 − |w|2)k−γ‖Rα,kf(w)‖X ](1 − |w|2)α+γ

|1 − 〈z, w〉|n+1+α+γ+(k+1−γ)
dν(w)

� c

(1 − |z|2)k+1−γ
.

Therefore, we have that

sup
z∈Bn

(1 − |z|2)k+1−γ‖Rα,k+1f(z)‖X � c < ∞.

Also, if k is a nonnegative integer with k > γ such that

c′ := sup
z∈Bn

(1 − |z|2)k+1−γ‖Rα,k+1f(z)‖X < ∞,

then

sup
z∈Bn

(1 − |z|2)k−γ‖Rα,kf(z)‖X < ∞.

Applying Proposition 26 and Lemma 28 we have that

Rα,kf(z) =
∫

Bn

f(w)dνα(w)
(1 − 〈z, w〉)n+1+α+k

=
∫

Bn

Rα,k+1f(w)dνα+k+1(w)
(1 − 〈z, w〉)n+1+α+k

,

where z ∈ Bn. By using Theorem 18, it follows that

‖Rα,kf(z)‖X �
∫

Bn

[(1 − |w|2)k+1−γ‖Rα,k+1f(w)‖X ](1 − |w|2)α+γdν(w)
|1 − 〈z, w〉|n+1+α+k

= c′
∫

Bn

(1 − |w|2)α+γdν(w)
|1 − 〈z, w〉|n+1+α+γ+(k−γ)

� c′

(1 − |z|2)k−γ
.
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Since z ∈ Bn is arbitrary, we obtain that

sup
z∈Bn

(1 − |z|2)k−γ‖Rα,kf(z)‖X � c′ < ∞. �

Proposition 38. Let γ ≥ 0 and f ∈ Λγ(Bn,X). The following conditions are
equivalent:
(i) f ∈ Λγ,0(Bn,X).
(ii) lims→1− ‖f − fs‖Λγ(Bn,X) = 0, where fs is the dilation function defined

for z ∈ Bn by fs(z) := f(sz).
(iii) f belongs to the closure of P(Bn,X), where P(Bn,X) is the space of

vector-valued holomorphic polynomials.

Proof. (i) ⇒ (ii). Suppose that 1
2 < r < s < 1, and let fs(z) = f(sz), z ∈ Bn.

By the definition, we have:

‖f − fs‖Λγ(Bn,X) = sup
z∈Bn

(1 − |z|2)k−γ‖Rα,k(f − fs)(z)‖X

= sup
z∈Bn

(1 − |z|2)k−γ‖(Rα,kf)(z) − (Rα,kfs)(z)‖X

= sup
z∈Bn

(1 − |z|2)k−γ‖(Rα,kf)(z) − (Rα,kf)(sz)‖X

= sup
z∈Bn

(1 − |z|2)k−γ‖(Rα,kf)(z) − χr(z)(Rα,kf)(z)

+χr(z)(Rα,kf)(z) − (Rα,kf)(sz)‖X

≤ sup
z∈Bn

(1 − |z|2)k−γ‖(Rα,kf)(z) − χr(z)(Rα,kf)(z)‖X

+ sup
z∈Bn

(1 − |z|2)k−γ‖χr(z)(Rα,kf)(z) − (Rα,kf)(sz)‖X ,

where χr is the characteristic function of the set {|z| ≤ r}. We first have the
following estimate:

sup
z∈Bn

(1 − |z|2)k−γ‖(Rα,kf)(z) − χr(z)(Rα,kf)(z)‖X

≤ sup
|z|≤r

(1 − |z|2)k−γ‖(Rα,kf)(z) − χr(z)(Rα,kf)(z)‖X

+ sup
r<|z|<1

(1 − |z|2)k−γ‖(Rα,kf)(z) − χr(z)(Rα,kf)(z)‖X

= sup
r<|z|<1

(1 − |z|2)k−γ‖(Rα,kf)(z)‖X

≤ sup
r2<|z|<1

(1 − |z|2)k−γ‖(Rα,kf)(z)‖X .

We secondly have the following estimate:

sup
z∈Bn

(1 − |z|2)k−γ‖χr(z)(Rα,kf)(z) − (Rα,kf)(sz)‖X

≤ sup
|z|≤r

(1 − |z|2)k−γ‖χr(z)(Rα,kf)(z) − (Rα,kf)(sz)‖X

+ sup
r<|z|<1

(1 − |z|2)k−γ‖χr(z)(Rα,kf)(z) − (Rα,kf)(sz)‖X



IEOT Hankel Operators Between Vector-Valued Bergman Page 35 of 46 28

= sup
|z|≤r

(1 − |z|2)k−γ‖(Rα,kf)(z) − (Rα,kf)(sz)‖X

+ sup
r<|z|<1

(1 − |z|2)k−γ‖(Rα,kf)(sz)‖X .

Using the change of variables w = sz, we then obtain

sup
r<|z|<1

(1 − |z|2)k−γ‖(Rα,kf)(sz)‖X

= sup
rs<|w|<s

(
1 − |w|2

s2

)k−γ

‖(Rα,kf)(w)‖X

= sup
rs<|w|<s

1
s2(k−γ)

(
s2 − |w|2)k−γ ‖(Rα,kf)(w)‖X

≤ 22(k−γ) sup
r2<|w|<1

(1 − |w|2)k−γ‖(Rα,kf)(w)‖X .

It follows by using the assumption that

‖f − fs‖Λγ(Bn,X) ≤ Cγ supr2<|w|<1(1 − |w|2)k−γ‖(Rα,kf)(w)‖X

+ sup|z|≤r(1 − |z|2)k−γ‖(Rα,kf)(z) − (Rα,kf)(sz)‖X ,

with Cγ = 1 + 22(k−γ). Since (Rα,kf)(sz) → (Rα,kf)(z) in X uniformly on
the compact set {|z| ≤ r} as s → 1−, we have

lim
s→1−

sup
|z|≤r

(1 − |z|2)k−γ‖(Rα,kf)(z) − Rα,kf(sz)‖X = 0.

It follows that

lim
s→1−

‖f − fs‖Λγ(Bn,X) ≤ Cγ lim sup
|w|→1−

(1 − |w|2)k−γ‖(Rα,kf)(w)‖X = 0.

(ii) ⇒ (iii). Given ε > 0, by the assumption, there exists s0 ∈ (0, 1)
such that

‖f − fs0‖Λγ(Bn,X) < ε. (6.6)

Further note that fs0 ∈ H( 1
s0
Bn,X) and 1 < 2

1+s0
< 1

s0
. From this, and by

using Taylor’s formula, it follows that for each m ∈ N, there exists a X-valued
polynomial pm such that

lim
m→∞ sup

z∈ 2
1+s0

Bn

‖fs0(z) − pm(z)‖X = 0.

Therefore, there exists m0 ∈ N such that

sup
z∈ 2

1+s0
Bn

‖fs0(z) − pm(z)‖X < ε, (6.7)

for m ≥ m0. By the Cauchy’s inequality, there exists a constant cs0 > 0 such
that for each i = 1, . . . , n we have

sup
z∈Bn

∥∥∥∥
∂fs0

∂zi
− ∂pm

∂zi

∥∥∥∥
X

≤ cs0 sup
z∈ 2

1+s0
Bn

‖fs0(z) − Pm(z)‖X . (6.8)
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Suppose k is a nonnegative integer with k > γ. By using (6.8) and Theorem
27, there is a constant c = c(s0, n, α, k) such that

sup
z∈Bn

‖(Rα,kfs0)(z) − (Rα,kpm0)(z)‖X ≤ c sup
z∈ 2

1+s0
Bn

‖fs0(z) − Pm0(z)‖X .

(6.9)

It follows by (6.9) and (6.7) that

sup
z∈Bn

(1 − |z|2)k−γ‖Rα,k(fs0 − pm0)(z)‖X

≤ sup
z∈Bn

‖(Rα,kfs0)(z) − (Rα,kpm0)(z)‖X

≤ c sup
z∈ 2

1+s0
Bn

‖fs0(z) − pm0(z)‖X

< cε.

Thus

‖fs0 − pm0‖Λγ(Bn,X) < cε. (6.10)

Using (6.6) and (6.10), it follows that

‖f − pm0‖Λγ(Bn,X) ≤ ‖f − fs0‖Λγ(Bn,X) + ‖fs0 − pm0‖Λγ(Bn,X)

< ε + cε = (1 + c)ε.

(iii) ⇒ (i). Let f in the closure of the set of vector-valued polynomial
P(Bn,X), in Λγ(Bn,X). There exists a sequence of vector-valued polyno-
mials {pm} in P(Bn,X) such that

lim
m→∞ ‖f − pm‖Λγ(Bn,X) = 0. (6.11)

Let us prove that for each k > γ,

lim
|z|→1−

(1 − |z|2)k−γ‖(Rα,kf)(z)‖X = 0.

Let k > γ. We have that

‖(Rα,kf)(z)‖X ≤ ‖(Rα,kf)(z) − (Rα,kpm)(z)‖X + ‖(Rα,kpm)(z)‖X

≤ ‖(Rα,kf)(z) − (Rα,kpm)(z)‖X + ‖Rα,kpm‖∞,X ,

where ‖Rα,kpm‖∞,X = maxz∈Bn
‖(Rα,kpm)(z)‖X . It follows that for each

m ∈ N, we have

(1 − |z|2)k−γ‖(Rα,kf)(z)‖X

≤ (1 − |z|2)k−γ‖(Rα,kf)(z) − (Rα,kpm)(z)‖X + (1 − |z|2)k−γ‖Rα,kpm‖∞,X

≤ ‖f − pm‖Λγ(Bn,X) + (1 − |z|2)k−γ‖Rα,kpm‖∞,X .

Letting |z| → 1−, we obtain that

lim sup
|z|→1−

(1 − |z|2)k−γ‖Rα,kf(z)‖X ≤ ‖f − pm‖Λγ(Bn,X),

for each m ∈ N. Now, letting m → ∞ on both sides of the previous inequality,
it follows by (6.11) that

lim sup
|z|→1−

(1 − |z|2)k−γ‖Rα,kf(z)‖X = 0. �
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Remark 39. One of the consequences of the previous result is that, given
γ ≥ 0, the generalized little vector-valued Lipschitz space Λγ,0(Bn,X) is a
closed subspace of the generalized vector-valued Lipschitz space Λγ(Bn,X).

From now on, we choose γ0 = (n+1+α)
(

1
p − 1

q

)
, with 1 < p ≤ q < ∞,

and we consider the generalized vector-valued Lipschitz space Λγ0(Bn,X).

Corollary 40. Suppose 1 ≤ t < ∞. Then Λγ0(Bn,X) ⊂ At
α(Bn,X).

Proof. Let k > γ0. Applying [11, Theorem 3.1.2], for f ∈ Λγ0(Bn,X), we
have that

‖f‖t
t,α,X �

∫

Bn

[(1 − |z|2)k‖Rα,kf(z)‖X ]tdνα(z)

=
∫

Bn

[(1 − |z|2)k−γ0‖Rα,kf(z)‖X ]t(1 − |z|2)γ0tdνα(z)

� ‖f‖Λγ0 (Bn,X)

∫

Bn

(1 − |z|2)α+γ0tdν(z) < ∞. �

In what follows, we assume that X,Y are reflexives complex Banach
spaces. We first introduce the following proposition which will be used in the
proof of Theorem 8.

Proposition 41. Suppose 1 < p ≤ q < ∞, 0 ≤ r < 1 and γ ∈ N
n. If aγ ∈

K(X,Y ), then the little Hankel operator hgγ
r

: Ap
α(Bn,X) → Aq

α(Bn, Y ) is a
compact operator, where gγ

r (z) = aγ(rz)γ for every z ∈ Bn.

Proof. Let {fj} be a sequence in Ap
α(Bn,X) such that fj → 0 weakly in

Ap
α(Bn,X) as j tends to infinity. We want to prove that limj→∞ ‖hgγ

r
fj‖q,α,Y =

0. Let the Taylor expansion of fj given by fj(z) =
∑

β∈Nn

cj
βzβ ∈ Ap

α(Bn,X).

Since fj → 0 weakly in Ap
α(Bn,X), applying Lemma 34, using the fact that

cj
β = ∂βfj(0)/β!, we have that for all β ∈ N

n, cj
β → 0 weakly in X as j → ∞.

By Lemma 32, for every z ∈ Bn, we have

hgγ
r
fj(z) =

∑

β∈Nn,β≤γ

aγ(cj
β)

γ!Γ(n + 1 + α + |γ − β|)
(γ − β)!Γ(n + 1 + α + |γ|)r|γ−β|zγ−β .

Therefore,

‖hg
γ
r
fj‖q,α,Y

=

⎛

⎝
∫

Bn

∥
∥∥
∥
∥
∥

∑

β∈Nn,β≤γ

aγ(cj
β)

γ!Γ(n + 1 + α + |γ − β|)
(γ − β)!Γ(n + 1 + α + |γ|) (rz)γ−β

∥
∥∥
∥
∥
∥

q

Y

dνα(z)

⎞

⎠

1/q

≤
⎛

⎝
∫

Bn

⎛

⎝
∑

β∈Nn,β≤γ

γ!Γ(n + 1 + α + |γ − β|)‖aγ(cj
β)‖Y (r|z|)|γ−β|

(γ − β)!Γ(n + 1 + α + |γ|)

⎞

⎠

q

dνα(z)

⎞

⎠

1/q

≤
∑

β∈Nn,β≤γ

(∫

Bn

(
‖aγ(cj

β)‖Y
γ!Γ(n + 1 + α + |γ − β|)

(γ − β)!Γ(n + 1 + α + |γ|) (r|z|)|γ−β|
)q

dνα(z)

) 1
q
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=
∑

β∈Nn,β≤γ

‖aγ(cj
β)‖Y

γ!Γ(n + 1 + α + |γ − β|)
(γ − β)!Γ(n + 1 + α + |γ|)

(∫

Bn

(r|z|)|γ−β|qdνα(z)

) 1
q

�
∑

β∈Nn,β≤γ

γ!Γ(n + 1 + α + |γ − β|)
(γ − β)!Γ(n + 1 + α + |γ|)‖aγ(cj

β)‖Y ,

where the third line above is justified by the Minkowsky’s inequality for
integrals. Thus,

‖hgγ
r
fj‖q,α,Y �

∑

β∈Nn,β≤γ

γ!Γ(n + 1 + α + |γ − β|)
(γ − β)!Γ(n + 1 + α + |γ|)‖aγ(cj

β)‖Y . (6.12)

Now, since cj
β → 0 weakly in X as j → ∞, it is clear that cj

β → 0 weakly in

X as j → ∞. By the assumption, we know that aγ ∈ K(X,Y ). Since cj
β → 0

weakly in X as j → ∞, we have that ‖aγ(cj
β)‖Y → 0 as j → ∞. It follows

that

lim supj→∞ ‖hgγ
r
fj‖q,α,Y �

∑
β∈Nn,β≤γ

γ!Γ(n + 1 + α + |γ − β|)
(γ − β)!Γ(n + 1 + α + |γ|) limj→∞ ‖aγ(cj

β)‖Y = 0.
�

Let us state Oliver’s result on the boundedness of the little Hankel op-
erator with operator-valued symbol between vector-valued Bergman spaces.

Theorem 42. Let 1 < p ≤ q < ∞. The little Hankel operator hb : Ap
α(Bn,X) →

Aq
α(Bn, Y ) is a bounded operator if and only if b ∈ Bγ(Bn,L(X,Y )), where

γ = 1 + (n + 1 + α)
(

1
q

− 1
p

)
.

Moreover

‖hb‖Ap
α(Bn,X)→Aq

α(Bn,Y ) � ‖b‖Bγ(Bn,L(X,Y )).

Remark 43. Suppose 1 < p < q < ∞, and γ = 1 + (n + 1 + α)
(

1
q − 1

p

)
.

Then γ is not always positive. Indeed, since 1/q − 1/p ∈ (−1, 0), then γ ∈
(−n−α, 1). It follows that when γ ∈ (−(n+α), 0), the vector-valued γ-Bloch
space Bγ(Bn,L(X,Y )) is not interesting and does not make sense since the
definition of the vector-valued γ-Bloch space introduced by Oliver only takes
into account the case where γ > 0. In Theorem 7, we correct the problem by
replacing the vector-valued γ-Bloch space with the generalized vector-valued
Lipschitz space Λγ0(Bn,L(X,Y )), where γ0 = (n + 1 + α)

(
1
p − 1

q

)
. Since

γ = 1 − γ0, we see that when 0 < γ0 < 1, we have that

Bγ(Bn,L(X,Y )) = Λγ0(Bn,L(X,Y )).

In what follows, we give the proof of Theorem 7 which generalize the
Theorem 42 and correct the mistake mentionned in Remark 43.
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6.3. Proof of Theorem 7

Let us recall the statement of Theorem 7.

Theorem 44. Suppose 1 < p ≤ q < ∞. The little Hankel operator hb :
Ap

α(Bn,X) → Aq
α(Bn, Y ) is a bounded operator if and only if

b ∈ Λγ0(Bn,L(X,Y )), where γ0 = (n + 1 + α)
(

1
p − 1

q

)
. Moreover,

‖hb‖Ap
α(Bn,X)→Aq

α(Bn,Y ) � ‖b‖Λγ0 (Bn,L(X,Y )).

Proof. Let p′ and q′ such that 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1. We first
assume that hb is a bounded operator from Ap

α(Bn,X) to Aq
α(Bn, Y ) with

norm ‖hb‖ = ‖hb‖Ap
α(Bn,X)→Aq

α(Bn,Y ). Let x ∈ X and k > (n + 1 + α)/p. Let
z ∈ Bn and put

f(w) =
x

(1 − 〈w, z〉)k
, w ∈ Bn.

Since k > (n + 1 + α)/p, by Theorem 18, we have that f ∈ Ap
α(Bn,X) and

‖f‖p,α,X � ‖x‖X

(1 − |z|2)k−(n+1+α)/p
.

By [11, Proposition 2.1.3 ], we have that

hbf(z) =
∫

Bn

b(w)(f(w))
(1 − 〈z, w〉)n+1+α

dνα(w)

=
∫

Bn

b(w)(x)
(1 − 〈z, w〉)n+1+α+k

dνα(w)

= Rα,kb(z)(x).

It follows by Theorem 14 that

‖Rα,kb(z)(x)‖Y = ‖hbf(z)‖Y

≤ ‖hbf‖q,α,Y

(1 − |z|2)(n+1+α)/q

≤ ‖hb‖‖f‖p,α,X

(1 − |z|2)(n+1+α)/q

� ‖hb‖‖x‖X

(1 − |z|2)k+(n+1+α)(1/q−1/p)

=
‖hb‖‖x‖X

(1 − |z|2)k−γ0
.

Since x ∈ X is arbitrary and ‖x‖X = ‖x‖X we get that

‖Rα,kb(z)‖L(X,Y ) � ‖hb‖
(1 − |z|2)k−γ0

.

Thus

sup
z∈Bn

(1 − |z|2)k−γ0‖Rα,kb(z)‖L(X,Y ) � ‖hb‖.

By Lemma 37 this means that b ∈ Λγ0(Bn,L(X,Y )) and ‖b‖Λγ0 (Bn,L(X,Y )) �
‖hb‖.
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Conversely, assume that b ∈ Λγ0(Bn,L(X,Y )). Let f ∈ Ap
α(Bn,X), g ∈

Aq′
α (Bn, Y �) and k > γ0. By Corollary 40, we have that

b ∈ Λγ0(Bn,L(X,Y )) ⊂ Ap′
α (Bn,L(X,Y )),

so by [11, Lemma 4.1.1], Corollary 30, and Lemma 37 it follows that

|〈hbf, g〉α,Y | =
∣∣
∣∣

∫

Bn

〈b(z)f(z), g(z)〉Y dνα(z)
∣∣
∣∣

=
∣∣
∣∣

∫

Bn

〈Rα,k+1b(z)f(z), g(z)〉Y dνα+k+1(z)
∣∣
∣∣

�
∫

Bn

‖Rα,k+1b(z)‖L(X,Y )‖f(z)‖X‖g(z)‖Y �(1 − |z|2)k+1+αdν(z)

� ‖b‖Λγ0 (Bn,L(X,Y ))

∫

Bn

‖f(z)‖X‖g(z)‖Y �(1 − |z|2)α+γ0dν(z).

By Hölder’s inequality the last integral is less than or equal to
(∫

Bn

‖f(z)‖q
X(1 − |z|2)α+qγ0dν(z)

)1/q (∫

Bn

‖g(z)‖q′
Y �(1 − |z|2)αdν(z)

)1/q′

.

For q = p, we have γ0 = 0 and thus

|〈hbf, g〉α,Y | � ‖b‖Λγ0 (Bn,L(X,Y ))‖f‖p,α,X‖g‖p′,α,Y .

For q − p > 0, using Theorem 14, we have

‖f(z)‖q
X = ‖f(z)‖p

X‖f(z)‖q−p
X ≤ ‖f(z)‖p

X‖f‖q−p
p,α,X

(1 − |z|2)(q−p)(n+1+α)/p
=

‖f(z)‖p
X‖f‖q−p

p,α,X

(1 − |z|2)qγ0
.

It follows that
(∫

Bn

‖f(z)‖q
X(1 − |z|2)α+qγ0dν(z)

)1/q

≤

‖f‖1−p/q
p,α,X

(∫

Bn

‖f(z)‖p
X

(1 − |z|2)α+qγ0

(1 − |z|2)qγ0
dν(z)

)1/q

= ‖f‖p,α,X .

Therefore, by duality, we obtain that

‖hb‖Ap
α(Bn,X)→Aq

α(Bn,Y ) =

sup
‖f‖p,α,X=1;‖g‖q′,α,Y �=1

|〈hbf, g〉α,Y | � ‖b‖Λγ0 (Bn,L(X,Y )). �

6.4. Proof of Theorem 8

We are now ready to give the proof of the main result in this section that is
Theorem 8 that we recall here.

Theorem 45. Let X and Y be two reflexive complex Banach spaces. Sup-
pose that 1 < p ≤ q < ∞, and α > −1 The little Hankel operator hb :
Ap

α(Bn,X) −→ Aq
α(Bn, Y ) is a compact operator if and only if

b ∈ Λγ0,0(Bn,K(X,Y )),
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where Λγ0,0(Bn,K(X,Y )) denotes the generalized little vector-valued Lips-

chitz space and γ0 = (n + 1 + α)
(

1
p − 1

q

)
, see (1.3).

Proof. First assume that b ∈ Λγ0,0(Bn,K(X,Y )) and denote by br(z) := b(rz)
with z ∈ Bn and 0 < r < 1. Since b ∈ Λγ0,0(Bn,K(X,Y )), by Theorem 7, we
have that

‖hb‖Ap
α(Bn,X)→Aq

α(Bn,Y ) � ‖b‖Λγ0 (Bn,L(X,Y )).

Therefore, we have

‖hb − hbr
‖Ap

α(Bn,X)→Aq
α(Bn,Y ) � ‖b − br‖Λγ0 (Bn,L(X,Y )).

By using Proposition 38, we have that

lim
r→1−

‖b − br‖Λγ0 (Bn,L(X,Y )) = 0,

so to prove that hb is a compact operator, it suffices to prove that hbr
is

a compact operator. Since br is analytic on a neighbourhood of Bn, it can
be approximated by its Taylor polynomial in the generalized vector-valued
Lipschitz norm. Thus,

lim
N→∞

‖br − PN,r‖Λγ0 (Bn,L(X,Y )) = 0, (6.13)

with PN,r(z) =
∑

β∈Nn,|β|≤N

b̂(β)r|β|zβ , where b̂(β) ∈ K(X,Y ) are the Taylor

coefficients of b. We also have by Theorem 7 that

‖hbr
− hPN,r

‖Ap
α(Bn,X)→Aq

α(Bn,Y ) � ‖br − PN,r‖Λγ0 (Bn,L(X,Y )).

So by (6.13), to prove that hbr
is a compact operator, it is enough to prove

that hPN,r
is a compact operator. Since PN,r is a polynomial, it is enough to

do the proof for monomials of the form b̂(β)r|β|zβ , with β ∈ N
n, z ∈ Bn and

b̂(β) ∈ K(X,Y ). Thus, according to Proposition 41, the proof of this part is
complete.
Conversely, for the “only if part”, let us assume that

hb : Ap
α(Bn,X) −→ Aq

α(Bn, Y )

is a compact operator. Since hb is compact, hb is then bounded and Theorem
7 yields

b ∈ Λγ0(Bn,L(X,Y )).

We shall first prove that the Taylor coefficients b̂(β), β ∈ N
n of b belongs

to K(X,Y ). Let {fj} ⊂ X such that fj −→ 0 weakly in X as j −→ ∞, fix
β0 ∈ N

n, and let xj(z) = zβ0fj . By Lemma 36, we have {xj} ⊂ Ap
α(Bn,X)

and {xj} converges weakly to 0 in Ap
α(Bn,X). Since
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‖b̂(β0)fj‖Y = sup
‖y�‖Y �=1

|〈b̂(β0)fj , y
�〉Y,Y � |

and Y is reflexive, by the Kakutani’s theorem [9, Theorem 3.17] there exists
y�

j ∈ Y � with ‖y�
j ‖Y � = 1 such that

‖b̂(β0)fj‖Y = |〈b̂(β0)fj , y
�
j 〉Y,Y � |.

But y�
j ∈ Ap′

α (Bn, Y �). By Lemma 23, we have

|〈hbxj , y
�
j 〉α,Y | =

∣
∣∣∣

∫

Bn

〈b(z)xk(z), y�
j 〉Y,Y �dνα(z)

∣
∣∣∣

=

∣∣∣∣∣
∣

∫

Bn

zβ0〈
∑

β∈Nn

zβ b̂(β)fj , y
�
j 〉Y,Y �dνα(z)

∣∣∣∣∣
∣

=

∣
∣∣∣∣∣

∑

β∈Nn

〈b̂(β)fj , y
�
j 〉Y,Y �

∫

Bn

zβzβ0dνα(z)

∣
∣∣∣∣∣

= |〈b̂(β0)fj , y
�
j 〉Y,Y � |

∫

Bn

|zβ0 |2dνα(z)

=
β0!Γ(n + α + 1)

Γ(n + |β0| + α + 1)
|〈b̂(β0)fj , y

�
j 〉Y,Y � |

=
β0!Γ(n + α + 1)

Γ(n + |β0| + α + 1)
‖b̂(β0)fj‖Y ,

where Fubini’s theorem is justified by Lemma 31 with {xj} ⊂ H∞(Bn,X).
Since hb is compact and {xj} converges weakly to 0 as j tends to infinity, we
have that {hbxj} converges strongly to 0 as j tends to infinity, therefore one
gets that

lim
j→∞

〈hbxj , y
�
j 〉α,Y = 0.

Thus

lim
j→∞

β0!Γ(n + α + 1)
Γ(n + |β0| + α + 1)

‖b̂(β0)fj‖Y = 0.

We then obtain

lim
j→∞

‖b̂(β0)fj‖Y = 0.

In fact, we have shown that b̂(β0) belongs to K(X,Y ) and as β0 is arbitrary,
this holds for all β ∈ N

n. Let 1 < t < ∞. Since b ∈ Λγ0(Bn,L(X,Y )), we
have that b ∈ At

α(Bn,L(X,Y )) and

lim
N→∞

∫

Bn

‖b(w) −
∑

|β|≤N

b̂(β)wβ‖t
L(X,Y ))

dνα(w) = 0.

Let z ∈ Bn. There exists a constant Cz > 0 such that
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‖b(z) −
∑

|β|≤N

b̂(β)zβ‖t
L(X,Y ))

≤ Cz

∫

Bn

‖b(w) −
∑

|β|≤N

b̂(β)wβ‖t
L(X,Y ))

dνα(w).

Thus,

lim
N→∞

‖b(z) −
∑

|β|≤N

b̂(β)zβ‖L(X,Y )) = 0.

Since z ∈ Bn is arbitrary, we deduce that b(z) ∈ K(X,Y ), for each z ∈
Bn. It remains to show that b satisfy the “little γ0- Lipschitz” condition.
Let x ∈ X and y� ∈ Y �. Since b ∈ Λγ0(Bn,L(X,Y )), then the mapping
z �→ 〈b(z)x, y�〉Y,Y � belongs to A1

α(Bn,C). By using the reproducing kernel
formula, it follows that

〈b(z)x, y�〉Y,Y � =
∫

Bn

〈b(w)x, y�〉Y,Y �

(1 − 〈z, w〉)n+1+α
dνα(w). (6.14)

Let k > γ0. Applying the operator Rα,k in (6.14), we obtain that

〈Rα,kb(z)x, y�〉Y,Y � =
∫

Bn

〈b(w)x, y�〉Y,Y �

(1 − 〈z, w〉)n+1+α+k
dνα(w). (6.15)

Let z ∈ Bn. Since ‖Rα,kb(z)‖L(X,Y ) = sup‖x‖X=1 ‖Rα,kb(z)(x)‖Y , and by
Lemma 35, the operator Rα,kb(z) is compact. So there exists x0(z) ∈ X with
‖x0(z)‖X = 1 and

‖Rα,kb(z)‖L(X,Y ) = ‖Rα,kb(z)x0(z)‖Y .

Also

‖Rα,kb(z)x0(z)‖Y = sup
‖y�‖Y �=1

|〈Rα,kb(z)x0(z), y�〉Y,Y � |.

Since Y is reflexive, it follows by the Kakutani’s theorem [9, Theorem 3.17]
that there exists y�

0(z) ∈ Y � with ‖y�
0(z)‖Y � = 1 such that

‖Rα,kb(z)‖L(X,Y ) = ‖Rα,kb(z)(x0(z))‖Y = |〈Rα,kb(z)x0(z), y�
0(z)〉Y,Y � |.

(6.16)

By (6.15) and (6.16) we get

(1 − |z|2)k−γ0‖Rα,kb(z)‖L(X,Y ) =
∣∣∣∣

∫

Bn

〈b(w)x0(z), y�
0(z)〉Y,Y �

(1 − |z|2)k−γ0

(1 − 〈z, w〉)n+1+α+k
dνα(w)

∣∣∣∣ = |〈hbxz, y
�
z〉α,Y |,

with

xz(w) =
x0(z)(1 − |z|2)β−(n+1+α)/p

(1 − 〈w, z〉)β
, w ∈ Bn

and
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y�
z(w) =

y�
0(z)(1 − |z|2)k+(n+1+α)/q−β

(1 − 〈w, z〉)n+1+α+k−β
, w ∈ Bn,

where β is chosen such that

(n + 1 + α)/p < β < k + (n + 1 + α)/q.

By Theorem 18, we have xz ∈ Ap
α(Bn,X), y�

z ∈ Aq′
α (Bn, Y �), and

sup
z∈Bn

‖xz‖p,α,X < ∞, sup
z∈Bn

‖y�
z‖q′,α,Y � < ∞.

Let us prove that

xz −→ 0 weakly in Ap
α(Bn,X) as |z| −→ 1−. (6.17)

Since

sup
z∈Bn

‖xz‖p,α,X < ∞,

to prove (6.17), by Lemma 33, it suffices to prove that

〈xz, ew,a�〉α,X −→ 0 as |z| −→ 1−,

where for each a� ∈ X� and w ∈ Bn, we have

ew,a�(ζ) =
1

(1 − 〈ζ, w〉)n+1+α
a�, ζ ∈ Bn.

By using the definition of ew,a� and the reproducing kernel formula, it follows
that

〈xz, ew,a�〉p,α,X =
∫

Bn

〈xz(ζ), ew,a�(ζ)〉X,X�dνα(ζ)

=
∫

Bn

〈xz(ζ),
1

(1 − 〈ζ, w〉)n+1+α
a�〉X,X�dνα(ζ)

=
〈 ∫

Bn

xz(ζ)
(1 − 〈w, ζ〉)n+1+α

dνα(ζ), a�
〉

X,X�

= 〈xz(w), a�〉X,X� .

Therefore, we have

|〈xz, ew,a�〉p,α,X | = |〈xz(w), a�〉X,X� |

=
∣∣∣
∣
(1 − |z|2)β−(n+1+α)/p

(1 − 〈w, z〉)β
〈x0(z), a�〉X,X�

∣∣∣
∣

≤ (1 − |z|2)β−(n+1+α)/p

(1 − |w|)β
‖a�‖X� −→ 0

as |z| −→ 1−. By using (6.17), the compactness of hb and the fact that

sup
z∈Bn

‖y�
z‖q′,α,Y � < ∞,

it follows that
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lim
|z|→1−

(1 − |z|2)k−γ0‖Rα,kb(z)‖L(X,Y ) = lim
|z|→1−

|〈hbxz, y
�
z〉α,Y | = 0,

which completes the proof of the theorem. �
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