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Abstract. In the setting of the unit disk we have recently obtained
characterizations in terms of Carleson measures for bounded/compact
differences of weighted composition operators acting from a standard
weighted Bergman space into the corresponding weighted Lebesgue space.
In this paper we extend those results to the case when the exponents of
the domain space and the target space are different.
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1. Introduction

Let D be the unit disk in the complex plane C. Denote by S(D) the set of
all holomorphic self-maps of D. Given ϕ ∈ S(D) and a Borel function u on
D, the weighted composition operator Cϕ,u with symbol ϕ and weight u is
defined by

Cϕ,uf := u(f ◦ ϕ)

for functions f holomorphic on D. So, the classical composition operators
correspond to the special case when u is the constant function 1.

It has been of growing interest to study on differences, or more gener-
ally linear combinations, of composition operators for the last three decades.
For the background and historical remarks on such study, we refer to [1]
and references therein. Quite recently, pursuing the same line of research,
Acharyya and Wu [2] first considered differences of weighted composition op-
erators with holomorphic weights satisfying certain growth rate and obtained
characterizations for compactness of such operators acting from a standard
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weighted Bergman space into another. In particular, in the most basic case
when the domain space and the target space are the same, their weights were
restricted to bounded holomorphic functions. The current authors [1] then
extended such a special case to the case of general weights which are possibly
non-holomorphic and unbounded. In this paper we extend the results of [1]
to the case when the exponents of the domain space and the target space are
different.

To begin with, we recall the standard weighted Bergman spaces. Given
α > −1, we denote by Aα the normalized weighted measure defined by

dAα(z) := (α + 1)(1 − |z|2)α dA(z), z ∈ D

where A denotes the area measure on D normalized to have the total mass
1.

For 0 < p < ∞, the α-weighted Bergman space Ap
α(D) is the space of

all holomorphic functions f on D for which the “norm”

‖f‖Ap
α

:=
{∫

D

|f |p dAα

}1/p

is finite. As is well-known, the space Ap
α(D) is a closed subspace of Lp

α(D) :=
Lp(D, Aα), the standard Lebesgue space associated with the measure Aα. So,
it is a Banach space for 1 ≤ p < ∞ and a complete metric space for 0 < p < 1
with respect to the translation-invariant metric (f, g) �→ ‖f − g‖p

Ap
α
.

To state our results we introduce several notation. We reserve symbol
functions ϕ,ψ ∈ S(D) and weights u, v to be considered throughout the
paper. We put

ρ(z) := d
(
ϕ(z), ψ(z)

)
, z ∈ D

where d denotes the pseudohyperbolic distance on D; see Sect. 2.2. Given
a positive Borel measure μ on D and ϕ ∈ S(D), we denote by μ ◦ ϕ−1

the pullback measure on D defined by (μ ◦ ϕ−1)(E) = μ[ϕ−1(E)] for Borel
sets E ⊂ D. With these notation we now introduce below several pullback
measures on D associated with ϕ,ψ, u and v.

First, for α > −1 and 0 < q < ∞, we define a pullback measure ω =
ωα,q

ϕ,u;ψ,v by

ω := (|ρu|q dAα) ◦ ϕ−1 + (|ρv|q dAα) ◦ ψ−1.

Also, for β > 0, we define a pullback measure σβ = σα,q,β
ϕ,u;ψ,v by

σβ := [(1 − ρ)β |u − v|q dAα] ◦ ϕ−1 + [(1 − ρ)β |u − v|q dAα] ◦ ψ−1.

Finally, for 0 < r < 1, we put

Gr := {z ∈ D : ρ(z) < r} (1.1)

and define a pullback measure σr = σα,q
ϕ,u;ψ,v;r by

σr := (χGr
|u − v|q dAα) ◦ ϕ−1 + (χGr

|u − v|q dAα) ◦ ψ−1

where χGr
denotes the characteristic function of the set Gr. Note that ω, σβ

and σr are finite measures if u, v ∈ Lq
α(D).
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In this paper we obtain characterizations in terms of Carleson proper-
ties of measures involving those introduced above for bounded/compact dif-
ferences of weighted composition operators acting from Ap

α(D) into Lq
α(D)

for an arbitrary pair of p and q. The case p = q was earlier studied by the
current authors. As is well known, characterizations of Carleson measures in
this context are split into two cases, namely, p ≤ q and q < p; see Sect. 2.4.
So, our characterizations also split into the corresponding two cases.

In case p ≤ q, we have the following characterization, which contains
the main result of [1] as a special case. For the notions of (λ, α)-Carleson
measures, see Sect. 2.4.

Theorem 1.1. Let α > −1, 0 < p ≤ q < ∞, β
q > α+2

p and 0 < r < 1. Put
λ = q

p . Let ϕ,ψ ∈ S(D) and u, v ∈ Lq
α(D). Then the following statements

are equivalent:
(a) Cϕ,u − Cψ,v : Ap

α(D) → Lq
α(D) is bounded(compact, resp.);

(b) ω + σβ is a (compact, resp.) (λ, α)-Carleson measure;
(c) ω + σr is a (compact, resp.) (λ, α)-Carleson measure.

In case q < p, boundedness and compactness turn out to be the same
and characterizations are as follows.

Theorem 1.2. Let α > −1, 0 < q < p < ∞, β
q > max{1, 1

p} + α+1
p and

0 < r < 1. Put λ = q
p . Let ϕ,ψ ∈ S(D) and u, v ∈ Lq

α(D). Then the
following statements are equivalent:
(a) Cϕ,u − Cψ,v : Ap

α(D) → Lq
α(D) is bounded;

(b) Cϕ,u − Cψ,v : Ap
α(D) → Lq

α(D) is compact;
(c) ω + σβ is a (λ, α)-Carleson measure;
(d) ω + σr is a (λ, α)-Carleson measure.

In Sect. 2 we recall and collect some basic facts to be used in later
sections. In Sect. 3 we prove a more detailed version of Theorem 1.1; see
Theorem 3.1. As one may expect, the main ideas of proofs are essentially the
same as those in [1]. In Sect. 4 we prove a more detailed version of Theorem
1.2; see Theorem 4.1. The proofs are quite different from those in [1], but still
utilize some technical estimates from [1].
Constants Throughout the paper we use the same letter C to denote positive
constants which may vary at each occurrence but do not depend on the
essential parameters. Variables indicating the dependency of constants C will
be often specified inside parentheses. For nonnegative quantities X and Y the
notation X � Y or Y � X means X ≤ CY for some inessential constant C.
Similarly, we write X ≈ Y if both X � Y and Y � X hold.

2. Preliminaries

In this section we collect well-known basic facts to be used in later sections.
One may find details in standard references such as [3,4], unless otherwise
specified.
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2.1. Compact Operator

We clarify the notion of compact operators, since the spaces under consider-
ation are not Banach spaces when 0 < p < 1. Let X and Y be topological
vector spaces whose topologies are induced by complete metrics. A continu-
ous linear operator L : X → Y is said to be compact if the image of every
bounded sequence in X has a convergent subsequence in Y .

For a linear combination of weighted composition operators with Lq
α-

weights acting on the weighted Bergman spaces, we have the following con-
venient compactness criterion taken from [1, Lemma 2.1].

Lemma 2.1. Let α > −1 and 0 < p, q < ∞. Let T be a linear combination
of weighted composition operators with weights in Lq

α(D) and assume that
T : Ap

α(D) → Lq
α(D) is bounded. Then T : Ap

α(D) → Lq
α(D) is compact if

and only if Tfn → 0 in Lq
α(D) for any bounded sequence {fn} in Ap

α(D)
such that fn → 0 uniformly on compact subsets of D.

2.2. Pseudohyperbolic Distance

The well-known pseudohyperbolic distance between z, w ∈ D is given by

d(z, w) := |ηw(z)|
where ηw(z) := w−z

1−zw is the involutive automorphism of D that exchanges 0
and w. The explicit expression of d(z, w) is given by the identity

1 − d2(z, w) =
(1 − |z|2)(1 − |w|2)

|1 − zw|2 . (2.1)

This yields an inequality

1 − d(z, w)
1 + d(z, w)

≤ 1 − |z|2
1 − |w|2 ≤ 1 + d(z, w)

1 − d(z, w)
(2.2)

which is useful for our purpose. In fact, with a := ηw(z), we have by (2.1)

1 − |z|2
1 − |w|2 =

1 − |ηw(a)|2
1 − |w|2 =

1 − |a|2
|1 − aw|2 ≤ 1 + |a|

1 − |a| =
1 + d(z, w)
1 − d(z, w)

so that (2.2) holds by symmetry.
We denote by Es(z) the pseudohyperbolic disk with center z ∈ D and

radius s ∈ (0, 1). By an elementary calculation one can see that Es(z) is a
Euclidean disk with

(center) =
1 − s2

1 − s2|z|2 z and (radius) =
1 − |z|2

1 − s2|z|2 s. (2.3)

Given s ∈ (0, 1), we will frequently use the estimate

1 − |z|2 ≈ |1 − zw| ≈ 1 − |w|2 (2.4)

and

|1 − ξz| ≈ |1 − ξw| (2.5)
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for all ξ ∈ D and z, w ∈ D with d(z, w) < s; constants suppressed in these
estimates depend only on s. Given α > −1 and s ∈ (0, 1), one may use the
above estimate to verify

Aα [Es(z)] ≈ (1 − |z|2)α+2 (2.6)

for z ∈ D; constants suppressed in this estimate depend only on s and α. We
refer to [5, Chapter 4] for details of these estimates.

2.3. Test Functions

Given α > −1 and s ∈ (0, 1), we recall the submean value type inequality

|f(a)|p ≤ C

(1 − |a|2)α+2

∫
Es(a)

|f |p dAα, a ∈ D (2.7)

valid for functions f holomorphic on D and 0 < p < ∞ where C > 0 is a
constant depending only on α and s. This is easily verified via (2.3), (2.4)
and the subharmonicity of |f |p.

Note from (2.7) with p = 2 that each point evaluation is a continuous lin-
ear functional on the Hilbert space A2

α(D). Thus, to each a ∈ D corresponds
a unique reproducing kernel whose explicit formula is known as z �→ τα+2

a (z)
where

τa(z) :=
1

1 − az
. (2.8)

Powers of these functions will be the source of test functions in conjunction
with Lemma 2.1. The norms of such kernel-type functions are well known.
Namely, when tp > α + 2, we have

‖τ t
a‖Ap

α
≈ (1 − |a|2)−t+ α+2

p , a ∈ D; (2.9)

constants suppressed in this estimate are independent of a; see, for example,
[5, Lemma 3.10]. We thus see that

τ t
a

‖τ t
a‖Ap

α

→ 0 uniformly on compact subsets of D (2.10)

as |a| → 1.

2.4. Carleson Measure

Let μ be a positive Borel measure on D. Let α > −1 and 0 < p, q < ∞. We
say that μ is a (p, q, α)-Carleson measure if the embedding Ap

α(D) ⊂ Lq(dμ)
is bounded, i.e., if there is a constant C > 0 such that{∫

D

|f |q dμ

}1/q

≤ C‖f‖Ap
α

for all f ∈ Ap
α(D). If, in addition, such embedding is compact, then μ is called

a compact (p, q, α) -Carleson measure. Note that (p, q, α)-Carleson measures
are finite measures.

For 0 < s < 1 and λ > 0 we put

μ̂α,s,λ(z) :=
μ[Es(z)]

(Aα[Es(z)])λ
, z ∈ D
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for the weighted averaging function of μ with respect to the measure Aα and
the pseudohyperbolic s-disks. In case λ = 1, we put

μ̂α,s := μ̂α,s,1

for simplicity. We recall below the well-known characterizations for (p, q, α)-
Carleson measures by means of these weighted averaging functions.

In case 0 < p ≤ q < ∞, characterizations for (p, q, α)-Carleson measures
are as follows:

μ : (p, q, α)-Carleson measure ⇐⇒ sup
D

μ̂α,s, q
p

< ∞ (2.11)

and

μ : compact (p, q, α)-Carleson measure ⇐⇒ lim
|z|→1

μ̂α,s, q
p
(z) = 0. (2.12)

In case 0 < q < p < ∞, characterizations turn out to be quite different.
In fact (p, q, α)-Carleson measures are the same as compact ones and their
characterizations are as follows:

μ : (compact) (p, q, α)-Carleson measure ⇐⇒ μ̂α,s ∈ L
p/(p−q)
α (D);(2.13)

see [6, Theorem 54] or [7, Theorem B]. Note that the notions of (compact)
(p, q, α)-Carleson measures are independent of the parameter s and, when
α > −1 is fixed, depend only on the ratio q

p . So, setting λ := q
p , we simply say

(compact, resp.) (λ, α)-Carleson measure instead of (compact, resp.) (p, q, α)-
Carleson measure.

3. The Case p ≤ q

In this section we prove a more detailed version of Theorem 1.1. Before pro-
ceeding, we decompose the measures ω, σβ and σr (associated with ϕ,ψ, u, v, α,
q) defined in the Introduction into two parts as follows:

ω = ωϕ,u + ωψ,v,

σβ = σβ
ϕ + σβ

ψ,

σr = σϕ,r + σψ,r

where measures ωϕ,u, σβ
ϕ, σϕ,r are defined by

ωϕ,u := (|ρu|q dAα) ◦ ϕ−1,

σβ
ϕ := [(1 − ρ)β |u − v|q dAα] ◦ ϕ−1,

σϕ,r := (χGr
|u − v|q dAα) ◦ ϕ−1;

measures ωψ,v, σβ
ψ, σψ,r are defined similarly. Parameters omitted in these

notation should be clear from the context.
The next theorem is a more detailed version of Theorem 1.1.

Theorem 3.1. Let α > −1, 0 < p ≤ q < ∞, β
q > α+2

p and 0 < r < 1. Put
λ := q

p . Let ϕ,ψ ∈ S(D) and u, v ∈ Lq
α(D). Then the following statements

are equivalent:
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(a) Cϕ,u − Cψ,v : Ap
α(D) → Lq

α(D) is bounded(compact, resp.);
(b) ω + σβ

ϕ and ω + σβ
ψ are (compact, resp.) (λ, α)-Carleson measures;

(c) ω + σβ
ϕ or ω + σβ

ψ is a (compact, resp.) (λ, α)-Carleson measure;
(d) ω + σϕ,r and ω + σψ,r are (compact, resp.) (λ, α)-Carleson measures;
(e) ω + σϕ,r or ω + σψ,r is a (compact, resp.) (λ, α)-Carleson measure.

We will complete the Proof of Theorem 3.1 by proving the sequences of
implications

(b) =⇒ (c) =⇒ (e) =⇒ (a) =⇒ (b)

and

(b) =⇒ (d) =⇒ (e).

Note that the implications (b) =⇒ (c) and (d) =⇒ (e) are trivial. Also,
since

1 ≤ 1 − ρ

1 − r
on Gr

for each r ∈ (0, 1), the implications (b) =⇒ (d) and (c) =⇒ (e) are clear for
any β > 0. Thus it remains to prove the implications

(e) =⇒ (a) =⇒ (b). (3.1)

General scheme of the proofs will be the same as those [1]. For that
purpose we need to extend a couple of inequalities, which were used in [1] for
the case p = q, to the current setting. First, the following lemma, taken from
[8, Lemma 3.1], extends [1, Lemma 4.2].

Lemma 3.2. Let α > −1, 0 < p ≤ q < ∞ and 0 < s1 < s2 < 1. Then there is
a constant C = C(α, p, q, s1, s2) > 0 such that

|f(z) − f(w)|q ≤ C‖f‖q−p
Ap

α

dq(z, w)

(1 − |z|2)(α+2) q
p

∫
Es2 (z)

|f |p dAα

for functions f ∈ Ap
α(D) and z, w ∈ D with d(z, w) < s1.

Next, we also need the following lemma which extends [1, Eq. (2.17)].

Lemma 3.3. Let α > −1, 0 < p ≤ q < ∞ and 0 < s < 1. Then there is a
constant C = C(α, p, q, s) > 0 such that∫

D

|f |q dμ ≤ C‖f‖q−p
Ap

α

∫
D

|f |pμ̂α,s, q
p

dAα

for positive Borel measures μ on D and functions f ∈ Ap
α(D).

Proof. Let f ∈ Ap
α(D). We have by (2.7)

|f(z)|q = (|f(z)|p)q/p

� 1

(1 − |z|2)(α+2) q
p

{∫
Es(z)

|f(w)|p dAα(w)

}q/p

≤ 1

(1 − |z|2)(α+2) q
p

‖f‖q−p
Ap

α

∫
Es(z)

|f(w)|p dAα(w)
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for all z ∈ D; the last inequality holds by p ≤ q. Thus, integrating against the
measure dμ(z) and then interchanging the order of integrations, we obtain∫

D

|f(z)|q dμ(z) � ‖f‖q−p
Ap

α

∫
D

|f(w)|p
{∫

Es(w)

dμ(z)

(1 − |z|2)(α+2) q
p

}
dAα(w)

≈ ‖f‖q−p
Ap

α

∫
D

|f(w)|pμ̂α,s, q
p
(w) dAα(w);

the last estimate holds by (2.4) and (2.6). Note that the constants suppressed
in the above estimates depend only on α, p, q and s. �

Having Lemmas 3.2 and 3.3, we may now proceed to the proof of the
implications (3.1). In the proofs below most of the technical estimates, which
are already established in [1], are still available and thus omitted.

Auxiliary notation Before proceeding, we set some auxiliary notation to
be used for the rest of the paper.

First, as for the notation associated with ϕ,ψ ∈ S(D) and u, v ∈ Lq
α(D),

we put

T := Cϕ,u − Cψ,v

for simplicity. In case T : Ap
α(D) → Lq

α(D) is bounded, its “norm” is denoted
by

‖T‖Ap
α(D)→Lq

α(D).

We also put

Qb :=
1 − bϕ

1 − bψ

and

Rα,q
s,t (a, b) :=

∫
ϕ−1[Es(a)]

∣∣u − vQt
b

∣∣q dAα

for a, b ∈ D, 0 < s < 1 and t > 0.
Next, we will also use the notation

ΓN (a) :=
{
aζ : |ζ| = 1 and |Arg ζ| ≤ |N |(1 − |a|)}

and

aN := ae−iN(1−|a|)

for a ∈ D and N real. Finally, we denote by ‖ · ‖Lq
α

the “norm” on Lq
α(D).

In the proofs below auxiliary notation specified above will be used often
without further references. First, we prove the implication (e) =⇒ (a).
Proof of (e) =⇒ (a) We first consider boundedness. Assume (e). Fix s ∈ (r, 1).
By symmetry we may assume that

μ := ω + σϕ,r

is a (λ, α)-Carleson measure so that

sup
D

μ̂α,s,λ < ∞ (3.2)

by (2.11).
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Fix an arbitrary f ∈ Ap
α(D) with ‖f‖Ap

α
≤ 1. By the proof of [1, Theo-

rem 4.1] we have

‖Tf‖q
Lq

α
� 1

rq

∫
D

|f |q dμ +
∫

Gr
|v(f ◦ ϕ − f ◦ ψ)|q dAα; (3.3)

recall that Gr is the set specified in (1.1).
For the first integral in (3.3), we note from Lemma 3.3∫

D

|f |q dμ �
∫
D

|f |pμ̂α,s,λ dAα. (3.4)

For the second integral in (3.3), using Lemma 3.2 and proceeding as in the
proof of [1, Theorem 4.1], we obtain∫

Gr

|v(f ◦ ϕ − f ◦ ψ)|q dAα �
∫
D

|f |p ̂(ωψ,v)α,s,λ dAα

≤ ∫
D

|f |pμ̂α,s,λ dAα. (3.5)

We now see from (3.3), (3.4) and (3.5) that

‖Tf‖q
Lq

α
�

∫
D

|f |pμ̂α,s,λ dAα ≤ sup
D

μ̂α,s,λ; (3.6)

one may keep track of the constant suppressed in this estimate to find it
depending only on α, p, q and r. Consequently, we conclude

‖T‖q
Ap

α(D)→Lq
α(D)

≤ C

(
sup
D

μ̂α,s,λ

)

for some constant C = C(α, p, q, r) > 0. This, together with (3.2), completes
the proof for boundedness.

For the compactness part, one may use Lemma 2.1 and repeat the Proof
of [1, Theorem 4.1]. �

Next, we prove the implication (a) =⇒ (b).
Proof of (a) =⇒ (b) Fix s ∈ (0, 1). Also, as in the proof of [1, Theorem 4.1],
fix γ > 0 such that

α + 2
p

< γ <
β

q

and choose N = N(s, γ) > 0 so large that

Arg
[
1 +

8i

N(1 − s)

]
< min

{
π

12
,

π

12γ

}
. (3.7)

Put

μ := ωϕ,u + σβ
ϕ

for simplicity. Since u, v ∈ Lq
α(D) by assumption, we see that μ is a finite

measure.
Assume that T : Ap

α(D) → Lq
α(D) is bounded. In order to prove that

μ is a (λ, α)-Carleson measure, we use (2.11). We will actually prove a bit
more. Namely, we will establish

sup
D

μ̂α,s,λ ≤ C‖T‖q
Ap

α(D)→Lq
α(D)

(3.8)

for some constant C = C(α, β, p, q, s) > 0.
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To establish (3.8) we introduce our test functions. Let a ∈ D. For t >
α+2

p to be fixed later, we put

fb,t :=
τ t
b

‖τ t
b‖Ap

α

, b ∈ ΓN (a)

where τb is the function specified in (2.8). Proceeding exactly as in the Proof
of [1, Eq. (4.7)] and setting Rt := Rα,q

s,t for short, we have

‖Tfb,t‖q
Lq

α
� Rt(a, b)

(1 − |a|2)(α+2)λ
(3.9)

for all a with N(1 − |a|) < π. We now assume N(1 − |a|) < π for the rest
of the proof. In conjunction with the above estimate, we can find from the
Proof of [1, Theorem 4.1] a radius ε = ε(N, s) = ε(α, β, p, q, s) ∈ (0, 1) such
that

μ[Es(a)] � Rγ(a, aN ) + R2γ(a, aN ) + Rγ(a, aN )

+ R2γ(a, aN ) + Rγ(a, a) + Rγ+1(a, a)
(3.10)

for all a with |a| ≥ ε. This, together with (3.9), yields

μ̂α,s,λ(a) � ‖TfaN ,γ‖q
Lq

α
+ ‖TfaN ,2γ‖q

Lq
α

+ ‖TfaN ,γ‖q
Lq

α

+ ‖TfaN ,2γ‖q
Lq

α
+ ‖Tfa,γ‖q

Lq
α

+ ‖Tfa,γ+1‖q
Lq

α

(3.11)

for all a with |a| ≥ ε. One may check that the constant suppressed in the
above estimate depends only on α, β, p, q and s. Consequently,

sup
D\εD

μ̂α,s,λ ≤ C‖T‖q
Ap

α(D)→Lq
α(D)

(3.12)

for some constant C = C(α, β, p, q, s) > 0.
Meanwhile, note from (2.3)

⋃
|a|<ε

Es(a) = δD where δ :=
ε + s

1 + εs

and thus by (2.6)

sup
εD

μ̂α,s,λ � μ(δD)
(1 − ε2)(α+2)λ

.

In addition, since

ρ|u| ≤ |ϕ − ψ||u|
1 − δ

≤ |uϕ − vψ| + |u − v|
1 − δ

on ϕ−1(δD),

we have

μ(δD) =
∫

ϕ−1(δD)

|ρu|q dAα +
∫

ϕ−1(δD)

(1 − ρ)β |u − v|q dAα

�
∫
D

|uϕ − vψ|q dAα +
∫
D

|u − v|q dAα

= ‖T (id)‖q
Lq

α
+ ‖T (1)‖q

Lq
α
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where id denotes the identity map on D. Combining these observations, we
obtain

sup
εD

μ̂α,s,λ ≤ C‖T‖q
Ap

α(D)→Lq
α(D)

for some constant C = C(α, β, p, q, s) > 0. By this and (3.12) we conclude
(3.8), as asserted.

Now, if, in addition, T : Ap
α(D) → Lq

α(D) is compact, then one may
deduce from (3.11), (2.10), Lemma 2.1 and (2.12) that μ is a compact (λ, α)-
Carleson measure.

Finally, by symmetry the same assertions also hold for the measure
ωψ,v + σβ

ψ. �

4. The Case q < p

In this section we prove a more detailed version of Theorem 1.2. We continue
using the notation introduced at the beginning of Sect. 3. The next theorem
is a more detailed version of Theorem 1.2.

Theorem 4.1. Let α > −1, 0 < q < p < ∞, β
q > max

{
1, 1

p

}
+ α+1

p and
0 < r < 1. Put λ := q

p . Let ϕ,ψ ∈ S(D) and u, v ∈ Lq
α(D). Then the

following statements are equivalent:

(a) Cϕ,u − Cψ,v : Ap
α(D) → Lq

α(D) is bounded;
(b) Cϕ,u − Cψ,v : Ap

α(D) → Lq
α(D) is compact;

(c) ω + σβ
ϕ and ω + σβ

ψ are (λ, α)-Carleson measures;
(d) ω + σβ

ϕ or ω + σβ
ψ is a (λ, α)-Carleson measure;

(e) ω + σϕ,r and ω + σψ,r are (λ, α)-Carleson measures;
(f) ω + σϕ,r or ω + σψ,r is a (λ, α)-Carleson measure.

As in the Proof of Theorem 3.1, it is enough to show the implications

(f) =⇒ (a) + (b) and (a) =⇒ (c).

Auxiliary notation introduced in the previous section will be used again with-
out further references throughout the proofs.
Proof of (f) =⇒ (a) + (b) Assume (f). Fix s ∈ (r, 1). By symmetry we may
assume that

μ := ω + σϕ,r

is a (λ, α)-Carleson measure so that

μ̂α,s ∈ Lp/(p−q)
α (D) (4.1)

by (2.13).
We see from the first inequality (with p = q) in (3.6)

‖Tf‖q
Lq

α
�

∫
D

|f |qμ̂α,s dAα (4.2)
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for functions f ∈ Ap
α(D). The constant suppressed above depends only on

α, p, q and r. Since q < p, we now apply Hölder’s Inequality to conclude by
(2.13) that T : Ap

α(D) → Lq
α(D) is bounded with norm estimate

‖T‖q
Ap

α(D)→Lq
α(D)

≤ C‖μ̂α,s‖L
p/(p−q)
α

for some constant C = C(α, p, q, r) > 0.
We now proceed to the proof of compactness. Our proof here relies

on Lemma 2.1. So, consider an arbitrary sequence {fn} in Ap
α(D) such that

supn ‖fn‖Ap
α

≤ 1 and fn → 0 uniformly on compact subsets of D. It is enough
to show

Tfn → 0 in Lq
α(D) (4.3)

by Lemma 2.1.
Let t ∈ (0, 1). We have by (4.2)∫

D

|Tfn|q dAα �
∫

tD

+
∫
D\tD

|fn|qμ̂α,s dAα

for all n. Note that μ is a finite measure, being a (λ, α)-Carleson measure.
We thus have

sup
tD

μ̂α,s < ∞.

Now, since fn → 0 uniformly on tD, we obtain

lim
n→∞

∫
tD

|fn|qμ̂α,s dAα = 0

for each t. For the integral over D\tD, we apply Hölder’s Inequality to obtain∫
D\tD

|fn|qμ̂α,s dAα � ‖μ̂α,sχt‖L
p/(p−q)
α

where χt is the characteristic function of the annulus D \ tD. Accordingly,
we obtain

lim sup
n→∞

∫
D

|Tfn|q dAα � ‖μ̂α,sχt‖L
p/(p−q)
α

;

the constant suppressed in this estimate is independent of t. Note from (4.1)
that the right hand side of the above tends to 0 as t → 1. Thus, taking the
limit t → 1, we conclude (4.3), as required. �

We now proceed to the proof of the implication (a) =⇒ (c), which is
the hardest step. We need several preliminary lemmas.

To begin with, we recall the well-known notion of lattices. Let 0 < δ < 1
and {an} be a sequence of distinct points in D. We say that {an} is δ-separated
if the pseudohyperbolic disks Eδ/2(an) are pairwise disjoint. We say that {an}
is a δ-lattice (or simply a lattice if the size of δ does not matter) if it is δ-
separated and

D =
⋃
n

Eδ(an).
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We refer to [5, Lemma 4.8] for existence of δ-lattices for each 0 < δ < 1. In
fact [5, Lemma 4.8] is stated in terms of the hyperbolic distance and one may
easily modify its proof for the pseudohyperbolic distance.

Using the lattices, one may translate characterizations for Carleson mea-
sures described in Sect. 2.4 into the corresponding discrete versions. More
precisely, given α > −1, 0 < q < p < ∞, 0 < s < 1 and 0 < δ < 1, we have

‖μ̂α,s‖L
p/(p−q)
α

≈ ‖{μ̂α,s, q
p
(an)}‖
p/(p−q) (4.4)

for δ-lattices {an}; the constants suppressed in this estimate depend only on
α, p, q, s and δ. See [7, Theorem B] and references therein. Here, and in what
follows, �p stands for the standard sequence space with “norm” ‖ · ‖
p .

The following lemma can be found in [9, Lemma 2.15].

Lemma 4.2. Given a δ-separated sequence a, denote by Ma,δ,s(a) the number
of points in a that lie in the pseudohyperbolic disk Es(a). Then the inequlaity

Ma,δ,s(a) ≤
(

2
δ

+ 1
)2 1

1 − s2

holds for all δ, s ∈ (0, 1) and a ∈ D.

In what follows recall aN = ae−iN(1−|a|).

Lemma 4.3. Let 0 < s ≤ 1
3 . Let a, b ∈ D and assume Es(a) ∩ Es(b) �= ∅.

Then the inequality

d(aN , bN ) < 2(1 + 8|N |)s
holds for all N real.

Proof. Pick ξ ∈ Es(a) ∩ Es(b). Given N real, put

ξa := ξe−iN(1−|a|) and ξb := ξe−iN(1−|b|)

for short. Using the elementary inequality |1 − eiθ| ≤ |θ| for θ real, we note

d(ξa, ξb) =
|ξ| ∣∣1 − e−iN(|a|−|b|)∣∣∣∣1 − |ξ|2e−iN(|a|−|b|)∣∣

≤ |N |∣∣|a| − |b|∣∣
1 − |ξ|2 ≤ 2|N |∣∣|a| − |b|∣∣

1 − |a|2 ;

the last inequality holds by (2.2), because s ≤ 1
3 . Meanwhile, since d(a, b) <

2s and s ≤ 1
3 , we have

∣∣|a| − |b|∣∣ ≤ |a − b| ≤ 4(1 − |a|2)
1 − 4s2|a|2 s < 8s(1 − |a|2);

the second inequality holds by (2.3). Combining these observations, we obtain

d(ξa, ξb) ≤ 16|N |s.
Thus, we obtain

d(aN , bN ) ≤ d(aN , ξa) + d(ξa, ξb) + d(ξb, bN )

= d(a, ξ) + d(ξa, ξb) + d(ξ, b)

< 2s + 16|N |s



17 Page 14 of 19 B. R. Choe et al. IEOT

as required. �

In what follows we put

an,N := (an)N

for simplicity.

Lemma 4.4. Given 0 < δ < 1 and N real, there is a constant M = M(δ, |N |) >
0 with the following property: If {an} is a δ-separated sequence in D, then
any collection of more than M of the pseudohyperbolic disks Es(an,N ) with
s = 1

3(1+8|N |) contains no point in common.

Proof. Let {an} be an arbitrary δ-separated sequence in D. If Es(aj,N ) ∩
Es(ak,N ) �= ∅, then we have by Lemma 4.3 (with −N in place of N)

d(aj , ak) <
2
3
, i.e., aj ∈ E2/3(ak).

Thus the lemma holds by Lemma 4.2 (with s = 2
3 ). �

The idea of the proof below of the next lemma comes from that of [5,
Theorem 4.33].

Lemma 4.5. Let α > −1, 0 < p < ∞ and

t > max
{

1,
1
p

}
+

α + 1
p

. (4.5)

For 0 < s < 1 and a positive integer M , assume that {an} is a sequence in D
such that any collection of more than M of the pseudohyperbolic disks Es(an)
contains no point in common. Let {cn} ∈ �p and put

f(z) :=
∞∑

n=1

cn
(1 − |an|2)t− α+2

p

(1 − anz)t
.

Then f ∈ Ap
α(D) and

‖f‖p
Ap

α
≤ C

∞∑
n=1

|cn|p

for some constant C = C(α, p, s,M) > 0.

Proof. Put

hn(z) :=
(1 − |an|2)t− α+2

p

(1 − anz)t

for positive integers n. Since pt > α + 2 by (4.5), we have by (2.9)

‖hn‖p
Ap

α
≈ 1

for all n. Thus, in case 0 < p ≤ 1, the asserted inequality holds by the
inequality

‖f‖p
Ap

α
≤

∞∑
n=1

|cn|p‖hn‖p
Ap

α
≤ C

∞∑
n=1

|cn|p
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for some constant C = C(α, p) > 0.
Now, assume 1 < p < ∞ for the rest of the proof. Since p > 1, we have

p(t − 1) > α + 1 by (4.5) and thus the integral operator Λ defined by

Λh(z) :=
∫
D

(1 − |w|2)t−2

|1 − wz|t h(w) dA(w)

is bounded on Lp
α(D) by [5, Corollary 3.13]. Consider the function

g(z) :=
∞∑

n=1

|cn|χn(z)

{Aα[Es(an)]}1/p
(4.6)

where χn denotes the characteristic function of the pseudohyperbolic disk
Es(an). Applying Λ to g and integrating term by term, we have by (2.4),
(2.5) and (2.6)

Λg(z) =
∞∑

n=1

|cn|
{Aα[Es(an)]}1/p

∫
Es(an)

(1 − |w|2)t−2

|1 − wz|t dA(w)

≈
∞∑

n=1

|cn|
{Aα[Es(an)]}1/p

· (1 − |an|2)t−2

|1 − anz|t · A[Es(an)]

≈
∞∑

n=1

|cn| (1 − |an|2)t− α+2
p

|1 − anz|t
≥ |f(z)|

for all z ∈ D. So, since Λ is bounded on Lp
α(D), we have

‖f‖Ap
α

� ‖g‖Lp
α
; (4.7)

the constant suppressed in this estimate depends only on α, p and s.
Meanwhile, for each z ∈ D, note that the series in (4.6) is actually a

finite sum with at most M terms. Accordingly, we have by Jensen’s Inequality

|g(z)|p ≤ Mp−1
∞∑

n=1

|cn|pχn(z)
Aα[Es(an)]

for all z ∈ D. So, integrating term by term, we obtain
∫
D

|g|p dAα ≤ Mp−1
∞∑

n=1

|cn|p.

This, together with (4.7), yields the asserted inequality. �

The sequence of Rademacher functions {rn} is defined by

rn(x) := sgn [sin(2nπx)], 0 ≤ x ≤ 1

for positive integers n. The well-known Khinchin’s Inequality involving these
Rademacher functions asserts the following; see, for example [10, Appendix
C].
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Lemma 4.6. (Khinchin’s Inequality) Given 0 < p < ∞, there exists a constant
C = C(p) > 0 such that

C−1

( ∞∑
n=1

|cn|2
)p/2

≤
∫ 1

0

∣∣∣∣∣
∞∑

n=1

cnrn(x)

∣∣∣∣∣
p

dx ≤ C

( ∞∑
n=1

|cn|2
)p/2

for all {cn} ∈ �2.

The next lemma is contained in [1, Lemma 3.3]. In fact [1, Lemma 3.3]
is proved under an additional restriction a �= 0, but such a restriction can be
easily removed.

Lemma 4.7. Let s ∈ (0, 1) and N > 0. Then there is a constant C =
C(s,N) > 0 such that

1 ≤ |1 − b̄w|
1 − |a|2 ≤ C

for a ∈ D with N(1 − |a|) < π, b ∈ ΓN (a) and w ∈ Es(a).

Lemma 4.8. Let α > −1 and 0 < q < p < ∞. For ϕ,ψ ∈ S(D) and u, v ∈
Lq

α(D), assume that Cϕ,u−Cψ,v : Ap
α(D) → Lq

α(D) is bounded. For 0 < δ < 1
and N > 0, assume that {an} is a δ-separated sequence in D such that
N(1 − |an|) < π for all n. Assume

t > max
{

1,
1
p

}
+

α + 1
p

and let {bn} be a sequence given by one of {an}, {an,N} and {an,N}. Put
s := 1

3(1+8N) . Then ∥∥∥∥∥
{

Rα,q
s,t (an, bn)

(1 − |an|2)(α+2) q
p

}∥∥∥∥∥

p/(p−q)

≤ C‖Cϕ,u − Cψ,v‖q
Ap

α(D)→Lq
α(D)

for some constant C = C(α, p, q, δ,N) > 0.

Proof. Noting that
(
�p/q

)∗
= �p/(p−q), we will complete the proof by duality.

More precisely, setting

ζn :=
Rα,q

s,t (an, bn)

(1 − |an|2)(α+2) q
p

for each n, we will complete the proof by establishing
∞∑

n=1

ζn|ηn| ≤ C‖T‖q
Ap

α(D)→Lq
α(D)

(4.8)

for all {ηn} ∈ �p/q with ‖{ηn}‖
p/q = 1 and for some constant C = C(α, p, q, δ,N) >
0.

Fix an arbitrary {ηn} ∈ �p/q with ‖{ηn}‖
p/q = 1. Put

f(z) :=
∞∑

n=1

cn
(1 − |an|2)t− α+2

p

(1 − bnz)t
where cn := |ηn|1/q.
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Since ‖{cn}‖
p = 1, we see by Lemmas 4.2, 4.4 and 4.5 that f ∈ Ap
α(D) with

norm bounded by some constant depending only on α, p, δ, and N . Also,
note

‖Tf‖q
Lq

α
=

∫
D

∣∣∣∣∣
∞∑

n=1

cn
(1 − |an|2)t− α+2

p

(1 − bnϕ)t

(
u − vQt

bn

)∣∣∣∣∣
q

dAα.

Since T : Ap
α(D) → Lq

α(D) is bounded by assumption, it follows that
∫
D

∣∣∣∣∣
∞∑

n=1

cn
(1 − |an|2)t− α+2

p

(1 − bnϕ)t

(
u − vQt

bn

)∣∣∣∣∣
q

dAα � ‖T‖q
Ap

α(D)→Lq
α(D)

.

Replace cn by rn(x)cn in the left hand side of the above, integrate both
sides of the above over [0, 1] against the measure dx, interchange the order
of integrations and apply Khinchin’s Inequality. As a result, setting

Φ :=
∞∑

n=1

∣∣∣∣∣cn
(1 − |an|2)t− α+2

p

(1 − bnϕ)t

(
u − vQt

bn

)∣∣∣∣∣
2

,

we obtain ∫
D

Φ
q
2 dAα � ‖T‖q

Ap
α(D)→Lq

α(D)
; (4.9)

the constant suppressed in this estimate depends only on α, p, q, δ and N .
We now turn to the lower estimate of the integral in (4.9). Denote by χn

the characteristic function of the pseudohyperbolic disk Es(an). Note from
Lemma 4.2

∞∑
n=1

χn ≤ M (4.10)

for some positive integer M = M(δ,N). We claim

Φ
q
2 ≥ M

q
2 −1

∞∑
n=1

∣∣∣∣∣cn
(1 − |an|2)t− α+2

p

(1 − bnϕ)t

(
u − vQt

bn

)∣∣∣∣∣
q

(χn ◦ ϕ). (4.11)

To see this, we consider two cases (i) q ≥ 2 and (ii) 0 < q < 2 separately.
First, the case q ≥ 2 is easily seen, because q

2 ≥ 1. In case 0 < q < 2 so that
2
q > 1, we note by (4.10)

Φ
q
2 ≥

⎡
⎣ ∞∑

n=1

∣∣∣∣∣cn
(1 − |an|2)t− α+2

p

(1 − bnϕ)t

(
u − vQt

bn

)∣∣∣∣∣
2
⎤
⎦

q
2 [

1
M

∞∑
n=1

(χn ◦ ϕ)

]1− q
2

and thus obtain (4.11) by Hölder’s Inequality.
Note bn ∈ ΓN (an) for each n by assumption. So, having verified (4.11),

we now see by Lemma 4.7 that the right hand side of (4.11) dominates some
constant (depending only on α, p, q, δ and N) times

∞∑
n=1

|ηn|
∣∣u − vQt

bn

∣∣q
(1 − |an|2)(α+2) q

p

(χn ◦ ϕ).
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Thus, integrating over D against the measure dAα, we see from (4.9) that
(4.8) holds. �

We are now ready to prove the implication (a) =⇒ (c).
Proof of (a) =⇒ (c) Fix a lattice {an}. Fix γ > 0 such that

max
{

1,
1
p

}
+

α + 1
p

< γ <
β

q

and pick N = N(γ) > 0 so such that

Arg

[
1 +

8i

N
· 1
1 − 1

3(1+8N)

]
<

π

12γ
.

Thus, setting

s :=
1

3(1 + 8N)
,

which is the number specified by Lemma 4.4, we also see that (3.7) holds.
Put

μ := ωϕ,u + σβ
ϕ

for simplicity. Since u, v ∈ Lq
α(D) by assumption, we see that μ is a finite

measure. We note that the estimate (3.10) is still available with suitably
adjusted ε = ε(α, β, p, q,N) ∈ (0, 1). The sequence {an} being a lattice, we
also note |an| → 1. Pick a positive integer K = K(ε) = K(α, β, p, q) such
that |an| ≥ ε for all n ≥ K. So, writing Rt := Rα,q

s,t for short, we have

μ[Es(an)] � Rγ(an, an,N ) + R2γ(an, an,N ) + Rγ(an, an,N )

+ R2γ(an, an,N ) + Rγ(an, an) + Rγ+1(an, an)

for all n ≥ K. Moreover, we may assume |an| < ε for all n < K after re-
numbering indices if necessary. Consequently, assuming the boundedness of
T : Ap

α(D) → Lq
α(D) and slightly modifying the proof of the implication

(a) =⇒ (b) of Theorem 3.1, we obtain by Lemma 4.8 and (2.6)

‖{μ̂α,s,λ(an)}‖
p/(p−q) ≤ C‖T‖q
Ap

α(D)→Lq
α(D)

for some constant C = C(α, β, p, q) > 0. We now conclude by (2.13) and
(4.4) that μ is a (λ, α)-Carleson measure. By symmetry the same assertion
also holds for the measure ωψ,v + σβ

ψ. �
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