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Abstract. Let M be the complexification of the quaternionic algebra H.
For each function F : U �→ M, where U ⊂ C, we define a transformation
FH : UH �→ M, where UH ⊂ H is associated to U , via an elementary
functional calculus, using the spectra of quaternions, and characterize
those transformations FH, which are actually H-valued. In particular, we
show that the slice hyperholomorphy can be characterized via a Cauchy
type transform, acting on the space of analytic M-valued stem functions.
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1. Introduction

The quaternions form a unital non commutative division algebra, with nu-
merous applications in mathematics and physics. In mathematics, one of the
most important investigation in the quaternionic context has been to find
a convenient manner to express the “analyticity” of functions depending on
quaternions. Among the pioneer contributions in this direction one should
mention the works [12] and [7]. One substantial connection with physics,
concerning the foundations of the quaternion quantum mechanics, can be
found in the work [6].

In 2007, a concept of slice regularity for functions of one quaternionic
variable was introduced in [9], leading to a large development sythesized in
[4], where it is called slice hyperholomorphy too (see also [2,10,11] etc.).

Unlike in [9], in the preprint [15] the regularity of quaternionic-valued
functions was investigated via the analytic functional calculus acting on
quaternions. This was done by considering the algebra of quaternions as a
real subalgebra of the complex algebra of 2×2 matrices with complex entries.
This well known matrix representation allowed us to view the quaternions as
linear operators on a complex space, and thus commuting with the complex
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numbers. Moreover, each quaternion was regarded as a normal operator, hav-
ing a spectrum which was used to define various compatible functional calculi,
including the analytic one. Specifically, a “quaternionic regular function” was
obtained by a pointwise construction of the analytic functional calculus with
stem functions on a conjugate symmetric open set U in the complex plane,
applied to quaternions whose spectra was in U , via the matrix version of
Cauchy’s formula, with no need of slice derivatives. However, the “regular
functions”, regarded as quaternionic Cauchy transforms of stem functions,
have similar properties to those of slice regular functions (see [4]), because
these two classes, in fact, coincide (see Theorem 6).

In the present paper, we extend our discussion from the first part of
[15] to the context of the abstract Hamilton algebra, embedding the real
C∗-algebra of quaternions into its complexification, organized as a complex
C∗-algebra. Our main tools are the complexification and conjugation, which
were used in some previous works (see for instance [10]). However, the use
of the concept of spectrum of a quaternion, which appears for the first time
in our preprint [15], is essential for this development, leading to a fairly new
approach to the regularity, different from that based on slice regularity. In
addition, we succed to considerably simplify the proofs of the main corre-
sponding results from [15]. Nevertheless, the second part of [15], dealing with
the spectrum of real and quaternionic operators, is not covered by the present
text, and it will be presented in some future work.

Unlike in [15], the actual arguments are not only much simpler but the
framework is intrinsic, that is, it does not depend of any representation of
Hamilton’s algebra but only on a natural extension of it.

Let us briefly describe the contents of this work. The next chapter is
dedicated to some preliminaries, including Hamilton’s algebra of quaternions,
denoted by H, and its complexification M, endowed with a unique C∗-algebra
structure. The class of M-valued slice regular functions is also exhibited.

In the third chapter, the spectrum of a quaternion as an element of
the algebra M is introduced (see Remark 1), and the slice regularity of an
associated M-valued Cauchy kernel is proved. Note that, unlike in [4], our
Cauchy kernel is of Riesz–Dunford–Gelfand type, having a useful commuta-
tivity property, which makes it slice regular (see Example 2). As the spectrum
of a quaternion consists of at most two points, the structure of the associated
spectral projections is also described, for later use.

The representation of a quaternion in terms of a resolution of identity,
as a particular case of the concept of scalar operator (see [5], Part III), allows
us the define a functional calculus with arbitrary M-valued functions for each
quaternion, naturally extended to sets of quaternions in a pointwise manner
(see Definition 4). In addition, the function given by Formula (8) is H-valued
if and only if it is constructed from a stem function, via Theorem 2. This
leads to a general functional calculus with arbitrary M-valued functions (see
Theorem 3).

A quaternionic Cauchy transform is introduced in the fifth chapter,
which can be defined for all analytic M-valued functions, but of a special
interest when working with analytic stem functions.
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In the last chapter, the analytic functional calculus for quaternionic
functions is obtained (see Theorem 5), as a particular case of the general
functional calculus given by Theorem 3. We also recapture one of the main
results from [15], showing that the slice regularity of a quaterninic function
is equivalent with its property of being the Cauchy transform of a stem func-
tion (Theorem 6). The main ingredients of this result are the representation
Formula (14) and a similar result from [4] (Lemma 4.3.8).

The author is grateful to the referee for several comments, suggestions,
and references, which improved the previous versions of this work.

2. Preliminaries

2.1. Hamilton’s Algebra

For the sake of completeness, and to fix the notation and terminology, we start
this discussion with some well known facts. Abstract Hamilton’s algebra H

is the four-dimensional R-algebra with unit 1, generated by the “imaginary
units” {j,k, l}, which satisfy the equalities

jk = −kj = l, kl = −lk = j, lj = −jl = k, jj = kk = ll = −1.

We may assume that H ⊃ R identifying every number x ∈ R with the element
x1 ∈ H.

The algebra H has a natural multiplicative norm given by

‖x‖ =
√

x2
0 + x2

1 + x2
2 + x2

0, x = x0 + x1j + x2k + x3l, x0, x1, x2, x3 ∈ R,

and a natural involution

H � x = x0 + x1j + x2k + x3l �→ x∗ = x0 − x1j − x2k − x3l ∈ H,

satisfying x∗x = xx∗ = ‖x‖2 for all x ∈ H. In particular, every element
x ∈ H\{0} is invertible, and x−1 = ‖x‖−2x∗.

For an arbitrary quaternion x = x0 +x1j+x2k+x3l, x0, x1, x2, x3 ∈ R,
we set �x = x0 = (x + x∗)/2, and 	x = x1j + x2k + x3l = (x − x∗)/2, that
is, the real and the imaginary part of x, respectively.

Using one possible equivalent definition, a real C∗-algebra is a real Ba-
nach ∗-algebra A satisfying the C∗-identity ‖a∗a‖ = ‖a‖2 for all a ∈ A, also
having the property ‖a∗a‖ ≤ ‖a∗a + b∗b‖ for all a, b ∈ A (see for instance
[14]). It is clear that the algebra H is a real C∗-algebra.

2.2. The Associated Complex C∗-Algebra

The “imaginary units” j,k, l of the algebra H will be considered independent
of the imaginary unit i of the complex plane C. Specifically, we construct
the complexification C ⊗R H of the R-vector space H (see also [10]), which
will be identified with the direct sum M = H + iH, with the the natural
multiplicative structure given by

(x1 + ix2)(y1 + iy2) = (x1y1 − x2x2) + i(x1y2 + x2y1), x1,x2,y1,y2 ∈ H,

Of course, the algebra M contains the complex field C, that is, every complex
number z = s + it, s, t ∈ R, is identified with the element s1 + it1 ∈ M.
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In this way, M becomes an associative complex algebra, with unit 1 and
involution (x1 + ix2)∗ = x∗

1 − ix∗
2, where x1,x2 ∈ H are arbitrary, making M

an involutive algebra. Moreover, in M, the elements of H commute with all
complex numbers.

In the algebra M, there also exists a natural conjugation given by ā =
b− ic, where a = b+ ic is arbitrary in M, with b, c ∈ H (see also [10]). Note
that a + b = ā+ b̄, and ab = āb̄, in particular ra = rā for all a,b ∈ M, and
r ∈ R. Moreover, ā = a if and only if a ∈ H, which is a useful characterization
of the elements of H among those of M.

Using some results from [13] (see also [14]), the algebra M may be
endowed with a unique C∗-algebra structure, containing the algebra H as a
real C∗-algebra. In our particular case, we can apply a more direct procedure,
via a standard matricial representation (as in [15]). Namely, we have the
following.

Theorem 1. The complex algebra M has a unique C∗-algebra structure such
that H is a real C∗-subalgebra of M.

Sketch of proof. There exists a ∗-isomorphism between the involutive
algebra M and the C∗-algebra M2, naturally induced by the embedding

H � x0 + x1j + x2k + x3l �→
(

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
∈ M2, (1)

where M2 is the algebra consisting of all 2×2-matrices with complex entries,
which is a complex C∗-algebra. Then the norm of M2 induces a norm on M,
making it a C∗-algebra. We omit the details.

2.3. Slice Regular Functions

There exists a large literature dedicated to a concept of “slice regularity”,
which is a form of holomorphy in the context of quaternions (see for instance
[4] and the works quoted within).

For M-valued functions defined on subsets of H, the concept of slice
regularity is defined as follows.

Let S = {s = x1j + x2k + x3l;x1, x2, x3 ∈ R, x2
1 + x2

2 + x2
3 = 1}, that is,

the unit sphere of “purely imaginary” quaternions. It is clear that s∗ = −s,
and so s2 = −1, s−1 = −s, and ‖s‖ = 1 for all s ∈ S.

Let also Ω ⊂ H be an open set, and let F : Ω �→ M be a differentiable
function. In the spirit of [4], we say that F is right slice regular on Ω if for
all s ∈ S,

∂̄sF (x + ys) :=
1
2

(
∂

∂x
+ Rs

∂

∂y

)
F (x + ys) = 0,

on the set Ω ∩ (R+Rs), where Rs is the right multiplication of the elements
of M by s.

Note that, unlike in [9], we use the right slice regularity rather than the
left one because of a reason to be later explained. Nevertheless, a left slice
regularity can also be defined via the left multiplication of the elements of M
by elements from S. In what follows, the right slice regularity will be simply
called slice regularity.
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We are particularly interested by slice regularity of H-valued functions,
but the concept is valid for M-valued functions and plays an important role
in our discussion.

Example 1. (1) The convergent series of the form
∑

k≥0 akqk, on quater-
nionic balls {q ∈ H; ‖q‖ < r}, with r > 0 and ak ∈ H for all k ≥ 0, are
H-valued slice regular on their domain of definition. In fact, if actually
ak ∈ M, such functions are (M-valued) slice regular on their domain of
definition.

(2) An important example of an M-valued slice regular function will be
further given in Example 2.

3. Spectrum of a Quaternion

In the complex algebra M we have a natural concept of spectrum, which can
be easily described in the case of quaternions. In fact, this spectrum is similar
to that one introduced in [15] (see also [4] for the case of operators).

Remark 1. (1) As each quaternion commutes in M with every complex num-
ber, we have the identities

(λ − x∗)(λ − x) = (λ − x)(λ − x∗) = λ2 − λ(x + x∗) + ‖x‖2 ∈ C,

for all λ ∈ C and x ∈ H. Therefore, the element λ − x ∈ M is invertible
if and only if the complex number λ2 − 2λ�x+ ‖x‖2 is nonnull, and in
that case

(λ − x)−1 =
1

λ2 − 2λ�x + ‖x‖2
(λ − x∗).

Hence, the element λ − x ∈ M is not invertible if and only if λ =
�x± i‖	x‖. In this way, the spectrum of a quaternion x ∈ H is given by
the equality σ(x) = {s±(x)}, where s±(x) = �x± i‖	x‖ may be called
the eigenvalues of x.

(2) As usually, the resolvent set ρ(x) of a quaternion x ∈ H is the set
C\σ(x), while the function

ρ(x) � λ �→ (λ − x)−1 ∈ M

is the resolvent (function) of x, which is an M-valued analytic function
on ρ(x).

(3) The polynomial Px(λ) = λ2 −2λ�x+‖x‖2 is known in the literature as
the minimal polynomial of x. Note that two quaternions x,y ∈ H have
the same spectrum if and only if �x = �y and ‖	x‖ = ‖	y‖, that is,
if and only if Px(λ) = Py(λ). This is an equivalence relation in H, and
the similar class of x, that is {y ∈ H;y = qxq−1;q ∈ H}, is equal to
the set {y ∈ H;�y = �x, ‖y‖ = ‖x‖} (see [1]), and so, it is also equal
to the set {y ∈ H;σ(y) = σ(x)}.

(4) As before, let S be the unit sphere of purely imaginary quaternions. It
is clear that every quaternion q ∈ H\R can be written as q = x + ys,
where x, y are real numbers, with x = �q, y ∈ {±‖	q‖}, and s ∈
{±	q/‖	q‖ ∈ S}. It is also known (see [1]), and easily seen, that the
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similar class of a fixed quaternion q0 = x + ys0 is given by {q = x +
ys; s ∈ S}. In particular, the spectrum of such a q does not depend on s,
and for every λ = u+ iv ∈ C with u, v ∈ R, we have σ(u+ vs) = {λ, λ̄}.

(5) Fixing an element s ∈ S, we define an isometric R-linear map from
the complex plane C into the algebra H, say τs, given by τs(u + iv) =
u + vs, u, v ∈ R. For every subset A ∈ C, we put

As = {x + ys;x, y ∈ R, x + iy ∈ A} = τs(A). (2)

Note that, if A is open in C, then As is open in the R-vector space Cs.

Definition 1. The M-valued Cauchy kernel on the open set Ω ⊂ H is given by

ρ(q) × Ω � (ζ,q) �→ (ζ − q)−1 ∈ M. (3)

Example 2. The M-valued Cauchy kernel on the open set Ω ⊂ H is slice
regular. Specifically, choosing an arbitrary relatively open set V ⊂ Ω ∩ (R +
Rs), and fixing ζ ∈ ∩q∈V ρ(q), we can write for q ∈ V the equalities

∂

∂x
(ζ − x − ys)−1 = (ζ − x − ys)−2,

Rs
∂

∂y
(ζ − x − ys)−1 = −(ζ − x − ys)−2,

since s2 = −1, and because ζ, s and (ζ −x−ys)−1 commute in M. Therefore,

∂̄s((ζ − q)−1) = ∂̄s((ζ − x − ys)−1) = 0,

implying the assertion.
Note that the Cauchy type kernel used in [4] is not slice regular.

Remark 2. (1) The discussion about the spectrum of a quaternion can be
enlarged, keeping the same background. Specifically, we may regard an
element q ∈ H as a left multiplication operator on the C∗-algebra M,
denoted by Lq, and given by Lqa = qa for all a ∈ M. It is easily seen
that σ(Lq) = σ(q). In this context, we may find the eigenvectors of Lq,
which would be of interest in what follows. Therefore, we should look
for solutions of the equation qν = sν in the algebra M, with s ∈ σ(q).
Writing q = q0 + 	q with q0 ∈ R, s± = q0 ± i‖	q‖, and ν = x + iy
with x,y ∈ H, we obtain the equivalent equations

(	q)x = ∓‖	q)‖y, (	q)y = ±‖	q)‖x,

leading to the solutions

ν±(q) =
(

1 ∓ i
	q

‖	q‖
)
x

of the equation qν± = s±ν±, where x ∈ H is arbitrary, provided 	q �=
0.
When 	q = 0, the solutions are given by ν = a, with a ∈ M arbitrary.

(2) Every quaternion s ∈ S may be associated with two elements ι±(s) =
(1 ∓ is)/2 in M, which are commuting idempotents such that ι+(s) +
ι−(s) = 1 and ι+(s)ι−(s) = 0. For this reason, setting M

s
± = ι±(s)H, we

clearly have a direct sum decomposition M = M
s
+ + M

s
−. For later use,
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note that if a = u+ iv, with u,v ∈ H, the equation ι+(s)x+ ι−(s)y = a
has the solution x = u + sv, y = u − sv ∈ H, because s−1 = −s.
In particular, if q ∈ H and 	q �= 0, setting sq̃ = q̃‖q̃‖−1, where q̃ = 	q,
the elements ι±(sq̃) are idempotents, as above. Moreover,

qι±(sq̃)h = s±(q)ι±(sq̃)h, h ∈ H. (4)

The next result provides explicit formulas for the spectral projections
(see [5], Part I, Section VII.1) associated to the operator Lq, q ∈ H. Of
course, this is not trivial only if q ∈ H\R because if q ∈ R, its spectrum is a
real singleton, and the only spectral projection is the identity.

Lemma 1. Let q ∈ H\R be fixed. The spectral projections associated to s±(q)
are given by

P±(q)a = ι±(sq̃)a, a ∈ M.

Moreover, P+(q)P−(q) = P−(q)P+(q) = 0, and P+(q)+P−(q) is the identity
on M.

When q ∈ R, the corresponding spectral projection is the identity on M.

Proof. Although the assertions follow from some general results of spectral
theory of linear operators, for the convenience of the reader we give some
details.

Let us fix a quaternion q with 	q �= 0. Next, we write the general
formulas for its spectral projections. Setting s± = s±(q), the points s+, s−
are distinct and not real. We fix an r > 0 sufficiently small such that, setting
D± := {ζ ∈ ρ(q); |ζ − s±| ≤ r}, we have D±\{s±} ⊂ ρ(q) and D+ ∩D− = ∅.
Then we have

P±(q) =
1

2πi

∫

Γ±
(ζ − Lq)−1dζ

where Γ± is the boundary of D±.
Using the equality Lqν±(q) = s±(q)ν±(q), for every ζ ∈ ρ(q) and

h ∈ H, we have

(ζ − Lq)−1(1 ∓ isq̃)h = (ζ − s±)−1(1 ∓ isq̃)h,

by Remark 2. Therefore,

P+(q)(1 ∓ isq̃)h =
1

2πi

∫

Γ+

(ζ − s±)−1(1 ∓ isq̃)hdζ,

and

P−(q)(1 ∓ isq̃)h =
1

2πi

∫

Γ−
(ζ − s±)−1(1 ∓ isq̃)hdζ.

Using Cauchy’s formula, we deduce that

P+(q)(1 − isq̃)h = (1 − isq̃)h, P+(q)(1 + isq̃)h = 0,

and

P−(q)(1 − isq̃)h = 0, P−(q)(1 + isq̃)h = (1 + isq̃)h,

for all h ∈ H.
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Fixing an arbitrary element a = u + iv ∈ M, writing

a = ι+(sq̃)(u + sq̃v) + ι−(sq̃)(u − sq̃v)

with u± sq̃v ∈ H [see Remark 2(2)], and noticing that ι±(sq̃)sq̃ = ±iι±(sq̃),
as P±(q) are C-linear, we obtain

P±(q)a = ι±(sq̃)a, a ∈ M, (5)

which are precisely the formulas from the statement.
The properties P+(q)P−(q) = P−(q)P+(q) = 0, and P+(q) + P−(q) is

the identity on M are direct consequences of the analytic functional calculus
associated to a fixed element q ∈ H in the algebra M. �

By a slight abuse of terminology, the projections P±(q) will be also
called the spectral projections of q. In fact, as Formula (5) shows, they depend
only on the imaginary part of q.

4. A General Functional Calculus

In this section, starting from some spaces of M-valued functions, defined on
subsets of the complex plane, we construct and characterize functional calculi,
taking values in the quaternionic algebra H.

Remark 3. Regarding the C∗-algebra M as a (complex) Banach space, and
denoting by B(M) the Banach space of all linear operators acting on M, the
operator Lq, q ∈ H\{0}, [see Remark 2(1)] is a (very) particular case of a
scalar type operator, as defined in [5], Part III, XV.4.1. Its resolution of the
identity consists of four projections {0, P±(q), I}, including the null operator
0 and the identity I on M, where P±(q) are the spectral projections of Lq,
and its integral representation is given by

Lq = s+(q)P+(q) + s−(q)P−(q) ∈ B(M),

via Formulas (4) and (5). For every function f : σ(q) �→ C we may define the
operator

f(Lq) = f(s+(q))P+(q) + f(s−(q))P−(q) ∈ B(M).

which provides a functional calculus with arbitrary functions on the spectrum.
More generally, we may extend this formula to functions of the form F :
σ(q) �→ M, putting

F (Lq) = F (s+(q))P+(q) + F (s−(q))P−(q), (6)

and keeping this order, which is a “left functional calculus”, not multiplica-
tive, in general. It is this idea which leads us to try to define H-valued func-
tions on subsets of H via some M-valued functions, defined on subsets of
C.

Definition 2. (1) A subset S ⊂ C is said to be conjugate symmetric if ζ ∈ S
if and only if ζ̄ ∈ S.
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(2) A subset A ⊂ H is said to be spectrally saturated (see [15]) if whenever
σ(h) = σ(q) for some h ∈ H and q ∈ A, we also have h ∈ A.
For an arbitrary A ⊂ H, we put S(A) = ∪q∈Aσ(q) ⊂ C. We also put
SH = {q ∈ H;σ(q) ⊂ S} for an arbitrary subset S ⊂ C.

Remark 4. (1) If A ⊂ H is spectrally saturated, then S = S(A) is conjugate
symmetric, and conversely, if S ⊂ C is conjugate symmetric, then SH is
spectrally saturated, which can be easily seen. Moreover, the assignment
S �→ SH is injective. Indeed, if λ = u + iv ∈ S, u, v ∈ R, then λ ∈
σ(u + vs) for a fixed s ∈ S. If SH = TH for some T ⊂ C, we must have
q = u + vs ∈ TH. Therefore σ(u + vs) ⊂ T , implying λ ∈ T , and so
S ⊂ T . Clearly, we also have T ⊂ S.
Similarly, the assignment A �→ S(A) is injective and A = SH if and only
if S = S(A). These two assertions are left to the reader.

(2) If Ω ⊂ H is an open spectraly saturated set, then S(Ω) ⊂ C is open.
To see that, let λ0 = u0 + iv0 ∈ S(Ω) be fixed, with u0, v0 ∈ R, and
let q0 = u0 + v0s, where s ∈ S is also fixed. Because Ω is spectrally
saturated, we must have q0 ∈ Ω. Because the set Ω ∩ Cs is relatively
open, there is a positive number r such that the open set

{q = u + vs;u, v ∈ R, ‖q − q0‖ < r}
is in Ω∩Cs, where q = u+vs. Therefore, the set of the points λ = u+iv,
satisfying |λ − λ0| < r is in S(Ω), implying that it is open.
Conversely, if U ⊂ C is open and conjugate symmetric, the set UH is
also open via the upper semi-continuity of the spectrum (see [5], Part
I, Lemma VII.6.3.).
An important particular case is when U = Dr := {ζ ∈ C; |ζ| < r}, for
some r > 0. Then UH = {q ∈ H, ‖q‖ < r}. Indeed, if q ∈ UH and
σ(h) = σ(q), from the equality {�(h) ± i‖	(h)‖} = {�(q) ± i‖	(q)‖}
it follows that ‖h‖ < r.

(3) A subset Ω ⊂ H is said to be axially symmetric if for every q0 = u0 +
v0s0 ∈ Ω with u0, v0 ∈ R and s0 ∈ S, we also have q = u0+v0s ∈ Ω for all
s ∈ S (see [4], Definition 2.2.17). Because the set {q = u0 +v0s; s ∈ S} is
precisely the similar class of q0 [see Remark 1(4)], it follows that a subset
Ω ⊂ H is axially symmetric if and only if it is spectrally saturated.
We continue to use the expression “spectrally saturated set” to designate
an “axially symmetric set”, because the former is more compatible with
our spectral approach.

As noticed above, the algebra M is endowed with a conjugation given
by ā = b− ic, when a = b+ ic, with b, c ∈ H. Note also that, because C is a
subalgebra of M, the conjugation of M restricted to C is precisely the usual
complex conjugation.

The next definition has an old origin, going back to [7] (see for instance
[11]).

Definition 3. Let U ⊂ C be conjugate symmetric, and let F : U �→ M. We
say that F is an M-valued stem function if F (λ̄) = F (λ) for all λ ∈ U .
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For an arbitrary conjugate symmetric subset U ⊂ C, we put

S(U,M) = {F : U �→ M;F (ζ̄) = F (ζ), ζ ∈ U}, (7)

that is, the R-vector space of all M-valued stem functions on U . Replacing
M by C, we denote by S(U) the real algebra of all C-valued stem functions,
which is an R-subalgebra in S(U,M). In addition, the space S(U,M) is a
S(U)-bimodule.

Definition 4. Let U ⊂ C be conjugate symmetric. For every F : U �→ M and
all q ∈ UH we define a function FH : UH �→ M, via the assignment

UH � q �→ FH(q) = F (s+(q))ι+(sq̃) + F (s−(q))ι−(sq̃) ∈ M, (8)

where q̃ = 	q, sq̃ = q̃‖q̃‖−1, and ι±(sq̃) = 2−1(1 ∓ isq̃).

Formula (8) is strongly related to Formula (6) because the spectral pro-
jections P±(q) are the left multiplications defined by 2−1(1∓isq̃) respectively,
via Formula (5). It is also compatible with the “extension formula”, intro-
duced in the paper [3] (see also the monograph [8] for a thorough account on
the subject).

The next result is an intrinsic version of Theorem 1 from [15], with a
much shorter proof.

Theorem 2. Let U ⊂ C be a conjugate symmetric subset, and let F : U �→ M.
The element FH(q) is a quaternion for all q ∈ UH if and only if F ∈ S(U,M).

Proof. We first assume that FH(q) is a quaternion for all q ∈ UH. We fix a
point ζ ∈ U , supposing that 	ζ > 0. Then we choose a quaternion q ∈ UH

with σ(q) = {ζ, ζ̄}. Therefore, s+(q) = ζ and s−(q) = ζ̄. We write F (ζ) =
F+1 + iF+2, F (ζ̄) = F−1 + iF−2, with F+1, F+2, F−1, F−2 ∈ H. According to
(8), we infer that

2F (q) = F+1 + F+2sq̃ + F−1 − F−2sq̃ + i(−F+1sq̃ + F+2 + F−2 + F−1sq̃),

so

2F (q) = F+1 + F+2sq̃ + F−1 − F−2sq̃ + i(F+1sq̃ − F+2 − F−2 − F−1sq̃).

Because F (q) = F (q), we must have

−F+1sq̃ + F+2 + F−2 + F−1sq̃ = F+1sq̃ − F+2 − F−2 − F−1sq̃,

which is equivalent to

F+2 + F−2 = (F+1 − F−1)sq̃

Assuming F+1 �= F−1, we deduce that

(F+1 − F−1)−1(F+2 + F−2) = sq̃.

This equality is impossible because the left hand side depends only on ζ and ζ̄
while the right hand side has infinitely many distinct values, when replacing
q by another element from the set {h ∈ H; s+(h) = ζ} ⊂ UH. Therefore, the
equality F (q) = F (q) implies the equalities F+1 = F−1 and F+2 = −F−2,
meaning that F (ζ) = F (ζ̄).
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If 	ζ = 0, so ζ = x0 ∈ R, taking q = x0, we have σ(q) = {x0}, and
F (q) = F (x0) is a quaternion.

If 	ζ < 0, applying the above argument to ζ̄ we obtain F (ζ̄) = F (ζ).
Consequently, F is a stem function on U .

Conversely, if F (ζ) = F (ζ̄) for all ζ ∈ U , choosing a q ∈ H with 	q �= 0,
and fixing ζ = s+(q), we obtain from (8) the equality

2FH(q) = F (ζ) + F (ζ̄) − i(F (ζ) − F (ζ̄)sq̃.

Therefore,

2FH(q) = F (ζ̄) + F (ζ) + i(F (ζ̄) − F (ζ))sq̃,

showing that F (q) ∈ H for all q ∈ UH, because the case q = x0 ∈ R is
evident. �
Corollary 1. Let U ⊂ C be a conjugate symmetric subset, and let f : U �→ C.
The element fH(q) is a quaternion for all q ∈ UH if and only if f ∈ S(U).

Remark 5. Let U ⊂ C be a conjugate symmetric set and let F ∈ S(U,M)
be arbitrary. We can easily describe the zeros of FH. Indeed, if FH(q) =
F (s+(q))ι+(q̃) + F (s−(q))ι−(q̃) = 0, we must have F (s+(q))ι+(q̃) = 0 and
F (s−(q))ι−(q̃) = 0, via a direct manipulation with the idempotents ι±(q̃).
In other words, we must have F (s±(q)) = ±iF (s±(q))sq̃. Choosing another
quaternion h with s+(q) ∈ σ(h) and q̃ �= h̃, we obtain F (s+(q))(sq̃−sh̃) = 0.
Therefore, F (s+(q)) = 0 because sq̃ − sh̃ is invertible. Similarly, F (s−(q)) =
0. Consequently, setting Z(F ) := {λ ∈ U ;F (λ) = 0}, and Z(FH) := {q ∈
UH;FH(q) = 0}, we must have

Z(FH) = {q ∈ UH;σ(q) ⊂ Z(F )}.

For every subset Ω ⊂ H, we denote by F(Ω,H) the set of all H-valued
functions on Ω.

The next result offers an H-valued general (left) functional calculus with
arbitrary M-valued stem functions.

Theorem 3. Let Ω ⊂ H be a spectrally saturated set, and let U = S(Ω). The
map

S(U,M) � F �→ FH ∈ F(Ω,H)

is R-linear, injective, and has the property (Ff)H = FHfH for all F ∈ S(U,M)
and f ∈ S(U). Moreover, the restricted map

S(U) � f �→ fH ∈ F(Ω,H)

is unital and multiplicative.

Proof. The map F �→ FH is clearly R-linear. The injectivity of this map
follows from Remark 5. Note also that

FH(q)fH(q) = (F (s+(q))ι+(sq̃) + F (s−(q))ι−(sq̃))
× (f(s+(q))ι+(sq̃) + f(s−(q))ι−(sq̃)

= (Ff)(s+(q))ι+(sq̃) + (Ff)(s−(q))ι−(sq̃) = (Ff)H(q),
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because f is complex valued, and by the properties of the idempotents ι±(sq̃).
In particular, this computation shows that if f, g ∈ S(U), we have (fg)H =
fHgH = gHfH, so the map f �→ fH is multiplicative. It is also clearly unital. �

An H-valued general right functional calculus may be defined in a similar
way but we omit the details.

5. The Quaternionic Cauchy Transform

Using the M-valued Cauchy kernel, we may define a concept of Cauchy trans-
form, whose main properties will be discussed in this section.

The frequent use of versions of the Cauchy formula is simplified by
adopting the following definition. Let U ⊂ C be open. An open subset Δ ⊂ U
will be called a Cauchy domain (in U) if Δ ⊂ Δ̄ ⊂ U , and the boundary ∂Δ
of Δ consists of a finite family of closed curves, piecewise smooth, positively
oriented. Note that a Cauchy domain is bounded but not necessarily con-
nected.

For a given open set U ⊂ C, we denote by O(U,M) the complex algebra
of all M-valued analytic functions on U .

If U ⊂ C is open and conjugate symmetric, let Os(U,M) be the real sub-
algebra of O(U,M) consisting of all M-valued stem functions from O(U,M).

Because C ⊂ M, we have O(U) ⊂ O(U,M), where O(U) is the complex
algebra of all complex-valued analytic functions on the open set U . Similarly,
when U ⊂ C is open and conjugate symmetric, Os(U) ⊂ Os(U,M), where
Os(U) is the real subalgebra consisting of all functions f from O(U) which
are complex stem functions.

As an example, if Δ ⊂ C is an open disk centered at 0, each function F ∈
Os(Δ,M) can be represented as a convergent series F (ζ) =

∑
k≥0 akζ

k, ζ ∈
Δ, with ak ∈ H for all k ≥ 0.

Definition 5. Let U ⊂ C be a conjugate symmetric open set, and let F ∈
O(U,M). For every q ∈ UH we set

C[F ](q) =
1

2πi

∫

Γ

F (ζ)(ζ − q)−1dζ, (9)

where Γ is the boundary of a Cauchy domain in U containing the spectrum
σ(q). The function C[F ] : UH �→ M is called the (quaternionic) Cauchy
transform of the function F ∈ O(U,M). Clearly, the function C[F ] does not
depend on the choice of Γ because the function U\σ(q) � ζ �→ F (ζ)(ζ −
q)−1 ∈ M is analytic.

We put
R(UH,M) = {C[F ];F ∈ O(U,M)}. (10)

Proposition 1. Let U ⊂ C be open and conjugate symmetric, and let F ∈
O(U,M). Then the function C[F ] ∈ R(UH,M) is slice regular on UH.

Proof. Let F ∈ O(U,M), let q ∈ UH and let Δ ⊃ σ(q) be a conjugate
symmetric Cauchy domain in U , whose boundary is denoted by Γ. We use



IEOT Quaternionic Regularity Page 13 of 19 18

the representation of C[F ](q) given by (9). Because we have ∂̄s((ζ−q)−1) = 0
for q = x + ys ∈ ΔH ∩ (R + Rs) (see Example 2), we infer that

∂̄s(C[F ](q)) =
1

2πi

∫

Γ

F (ζ)∂̄s((ζ − q)−1)dζ = 0,

which implies the assertion. �

Remark 6. (1) Because the function F does not necessarily commute with
the left multiplication by s, the choice of the right multiplication in the
slice regularity is necessary to get the stated property of C[F ].

(2) Let r > 0 and let U ⊃ {ζ ∈ C; |ζ| ≤ r} be a conjugate symmetric open
set. Then for every F ∈ O(U,M) one has

C[F ](q) =
∑
n≥0

F (n)(0)
n!

qn, q ∈ UH, ‖q‖ < r,

where the series is absolutely convergent. Of course, as in the classi-
cal case, using the convergent series (ζ − q)−1 =

∑
n≥0 ζ−n−1qn in

{ζ; |ζ| = r}, the assertion follows easily, via Formula (9). Moreover, by
Proposition 1, the function C[F ] is a slice regular M-valued function in
UH. Nevertheless, we are particularly interested in slice regular H-valued
functions.

Theorem 4. Let U ⊂ C be open and conjugate symmetric, and let F be in
O(U,M). The Cauchy transform C[F ] is H-valued if and only if F belongs to
Os(U,M).

Proof. We first fix a q ∈ U\R. If σ(q) = {s+, s−}, the points s+, s− are
distinct and not real. We then choose an r > 0 sufficiently small such that,
setting D± := {ζ ∈ U ; |ζ − s±| ≤ r}, we have D± ⊂ U and D+ ∩ D− = ∅.
Then

C[F ](q) =
1

2πi

∫

Γ+

F (ζ)(ζ − q)−1dζ +
1

2πi

∫

Γ−
F (ζ)(ζ − q)−1dζ,

where Γ± is the boundary of D±. We may write F (ζ) =
∑

k≥0(ζ − s+)kak

with ζ ∈ D+, ak ∈ M for all k ≥ 0, as a uniformly convergent series. Similarly,
F (ζ) =

∑
k≥0(ζ − s−)kbk with ζ ∈ D−, bk ∈ M for all k ≥ 0, as a uniformly

convergent series.
Note that

1
2πi

∫

Γ+

F (ζ)(ζ − q)−1dζ =

∑
k≥0

(
ak

1
2πi

∫

Γ+

(ζ − s+)k(ζ − q)−1dζ

)
= a0ι+(sq̃)

because we have
1

2πi

∫

Γ+

(ζ − s+)k(ζ − q)−1dζ = (q − s+)kι+(sq̃)
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by the analytic functional calculus of q (see also Lemma 1), which is equal
to ι+(sq̃) when k = 0, and it is equal to 0 when k ≥ 1, via the equality
qι+(sq̃) = s+ι+(sq̃)

Similarly

1
2πi

∫

Γ−
F (ζ)(ζ − q)−1dζ

=
∑
k≥0

(
bk

1
2πi

∫

Γ−
(ζ − s−)k(ζ − q)−1dζ

)
= b0ι−(sq̃)

because, as above, we have

1
2πi

∫

Γ−
(ζ − s−)k(ζ − q)−1)dζ = (q − s−)kι−(sq̃),

which is equal ι−(sq̃) when k = 0, and it is equal to 0 when k ≥ 1. Conse-
quently,

C[F ](q) = F (s+)ι+(sq̃) + F (s−)ι−(sq̃),

and the right hand side of this equality coincides with the expression from
Formula (5).

Assume now that σ(q) = {s}, where s := s+ = s− ∈ R. We fix an r > 0
such that the set D := {ζ ∈ U ; |ζ − s| ≤ r} ⊂ U , whose boundary is denoted
by Γ. Then we have

C[F ](q) =
1

2πi

∫

Γ

F (ζ)(ζ − q)−1dζ = F (s),

via the usual analytic functional calculus.
In all of these situations, the element C[F ](q)) is equal to the right

hand side of Formula (8). Therefore, we must have C[F ](q) ∈ H if and only
if F (s+) = F (s−), via Theorem 2. Consequently, C[F ](q) ∈ H for all q ∈ UH

if and only if F : U �→ M is a stem function, by choosing for every λ ∈ U an
element q ∈ H with σ(q) = {λ, λ̄}. �

Remark 7. (1) It follows from the proof of the previous theorem that the
element C[F ](q)), given by Formula (9), coincides with the element
FH(q)) given by (8). To unify the notation, from now on this element
will be denoted by FH(q), whenever F is a stem function, analytic or
not. (2) An important particular case is when f ∈ O(U), where U ⊂ C

is a conjugate symmetric open set. In this case, the quaternionic Cauchy
transform C[f ](q),q ∈ H, of f is just the analitic functional calculus
of q as an element of the algebra M. According to Theorem 5, we have
C[f ](q) ∈ H if and only if f is a complex stem function, that is f ∈
Os(U). Of course, in this case we may (and shall) also use the notation
C[f ] = fH.
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6. Analytic Functional Calculus in Quaternionic Framework

Let Ω ⊂ H be a spectrally saturated open set, and let U = S(Ω) ⊂ C [which
is also open by Remark 4(2)]. We set

Rs(Ω) = {fH; f ∈ Os(U)},

which is an R-algebra, and

Rs(Ω,H) = {FH;F ∈ Os(U,M)},

which, according to the next theorem, is a right Rs(Ω)-module.
In fact, these R-linear spaces have some important properties, as already

noticed in a version of the next theorem (see Theorem 2 in [15]).

Theorem 5. Let Ω ⊂ H be a spectrally saturated open set, and let U = S(Ω).
The space Rs(Ω) is a unital commutative R-algebra, the space Rs(Ω,H) is a
right Rs(Ω)-module, the map

Os(U,M) � F �→ FH ∈ Rs(Ω,H)

is a right module isomorphism, and its restriction

Os(U) � f �→ fH ∈ Rs(Ω)

is an R-algebra isomorphism.
Moreover, for every polynomial P (ζ) =

∑m
n=0 anζn, ζ ∈ C, with an ∈ H

for all n = 0, 1, . . . ,m, we have PH(q) =
∑m

n=0 anqn ∈ H for all q ∈ H.

Proof. Thanks to Theorem 4, this statement is a particular case of Theorem 3.
Indeed, the R-linear maps

Os(U,M) � F �→ FH ∈ Rs(Ω,H), Os(U) � f �→ fH ∈ Rs(Ω),

are restrictions of the maps

S(U,M) � F �→ FH ∈ F(Ω,H), S(U) � f �→ fH ∈ F(Ω,H),

respectively. Moreover, they are R-isomorphisms, the latter being actually
unital and multiplicative. Note that, in particular, for every polynomial P (ζ)
=

∑m
n=0 anζn with an ∈ H for all n = 0, 1, . . . ,m, we have PH(q) =∑m

n=0 anqn ∈ H for all q ∈ H. �

Remark 8. For every function F ∈ Os(U,M), the derivatives F (n) also belong
to Os(U,M), where U ⊂ C is a conjugate symmetric open set.

Now fixing F ∈ Os(U,M), we may define its extended derivatives with
respect to the quaternionic variable via the formula

F
(n)
H

(q) =
1

2πi

∫

Γ

F (n)(ζ)(ζ − q)−1dζ, (11)

for the boundary Γ of a Cauchy domain Δ ⊂ U , n ≥ 0 an arbitrary integer,
and σ(q) ⊂ Δ.

In particular, if Δ is a disk centered at zero and F ∈ Os(Δ,M), so we
have a representation of F as a convergent series

∑
k≥0 akζ

k with coefficients
in H, then (11) gives the equality F ′

H
(q) =

∑
k≥1 kakqk−1, which looks like

a (formal) derivative of the function FH(q) =
∑

k≥0 akqk.
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The functions from the space Rs(Ω,H) admit a series development
around any real point of their domain of definition. In this sense, we have the
following.

Proposition 2. Let U ⊂ C be conjugate symmetric, let F ∈ Os(U,M), let
s0 ∈ R∩ U , and let r > 0 be such that D0 = {ζ ∈ U ; |ζ − s0| < r} ⊂ D̄0 ⊂ U .
Then we have

FH(q) =
∑
n≥0

F (n)(s0)
n!

(q − s0)n, σ(q) ⊂ D0.

Proof. We give a short proof using a standard argument. Fixing q = x + ys
with x, y ∈ R and s ∈ S, such that σ(q) = {x ± iy} ⊂ D0, we must have

‖q − s0‖2 = |x − s0|2 + y2 = |x ± iy − s0|2 < r2,

implying the convergence of the series
∑

n≥0 r−n−1(q − s0)n. Therefore,

FH(q) =
1

2πi

∫

Γ0

F (ζ)(ζ − q)−1dζ =
1

2πi

∫

Γ0

F (ζ)
∑
n≥0

(q − s0)n

(ζ − s0)n+1
dζ

=
∑
n≥0

F (n)(s0)
n!

(q − s0)n,

where Γ0 is the boundary of D0. �

Remark 9. As already noticed in the framework of [15], Theorem 5 sug-
gests to define the “H-valued analytic functions” to be the elements of the
set Rs(Ω,H), which are the Cauchy transforms of the stem functions from
Os(U,M), with U = S(Ω), where Ω is a spectrally saturated open subset
of H. Because the expression “analytic function” is quite improper in this
context, the elements of Rs(Ω,H) will be called Q-regular functions on Ω.
Moreover, as Proposition 2 suggests, the functions from Rs(Ω,H) are “real
analytic” rather than “analytic”.

Except for Theorem 5, many other properties of Q-regular functions can
be obtained directly from the definition, by recapturing the corresponding
results from [15] (having their counterparts in [4], as we shall later see). We
omit the details.

Remark 10. Let U ⊂ C be conjugate symmetric, let x, y ∈ R with y �= 0 and
z± = x ± iy ∈ U , let F ∈ Os(U,M), and let s ∈ S.

Assuming y > 0, we consider the quaternions q± = x ± ys for which
s+(q±) = x + iy, s−(q±) = x − iy.

As we have q̃± = ±ys, then sq̃± = ±s, and ι±(sq̃+) = (1∓is)/2, ι±(sq̃−)
= (1 ± is)/2. Therefore,

2FH(q+) = F (z+)(1 − is) + F (z−)(1 + is),
2FH(q−) = F (z+)((1 + is) + F (z−)(1 − is).

From these equations we deduce that

2F (z+) = FH(q+)(1 − is) + FH(q−)(1 + is), (12)
2F (z−) = FH(q+)(1 + is) + FH(q−)(1 − is). (13)
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If y < 0, for the quaternions q± = x ± ys we have s+(q±) = x −
iy, s−(q±) = x + iy. Moreover, as q̃± = ±ys, then sq̃± = ∓s, and ι±(sq̃+) =
(1 ± is)/2, ι±(sq̃−) = (1 ∓ is)/2. Therefore

2FH(q+) = F (z−)(1 + is) + F (z+)(1 − is),
2FH(q−) = F (z−)((1 − is) + F (z+)(1 + is).

These formulas lead again to Eqs. (12) and (13). Consequently, we have the
following.

Proposition 3. Let U ⊂ C be conjugate symmetric, let x, y ∈ R with x ± iy ∈
U , let s ∈ S, and let F ∈ Os(U,M). Then we have the formulas

F (x ± iy) = FH(x ± ys)
(

1 ∓ is

2

)
+ FH(x ∓ ys)

(
1 ± is

2

)
. (14)

As the proof has been previously done, we only note that equality (14)
also holds for y = 0.

Similar formulas appear in [4], Section 4.3, in terms of imaginary units.

Lemma 2. Let U ⊂ H be a conjugate symmetric open set, let s ∈ S be fixed,
and let Ψ : Us �→ H be such that ∂̄±sΨ = 0. Then there exists a function
Φ ∈ Rs(UH,H) with Ψ = Φ|Us, where Us = {x + ys, x + iy ∈ U}.
Proof. For arbitrary points z± = x ± iy ∈ U with x, y(�= 0) ∈ R, as in
Remark 10, we consider the quaternions q± = x ± ys, so s+(q±) = x + i|y|,
and s−(q±) = x − i|y|. Inspired by Formula (14), we set

2F (z+) = Ψ(q+)(1 − is) + Ψ(q−)(1 + is),
2F (z−) = Ψ(q+)(1 + is) + Ψ(q−)(1 − is).

Then we have

2
∂F (z+)

∂x
=

∂Ψ(q+)
∂x

(1 − is) +
∂Ψ(q−)

∂x
(1 + is),

and

2i
∂F (z+)

∂y
=

∂Ψ(q+)
∂y

s(1 − is) +
∂Ψ(q−)

∂y
(−s)(1 + is),

because i(1 − is) = s(1 − is) and i(1 + is) = −s(1 + is).
Therefore,

∂F (z+)
∂x

+ i
∂F (z+)

∂y
= (∂̄sΨ(q+))(1 − is) + (∂̄−sΨ(q−))(1 + is) = 0,

showing that the function z+ �→ F (z+) is analytic in U .
Because F (z−) = F (z+) = F (z+), and when y = 0 we have F (z−) =

F (z+) = F (x), we have constructed a function F ∈ Os(U,M). Hence, taking
Φ = FH, we have Φ ∈ Rs(UH,H) with Ψ = Φ|Us, via Remark 10. �

Theorem 6. Let Ω ⊂ H be a spectrally saturated open set, and let Φ : Ω �→ H.
The following conditions are equivalent:

(i) Φ is a slice regular function;
(ii) Φ ∈ Rs(Ω,H), that is, Φ is Q-regular.
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Proof. If Φ ∈ Rs(Ω,H), then Φ is slice regular, by Lemma 1, so (ii) ⇒ (i).
Conversely, let Φ be slice regular in Ω. Fixing an s ∈ S, we have ∂̄±sΦs =

0, where Φs = Φ|Us. It follows from Lemma 2 that there exists Ψ ∈ Rs(UH,H)
with Ψs = Φs. This implies that Φ = Ψ, because both Φ,Ψ are uniquely
determined by Φs,Ψs, respectively, the former by (the right hand version of)
Lemma 4.3.8 in [4], and the latter by Remark 5. Consequently, we also have
(i) ⇒ (ii). �

Remark 11. Let D be the open unit disk in the complex plane. Theorem
5 shows, in particular, that the real spaces Rs(DH,H) and Os(D,M) are
isomorphic. We may go further and define some spaces corresponding to the
cassical Hardy space H2(D) consisting of usual analytic functions on the unit
disk D, in two versions:

H2(DH) =

⎧⎨
⎩Φ =

∑
k≥0

akqk ∈ Rs(DH,H);
∑
k≥0

‖ak‖2 < ∞
⎫⎬
⎭ ,

which already appears in literature, or

H2
s (D) =

⎧⎨
⎩F =

∑
k≥0

akζ
k ∈ Os(D,M);

∑
k≥0

‖ak‖2 < ∞
⎫⎬
⎭ .

Regarding both of them as real Hilbert spaces, they are unitarily equivalent,
via the assignment H2

s (D) � F �→ FH ∈ H2(DH). Nevertheless, the space
H2

s (D) looks less rigid than the space H2(DH).

Final Remarks. Theorem 6 allows us to obtain the properties of what we
called Q-regular functions via those of the slice regular functions, obtained
in [4]. Clearly, there is no coincidence that a result like Proposition 2 looks
like Corollary 4.2.3 from [4]. Nevertheless, as mentioned before, they can also
be obtained directly, with our techniques (see also [15]), in a more classical
manner.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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