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Spectral Properties of Some Complex
Jacobi Matrices
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Abstract. We study spectral properties of bounded and unbounded com-
plex Jacobi matrices. In particular, we formulate conditions assuring
that the spectrum of the studied operators is continuous on some sub-
sets of the complex plane and we provide uniform asymptotics of their
generalised eigenvectors. We illustrate our results by considering com-
plex perturbations of real Jacobi matrices belonging to several classes:
asymptotically periodic, periodically modulated and the blend of these
two. Moreover, we provide conditions implying existence of a unique
closed extension. The method of the proof is based on the analysis of a
generalisation of shifted Turán determinants to the complex setting.
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1. Introduction

For given two sequences (an : n ∈ N0) and (bn : n ∈ N0) of complex numbers
such that for every n ≥ 0 one has an �= 0, we define the (complex) Jacobi
matrix by the formula

A =

⎛
⎜⎜⎜⎜⎜⎝

b0 a0 0 0 . . .
a0 b1 a1 0 . . .
0 a1 b2 a2 . . .
0 0 a2 b3

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

.

The action of A on any sequence of complex numbers is defined by the
formal matrix multiplication. Let A be the minimal operator associated with
A. Specifically, by A we mean the closure in �2(N0) of the restriction of A to
the set of the sequences of finite support. Let us recall that
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〈x, y〉 =
∞∑

n=0

xnyn, �2(N0) =
{
x ∈ C

N0 : 〈x, x〉 < ∞}
.

Moreover, we define the maximal operator Amax by setting Amaxx = Ax for
x ∈ Dom(Amax), where

Dom(Amax) =
{
x ∈ �2(N0) : Ax ∈ �2(N0)

}
.

The matrix A is called proper if A = Amax and improper otherwise. The
matrix A is proper if the Carleman condition

∞∑
n=0

1
|an| = ∞ (1.1)

is satisfied (see, [2, Example 2.7]). In the case when sequences (an : n ∈ N0)
and (bn : n ∈ N0) are real, the matrix A is proper exactly when A is self-
adjoint.

The Jacobi matrix A is symmetric if an ∈ R and bn ∈ R for any n.
Otherwise A is nonsymmetric. In the symmetric case we recover classical Ja-
cobi matrices. This case has been studied thoroughly. Let us mention that
it has applications in such areas as: spectral theory of self-adjoint opera-
tors (see, e.g. [8]), orthogonal polynomials, approximation theory, numerical
analysis, stochastic processes (see, e.g. [16]), the moment problem and con-
tinued fractions (see, e.g. [18]). For the applications and basic properties of
the nonsymmetric case we refer to [2] and to the references therein.

Spectral analysis of some classes of nonsymmetric Jacobi matrices has
been studied in several articles. In [1] there was studied complex one-rank
perturbation of symmetric Jacobi matrices. In [4] there was considered in
detail the case when sequences defining A are periodic. In [7,9–13] there was
considered the behaviour of the point spectrum of compact perturbations of
the periodic case. In [5] Mourre commutator method has been applied to
the study of continuous spectrum of discrete Schrödinger operators. In [17]
has been studied in detail an explicit example of unbounded complex Jacobi
matrices. In particular, it was observed there a spectral phase transition
phenomenon. In [24,25] a class of Jacobi matries with discrete spectrum has
been studied. Finally, in [14] there was considered the point spectrum of some
unbounded complex Jacobi matrices.

The main problem in the study of spectral properties of the nonsym-
metric case lies in the fact that in general A is not normal. Hence, most of the
tools and intuitions coming from the Spectral Theorem is lost. It seems that
there are few results concerning the continuous spectrum of nonsymmetric
Jacobi matrices. The aim of this article is to fill this gap.

Before we go further let us introduce some terminology. A sequence
(un ∈ N0) is generalised eigenvector associated with z ∈ C, if it satisfies the
recurrence relation

zun = anun+1 + bnun + an−1un−1, (n ≥ 1), (1.2)
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with some non-zero initial condition (u0, u1). For any positive integer N define
N -step transfer matrix by

Xn(z) =
N+n−1∏

j=n

Bj(z) where Bj(z) =

(
0 1

−aj−1
aj

z−bj
aj

)
, (1.3)

then (
un+N−1

un+N

)
= Xn(z)

(
un−1

un

)
, (n ≥ 1).

Given a compact set K ⊂ C, we say that the uniformly bounded sequence of
continuous mappings Yn : K → GL(2,C) belongs to D̃1

(
K,GL(2,C)

)
if1

∑
n≥1

sup
z∈K

∥∥Yn+1(z) − Yn(z)
∥∥ < ∞,

We are ready to state our main result.

Theorem 1.1. Let N be a positive integer and i ∈ {0, 1, . . . , N − 1}. Suppose
that

lim
n→∞ XnN+i = X , lim

n→∞
anN+i−1

|anN+i−1| = γ, lim
n→∞

anN+i−1

a(n+1)N+i−1
= 1 (1.4)

for some γ and X . Let K be a compact subset of2

Λ =
{
z ∈ C : X (z) ∈ GL(2,R) and discr X (z) < 0

}
. (1.5)

If (
XnN+i : n ∈ N

) ∈ D̃1

(
K,GL(2,C)

)
, (1.6)

then there is a constant c > 1 such that for every generalised eigenvector
associated with z ∈ K

c−1
(|u0|2 + |u1|2

) ≤ |anN+i−1|
(|unN+i−1|2 + |unN+i|2

) ≤ c
(|u0|2 + |u1|2

)
.

A simple consequence of Theorem 1.1 is the following

Theorem 1.2. Let the hypotheses of Theorem 1.1 be satisfied for some i ∈
{0, 1, . . . , N − 1}. If

∞∑
n=1

1
|anN+i−1| = ∞,

then A is proper3, K ∩ σp(A) = ∅ and K ⊂ σ(A). Conversely, if
∞∑

n=0

1
|an| < ∞,

and the hypotheses are satisfied for every i ∈ {0, 1, . . . , N − 1}, then A is
improper, σess(A) = ∅, σ(A) = C and σp(Amax) = C.

1For any matrix X we form the matrix X by taking the complex conjugation of every
entry of X.
2A discriminant of a 2 × 2 matrix X is discr X = (trX)2 − 4 detX.
3For any operator X by σ(X), σess(X) and σp(X) we denote the spectrum, the essential

spectrum and the point spectrum of X, respectively.
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Let us present some of the ideas of the proof of Theorem 1.1. For any
generalised eigenvector u we define (generalised) N -shifted Turán determi-
nant by the formula

Sn = Re
(
γan+N−1

(
unun+N−1 − un−1un+N

))
.

Observe that in the symmetric case if z ∈ R and both u0, u1 are real, then
the definition reduces to the classical N -shifted Turán determinant

an+N−1 det
(

un+N−1 un−1

un+N un

)
.

We prove Theorem 1.1 by careful analysis of the sequence (SnN+i : n ∈ N).
In particular, we prove that this sequence is convergent uniformly on K to a
function of definite sign and without zeros. In the setup of symmetric Jacobi
matrices this approach turned out to be fruitful and allowed even to recover
the spectral measure of A and derive pointwise asymptotics of their formal
eigenvector, see [22] for details. The method used in [22] is based on the
diagonalisation of transfer matrices. This idea seems to be difficult to apply
in our setting. Instead we extend some ideas from our recent articles [19,20].

The structure of the article is as follows. In Sect. 2 we fix notation and
collected some basic definitions used in the rest of the article. The relations
between generalised eigenvectors and spectral properties of complex Jacobi
matrices is studied in Sect. 3. In Sect. 4 we derive some general properties of
quadratic forms on C

2. Section 5 is devoted to the study of Turán determi-
nants. In the last section, we give several classes of Jacobi matrices to which
our results can be applied.

Notation

By Z and N we denote the integers and the positive integers, respectively. The
non-negative integers are denoted by N0. The complex numbers are denoted
by C, whereas S

1 is the set of the complex numbers of modulus 1. Moreover,
by c we denote generic positive constants whose value may change from line
to line.

2. Preliminaries

In this section we fix notation and we collected some basic definitions used
in the rest of the article.

2.1. Matrices

By Md(C) we mean the space of d by d matrices with complex entries
equipped with the operator norm. For brevity we sometimes identify complex
numbers with M1(C).

For a sequence of matrices (Xn : n ∈ N) and n0, n1 ∈ N we set
n1∏

k=n0

Xk =

{
Xn1Xn1−1 · · · Xn0 n1 ≥ n0,

Id otherwise.
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For any matrix X, we form the matrix X by taking complex conjugation
of every entry of X, i.e.

Xij = Xij , (i, j = 1, 2, . . . , d). (2.1)

Moreover, we denote by Xt and X∗ the transpose and the Hermitian trans-
pose of X, respectively.

For every X ∈ Md(C),

‖X‖ ≤ ‖X‖2 ≤ ‖X‖1, (2.2)

where ‖X‖t the t-norm of the matrix considered as the element of Cd2
.

For any matrix X we define its real part by

Re[X] =
1
2
(
X + X∗).

Direct computation shows that for any matrix Y one has

Y ∗ Re[X]Y = Re[Y ∗XY ] (2.3)

and for every α ∈ R

Re[αX + Y ] = α Re[X] + Re[Y ]. (2.4)

Moreover,
∥∥Re[X]

∥∥ ≤ ‖X‖. (2.5)

2.2. Twisted Stolz Class

Let V be a normed vector space equipped with an additive mapping preserv-
ing the norm, which will be called conjugation. Specifically, we demand that
for every x, y ∈ V one has

(a) x + y = x + y,
(b) ‖x‖ = ‖x‖

We define twisted total variation of a sequence of vectors x = (xn : n ≥
M) from V by

Ṽ1(x) =
∞∑

n=M

∥∥xn+1 − xn

∥∥. (2.6)

We say that x belongs to twisted Stolz class D̃1(V ) if x is bounded and
Ṽ1(x) < ∞.

The following proposition collects some properties of the twisted total
variation. The proof is straightforward.

Proposition 2.1. Twisted total variation has the following properties.

(a) For every x, y ∈ V one has Ṽ1(x + y) ≤ Ṽ1(x) + Ṽ1(y)
(b) If x ∈ D̃1(V ) and x∞ := limn→∞ xn exists, then x∞ = x∞.
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Proposition 2.2. If V is a normed algebra and the conjugation is a homomor-
phism with respect to the multiplication, then

Ṽ1(xnyn : n ≥ M) ≤ sup
n≥M

‖xn‖ · Ṽ1(yn : n ≥ M)

+ sup
n≥M

‖yn‖ · Ṽ1(xn : n ≥ M) (2.7)

and if for all n ≥ M the element xn is invertible, then

Ṽ1(x−1
n : n ≥ M) ≤ sup

n≥M
‖x−1

n ‖2 · Ṽ1(xn : n ≥ M). (2.8)

Proof. Observe that

xn+1yn+1 − xnyn = (xn+1 − xn)yn+1 + xn(yn+1 − yn).

Hence,

‖xn+1yn+1 − xnyn‖ ≤ ‖xn+1 − xn‖ · ‖yn+1‖ + ‖xn‖ · ‖yn+1 − yn‖.

Consequently,

‖xn+1yn+1 − xnyn‖ ≤ sup
m≥M

‖ym‖ · ‖xn+1 − xn‖

+ sup
m≥M

‖xm‖ · ‖yn+1 − yn‖.

Summing by n the formula (2.7) follows.
To prove (2.8), observe

x−1
n+1 − x−1

n = x−1
n+1(xn − xn+1)x−1

n .

Hence
∥∥∥x−1

n+1 − x−1
n

∥∥∥ ≤
∥∥∥x−1

n+1

∥∥∥ ·
∥∥∥xn − xn+1

∥∥∥ ·
∥∥∥x−1

n

∥∥∥

and the formula (2.8) readily follows. �

Let K be a compact subset of the complex plane. In the sequel we are
going to use mostly the Banach algebra V = C

(
K,Md(C)

)
consisting of

continuous mappings on K with values in Md(C). The associated norm is
defined by

‖f‖∞ = sup
x∈K

‖f(x)‖, (2.9)

where ‖ · ‖ is the operator norm. For any f ∈ V we define f by

f(x) = f(x), (x ∈ K), (2.10)

where the matrix f(x) is defined in (2.1).
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3. Generalised Eigenvectors and the Transfer Matrix

For a number z ∈ C, a non-zero sequence u = (un : n ∈ N0) will be called
a generalised eigenvector provided that it satisfies the recurrence relation
(1.2). For each non-zero α ∈ C

2 there is a unique generalised eigenvector u
such that (u0, u1)t = α.

Proposition 3.1. Let z ∈ C. The sequence u satisfies Au = zu if and only if

u0 ∈ C, u1 =
z − b0

a0
u0,

an−1un−1 + bnun + anun+1 = zun, (n ≥ 1).
(3.1)

Proof. It immediately follows from the direct computations. �
A matrix A is called determinate if for all z ∈ C there exists a generalised

eigenvector u associated with z such that u /∈ �2(N0). A matrix A is called
indeterminate if it is not determinate.

Remark 3.2. If there is z ∈ C and a generalised eigenvector u associated with
z such that u /∈ �2(N0), then A is determinate (see the discussion after [2,
Definition 2.5]).

The following Theorem has been proved in [3, Theorem 2.1].

Theorem 3.3. (Beckermann & Castro Smirnova) A matrix A is determinate
if and only if it is proper.

Corollary 3.4. Let z0 ∈ C. If every generalised eigenvector associated with
z0 belongs to �2(N0), then the matrix A is improper. Moreover, σess(A) = ∅,
σ(A) = C and σp(Amax) = C.

Proof. Remark 3.2 implies that A is indeterminate. Hence, by Theorem 3.3
A is improper. By [2, Theorem 2.11(a)] we obtain

σess(A) = ∅ and σ(A) = C.

Let z ∈ C. Let u = (un : n ∈ N0) satisfy (3.1) with u0 = 1. Since u ∈ �2(N0)
we obtain z ∈ σp(Amax). Thus, σp(Amax) = C and the proof is complete. �
Proposition 3.5. Let z0 ∈ C. If every generalised eigenvector u associated
with z0 does not belong to �2(N0), then the matrix A is proper, z0 /∈ σp(Amax)
and z0 ∈ σ(Amax).

Proof. Remark 3.2 implies that A is determinate. Hence, Theorem 3.3 implies
that A is proper.

Let the non-zero sequence u be such that Au = z0u. Then by Proposi-
tion 3.1, the sequence u is a generalised eigenvector associated with z0. By
the assumption u /∈ �2(N0). Therefore, u /∈ Dom(Amax), and consequently,
z0 /∈ σp(Amax).

Observe that if there is a vector u such that (A − z0 Id)u = δ0, then it
has to satisfy the following recurrence relation

b0u0 + a0u1 = z0u0 + 1

an−1un−1 + bnun + anun+1 = z0un (n ≥ 1).
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Hence u is a generalised eigenvector associated with z0. Thus, u /∈ �2(N0).
Therefore, u /∈ Dom(Amax), and consequently, the operator Amax − z0 Id is
not surjective, i.e. z0 ∈ σ(Amax). �

4. Uniform Non-degeneracy of Quadratic Forms

Let K be a compact subset of C. Suppose that for each z ∈ K there is
a sequence Qz = (Qz

n : n ∈ N) of quadratic forms on C
2. We say that

{Qz : z ∈ K} is uniformly non-degenerated if there are c1 > 0, c2 > 0 and
M ≥ 1 such that for all v ∈ C

2, z ∈ K and n ≥ M

c1‖v‖2 ≤ |Qz
n(v)| ≤ c2‖v‖2.

In the rest of this article we will use the following matrix

E =
(

0 −1
1 0

)
. (4.1)

Proposition 4.1. Let K be a compact subset of C. Let {Qz : z ∈ K} be a
family of quadratic forms on C

2 given by

Qz
n(v) =

〈
Re[EYn(z)]v, v

〉
,

where each Yn is continuous. If

lim
n→∞ sup

z∈K
‖Yn(z) − Y(z)‖ = 0,

where for any z ∈ K

Y(z) ∈ GL(2,R) and discr Y(z) < 0, (4.2)

then {Qz : z ∈ K} is uniformly non-degenerated on K.

Proof. Define

Qz(v) =
〈
Re[EY(z)]v, v

〉
.

Since the matrix Re[EY(z)] is self-adjoint, it has two real eigenvalues λ1(z) ≤
λ2(z). Moreover, it has real entries for any z ∈ K. Thus, by direct computa-
tion one can verify that

det
(

Re
[
EY(z)

])
= −1

4
discr

(Y(z)
)
.

Therefore, by (4.2) and the continuity of Y on K, we obtain that λ1(z) and
λ2(z) are bounded and of the same sign for every z ∈ K. Consequently, there
are constants c1 > 0, c2 > 0 such that for any v ∈ C

2

c1‖v‖2 ≤ |Qz(v)| ≤ c2‖v‖2. (4.3)

Fix ε > 0. Let M be such that for every n ≥ M

sup
z∈K

‖Yn(z) − Y(z)‖ < ε.

Observe

|Qz(v)| − |Qz
n(v) − Qz(v)| ≤ |Qz

n(v)| ≤ |Qz(v)| + |Qz
n(v) − Qz(v)|. (4.4)
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Thus, by (4.3)

(c1 − ε)‖v‖2 ≤ |Qz
n(v)| ≤ (c2 + ε)‖v‖2.

The conclusion follows by taking ε sufficiently small. �

5. Shifted Turán Determinants

In this section we define and study the convergence of Turán determinants.

5.1. Definitions and Basic Properties

Fix a positive integer N , a Jacobi matrix A and γ ∈ S
1. Let us define a se-

quence of quadratic forms Qz,γ on C
2 by the formula

Qz,γ
n (v) =

〈
Re

[
an+N−1

γ|an+N−1|EXn(z)
]
v, v

〉
, (5.1)

where Xn and E are defined in (1.3) and (4.1), respectively. Then we define
the N -shifted Turán determinants by

Sγ
n(α, z) = |an+N−1|Qz,γ

n

((
un−1

un

))
, (5.2)

where u is the generalised eigenvector corresponding to z ∈ C such that
(u0, u1)t = α ∈ C

2.
The study of the sequence (Sγ

n : n ∈ N) is motivated by the following
theorem, whose proof is analogous to the proof of [19, Theorem 7]. We include
it for the sake of completeness.

Theorem 5.1. Let N be a positive integer and i ∈ {0, 1, . . . , N − 1}. Let K be
a compact set. Assume that the family

{(
Qz,γ

nN+i : n ∈ N
)

: z ∈ K
}
defined

in (5.1) is uniformly non-degenerated. Suppose that there are c′
1 > 0, c′

2 > 0
and M ′ ≥ 1 such that for all α ∈ C

2 such that ‖α‖ = 1, z ∈ K and n ≥ M ′

c′
1 ≤ |Sγ

n(α, z)| ≤ c′
2. (5.3)

Then there is c > 1 such that for all z ∈ K, n ≥ 1 and for every generalised
eigenvector u corresponding to z

c−1
(|u0|2 + |u1|2

) ≤ |a(n+1)N+i−1|
(|unN+i−1|2 + |unN+i|2

) ≤ c
(|u0|2 + |u1|2

)
.

Proof. Let z ∈ K and let u be a generalised eigenvector corresponding to z
such that α = (u0, u1)t. Observe that

Sγ
n(α, z) = ‖α‖2Sγ

n

(
α

‖α‖ , z

)
(5.4)

Hence, it is enough to prove the conclusion for ‖α‖ = 1. Since the family{(
Qz,γ

nN+i : n ∈ N
)

: z ∈ K
}

is uniformly non-degenerated, there are c1 >
0, c2 > 0 and M ≥ M ′ such that for all n ≥ M

c1|a(n+1)N+i−1|
(|unN+i−1|2 + |unN+i|2

)

≤ ∣∣Sγ
nN+i(α, z)

∣∣ ≤ c2|a(n+1)N+i−1|
(|unN+i−1|2 + |unN+i|2

)
.

Hence, by (5.3)

c′
1c

−1
2 ≤ |a(n+1)N+i−1|

(|unN+i−1|2 + |unN+i|2
) ≤ c′

2c
−1
1
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for any n ≥ M . Since each un is a continuous function of z we can find
another constant c > 1 such that

c−1 ≤ |a(n+1)N+i−1|
(|unN+i−1|2 + |unN+i|2

) ≤ c.

for any n ≥ 1. In view of (5.4) the conclusion follows. �

5.2. The Proof of the Convergence

In this section we are going to show that (SnN+i : n ∈ N) is uniformly
convergent to some function.

Proposition 5.2. An alternative formula for Sγ
n is

Sγ
n(α, z) = |an+N−1|Q̃z,γ

n

((
un+N−1

un+N

))
, (5.5)

where

Q̃z,γ
n (v) =

〈
Re

[
an+N−1

γ|an+N−1|
(

an+N−1

an−1

)∗
EXn(z)

]
v, v

〉
. (5.6)

Proof. By (5.2) and γ−1 = γ one has

Sγ
n(α, z) =

〈
Rn(z)

(
un−1

un

)
,

(
un−1

un

)〉
,

where

Rn(z) = Re
[
γan+N−1EXn(z)

]
.

Thus,

Sγ
n(α, z) =

〈
Rn(z)X−1

n (z)
(

un+N−1

un+N

)
,X−1

n (z)
(

un+N−1

un+N

)〉

=
〈[

X−1
n (z)

]∗
Rn(z)X−1

n (z)
(

un+N−1

un+N

)
,

(
un+N−1

un+N

)〉
.

Hence, by (2.3)

Sγ
n(α, z) =

〈
Re

[
γan+N−1

[
X−1

n (z)
]∗

E
](

un+N−1

un+N

)
,

(
un+N−1

un+N

)〉
.

By direct computations one can verify that for any X ∈ M2(C)

det(X)
(
X−1

)∗
E = EX =

(−X21 −X22

X12 X11

)
.

Thus

γan+N−1

[
X−1

n (z)
]∗

E = γan+N−1

(
an+N−1

an−1

)∗
EXn(z)

and the formula (5.5) follows. �

The next lemma provides the main algebraic part of our main result.
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Lemma 5.3. Let u be a generalised eigenvector associated with z ∈ C and
α ∈ C

2. Then

|Sγ
n+N (α, z) − Sγ

n(α, z)| ≤
(
|un+N−1|2 + |un+N |2

)

×
∥∥∥∥an+2N−1Xn+N (z) − an+N−1

(
an+N−1

an−1

)∗
Xn(z)

∥∥∥∥. (5.7)

Proof. By Proposition 5.2

Sγ
n+N (α, z) − Sγ

n(α, z) =
〈

Re
[
γCn(z)

](un+N−1

un+N

)
,

(
un+N−1

un+N

)〉
, (5.8)

where

Cn(z) = an+2N−1EXn+N (z) − an+N−1

(
an+N−1

an−1

)∗
EXn(z). (5.9)

Therefore, by the Schwarz inequality and (2.5)

|Sγ
n+N (α, z) − Sγ

n(α, z)| ≤ ‖Cn(z)‖(|un+N−1|2 + |un+N |2)

and the formula (5.7) follows. The proof is complete. �
We are ready to prove the main result of this article.

Theorem 5.4. Let N be a positive integer, i ∈ {0, 1, . . . , N − 1} and γ ∈ S
1.

Suppose that K ⊂ C and Ω ⊂ C
2 \ {(0, 0)} are compact connected sets.

Assume that

(a)
(

a(n+1)N+i−1

anN+i−1
XnN+i : n ∈ N

)
∈ D̃1

(
K,GL(2,C)

)

(b) the family
{(

Q̃z,γ
nN+i : n ∈ N

)
: z ∈ K

}
defined in (5.6) is uniformly

non-degenerated.
Then the limit

g(α, z) = lim
n→∞ Sγ

nN+i(α, z) (α ∈ Ω, z ∈ K) (5.10)

exists, where the sequence (Sγ
n : n ≥ 1) is defined in (5.2). Moreover, |g| is a

strictly positive continuous function and the convergence in (5.10) is uniform
on Ω × K.

Proof. We are going to show (5.10) and the existence of c1 > 0, c2 > 0 and
M > 0 such that

c1 ≤ ∣∣Sγ
nN+i(α, λ)

∣∣ ≤ c2 (5.11)

for all α ∈ Ω, z ∈ K and n > M .
Given a generalised eigenvector corresponding to z ∈ K such that

(u0, u1)t = α ∈ Ω, we can easily see that each un, considered as a func-
tion of α and z, is continuous on Ω × K. As a consequence, the function Sγ

n

is continuous on Ω × K. Since
{(

Q̃z,γ
nN+i : n ∈ N

)
: z ∈ K

}
is uniformly

non-degenerated, then by (5.5) there is M > 0 such that for each n ≥ M the
function Sγ

nN+i has no zeros and has the same sign for all z ∈ K and α ∈ Ω.
Otherwise, by the connectedness of Ω × K, there would be α ∈ Ω and z ∈ K
such that Sγ

nN+i(α, z) = 0, which would contradict the non-degeneracy of
Qz,γ

nN+i.
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Thus, in order to prove (5.10) and (5.11), it is enough to show that
∞∑

n=M

sup
α∈Ω

sup
λ∈K

|Fn(α, λ)| < ∞, (5.12)

where (Fn : n ≥ M) is a sequence of functions on Ω × K defined by

Fn =
Sγ

(n+1)N+i − Sγ
nN+i

Sγ
nN+i

.

Indeed,
k−1∏
j=M

(1 + Fj) =
k−1∏
j=M

Sγ
(j+1)N+i

Sγ
jN+i

=
Sγ

kN+i

Sγ
MN+i

(5.13)

and the condition (5.12) implies that the product (5.13) is convergent uni-
formly on Ω × K to a continuous function of a definite sign. This implies
(5.11).

It remains to prove (5.12). Since
{(

Q̃γ,z
nN+i : n ∈ N

)
: z ∈ K

}
is uni-

formly non-degenerated, we have

|Sγ
nN+i(α, z)| ≥ c−1|a(n+1)N+i−1|

(|u(n+1)N+i−1|2 + |u(n+1)N+i|2
)

for all n ≥ M , α ∈ Ω and λ ∈ K. Hence, by Lemma 5.3
∣∣Fn(α, z)

∣∣ ≤ c

∥∥∥∥
a(n+2)N+i−1

a(n+1)+i−1
X(n+1)N+i−1(z) −

(
a(n+1)N+i−1

anN+i−1

)∗
XnN+i(z)

∥∥∥∥.

Hence, (a) implies (5.12). The proof is complete. �

Now, we can give proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Observe that

lim
n→∞

a(n+1)N+i−1

γ|a(n+1)N+i−1|
(

a(n+1)N+i−1

anN+i−1

)∗
XnN+i(z) = X (z) = X (z)

uniformly with respect to z ∈ K. Hence, by Proposition 4.1 and 5.2 the family{(
Q̃z,γ

nN+i : n ∈ N
)

: z ∈ K
}

is uniformly non-degenerated.
Observe that

(XnN+i : n ∈ N) ∈ D̃1

(
K,GL(2,C)

)

implies that every entry of XnN+i belongs to D̃1(K,C). We have
anN+i−1

a(n+1)N+i−1
= det XnN+i.

Thus, by Proposition 2.2(
anN+i−1

a(n+1)N+i−1
: n ∈ N

)
∈ D̃1(K,C).

Since this sequence tends to 1, again by Proposition 2.2,(
a(n+1)N+i−1

anN+i−1
: n ∈ N

)
∈ D̃1(K,C)
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and consequently, also(
a(n+1)N+i−1

anN+i−1
XnN+i : n ∈ N

)
∈ D̃1

(
K,GL(2,C)

)
.

Hence, the hypotheses of Theorem 5.4 are satisfied. Finally, the conclusion
follows from Theorem 5.1. �

Proof of Theorem 1.2. The conclusion follows from Theorem 1.1 combined
with Corollary 3.4 and Proposition 3.5. �

6. Applications

In this section we present applications of the main results of this article. To
simplify the exposition let us first introduce some notation. For any positive
integer N , we say that a complex sequence (xn : n ∈ N) belongs to D̃N

1 (C) if
for every i ∈ {0, 1, . . . , N − 1}

(xnN+i : n ∈ N) ∈ D̃1(C).

The following proposition will be used repeatedly in the rest of this
section.

Proposition 6.1. Let N a positive integer and γ ∈ S
1. Suppose that for some

i ∈ {0, 1, . . . , N − 1},(
anN+i−1

anN+i
: n ∈ N

)
,

(
bnN+i

anN+i
: n ∈ N

)
,

(
γ

anN+i
: n ∈ N

)
∈ D̃1(C).

Then for every compact K ⊂ γR,

(BnN+i : n ∈ N) ∈ D̃1

(
K,GL(2,C)

)
.

Proof. Let K be a compact subset of γR. Let z ∈ K, then z = γx for some
x ∈ R. Set

Rn(z) = B(n+1)N+i(z) − BnN+i(z).

Then

[Rn(z)]1,1 = 0

[Rn(z)]1,2 = 0

[Rn(z)]2,1 =
(anN+i−1

anN+i

)∗
− a(n+1)N+i−1

a(n+1)N+i

[Rn(z)]2,2 = x
[ γ

a(n+1)N+i
−

( γ

anN+i

)∗]
+

( bnN+i

anN+i

)∗
− b(n+1)N+i

a(n+1)N+i
.

Thus, by (2.2), we get

‖Rn(z)‖ ≤
∣∣∣∣
a(n+1)N+i−1

a(n+1)N+i
−

(
anN+i−1

anN+i

)∗∣∣∣∣

+ |z|
∣∣∣∣

γ

a(n+1)N+i
−

(
γ

anN+i

)∗∣∣∣∣ +
∣∣∣∣
b(n+1)N+i

a(n+1)N+i
−

(
bnN+i

anN+i

)∗∣∣∣∣.
Thus, by the compactness of K the result follows. �
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6.1. Asymptotically Periodic Case

Let N be a positive integer, and let (αn : n ∈ Z) and (βn : n ∈ Z) be
N -periodic complex sequences such that αn �= 0 for any n. Let us define

Xi(x) =
N+i−1∏

j=i

Bj(x) where Bj(x) =

(
0 1

−αj−1
αj

x−βj

αj

)
. (6.1)

Let Aper be the Jacobi matrix on �2(N0) associated with the sequences (αn :
n ∈ N0) and (βn : n ∈ N0). Then Aper is bounded and

σess(Aper) = (trX0)−1
(
[−2, 2]

)
,

(see, e.g. [23, Theorem 1]). For a detailed study of Aper, see [4] and [15]. It is
known that σess(Aper), as the subset of C, has empty interior and C\σess(Aper)
is connected (see, e.g. [2, Section 4.3] or [4, Lemma 2.5]).

From the point of view of spectral theory it is natural to consider Jacobi
matrices which are compact perturbations of Aper, that is

lim
n→∞ |an − αn| = 0, lim

n→∞ |bn − βn| = 0.

Let us consider the case when αn > 0 and βn ∈ R. In [9] were formulated
conditions for N = 2 assuring that the discrete spectrum of A is empty.
Finally, let us remark that the case of symmetric A is well-developed, see e.g.
[22, Section 7.1] and the references therein.

We are ready to state our result.

Corollary 6.2. Let N be a positive integer and (αn : n ∈ Z) and (βn : n ∈ Z)
be real N -periodic sequences such that αn > 0 for every n. Suppose that the
sequences (an : n ∈ N0) and (bn : n ∈ N0) belong to D̃N

1 (C) and satisfy

lim
n→∞ |an − αn| = 0, lim

n→∞ |bn − βn| = 0.

Let X0 be defined by (6.1) and let K be a compact subset of

{x ∈ R : | trX0(x)| < 2}.

Then there is a constant c > 1 such that for every generalised eigenvector u
associated with x ∈ K and for any n ≥ 1

c−1
(|u0|2 + |u1|2

) ≤ |un−1|2 + |un|2 ≤ c
(|u0|2 + |u1|2

)
.

In particular, A is proper, K ∩ σp(A) = ∅ and K ⊂ σ(A).

Proof. We are going to show that the hypotheses of Theorem 1.1 are satisfied
for any fixed i ∈ {0, 1, . . . , N − 1}.

Observe that

lim
n→∞

anN+i−1

|anN+i−1| = lim
n→∞

αi−1

|αi−1| = 1.

Thus γ = 1. Let z ∈ C. Then for any j ∈ {0, 1, . . . , N − 1}
lim

n→∞ BnN+j(z) = Bj(z)

Hence,

Xi(z) := lim
n→∞ XnN+i(z) = Xi(z).
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It implies

lim
n→∞

anN+i−1

a(n+1)N+i−1
= lim

n→∞ det XnN+i(z) = detXi(z) = 1

and (1.4) is satisfied. Moreover, for any x ∈ K

Xi(x) ∈ GL(2,R).

Since

Xi =
(
Bi−1 . . .B0

)
X0

(
Bi−1 . . .B0

)−1

one has discr Xi = discr X0, and consequently, for any x ∈ K

discr Xi(x) =
(
trX0(x)

)2 − 4 < 0.

It remains to prove (1.6). By (2.8)
( 1

an
: n ∈ N

)
∈ D̃N

1 (C).

Thus, by (2.7)
(an−1

an
: n ∈ N

)
,
( bn

an
: n ∈ N

)
∈ D̃N

1 (C).

By Proposition 6.1

(Bn : n ∈ N) ∈ D̃N
1

(
K,GL(2,C)

)
.

Hence, by (2.7)

(Xn : n ∈ N) ∈ D̃N
1

(
K,GL(2,C)

)

and (1.6) is proven. So the hypotheses of Theorem 1.1 are satisfied and the
conclusion follows. �

6.2. Periodic Modulations

Let N be a positive integer, and let (αn : n ∈ Z) and (βn : n ∈ Z) be N -
periodic complex sequences such that αn �= 0 for any n. Let Xi be defined in
(6.1). If the sequences (an : n ∈ N0) and (bn : n ∈ N0) satisfy

lim
n→∞ |an| = ∞, lim

n→∞

∣∣∣∣
an−1

an
− αn−1

αn

∣∣∣∣ = 0 and lim
n→∞

∣∣∣∣
bn

an
− βn

αn

∣∣∣∣ = 0,

(6.2)

then A will be called a Jacobi matrix with periodically modulated entries.
The case when A is a symmetric operator is well-developed, see e.g. [22,
Section 7.2] and the references therein. It seems that there are virtually no
results when A is not symmetric. A notable exception comes from the article
[17]. Below we present a result in this direction.

Corollary 6.3. Let N be a positive integer and let (αn : n ∈ Z) and (βn : n ∈
Z) be real N -periodic sequences such that αn > 0 for every n. Suppose that
for some γ ∈ S

1

lim
n→∞

an

|an| = γ
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and (
an−1

an
: n ∈ N

)
,

(
bn

an
: n ∈ N

)
,

(
γ

an
: n ∈ N

)
∈ D̃N

1 (C). (6.3)

Let (6.2) be satisfied, X0 be defined by (6.1) and K be a compact subset of
γR. If | trX0(0)| < 2, then there is a constant c > 1 such that for every
generalised eigenvector u associated with z ∈ K and for any n ≥ 1

c−1
(|u0|2 + |u1|2

) ≤ |an+N−1|
(|un−1|2 + |un|2) ≤ c

(|u0|2 + |u1|2
)
.

In particular, if
∞∑

n=0

1
|an| = ∞,

then A is proper, γR ∩ σp(A) = ∅ and γR ⊂ σ(A). Conversely, if
∞∑

n=0

1
|an| < ∞,

then A is improper, σess(A) = ∅, σ(A) = C and σp(Amax) = C.

Proof. We are going to show that the hypotheses of Theorem 1.1 are satisfied.
Let us fix i ∈ {0, 1, . . . , N − 1}.

Let z ∈ C. Then for any j ∈ {0, 1, . . . , N − 1}
lim

n→∞ BnN+j(z) = Bj(0)

Hence,

Xi(z) := lim
n→∞ XnN+i(z) = Xi(0).

It implies

lim
n→∞

anN+i−1

a(n+1)N+i−1
= lim

n→∞ det XnN+i(z) = detXi(0) = 1

and (1.4) is satisfied. Moreover,

Xi(z) = Xi(0) ∈ GL(2,R)

and similarly as in the proof of Corollary 6.2

discr Xi(x) =
(
trX0(0)

)2 − 4 < 0.

It remains to prove (1.6). By Proposition 6.1

(Bn : n ∈ N) ∈ D̃N
1

(
K,GL(2,C)

)
.

Hence, by (2.7)

(Xn : n ∈ N) ∈ D̃N
1

(
K,GL(2,C)

)

and (1.6) is proven. So the hypotheses of Theorem 1.1 are satisfied and the
conclusion follows. �

The following proposition gives a simple method of construction se-
quences satisfying hypotheses of Corollary 6.3.
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Proposition 6.4. Let N be a positive integer and γ ∈ S
1. Let (αn : n ∈

Z) and (βn : n ∈ Z) be N -periodic sequences of positive and real numbers,
respectively. Suppose we are given a complex sequence (ãn : n ∈ N0) such that
ãn �= 0 for all n, and

lim
n→∞ |ãn| = ∞, lim

n→∞
ãn

|ãn| = γ, lim
n→∞

ãn−1

ãn
= 1 (6.4)

and (
ãn−1

ãn
: n ∈ N

)
∈ D̃N

1 (C). (6.5)

Set

an = αnãn, bn = βnãn.

If |X0(0)| < 2, where X0 is defined in (6.1), then the Jacobi matrix cor-
responding to the sequences (an : n ∈ N0) and (bn : n ∈ N0) satisfy the
hypotheses of Corollary 6.3.

Proof. The condition (6.3) follows from Proposition 2.2 applied to (6.5) and
an−1

an
=

αn−1

αn

ãn−1

ãn
,

bn

an
=

βn

αn
,

γ

an
=

1
αn

γ

ãn
. (6.6)

Finally, condition (6.2) follows from (6.4), (6.6) and

|an| = αn|ãn|, an

|an| =
ãn

|ãn| .
The proof is complete. �

6.3. Additive Perturbations

Proposition 6.5. Suppose that the Jacobi matrix A satisfies the hypotheses of
Corollary 6.3. Let (xn : n ∈ N0) and (yn : n ∈ N0) be sequences such that(

xn

an
: n ∈ N

)
,

(
yn

an
: n ∈ N

)
∈ D̃N

1 (C) (6.7)

and

lim
n→∞

xn

an
= 0, lim

n→∞
yn

an
= 0. (6.8)

Define

ãn = an + xn, b̃n = bn + yn.

If ãn �= 0 for all n, then the Jacobi matrix corresponding to the sequences
(ãn : n ≥ 0) and (b̃n : n ≥ 0) satisfy the hypotheses of Corollary 6.3 for the
same α, β and γ.

Proof. We have

ãn

an
= 1 +

xn

an
,

b̃n

an
=

bn

an
+

yn

an
.

Hence, by (6.7) and Proposition 2.1
(

ãn

an
: n ∈ N

)
,

(
b̃n

an
: n ∈ N

)
∈ D̃N

1 (C)
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Moreover, by (6.8)

lim
n→∞

ãn

an
= 1, lim

n→∞

∣∣∣∣
b̃n

an
− βn

αn

∣∣∣∣ = 0. (6.9)

Therefore, by Proposition 2.2(
an

ãn
: n ∈ N

)
∈ D̃N

1 (C).

Thus, the condition (6.3) is implied by

ãn−1

ãn
=

ãn−1

an−1

an−1

an

an

ãn
,

b̃n

ãn
=

an

ãn

b̃n

an
,

γ

ãn
=

an

ãn

γ

an
(6.10)

and Proposition 2.2. Finally, condition (6.2) follows from (6.9), (6.10) and

|ãn| = |an|
∣∣∣∣
ãn

an

∣∣∣∣,
ãn

|ãn| =
ãn

an

an

|an|
∣∣∣∣
an

ãn

∣∣∣∣.
The proof is complete. �

The following corollary concerns complex perturbations of real Jacobi
matrices.

Corollary 6.6. Suppose that (an : n ∈ N0) and (bn : n ∈ N0) satisfy the
hypotheses of Corollary 6.3. Suppose that an > 0 and bn ∈ R for every n.
Moreover, let the real sequences (xn : n ≥ 0) and (yn : n ≥ 0) are such that

∞∑
n=0

∣∣∣∣
xn+N

an+N
− xn

an

∣∣∣∣ +
∞∑

n=0

∣∣∣∣
yn+N

an+N
− yn

an

∣∣∣∣ < ∞

and

lim
n→∞

xn

an
= 0, lim

n→∞
yn

an
= 0.

Define

ãn = an + iεnxn, b̃n = bn + iεnyn,

where εn = (−1)�n/N	. Then the sequences (ãn : n ≥ 0) and (b̃n : n ≥ 0)
again satisfy the assumptions of Corollary 6.3 for the same α, β and γ.

Proof. Let j ∈ {0, 1, . . . , N −1}. Since the sequences a and x are real valued,
one has

Ṽ1

(
iεnN+jxnN+j

anN+j
: n ∈ N

)
=

∞∑
n=1

∣∣∣∣iε(n+1)N+j

(
x(n+1)N+j

a(n+1)N+j
− xnN+j

anN+j

)∣∣∣∣

=
∞∑

n=1

∣∣∣∣
x(n+1)N+j

a(n+1)N+j
− xnN+j

anN+j

∣∣∣∣ < ∞

and similarly

Ṽ1

(
iεnN+jynN+j

anN+j
: n ∈ N

)
< ∞.

Hence, the conclusion follows from Proposition 6.5. �
Let us illustrate Corollary 6.6 with the following example.
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Example. Let N be a positive integer and let (αn : n ∈ Z) and (βn : n ∈ Z)
be N -periodic sequences of positive and real numbers, respectively. Suppose
that | trX0(0)| < 2, where X0 is defined in (6.1). Let 0 ≤ μ < λ. Define

an = αn(n + 1)λ + i(−1)�n/N	(n + 1)μ,

bn = βn(n + 1)λ + i(−1)�n/N	(n + 1)μ.

Then for any compact K ⊂ R there is a constant c > 1 such that for every
generalised eigenvector u associated with z ∈ K and for any n ≥ 1

c−1
(|u0|2 + |u1|2

) ≤ |an+N−1|
(|un−1|2 + |un|2) ≤ c

(|u0|2 + |u1|2
)
.

To prove this claim let us observe that the Proposition 6.4 applied to

ãn = (n + 1)λ

implies that the sequences

ân = αn(n + 1)λ, b̂n = βn(n + 1)λ

satisfy the assumptions of Corollary 6.3. Let

xn = yn = (n + 1)μ.

Since
xn

ân
=

1
αn

1
(n + 1)λ−μ

it satisfies conditions (6.7) and (6.8). Therefore, the conclusion follows from
Corollary 6.6.

6.4. Blend

Let N be a positive integer, and let (αn : n ∈ Z) and (βn : n ∈ Z) be N -
periodic sequences of complex numbers such that αn �= 0 for any n. Suppose
that sequences ã, b̃, c̃ and d̃ satisfy

lim
n→∞

∣∣ãn − αn

∣∣ = 0, lim
n→∞

∣∣b̃n − βn

∣∣ = 0, lim
n→∞ |c̃n| = ∞ (6.11)

and for every n one has ãn �= 0 and c̃n �= 0. For k ≥ 0 and i ∈ {0, 1, . . . , N+1},
we define

ak(N+2)+i =

⎧⎪⎨
⎪⎩

ãkN+i if i ∈ {0, 1, . . . , N − 1},

c̃2k if i = N,

c̃2k+1 if i = N + 1,

,

bk(N+2)+i =

⎧⎪⎨
⎪⎩

b̃kN+i if i ∈ {0, 1, . . . , N − 1},

d̃2k if i = N,

d̃2k+1 if i = N + 1
.

(6.12)

Jacobi matrix A will be called N -periodic blend if it satisfies (6.11) and
(6.12). This class of matrices has been studied previously in [6, Theorem 5],
[22, Section 7.3] and [21] but only in the case when A is self-adjoint.
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Corollary 6.7. Let Jacobi matrix A be N -periodic blend, where αn > 0 and
βn ∈ R for any n. Suppose that

lim
n→∞

c̃2n

c̃2n+1
= 1, lim

n→∞
c̃n

|c̃n| = 1, lim
n→∞ d̃2n = δ (6.13)

and (
1/an : n ∈ N

)
,
(
bn : n ∈ N

) ∈ D̃N+2
1 (C),(

an(N+2)+N

an(N+2)+N+1
: n ∈ N

)
∈ D̃1(C).

(6.14)

For i ∈ {1, 2, . . . , N} we set

Xi(z) =
{ i−1∏

j=1

Bj(z)
}

C(z)
{N−1∏

j=i

Bj(z)
}

,

where Bj is defined in (6.1) and

C(z) =
(

0 −1
−αN−1

α0
− 2z−β0−δ

α0

)
.

Let K be a compact subset of
{
x ∈ R : | tr X1(x)| < 2

}
.

Then there is a constant c > 1 such that for any generalised eigenvector
associated with z ∈ K, any n ≥ 1 and any i ∈ {1, 2, . . . , N}

c−1
(|u0|2 + |u1|2

) ≤ |un(N+2)+i−1|2 + |un(N+2)+i|2 ≤ c
(|u0|2 + |u1|2

)
.(6.15)

In particular, A is proper, K ∩ σp(A) = ∅ and K ⊂ σ(A).

Proof. We are going to show that the hypotheses of Theorem 1.1 are satisfied
for any fixed i ∈ {1, 2, . . . , N}.

By (6.11) and (6.12)

lim
n→∞

an(N+2)+i−1

|an(N+2)+i−1| =
αi−1

|αi−1| = 1. (6.16)

Thus γ = 1. Define

B̃n(z) =

(
0 1

− ãn−1
ãn

z−b̃n
ãn

)
.

For any j ∈ {1, 2, . . . , N − 1} one has Bn(N+2)+j = B̃nN+j . Thus,

Xn(N+2)+i =
N+2+i−1∏

j=i

Bn(N+2)+j

=

{
i−1∏
j=1

B̃(n+1)N+j

}
Cn

{
N−1∏
j=i

B̃nN+j

}
, (6.17)

where

Cn = B(n+1)(N+2)Bn(N+2)+N+1Bn(N+2)+N .
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A direct computation shows that

Cn(z) = Tn(z) +
z − bn(N+2)+N+1

an(N+2)+N+1
Rn(z), (6.18)

where

[Tn(z)]1,1 = 0 (6.19)

[Tn(z)]1,2 = − an(N+2)+N

an(N+2)+N+1
(6.20)

[Tn(z)]2,1 =
an(N+2)+N−1

a(n+1)(N+2)

an(N+2)+N+1

an(N+2)+N
(6.21)

[Tn(z)]2,2 = −z − b(n+1)(N+2)

a(n+1)(N+2)

an(N+2)+N

an(N+2)+N+1
− z − bn(N+2)+N

a(n+1)(N+2)

an(N+2)+N+1

an(N+2)+N

(6.22)

and

Rn(z) =

( −an(N+2)+N−1

an(N+2)+N

z−bn(N+2)+N

an(N+2)+N

−an(N+2)+N−1

an(N+2)+N

z−b(n+1)(N+2)

a(n+1)(N+2)

z−bn(N+2)+N

an(N+2)+N

z−b(n+1)(N+2)

a(n+1)(N+2)

)
. (6.23)

In particular,

lim
n→∞ Cn(z) = C(z),

and since for any j ∈ {1, 2, . . . , N − 1}
lim

n→∞ B̃nN+j(z) = Bj(z),

one obtains

lim
n→∞ Xn(N+2)+i(z) = Xi(z). (6.24)

By (6.11) and (6.12) one has

lim
n→∞

an(N+2)+i−1

a(n+1)(N+2)+i−1
=

αi−1

αi−1
= 1.

Hence, by (6.16) and (6.24) the condition (1.4) is satisfied.
Observe that by Proposition 2.1 combined with (6.12), (6.13) and (6.14)

one has δ ∈ R. Thus, for any x ∈ K

Xi(x) ∈ GL(2,R).

Since

Xi(x) =
{ i−1∏

j=1

Bj(x)
}

X1(x)
{ i−1∏

j=1

Bj(x)
}−1

one obtains

discr Xi(x) = discr X1(x) =
(
tr X1(x)

)2 − 4 < 0,

and consequently, K ⊂ Λ.
Proposition 2.2 with (6.14) implies(

bn

an
: n ∈ N

)
∈ D̃N+2

1 (C) (6.25)
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and for every j ∈ {0, 1, . . . , N − 1}
(
an(N+2)+j : n ∈ N

) ∈ D̃1(C). (6.26)

Thus, by Proposition 2.2 with (6.14) and (6.26), one obtains that for each
j′ ∈ {1, . . . , N + 1}

(
an(N+2)+j′−1

an(N+2)+j′
: n ∈ N

)
∈ D̃1(C). (6.27)

By combining (6.14), (6.25) and (6.27) with Proposition 6.1 one gets for any
j ∈ {0, 1, . . . , N − 1}

(B̃nN+j : n ∈ N) ∈ D̃1

(
K,GL(2,C)

)
. (6.28)

Finally, and by repeated application of Propositions 2.1 and 2.2 to (6.18)–
(6.23) we can verify that

(
Cn : n ∈ N

) ∈ D̃1

(
K,GL(2,C)

)
,

which together with (6.17) and (6.28) implies
(
Xn(N+2)+i : n ∈ N

) ∈ D̃1

(
K,GL(2,C)

)
.

Consequently, the condition (1.6) is satisfied. By (6.11) and (6.12) the se-
quence

(
an(N+2)+i−1 : n ∈ N

)
is bounded above and below by positive con-

stants. Therefore, (6.15) follows from Theorem 1.1. Finally, by (6.15) we
obtain that u is not square summable and by Proposition 3.5 the result
follows. �

Remark 6.8. For i ∈ {0, N + 1} the hypotheses of Theorem 1.1 are not sat-
isfied so we cannot claim that (6.15) holds also in this case. In fact, for i = 0
the bound (6.15) holds but it is not the case for i = N + 1 (see the proof of
[21, Claim 4.12]).
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Grzegorz Świderski
Department of Mathematics
KU Leuven
Celestijnenlaan 200B
box 24003001 Leuven
Belgium

and

Mathematical Institute
University of Wroc�law
pl. Grunwaldzki 2/4
50-384 Wroc�law
Poland
e-mail: grzegorz.swiderski@kuleuven.be

Received: October 16, 2019.

Revised: February 5, 2020.

http://arxiv.org/abs/1909.09107

	Spectral Properties of Some Complex Jacobi Matrices
	Abstract
	1. Introduction
	Notation

	2. Preliminaries
	2.1. Matrices
	2.2. Twisted Stolz Class

	3. Generalised Eigenvectors and the Transfer Matrix
	4. Uniform Non-degeneracy of Quadratic Forms
	5. Shifted Turán Determinants
	5.1. Definitions and Basic Properties
	5.2. The Proof of the Convergence

	6. Applications
	6.1. Asymptotically Periodic Case
	6.2. Periodic Modulations
	6.3. Additive Perturbations
	6.4. Blend

	Acknowledgements
	References




