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Abstract. The topological structure of the set of (weighted) composi-
tion operators has been studied on various function spaces on the unit
disc such as Hardy spaces, the space of bounded holomorphic func-
tions, weighted Banach spaces of holomorphic functions with sup-norm,
Hilbert Bergman spaces. In this paper we consider this problem for all
Bergman spaces Ap

α with p ∈ (0, ∞) and α ∈ (−1, ∞). In this setting
we establish a criterion for two composition operators to be linearly
connected in the space of composition operators; furthermore, for the
space of weighted composition operators, we prove that the set of com-
pact weighted composition operators is path connected, but it is not a
component.
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1. Introduction

Let H(D) be the space of all holomorphic functions on the unit disc D. Given
p ∈ (0,∞) and α ∈ (−1,∞), the Bergman space Ap

α is defined as follows

Ap
α :=

{
f ∈ H(D) : ‖f‖p,α :=

(∫
D

|f(z)|pdAα(z)
) 1

p

< ∞
}

with

dAα(z) :=
1 + α

π

(
1 − |z|2)α

dA(z),

where dA(z) is the Lebesgue measure on D. It is well known that Ap
α with

1 ≤ p < ∞ is a Banach space, while for 0 < p < 1, Ap
α is a complete metric

space with the distance d(f, g) := ‖f − g‖p
p,α.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00020-020-02615-3&domain=pdf
http://orcid.org/0000-0002-4282-3449


5 Page 2 of 24 A. V. Abanin et al. IEOT

Let S(D) be the set of all holomorphic self-maps of D. For two functions
ϕ ∈ S(D) and ψ ∈ H(D), a weighted composition operator Wψ,ϕ is defined by
Wψ,ϕf := ψ · (f ◦ ϕ), f ∈ H(D). In particular, when ψ is identically 1, Wψ,ϕ

reduces to a composition operator Cϕ. According to Littlewood’s Subordinate
Theorem, each composition operator Cϕ is bounded on Bergman spaces Ap

α,
while compactness of Cϕ on Ap

α was firstly characterized by MacCluer and
Shapiro [16] in terms of angular derivative of ϕ. In details, the operator Cϕ is
compact on Ap

α if and only if ϕ has no finite angular derivative at any point
ζ of ∂D, which is equivalent to

lim
|z|→1−

1 − |z|2
1 − |ϕ(z)|2 = 0. (1.1)

Boundedness and compactness of weighted composition operators Wψ,ϕ on
Bergman spaces Ap

α were investigated by C̆uc̆ković and Zhao [7] in terms of
Berezin type transforms, which are rather difficult to use.

When the basic questions on topological properties of (weighted) com-
position operators were completely solved, many researchers have paid more
attention to the study of the topological structure of the space of such op-
erators endowed with the operator norm topology. This problem was initi-
ated by Berkson [2] with his isolation result on composition operators on the
Hardy space H2, and then developed by MacCluer [15], Shapiro and Sund-
berg [19]. Thereafter, the topological structure problem has been intensively
investigated on various function spaces during the past few decades (see, for
instance, [9,12] on Hardy spaces, [8,17] on Bergman spaces, [13,14] on the
space H∞ of all bounded holomorphic functions on D, [11] on Bloch spaces,
[1] on weighted Banach spaces with sup-norm, and [20] on Fock spaces).

In this paper we are interested in the topological structure problem on
Bergman spaces Ap

α. Recall that the authors in [8,15,17] studied this problem
only for composition operators on Hilbert Bergman spaces A2

α and obtained
some partial results. Firstly, MacCluer [15] gave a sufficient condition for
isolated composition operators and a necessary condition for a composition
operator to be in the path component of another one. Later, Moorhouse
[17] established a sufficient condition under which two composition operators
belong to the same path component. Recently, Dai [8] stated a criterion for
two composition operators to be linearly connected. It is worth mentioning
that in the Bergman space setting, till now there is no complete description
of (path) components in the space of composition operators; moreover, the
space of weighted composition operators has not yet been studied.

The aim of this paper is, firstly, to continue studying the topological
structure problem for composition operators on Bergman spaces Ap

α with p ∈
(0,∞); secondly, to initiate this problem for weighted composition operators
on these spaces Ap

α. Note that the technique of adjoint operators on Hilbert
Bergman spaces A2

α, played an essential role in [8,15,17], does not work for
general spaces Ap

α. So we develop a new approach based on Carleson measure.
The paper is organized as follows. In Sect.2 we recall some preliminary

results on pseudo-hyperbolic distance and Carleson measure for Bergman
spaces Ap

α.
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Section 3 is devoted to the topological structure of the space C(Ap
α) of

composition operators on Ap
α endowed with the operator norm topology. In

Theorem 3.3, we prove that two operators Cϕ and Cφ are linearly connected in
the space C(Ap

α), i.e. the path Cϕt
with ϕt(z) := (1−t)ϕ(z)+tφ(z), t ∈ [0, 1],

is continuous in C(Ap
α), if and only if

lim sup
ρ(ϕ(z),φ(z))→1

(
1 − |z|2

1 − |ϕ(z)|2 +
1 − |z|2

1 − |φ(z)|2
)

= 0,

where ρ(ϕ(z), φ(z)) is the pseudo-hyperbolic distance between ϕ(z) and φ(z).
This result implies that the set [Cϕ] of all composition operators that differ
from the given one Cϕ by a compact operator is path connected in C(Ap

α)
(Theorem 3.6). Moreover, the set C0(Ap

α) of all compact composition opera-
tors on Ap

α forms a path component in C(Ap
α) (Corollary 3.8). However, as in

the setting of other function spaces, such as the Hardy space H2, the space
H∞, and weighted Banach space with sup-norm, the set of such a type, in
general, is not always a component of C(Ap

α) (Example 3.10). Finally, we
also give sufficient conditions for isolated and non-isolated points in C(Ap

α)
(Proposition 3.11).

The space Cw(Ap
α) of all nonzero weighted composition operators on Ap

α

under the operator norm topology is studied in Sect. 4. We show that the set
Cw,0(Ap

α) of all nonzero compact weighted composition operators on Ap
α is

path connected in Cw(Ap
α); nevertheless, it is not a component in this space

(Theorem 4.2). Moreover, we provide two path connected sets of the same
type in the space Cw(Ap

α), one of which is a path component, while another
one is not (Examples 4.5 and 4.6).

Notation. Throughout this paper we always assume that p ∈ (0,∞) and
α ∈ (−1,∞) unless otherwise is stated. We denote constants by c, c0, c1, ... to
distinguish from composition operators Cz0 induced by ϕ(z) ≡ z0. We also
use the notation A � B (and A � B) for nonnegative quantities A and B
to mean that there is a constant c > 0, depending only on indexes p, α, β, γ,
such that A ≤ cB (and A ≥ cB, respectively). Finally, the notation A 	 B
means that both A � B and B � A hold.

2. Preliminaries

In this section we recall some basic notation, definitions and facts which will
be used in the sequel.

2.1. Test Functions

For each σ > 0 and w ∈ D fixed, we define

kw(z) :=

(
1 − |w|2)σ

p

(1 − wz)
σ+α+2

p

, z ∈ D.

These functions kw play an important role in the study of Bergman spaces
Ap

α and operators defined on them. From [21, Theorem 1.12] it follows that
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there is a constant c0, depending only on p, α, σ, such that

c−1
0 ≤ ‖kw‖p,α ≤ c0 for all w ∈ D. (2.1)

2.2. Pseudo-Hyperbolic Distance

The pseudo-hyperbolic distance between z and ζ in D is given by

ρ(z, ζ) :=
∣∣∣∣ z − ζ

1 − zζ

∣∣∣∣ .

The pseudo-hyperbolic disc with center z ∈ D and radius r ∈ (0, 1) is
defined by Δ(z, r) := {ζ ∈ D : ρ(z, ζ) < r}. For simplicity, we write Δ(z)
instead of Δ(z, 1

2 ).
By [21, Lemma 2.24], there exists a constant c1 = c1(p, α) such that

|f(z)|p ≤ cp
1

(1 − |z|2)α+2

∫
Δ(z)

|f(ζ)|pdAα(ζ), (2.2)

for every f ∈ H(D) and z ∈ D. This implies that

|f(z)| ≤ c1

(1 − |z|2)α+2
p

‖f‖p,α (2.3)

and, changing the constant c1 if necessary,

|f ′(z)| ≤ c1

(1 − |z|2)α+2
p +1

‖f‖p,α, (2.4)

for every f ∈ Ap
α and z ∈ D.

Next, by [21, Lemma 2.20], for every r ∈ (0, 1), there is a constant
c2 = c2(r) > 0 such that

c−1
2 ≤ 1 − |z|2

1 − |ζ|2 ≤ c2 for all ζ ∈ Δ(z, r) and z ∈ D. (2.5)

The next auxiliary result follows from [5, Lemma 3.2].

Lemma 2.1. For every r ∈ (0, 1), there is a constant c3 = c3(p, α, r) > 0 such
that

|f(z) − f(ζ)|p ≤ c3
ρ(z, ζ)p

(1 − |z|2)α+2

∫
Δ(z, r+1

2 )
|f ′(ω)|p (

1 − |ω|2)p
dAα(ω),

for all f ∈ H(D) and z, ζ ∈ D with ζ ∈ Δ(z, r).

The following lemma is quite standard. It is originally noticed in [10]
for the unit ball and given in [8, Lemma 3.2].

Lemma 2.2. The following inequality holds

ρ (zt, zs) ≤ |t − s|
1 − (1 − |t − s|) ρ(z, ζ)

ρ(z, ζ),

for every z, ζ ∈ D and t, s ∈ [0, 1], where zt := (1 − t)z + tζ. In particular,
ρ(zt, zs) ≤ ρ(z, ζ) for the same z, ζ, zt, and zs.
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2.3. Carleson Measure

A positive Borel measure μ on D is called an α-Carleson measure, if the
embedding operator Iμ : Ap

α → Lp(D, dμ) is bounded, i.e. there exists a
constant c > 0 such that(∫

D

|f(z)|pdμ(z)
) 1

p

≤ c‖f‖p,α for all f ∈ Ap
α.

Moreover, if the operator Iμ is compact, then μ on D is called a compact
α-Carleson measure. In this case we put ‖μ‖α := ‖Iμ‖p

Ap
α→Lp(D,dμ)

. Here and
below we omit the dependence on p of norms of measures and operators, since
p > 0 is always an arbitrary fixed number.

By [21, Theorems 2.25 and 2.26], a positive Borel measure μ is an α-
Carleson (respectively, a compact α-Carleson) one if and only if

sup
z∈D

μ(Δ(z, r))
(1 − |z|2)α+2 < ∞

(
respectively, lim

|z|→1−

μ(Δ(z, r))
(1 − |z|2)α+2 = 0

)
,

for some number r ∈ (0, 1). Note that these conditions are independent of p
and r. Moreover, for each r ∈ (0, 1), there is a constant c4 = c4(α, r) such
that

c−1
4 sup

z∈D

μ(Δ(z, r))
(1 − |z|2)α+2 ≤ ‖μ‖α ≤ c4 sup

z∈D

μ(Δ(z, r))
(1 − |z|2)α+2 . (2.6)

On the other hand, in [16, Section 4], the α-Carleson measure was also
characterized in terms of semidiscs S(ζ, δ), where S(ζ, δ) := {z ∈ D : |z−ζ| <
δ} with δ ∈ (0, 2] and ζ ∈ ∂D. By [16, Theorem 4.3], a positive Borel measure
μ is an α-Carleson (respectively, a compact α-Carleson) one if and only if

sup
δ∈(0,2],ζ∈∂D

μ(S(ζ, δ))
δα+2

< ∞
(

respectively, lim
δ→0

sup
ζ∈∂D

μ(S(ζ, δ))
δα+2

= 0

)
.

In addition,

‖μ‖α 	 sup
δ∈(0,2],ζ∈∂D

μ(S(ζ, δ))
δα+2

.

For a function ϕ ∈ S(D) and a Borel function v : D → [0,∞), we define
the pull-back measure (vAα) ◦ ϕ−1 by

(vAα) ◦ ϕ−1(E) :=
∫

ϕ−1(E)

v(z)dAα(z),

for each Borel set E ⊂ D. Then, for each ϕ ∈ S(D) and f ∈ Ap
α,

‖Cϕf‖p,α =
(∫

D

|f(ϕ(z))|pdAα(z)
) 1

p

=
(∫

D

|f(z)|pd(Aα ◦ ϕ−1)(z)
) 1

p

.

From this and the boundedness of Cϕ on Ap
α, it follows that Aα ◦ ϕ−1 is

always an α-Carleson measure and

‖Aα ◦ ϕ−1‖α = ‖Cϕ‖p
α ≤

(
1 + |ϕ(0)|
1 − |ϕ(0)|

)α+2

. (2.7)
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Moreover, Cϕ is compact on Ap
α if and only if Aα ◦ ϕ−1 is a compact α-

Carleson measure.
For each ϕ ∈ S(D), ψ ∈ H(D), and f ∈ Ap

α,

‖Wψ,ϕf‖p,α =
(∫

D

|ψ(z)|p|f(ϕ(z))|pdAα(z)
) 1

p

=
(∫

D

|f(z)|pd((|ψ|pAα) ◦ ϕ−1)(z)
) 1

p

.

This implies that Wψ,ϕ is bounded (respectively, compact) on Ap
α if and only if

(|ψ|pAα)◦ϕ−1 is an α-Carleson measure (respectively, a compact α-Carleson
measure). Moreover, we have

‖ (|ψ|pAα) ◦ ϕ−1‖α = ‖Wψ,ϕ‖p
α. (2.8)

3. Path Components of the Space of Composition Operators

In this section we study the space C(Ap
α) of all composition operators on Ap

α

under the operator norm topology.
First, we establish a necessary and sufficient condition under which two

composition operators Cϕ and Cφ are linearly connected in C(Ap
α), i.e., ac-

cording to [8], the path Cϕt
with ϕt(z) := (1 − t)ϕ(z) + tφ(z), t ∈ [0, 1], is

continuous in C(Ap
α). Since ϕt(z) lies on a straight-line path between ϕ(z)

and φ(z),

1
1 − |ϕt(z)|s ≤ 1

1 − |ϕ(z)|s +
1

1 − |φ(z)|s , (3.1)

for every z ∈ D, t ∈ [0, 1], and s > 0.
We need the following auxiliary lemmas.

Lemma 3.1. Let p ∈ (0,∞) and α, γ ∈ (−1,∞) with β = α − γ ∈ (0, 1]. For
every two functions ϕ, φ from S(D) and every Borel function v : D → [0, 1],
the following inequality holds

‖ (vAα) ◦ ϕ−1
t ‖α � Mβ

v,ϕ,φ

(
1

1 − |ϕ(0)| +
1

1 − |φ(0)|
)γ+2

,

for all t ∈ [0, 1], where, as above, ϕt(z) := (1 − t)ϕ(z) + tφ(z), and

Mv,ϕ,φ := sup
z∈D

v(z)
(

1 − |z|2
1 − |ϕ(z)|2 +

1 − |z|2
1 − |φ(z)|2

)
.
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Proof. Using (2.5) for r = 1
2 and (3.1), we obtain

(vAα) ◦ ϕ−1
t (Δ(z)) =

∫
ϕ−1

t (Δ(z))

v(ω)dAα(ω)

=
α + 1
γ + 1

∫
ϕ−1

t (Δ(z))

v(ω)1−β
(
v(ω)(1 − |ω|2))β

dAγ(ω)

� sup
ω∈ϕ−1

t (Δ(z))

(
v(ω)

1 − |ω|2
1 − |ϕt(ω)|2

)β ∫
ϕ−1

t (Δ(z))

(1 − |ϕt(ω)|2)βdAγ(ω)

� sup
ω∈D

(
v(ω)

(
1 − |ω|2

1 − |ϕ(ω)|2 +
1 − |ω|2

1 − |φ(ω)|2
))β (

1 − |z|2)β
∫

ϕ−1
t (Δ(z))

dAγ(ω)

= Mβ
v,ϕ,φ

(
1 − |z|2)β

Aγ ◦ ϕ−1
t (Δ(z)),

for every t ∈ [0, 1] and z ∈ D. Then, using (2.6) for r = 1
2 , (2.7) and (3.1),

we get

‖(vAα) ◦ ϕ−1
t ‖α � sup

z∈D

(vAα) ◦ ϕ−1
t (Δ(z))

(1 − |z|2)α+2

� Mβ
v,ϕ,φ sup

z∈D

(
1 − |z|2)β

Aγ ◦ ϕ−1
t (Δ(z))

(1 − |z|2)α+2

= Mβ
v,ϕ,φ sup

z∈D

Aγ ◦ ϕ−1
t (Δ(z))

(1 − |z|2)γ+2 � Mβ
v,ϕ,φ‖Aγ ◦ ϕ−1

t ‖γ

≤ Mβ
v,ϕ,φ

(
1 + |ϕt(0)|
1 − |ϕt(0)|

)γ+2

� Mβ
v,ϕ,φ

(
1

1 − |ϕt(0)|
)γ+2

� Mβ
v,ϕ,φ

(
1

1 − |ϕ(0)| +
1

1 − |φ(0)|
)γ+2

,

for every t ∈ [0, 1]. �

Lemma 3.2. For every functions ϕ and φ from S(D),

‖Cϕ−Cφ‖α ≥ 1
2c0c1

lim sup
ρ(ϕ(z),φ(z))→1

[(
1 − |z|2

1 − |ϕ(z)|2
)α+2

p

+
(

1 − |z|2
1 − |φ(z)|2

)α+2
p

]
,

(3.2)
where c0, c1 are the constants defined in (2.1) and (2.2), respectively, and, by
definition, the limit on the right-hand side of (3.2) is zero if ρ(ϕ(z), φ(z)) ≤ r0

for some r0 ∈ (0, 1) and all z ∈ D.

Proof. Obviously, it is enough to consider the case when

lim sup
ρ(ϕ(z),φ(z))→1

1 − |z|2
1 − |ϕ(z)|2 ≥ lim sup

ρ(ϕ(z),φ(z))→1

1 − |z|2
1 − |φ(z)|2

and

lim sup
ρ(ϕ(z),φ(z))→1

1 − |z|2
1 − |ϕ(z)|2 > 0.
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Then taking a sequence (zn)n ⊂ D so that ρ(ϕ(zn), φ(zn)) → 1 as n → ∞
and

lim
n→∞

1 − |zn|2
1 − |ϕ (zn) |2 = lim sup

ρ(ϕ(z),φ(z))→1

1 − |z|2
1 − |ϕ(z)|2 ,

we easily verify that

lim sup
n→∞

1 − |ϕ (zn) |2
1 − |φ(zn)|2 ≤ 1.

Applying this and the well-known identity

1 − ρ (ϕ (zn) , φ (zn))2 =

(
1 − |ϕ (zn) |2) (

1 − |φ (zn) |2)∣∣∣1 − ϕ (zn)φ (zn)
∣∣∣2 ,

we get

lim sup
n→∞

(
1 − |ϕ (zn) |2)2∣∣∣1 − ϕ (zn)φ (zn)

∣∣∣2 ≤ lim
n→∞

(
1 − ρ (ϕ (zn) , φ (zn))2

)
= 0,

and hence,

lim sup
n→∞

1 − |ϕ (zn) |2∣∣∣1 − ϕ (zn)φ (zn)
∣∣∣ = 0. (3.3)

Next, for every n ∈ N, using (2.1) and (2.2), we have

‖Cϕ − Cφ‖α ≥ 1
c0

‖Cϕkϕ(zn) − Cφkϕ(zn)‖p,α

=
1
c0

(∫
D

|kϕ(zn)(ϕ(z)) − kϕ(zn)(φ(z))|pdAα(z)
) 1

p

≥ 1
c0

(∫
Δ(zn)

|kϕ(zn)(ϕ(z)) − kϕ(zn)(φ(z))|pdAα(z)

) 1
p

≥ 1
c0c1

(1 − |zn|2)α+2
p |kϕ(zn) (ϕ (zn)) − kϕ(zn)(φ (zn))|

=
1

c0c1
(1 − |zn|2)α+2

p

∣∣∣∣∣∣∣
1

(1 − |ϕ (zn) |2)α+2
p

−
(
1 − |ϕ (zn) |2)σ

p(
1 − ϕ (zn)φ (zn)

)σ+α+2
p

∣∣∣∣∣∣∣
≥ 1

c0c1

(
1 − |zn|2

1 − |ϕ (zn) |2
)α+2

p

∣∣∣∣∣∣∣1 −
⎛
⎝ 1 − |ϕ (zn) |2∣∣∣1 − ϕ (zn)φ (zn)

∣∣∣
⎞
⎠

σ+α+2
p

∣∣∣∣∣∣∣ .

Letting n → ∞ in the last inequality and using (3.3), we get

‖Cϕ − Cφ‖α ≥ 1
c0c1

lim
n→∞

(
1 − |zn|2

1 − |ϕ (zn) |2
)α+2

p

,

which implies (3.2). �
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Theorem 3.3. For every functions ϕ and φ from S(D), the operators Cϕ and
Cφ are linearly connected in C(Ap

α) if and only if

lim sup
ρ(ϕ(z),φ(z))→1

(
1 − |z|2

1 − |ϕ(z)|2 +
1 − |z|2

1 − |φ(z)|2
)

= 0. (3.4)

Proof. As above, let ϕt(z) := (1 − t)ϕ(z) + tφ(z), t ∈ [0, 1].
(a) Necessity. Following the proof of [8, Theorem 3.2], assume (3.4) does

not hold. Then, similarly to the proof of the previous Lemma 3.2, we can find
a sequence (zn)n in D so that (3.3) holds and

lim sup
n→∞

1 − |zn|2
1 − |φ (zn) |2 ≤ lim

n→∞
1 − |zn|2

1 − |ϕ (zn) |2 = ε0 ∈ (0,∞).

Then for every t ∈ (0, 1], by (3.3), we get

|1 − ϕt (zn)ϕ (zn) |
1 − |ϕ (zn) |2 =

|(1 − t)(1 − |ϕ (zn) |2) + t(1 − φ (zn)ϕ (zn))|
1 − |ϕ (zn) |2

≥ t
|1 − ϕ (zn)φ (zn) |

1 − |ϕ (zn) |2 − (1 − t) → ∞ as n → ∞.

Therefore, for every t ∈ (0, 1],

1 − ρ(ϕ (zn) , ϕt (zn))2 =
(1 − |ϕ (zn) |2)(1 − |ϕt (zn) |2)∣∣∣1 − ϕ (zn)ϕt (zn)

∣∣∣2
≤ 2

1 − |ϕ (zn) |2∣∣∣1 − ϕ (zn)ϕt (zn)
∣∣∣ → 0 as n → ∞.

Consequently, by Lemma 3.2,

‖Cϕ − Cϕt
‖α ≥ 1

2c0c1
lim sup

n→∞

[(
1 − |zn|2

1 − |ϕ (zn) |2
)α+2

p

+
(

1 − |zn|2
1 − |ϕt (zn) |2

)α+2
p

]

≥ ε
α+2

p

0

2c0c1
for all t ∈ (0, 1].

From this it follows that the path Cϕt
, t ∈ [0, 1], is not continuous at t = 0,

which is a contradiction.
(b) Sufficiency. Suppose that (3.4) holds. We prove that the map t �→

Cϕt
is continuous in C(Ap

α), i.e., lim
s→t

‖Cϕs
− Cϕt

‖α = 0 for each t ∈ [0, 1]
fixed.

We take an arbitrary number r ∈ (0, 1) and put

Er := {z ∈ D : ρ(ϕ(z), φ(z)) ≤ r} and Ec
r := D \ Er.

For every s ∈ [0, 1] and f ∈ Ap
α, we write

‖Cϕs
f − Cϕt

f‖p
p,α =

∫
D

|f (ϕs(z)) − f (ϕt(z)) |pdAα(z)

=

(∫
Er

+
∫

Ec
r

)
|f (ϕs(z)) − f (ϕt(z)) |pdAα(z),
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and estimate the integrals in the right-hand side separately.
First, we estimate the integral

I(f, r, s) :=
∫

Er

|f (ϕs(z)) − f (ϕt(z)) |pdAα(z).

For each z ∈ Er, by Lemma 2.2,

ρ (ϕs(z), ϕt(z)) ≤ ρ (ϕ(z), φ(z)) ≤ r for every s ∈ [0, 1].

By this and Lemma 2.1, for some constant c3 = c3(p, α, r) and each z ∈ Er,
we have

|f (ϕs(z)) − f (ϕt(z)) |p ≤ c3
ρ (ϕs(z), ϕt(z))p

(1 − |ϕt(z)|2)α+2

∫
Δ

|f ′(ω)|p (
1 − |ω|2)p

dAα(ω),

where, for simplicity, we write Δ instead of Δ(ϕt(z), r+1
2 ). By Lemma 2.2,

for each z ∈ Er, we obtain

|f(ϕs(z)) − f(ϕt(z))|p ≤ c3|s − t|p ρ(ϕ(z), φ(z))p

(1 − (1 − |s − t|)ρ(ϕ(z), φ(z)))p

× 1
(1 − |ϕt(z)|2)α+2

∫
Δ

|f ′(ω)|p(1 − |ω|2)pdAα(ω)

≤ c3|s − t|p rp

(1 − (1 − |s − t|)r)p

× 1
(1 − |ϕt(z)|2)α+2

∫
Δ

|f ′(ω)|p (
1 − |ω|2)p

dAα(ω).

Using this, Fubini’s theorem, (2.5) and (2.6), for every s ∈ [0, 1] and f ∈ Ap
α,

we get

I(f, r, s) =

∫
Er

|f(ϕs(z)) − f(ϕt(z))|pdAα(z)

≤ c3|s − t|p rp

(1 − (1 − |s − t|)r)p

×
∫
D

1

(1 − |ϕt(z)|2)α+2

(∫
Δ

|f ′(ω)|p(1 − |ω|2)pdAα(ω)

)
dAα(z)

= c3|s − t|p rp

(1 − (1 − |s − t|)r)p

×
∫
D

|f ′(ω)|p(1 − |ω|2)p

(∫
ϕ−1

t (Δ(ω, r+1
2

))

1

(1 − |ϕt(z)|2)α+2
dAα(z)

)
dAα(ω)

≤ cα+2
2 c3|s − t|p rp

(1 − (1 − |s − t|)r)p

×
∫
D

|f ′(ω)|p(1 − |ω|2)p
Aα ◦ ϕ−1

t (Δ(ω, r+1
2 ))

(1 − |ω|2)α+2
dAα(ω)

≤ cα+2
2 c3c4|s − t|p rp

(1 − (1 − |s − t|) r)p ‖Aα ◦ ϕ−1
t ‖α

×
∫
D

|f ′(ω)|p(1 − |ω|2)pdAα(ω).
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On the other hand, by (2.7) and (3.1),

‖Aα ◦ ϕ−1
t ‖α ≤

(
1 + |ϕt(0)|
1 − |ϕt(0)|

)α+2

≤
(

2
1 − |ϕ(0)| +

2
1 − |φ(0)|

)α+2

.

Moreover, from [21, Theorem 2.16] and (2.3), it follows that∫
D

|f ′(ω)|p (
1 − |ω|2)p

dAα(ω) 	
∫
D

|f(ω) − f(0)|pdAα(ω)

�
(‖f‖p

p,α + |f(0)|p) � ‖f‖p
p,α.

Thus,

I(f, r, s) � cα+2
2 c3c4|s − t|p rp

(1 − (1 − |s − t|)r)p

×
(

2
1 − |ϕ(0)| +

2
1 − |φ(0)|

)α+2

‖f‖p
p,α,

for every s ∈ [0, 1] and f ∈ Ap
α.

Next, we estimate the integral

J (f, r, s) :=
∫

Ec
r

|f (ϕs(z)) − f (ϕt(z)) |pdAα(z).

We have

J (f, r, s) =
∫

Ec
r

|f (ϕs(z)) − f (ϕt(z)) |pdAα(z)

�
∫

Ec
r

|f (ϕs(z)) |pdAα(z) +
∫

Ec
r

|f (ϕt(z)) |pdAα(z)

=
∫
D

|f(ϕs(z))|pχEc
r
(z)dAα(z) +

∫
D

|f(ϕt(z))|pχEc
r
(z)dAα(z)

=
∫
D

|f(z)|pd(χEc
r
Aα) ◦ ϕ−1

s (z) +
∫
D

|f(z)|pd (
χEc

r
Aα

) ◦ ϕ−1
t (z)

≤ ‖(χEc
r
Aα) ◦ ϕ−1

s ‖α‖f‖p
p,α + ‖ (

χEc
r
Aα

) ◦ ϕ−1
t ‖α‖f‖p

p,α,

for every s ∈ [0, 1] and f ∈ Ap
α, where χE denotes the characteristic function

of a Borel subset E ⊂ D. Applying Lemma 3.1 to two functions ϕ, φ from
S(D), and the characteristic function χEc

r
, we obtain

‖ (
χEc

r
Aα

) ◦ ϕ−1
s ‖α � Mβ

χEc
r
,ϕ,φ

(
1

1 − |ϕ(0)| +
1

1 − |ψ(0)|
)γ+2

for all s ∈ [0, 1]. Here, β and γ are the same as in Lemma 3.1.
Combining the above estimates for I(f, r, s) and J (f, r, s), yields

‖Cϕs
− Cϕt

‖p
α � cα+2

2 c3c4|s − t|p rp

(1 − (1 − |s − t|) r)p

×
(

2
1 − |ϕ(0)| +

2
1 − |φ(0)|

)α+2

+ 2Mβ
χEc

r
,ϕ,φ

(
1

1 − |ϕ(0)| +
1

1 − |φ(0)|
)γ+2

,
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for every s ∈ [0, 1]. Then, letting s → t, we get

lim
s→t

‖Cϕs
− Cϕt

‖p
α � Mβ

χEc
r
,ϕ,φ

(
1

1 − |ϕ(0)| +
1

1 − |φ(0)|
)γ+2

,

for every r ∈ (0, 1). Moreover, by (3.4),

MχEc
r
,ϕ,φ = sup

ρ(ϕ(z),φ(z))≥r

(
1 − |z|2

1 − |ϕ(z)|2 +
1 − |z|2

1 − |φ(z)|2
)

→ 0 as r → 1−,

which implies that lim
s→t

‖Cϕs
− Cϕt

‖α = 0 and completes the proof. �

From Theorem 3.3 we immediately get the following result.

Corollary 3.4. Let two functions ϕ and φ from S(D) satisfy ρ(ϕ(z), φ(z)) ≤ r0

for some number r0 ∈ (0, 1) and every z ∈ D. Then Cϕ and Cφ are linearly
connected in C(Ap

α).

Remark 3.5. Theorem 3.3 and Corollary 3.4 extend the results of [8, Theorem
3.3] and, respectively, [17, Theorem 8] on Hilbert Bergman spaces A2

α to all
Bergman spaces Ap

α with p ∈ (0,∞).

To describe path components of the space C(Ap
α), we introduce the fol-

lowing notation. We say that two composition operators Cϕ and Cφ are equiv-
alent in C(Ap

α), if their difference Cϕ − Cφ is a compact operator on Ap
α.

Obviously, this is an equivalence relation in C(Ap
α). Let denote by [Cϕ] the

equivalence class of all composition operators that are equivalent to the given
one Cϕ. Then the set C0(Ap

α) of all compact composition operators on Ap
α is

the equivalence class [C0] of all operators from C(Ap
α) that are equivalent to

the operator C0 : f �→ f(0).
Recall, by [5, Theorem 1.1], [4, Proposition 4.1], and [17, Theorem 4],

that for every functions ϕ and φ from S(D), the difference Cϕ−Cφ is compact
on Ap

α if and only if

lim
|z|→1−

ρ (ϕ(z), φ(z))
(

1 − |z|2
1 − |ϕ(z)|2 +

1 − |z|2
1 − |φ(z)|2

)
= 0. (3.5)

Theorem 3.6. Each equivalence class [Cϕ] is path connected in the space
C(Ap

α).

Proof. Let Cφ be an arbitrary operator in [Cϕ], i.e. Cϕ − Cφ is compact on
Ap

α and, hence, (3.5) holds. We can verify that all operators Cϕt
, where, as

above, ϕt(z) := (1 − t)ϕ(z) + tφ(z) for t ∈ [0, 1], belong to the class [Cϕ].
Indeed, using (3.1) and Lemma 2.2, we get ρ(ϕ(z), ϕt(z)) ≤ ρ(ϕ(z), φ(z)) and

1 − |z|2
1 − |ϕ(z)|2 +

1 − |z|2
1 − |ϕt(z)|2 ≤ 2

1 − |z|2
1 − |ϕ(z)|2 +

1 − |z|2
1 − |φ(z)|2 ,

for every t ∈ [0, 1] and z ∈ D. Thus, by (3.5),

lim
|z|→1−

ρ (ϕ(z), ϕt(z))
(

1 − |z|2
1 − |ϕ(z)|2 +

1 − |z|2
1 − |ϕt(z)|2

)
= 0,

for every t ∈ [0, 1]. This and (3.5) imply that Cϕ − Cϕt
is compact on Ap

α for
every t ∈ [0, 1].
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On the other hand, it is easy to see that (3.5) implies (3.4). Then, by
Theorem 3.3, Cϕ and Cφ are in the same path component of the space C(Ap

α)
via the path Cϕt

, t ∈ [0, 1], in [Cϕ].
From this the assertion follows. �

Now we show that the set C0(Ap
α) forms a path component in the space

C(Ap
α). To do this we need some additional facts concerning angular deriva-

tives of a function ϕ ∈ S(D) (for more information we refer the reader to
[15]). Let ζ ∈ ∂D. The condition

lim inf
z→ζ

1 − |ϕ(z)|
1 − |z| < ∞ (3.6)

is necessary and sufficient for the existence of the finite angular derivative
ϕ′(ζ) at ζ. Moreover, the limit in (3.6) is equal to |ϕ′(ζ)| and

|ϕ′(ζ)| ≥ 1 − |ϕ(0)|
1 + |ϕ(0)| > 0.

If the limit if infinite, we put ϕ′(ζ) := ∞. Following [15] we say that ϕ and φ
from S(D) have the same data at ζ if they have radial limits of modulus 1 at ζ
with ϕ(ζ) = φ(ζ) and |ϕ′(ζ)| = |φ′(ζ)|. Obviously, in that case ϕ′(ζ) = φ′(ζ).

From [4, Theorem 3.5] it follows that there is a constant c > 0 depending
only on α such that

‖Cϕ − Cφ‖α ≥ c|ϕ′(ζ)|− α+2
p , (3.7)

for every point ζ ∈ ∂D, at which ϕ and φ do not have the same data.
The following result is an analog of [15, Theorem 2.4] and proved in the

similar way by using inequality (3.7).

Proposition 3.7. If the operator Cφ belongs to the path component of C(Ap
α)

containing Cϕ, then ϕ and φ have the same data at every point ζ ∈ ∂D for
which ϕ′(ζ) is finite.

Corollary 3.8. The set C0(Ap
α) of all compact composition operators on Ap

α is
a path component in C(Ap

α).

Proof. By Theorem 3.6, the set C0(Ap
α) is path connected in C(Ap

α).
Recall, by [16, Theorem 3.5], that an operator Cϕ is compact on Ap

α if
and only if ϕ has no finite angular derivative at any point of ∂D. Thus for
any non-compact operator Cφ on Ap

α, there is at least one point ζ ∈ ∂D with
φ′(ζ) finite. So a compact operator Cϕ and a non-compact operator Cφ do
not belong to the same path component of C(Ap

α) by Proposition 3.7, since
ϕ and φ do not have the same data at ζ. �

Remark 3.9. Corollary 3.8 extends the result on Hilbert Bergman spaces A2
α

in [6, Corollary 9.19] to Bergman spaces Ap
α for all p ∈ (0,∞). It should be

noted that in the setting of Hardy spaces, the set of all compact composition
operators on H2 is path connected in the space C(H2) (see, [15, Proposition
2.1]); however, it does not form a path component in this space (see, [9, Main
Theorem]).
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The next result shows that similarly to the Hardy space H2 [3,18], the
space H∞ [14], and weighted Banach spaces with sup-norm [1], the well-
known Shapiro-Sundberg conjecture (see [19, Page 149]) is also false for all
Bergman spaces Ap

α. Since this example is constructed by the same reasons
as in [1, Example 3.4] and [14, Examples 1 and 2], we only sketch its proof.

Example 3.10. Let ϕ0(z) := 1+a(z−1) with 0 < a < 1. Then the class [Cϕ0 ]
is not a path component in C(Ap

α).

Proof. Let δ := a(1−a)
10 . For each t ∈ [−δ, δ], we put

ϕt(z) := ϕ0(z) + t(z − 1)2.

Similarly to [1, Example 3.4] and [14, Example 1], we get ϕt ∈ S(D) and
Cϕt

∈ C(Ap
α) for all t ∈ [−δ, δ] and consider a sequence (zn) ⊂ D such that

zn → 1 along the arc |1 − z|2 = 1 − |z|2. Then, as in [1, Example 3.4], for all
n ≥ 1 and t ∈ [−δ, δ],

ρ (ϕ0 (zn) , ϕt (zn)) ≥ |t|
a(2 − a) + |t|

and hence,

ρ (ϕ0 (zn) , ϕt (zn))(
1 − |zn|2

1 − |ϕ0(zn)|2 +
1 − |zn|2

1 − |ϕt(zn)|2
)

≥ |t|
a(2 − a) (a(2 − a) + |t|) .

This and (3.5) imply that Cϕt
−Cϕ0 is not compact on Ap

α and so Cϕt
/∈ [Cϕ0 ]

for all 0 < |t| ≤ δ.
On the other hand, as in [14, Example 2], for every z ∈ D,

ρ (ϕ−δ(z), ϕδ(z)) ≤ 2δ

a(1 − a) − 2δ − 4δ2
<

1
2
.

From this and Corollary 3.4, it follows that the path Cφs
with

φs(z) := (1 − s)ϕ−δ(z) + sϕδ(z) = ϕ0(z) + δ (2s − 1) (z − 1)2

= ϕδ(2s−1)(z), s ∈ [0, 1],

is a continuous path connecting Cϕ−δ
and Cϕδ

in C(Ap
α). Thus, the assertion

follows. �
We end this section with the following characterizations for isolated and

non-isolated points in the space C(Ap
α).

Proposition 3.11. Let ϕ be a function from S(D).
(a) If ϕ has a finite angular derivative on a set of positive measure, then

Cϕ is isolated in the space C(Ap
α).

(b) If ∫ 2π

0

log(1 − |ϕ(eiθ)|)dθ > −∞, (3.8)

then Cϕ is not isolated in C(Ap
α).
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Proof. The part (a) follows from (3.7) by the arguments in the proof of [15,
Corollary 2.3].

(b). We put

φ(z) := exp
(

1
2π

∫ 2π

0

eiθ + z

eiθ − z
log(1 − |ϕ(eiθ)|)dθ

)
, z ∈ D.

Then φ is a bounded outer function in D with |φ| ≤ 1 − |ϕ| in D and |φ| =
1 − |ϕ| almost everywhere on ∂D.

For each t ∈ (−1, 1), we define φt(z) := ϕ(z) + tφ(z). Obviously, φt ∈
S(D) for every t ∈ (−1, 1). We claim that the path Cφt

, t ∈ [−δ, δ] with δ = 1
6 ,

is continuous in C(Ap
α). Hence, Cϕ is not isolated in C(Ap

α).
It remains to prove the claim. For each z ∈ D, we have

ρ (φ−δ(z), φδ(z)) =

∣∣∣∣∣ φ−δ(z) − φδ(z)
1 − φ−δ(z)φδ(z)

∣∣∣∣∣
≤ 2δ|φ(z)|

1 − |ϕ(z)|2 − 2δ|ϕ(z)||φ(z)| − δ2|φ(z)|2

=
2δ

1−|ϕ(z)|2
|φ(z)| − 2δ|ϕ(z)| − δ2|φ(z)|

≤ 2δ
1−|ϕ(z)|

|φ(z)| − 2δ − δ2
≤ 2δ

1 − 2δ − δ2
≤ 2

3
.

From this and Corollary 3.4, it follows that the path Cϕs
with

ϕs(z) := (1 − s)φ−δ(z) + sφδ(z)

= ϕ(z) + δ(2s − 1)φ(z) = φδ(2s−1)(z), s ∈ [0, 1],

is a continuous path connecting Cφ−δ
and Cφδ

in C(Ap
α). Thus, the claim

follows. �

Remark 3.12. Part (a) of Proposition 3.11 is an extension of [15, Corollary
2.3], which was stated only for Hilbert Bergman spaces A2

α.
Furthermore, (3.8) is a sufficient condition for the operator Cϕ to be

non-isolated in the space of composition operators on the Hardy space H2

[19, Theorem 3.1], on the space H∞ [14, Corollary 9], and on weighted Ba-
nach spaces with sup-norm [1, Proposition 3.6]. Part (b) of Proposition 3.11
extends this result to all Bergman spaces Ap

α.

4. Path Components of the Space of Weighted Composition
Operators

In this section we study the topological structure of the space Cw(Ap
α) of all

nonzero bounded weighted composition operators on Ap
α under the opera-

tor norm topology. For simplicity, we write Wψ,ϕ ∼ Wχ,φ in Cw(Ap
α) if the

operators Wψ,ϕ and Wχ,φ are in the same path component of Cw(Ap
α).

In our further considerations we use the following simple fact, which is
proved similarly to [20, Lemma 4.8].
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Lemma 4.1. Every operator Wψ,ϕ ∈ Cw(Ap
α) is path connected with the oper-

ator Cϕ in Cw(Ap
α).

The main result of this section is as follows.

Theorem 4.2. The set Cw,0(Ap
α) of all nonzero compact weighted composition

operators on Ap
α is path connected in the space Cw(Ap

α); but it is not a path
component in this space.

Proof. (a) To prove that the set Cw,0(Ap
α) is path connected in the space

Cw(Ap
α), it suffices to show that every operator Wψ,ϕ in Cw,0(Ap

α) and the
operator C0 : f �→ f(0) belong to the same path component of Cw(Ap

α) via a
path in Cw,0(Ap

α).
If ψ(z) ≡ const, then the assertion follows from Lemma 4.1 and Corol-

lary 3.8.
Now suppose that ψ is non-constant. Obviously, ψ = Wψ,ϕ(1) ∈ Ap

α.
For each t ∈ [0, 1], we put

ψt(z) := 1 − t + tψ(z) and ϕt(z) := tϕ(z), z ∈ D.

Then, for every t ∈ [0, 1), ψt is a nonzero function in Ap
α and ϕt(D) ⊂ tϕ(D) ⊂

D. From this it follows that all operators Wψt,ϕt
, t ∈ [0, 1), are compact on Ap

α.
Indeed, for every bounded sequence (fn)n in Ap

α converging to 0 uniformly
on compact sets of D, we get

‖Wψt,ϕt
fn‖p,α =

(∫
D

|ψt(z)|p|fn(tϕ(z))|pdAα(z)
) 1

p

≤ ‖ψt‖p,α sup
|z|≤t

|fn(z)| → 0 as n → ∞.

From this and a slight modification of [6, Proposition 3.11], the assertion
follows. Thus Wψt,ϕt

∈ Cw,0(Ap
α) for all t ∈ [0, 1]; moreover, Wψ0,ϕ0 = C0 and

Wψ1,ϕ1 = Wψ,ϕ. We claim that the map

[0, 1] → Cw(Ap
α), t �→ Wψt,ϕt

,

is continuous on [0, 1]. Then Wψ,ϕ ∼ C0 in Cw(Ap
α) via a path Wψt,ϕt

, t ∈
[0, 1], in Cw,0(Ap

α).
It remains to prove the claim. Obviously, Wψt,ϕt

= (1− t)Ctϕ +Wtψ,tϕ,
and hence,

‖Wψs,ϕs
− Wψt,ϕt

‖α ≤ ‖(1 − s)Csϕ − (1 − t)Ctϕ‖α + ‖Wsψ,sϕ − Wtψ,tϕ‖α,

for every t, s ∈ [0, 1]. Consequently, to prove the claim, it is enough to show
that, for every t ∈ [0, 1] fixed,

(i) lim
s→t

‖(1 − s)Csϕ − (1 − t)Ctϕ‖α = 0 and (ii) lim
s→t

‖Wsψ,sϕ − Wtψ,tϕ‖α = 0.

In our further demonstration we use the obvious inequality for functions
f ∈ H(D):

|f(sz) − f(tz)| ≤ |t − s||z| max
τ∈[s,t]

|f ′(τz)|, z ∈ D, t, s ∈ [0, 1], (4.1)

where we briefly write [s, t] for the interval between s and t.
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First, we prove (i). If t = 1, then, by (2.7),

‖(1 − s)Csϕ‖α = (1 − s)‖Csϕ‖α ≤ (1 − s)
(

1 + s|ϕ(0)|
1 − s|ϕ(0)|

)α+2
p

→ 0, s → 1.

Let now t ∈ [0, 1) and t0 ∈ (t, 1). For every s ∈ [0, t0) and f ∈ Ap
α, using

(2.4), (2.7) and (4.1), we get

‖(1 − s)Csϕf − (1 − t)Ctϕf‖p
p,α

=

∫
D

|(1 − s)f(sϕ(z)) − (1 − t)f(tϕ(z))|pdAα(z)

� (1 − s)p

∫
D

|f(sϕ(z)) − f(tϕ(z))|pdAα(z) + |s − t|p
∫
D

|f(tϕ(z))|pdAα(z)

≤ |s − t|p
∫
D

|ϕ(z)|p max
τ∈[s,t]

|f ′(τϕ(z))|pdAα(z) + |s − t|p‖Ctϕf‖p
p,α

≤ cp
1|s − t|p‖f‖p

p,α

∫
D

max
τ∈[s,t]

1

(1 − |τϕ(z)|2)α+2+p
dAα(z) + |s − t|p‖f‖p

p,α‖Ctϕ‖p
α

≤ cp
1

(1 − t20)
α+p+2

|s − t|p‖f‖p
p,α + |s − t|p

(
1 + t|ϕ(0)|
1 − t|ϕ(0)|

)α+2

‖f‖p
p,α.

Therefore, for every s ∈ [0, t0),

‖(1 − s)Csϕ − (1 − t)Ctϕ‖p
α � cp

1

(1 − t20)
α+p+2

|s − t|p + |s − t|p
(

1 + |ϕ(0)|
1 − |ϕ(0)|

)α+2

.

Thus, ‖(1 − s)Csϕ − (1 − t)Ctϕ‖α → 0 as s → t, which completes the proof
for (i).

Next, we prove (ii). For every s, t ∈ [0, 1] and f ∈ Ap
α, we have

‖Wsψ,sϕf − Wtψ,tϕf‖p
p,α =

∫
D

|sψ(z)f(sϕ(z)) − tψ(z)f(tϕ(z))|pdAα(z)

� |s|p
∫
D

|ψ(z)(f(sϕ(z)) − f(tϕ(z)))|pdAα(z)

+ |s − t|p
∫
D

|ψ(z)f(tϕ(z))|pdAα(z).

To continue, we need several auxiliary estimates in the following cases.
Case 1. t ∈ [0, 1). We fix a number t0 ∈ (t, 1).

Estimate 1.1. By (2.3), we have

∫
D

|ψ(z)f(tϕ(z))|pdAα(z) ≤ cp
1‖f‖p

p,α

∫
D

1
(1 − |tϕ(z)|2)α+2

|ψ(z)|pdAα(z)

≤ cp
1

(1 − t20)α+2
‖f‖p

p,α‖ψ‖p
p,α.
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Estimate 1.2. By (2.4) and (4.1), for every s ∈ [0, t0),∫
D

|ψ(z)(f(sϕ(z)) − f(tϕ(z)))|pdAα(z)

≤ |s − t|p
∫
D

|ψ(z)ϕ(z)|p max
τ∈[s,t]

|f ′(τϕ(z))|pdAα(z)

≤ cp
1|s − t|p‖f‖p

p,α

∫
D

|ψ(z)|p max
τ∈[s,t]

1
(1 − |τϕ(z)|2)α+2+p

dAα(z)

≤ cp
1

(1 − t20)α+2+p
|s − t|p‖f‖p

p,α‖ψ‖p
p,α.

Using the above estimates, for every s ∈ [0, t0), we obtain

‖Wsψ,sϕ − Wtψ,tϕ‖p
α

� cp
1

(1 − t20)
α+2+p |s − t|p‖ψ‖p

p,α +
cp
1

(1 − t20)
α+2 |s − t|p‖ψ‖p

p,α.

This implies that

lim
s→t

‖Wsψ,sϕ − Wtψ,tϕ‖α = 0.

Case 2. t = 1.
Estimate 2.1. We have∫

D

|ψ(z)f(ϕ(z))|pdAα(z) = ‖Wψ,ϕf‖p
p,α ≤ ‖Wψ,ϕ‖p

α‖f‖p
p,α.

Estimate 2.2. For each r ∈ (0, 1), we put

Er := {z ∈ D : |ϕ(z)| ≤ r} and Ec
r := D \ Er.

By (2.4) and (4.1), for every s ∈ [0, 1), r ∈ (0, 1), and f ∈ Ap
α, we have∫

D

|ψ(z)(f(sϕ(z)) − f(ϕ(z)))|pdAα(z)

=

(∫
Er

+
∫

Ec
r

)
|ψ(z)(f(sϕ(z)) − f(ϕ(z)))|pdAα(z)

� (1 − s)p

∫
Er

|ψ(z)ϕ(z)|p max
τ∈[s,1]

|f ′(τϕ(z))|pdAα(z)

+
∫

Ec
r

(|ψ(z)f(sϕ(z))|p + |ψ(z)f(ϕ(z))|p) dAα(z)

≤ cp
1(1 − s)p‖f‖p

p,α

∫
Er

|ψ(z)|p max
τ∈[s,1]

1
(1 − |τϕ(z)|2)α+2+p

dAα(z)

+ ‖(χEc
r
|ψ|pAα) ◦ (sϕ)−1‖α‖f‖p

p,α + ‖(χEc
r
|ψ|pAα) ◦ ϕ−1‖α‖f‖p

p,α

≤ cp
1

(1 − r2)α+2+p
(1 − s)p‖f‖p

p,α‖ψ‖p
p,α

+ ‖ (
χEc

r
|ψ|pAα

) ◦ (sϕ)−1‖α‖f‖p
p,α + ‖ (

χEc
r
|ψ|pAα

) ◦ ϕ−1‖α‖f‖p
p,α.
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Thus, for every s ∈ [0, 1) and r ∈ (0, 1),

‖Wsψ,sϕ − Wψ,ϕ‖p
α � (1 − s)p‖Wψ,ϕ‖p

α +
cp
1

(1 − r2)α+2+p
(1 − s)p‖ψ‖p

p,α

+ ‖ (
χEc

r
|ψ|pAα

) ◦ (sϕ)−1‖α + ‖ (
χEc

r
|ψ|pAα

) ◦ ϕ−1‖α.

To complete the proof, we take an arbitrary number ε > 0. Since Wψ,ϕ

is compact on Ap
α, (|ψ|pAα) ◦ ϕ−1 is a compact α-Carleson measure. Then

there is a number δ0 = δ0(ε) ∈ (0, 1) such that

(|ψ|pAα) ◦ ϕ−1 (S(ζ, δ)) < εp

(
δ

2

)α+2

for every δ < δ0 and ζ ∈ ∂D.
For every s ∈ [12 , 1], δ ∈ (0, 2], and ζ ∈ ∂D, by some geometric argu-

ments, we can see that
1
s
S(ζ, δ) ∩ D ⊂ S(ζ,

δ

s
),

Then, for every r ∈ (0, 1), s ∈ [12 , 1], δ < δ0
2 , and ζ ∈ ∂D, we get(

χEc
r
|ψ|pAα

) ◦ (sϕ)−1(S(ζ, δ)) =
∫

(sϕ)−1(S(ζ,δ))

χEc
r
(ω)|ψ(ω)|pdAα(ω)

≤
∫

ϕ−1( 1
s S(ζ,δ)∩D)

|ψ(ω)|pdAα(ω) ≤
∫

ϕ−1(S(ζ, δ
s ))

|ψ(ω)|pdAα(ω)

= (|ψ|pAα) ◦ ϕ−1

(
S(ζ,

δ

s
)
)

< εp

(
δ

2s

)α+2

≤ εpδα+2.

Since (|ψ|pAα) ◦ ϕ−1(Bc
r) → 0 as r → 1− with Bc

r := {z ∈ D : |z| > r},
there exists a number r0 ∈ (0, 1) such that

(|ψ|pAα) ◦ ϕ−1 (Bc
r) < εp

(
δ0

2

)α+2

for every r > r0.

Then, for every r > r0, s ∈ [ 12 , 1], δ ∈ [ δ0
2 , 2], and ζ ∈ ∂D, we have(

χEc
r
|ψ|pAα

) ◦ (sϕ)−1(S(ζ, δ)) =
∫

(sϕ)−1(S(ζ,δ))

χEc
r
(ω)|ψ(ω)|pdAα(ω)

=
∫

ϕ−1( 1
s S(ζ,δ)∩D)∩Ec

r

|ψ(ω)|pdAα(ω) ≤
∫

Ec
r

|ψ(ω)|pdAα(ω)

= (|ψ|pAα) ◦ ϕ−1 (Bc
r) < εp

(
δ0

2

)α+2

≤ εpδα+2.

Consequently, for every r > r0 and s ∈ [12 , 1],

‖ (
χEc

r
|ψ|pAα

) ◦ (sϕ)−1‖α = sup
δ∈(0,2],ζ∈∂D

(
χEc

r
|ψ|pAα

) ◦ (sϕ)−1(S(ζ, δ))
δα+2

≤ εp.

Therefore, for every r > r0 and s ∈ [12 , 1), we get

‖Wsψ,sϕ − Wψ,ϕ‖p
α � (1 − s)p ‖Wψ,ϕ‖p

α +
cp
1

(1 − r2)α+2+p (1 − s)p‖ψ‖p
p,α + 2εp.
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From this it follows that

lim sup
s→1−

‖Wsψ,sϕ − Wψ,ϕ‖p
α � εp, hence, lim

s→1−
‖Wsψ,sϕ − Wψ,ϕ‖α = 0.

Thus, (ii) is proved.
(b) Now we consider the operators Wψ0,ϕ0 and Cϕ0 , where ψ0(z) := 1−z

and ϕ0(z) := 1+ a(z − 1) with 0 < a < 1. Obviously, Wψ0,ϕ0 and Cϕ0 belong
to Cw(Ap

α). However, it is easy to check that Wψ0,ϕ0 is compact, while Cϕ0 is
not compact on Ap

α.
Indeed, for all r ∈ (0, 1),

1 − r2

1 − |1 + a(r − 1)|2 ≥ 1.

Hence, by (1.1), Cϕ0 is not compact on Ap
α.

Next, for any sequence (zn)n in D with |zn| → 1− as n → ∞, without
loss of generality, we suppose that zn → η ∈ ∂D. If η �= 1, then ϕ0(zn) →
1 + a(η − 1) ∈ D as n → ∞, hence,

|ψ0 (zn) | (1 − |zn|2)
1 − |ϕ0 (zn) |2 ≤ 2

1 − |zn|2
1 − |ϕ0 (zn) |2 → 0 as n → ∞.

If η = 1, then ψ0(zn) → 0 as n → ∞, hence, using [6, Corollary 2.40], we get

|ψ0 (zn) | (1 − |zn|2)
1 − |ϕ0 (zn) |2 ≤ |ψ0 (zn) | sup

z∈D

1 − |z|2
1 − |ϕ0(z)|2

≤ 2(2 − a)
a

|ψ0 (zn) | → 0 as n → ∞.

Consequently,

lim
|z|→1−

|ψ0(z)| (1 − |z|2)
1 − |ϕ0(z)|2 = 0,

which implies, by [17, Corollary 1], that Wψ0,ϕ0 is compact on Ap
α.

It remains to note that, by Lemma 4.1, Wψ0,ϕ0 ∼ Cϕ0 in Cw(Ap
α). From

this it follows that the set Cw,0(Ap
α) is not a path component of Cw(Ap

α). �

From Lemma 4.1 and the results in Sect. 3, we get the following result
for weighted composition operators.

Proposition 4.3. Suppose that two functions ϕ and φ from S(D) satisfy either
of the following conditions:

(i) the difference Cϕ − Cφ is compact on Ap
α,

(ii) there is a number r0 ∈ (0, 1) such that ρ(ϕ(z), φ(z)) ≤ r0 for all z ∈ D.

Then all the operators Wψ,ϕ and Wχ,φ in Cw(Ap
α) belong to the same path

component of Cw(Ap
α).

Proof. By Lemma 4.1, Wψ,ϕ ∼ Cϕ and Wχ,φ ∼ Cφ in Cw(Ap
α). On the other

hand, by Theorem 3.6 and Corollary 3.4, Cφ ∼ Cϕ in C(Ap
α), and hence, in

Cw(Ap
α). Consequently, Wχ,φ ∼ Wψ,ϕ in Cw(Ap

α). �
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In view of this proposition, for each function ϕ ∈ S(D), we denote by
W([Cϕ]) the set of all weighted composition operators Wψ,φ ∈ Cw(Ap

α) with
Cφ ∈ [Cϕ]. The following result follows immediately from Proposition 4.3.

Corollary 4.4. Each set W([Cϕ]) with ϕ ∈ S(D) is path connected in Cw(Ap
α).

Now we show that the sets W([Cϕ]) may be path components of the
space Cw(Ap

α) and may be not. To do this, we give the following examples.

Example 4.5. For ϕ0(z) := 1 + a(z − 1) with 0 < a < 1, the set W([Cϕ0 ])
is not a path component of Cw(Ap

α). More precisely, W([Cϕ0 ]) is a proper
subset of the path component of Cw(Ap

α) containing Cw,0(Ap
α).

Proof. By part (b) in the proof of Theorem 4.2, the operator Wψ0,ϕ0 with
ψ0(z) := 1−z and ϕ0(z) := 1+a(z−1) is compact, while Cϕ0 is not compact
on Ap

α. Then, by Theorem 4.2 again, Wψ0,ϕ0 ∼ C0 in Cw(Ap
α). But Cϕ0 − C0

is not compact on Ap
α, which implies that the operator C0 does not belong

to W([Cϕ0 ]) and completes the proof. �
Example 4.6. For ϕ1(z) := z, the set W([Cϕ1 ]) is a path component of
Cw(Ap

α).

Proof. By Proposition 3.11(a), Cϕ1 is isolated in C(Ap
α), which, by Theo-

rem 3.6, implies that [Cϕ1 ] = {Cϕ1}. Then

W ([Cϕ1 ]) = {Wψ,ϕ1 : 0 < ‖ψ‖∞ < ∞} ,

where, as usual, ‖ψ‖∞ := sup
z∈D

|ψ(z)|. Indeed, by (2.2), (2.6) and (2.8), for

each z ∈ D, we get

|ψ(z)|p ≤ cp
1

(1 − |z|2)α+2

∫
Δ(z)

|ψ(ω)|pdAα(ω)

= cp
1

(|ψ|pAα) ◦ ϕ−1
1 (Δ(z))

(1 − |z|2)α+2 � ‖ (|ψ|pAα) ◦ ϕ−1
1 ‖α < ∞.

Now we will prove that W([Cϕ1 ]) is simultaneously open and closed in
Cw(Ap

α), from which the assertion follows.
Let (Wψn,ϕ1)n be a sequence in W([Cϕ1 ]) converging to some operator

Wχ,φ in Cw(Ap
α). Then Wψn,ϕ1(f) → Wχ,φ(f) in Ap

α for all f ∈ Ap
α. In

particular, taking here f(z) ≡ 1 and f(z) ≡ z, we obtain that ψn → χ and
ψnϕ1 → χφ in Ap

α as n → ∞. Therefore,

χ (ϕ1 − φ) = (χ − ψn) ϕ1 + (ψnϕ1 − χφ) → 0 in Ap
α.

Since χ �≡ 0, this implies that φ = ϕ1. Thus, the set W([Cϕ1 ]) is closed in
Cw(Ap

α). The fact that it is open in Cw(Ap
α) follows immediately from the

following auxiliary lemma. �
Lemma 4.7. Let Wψ,ϕ1 be an operator in W([Cϕ1 ]). Then the inequality ‖Wψ,ϕ1−
Wχ,φ‖α � ‖ψ‖e holds for every operator Wχ,φ in Cw(Ap

α) with φ �= ϕ1, where

‖ψ‖e := inf {ε > 0 : F (ψ, ε) has Lebesgue zero}
with

F (ψ, ε) := {ζ ∈ ∂D : |ψ(ζ)| ≥ ε} .
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Proof. Using (2.1) and (2.2), for every w, z ∈ D, we get

‖Wψ,ϕ1 − Wχ,φ‖α ≥ 1
c0

‖Wψ,ϕ1kw − Wχ,φkw‖p,α

=
1
c0

(∫
D

|ψ(ζ)kw(ζ) − χ(ζ)kw(φ(ζ))|pdAα(ζ)
) 1

p

≥ 1
c0

(∫
Δ(z)

|ψ(ζ)kw(ζ) − χ(ζ)kw(φ(ζ))|pdAζ(ω)

) 1
p

≥ 1
c0c1

(
1 − |z|2)α+2

p |ψ(z)kw(z) − χ(z)kw (φ(z)) |.

In particular, with w = z, we have

‖Wψ,ϕ1 − Wχ,φ‖α ≥ 1
c0c1

(
1 − |z|2)α+2

p |ψ(z)kz(z) − χ(z)kz(φ(z))|

≥ 1
c0c1

(
|ψ(z)| − |χ(z)|

∣∣∣∣ 1 − |z|2
1 − zφ(z)

∣∣∣∣
σ+α+2

p

)
,

for every z ∈ D.
On the other hand, obviously, ‖ψ‖e > 0. Fix an arbitrary number r ∈

(0, ‖ψ‖e). Then F (ψ, r) has positive Lebesgue measure.
Since φ �= ϕ1, the set {ζ ∈ ∂D : φ(ζ) = ζ} has Lebesgue measure

zero. So there exist a point ζ ∈ F (ψ, r) and a sequence (zn)n ⊂ D such that
zn → ζ, |ψ(zn)| → |ψ(ζ)| ≥ r, and φ(zn) → η �= ζ as n → ∞. Then for each
n ∈ N, using (2.3), we get

|χ(zn)|
∣∣∣∣ 1 − |zn|2
1 − znφ(zn)

∣∣∣∣
σ+α+2

p

≤ c1‖χ‖p,α
(1 − |zn|2)σ

p

|1 − znφ(zn)|σ+α+2
p

→ 0 as n → ∞.

Thus,

‖Wψ,ϕ1 − Wχ,φ‖α ≥ 1
c0c1

lim sup
n→∞

|ψ(zn)| ≥ r

c0c1

and so ‖Wψ,ϕ1 − Wχ,φ‖α ≥ ‖ψ‖e

c0c1
. From this the assertion follows. �
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