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Abstract. Let A, T , and B be bounded linear operators on a Banach
space. This paper is concerned mainly with finding some necessary
and sufficient conditions for convergence in operator norm of the se-
quences {AnTBn} and

{
1
n

∑n−1
i=0 AiTBi

}
. These results are applied to

the Toeplitz, composition, and model operators. Some related problems
are also discussed.
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1. Introduction

Throughout the paper, H will denote a complex separable infinite dimen-
sional Hilbert space and B (H), the algebra of all bounded linear operators on
H. The ideal of compact operators on H will be denoted by K (H). The quo-
tient algebra B (H) �K (H) is a C∗−algebra and called the Calkin algebra.
By ‖T‖ess we will denote the essential norm of T ∈ B (H) . As usual, H2 will
denote the classical Hardy space on the open unit disk D := {z ∈ C : |z| < 1}
and H∞, the space of all bounded analytic functions on D.

Let T:= ∂D be the unit circle and let m be the normalized Lebesgue
measure on T. Recall that for a given symbol ϕ ∈ L∞ := L∞ (T,m), the
Toeplitz operator Tϕ on H2 is defined by

Tϕf = P+ (ϕf) , f ∈ H2,

where P+ is the orthogonal projection from L2 (T,m) onto H2. Let

Sf (z) = zf (z)

be the unilateral shift operator on H2. According to a theorem of Brown and
Halmos [4], T ∈ B

(
H2

)
is a Toeplitz operator if and only if

S∗T S = T .
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Barria and Halmos [2] examined the so-called strongly asymptotically Toeplitz
operators T on H2 for which the sequence {S∗nTSn} converges strongly. This
class includes the Hankel algebra, the operator norm-closed algebra generated
by all Toeplitz and Hankel operators together [2].

An operator T ∈ B
(
H2

)
is said to be uniformly asymptotically Toeplitz

if the sequence {S∗nTSn} converges in the uniform operator topology. This
class of operators is closed in operator norm and under adjoints. It contains
both Toeplitz operators and the compact ones. Feintuch [9, Theorem 4.1]
proved that an operator T ∈ B

(
H2

)
is uniformly asymptotically Toeplitz if

and only if it has the decomposition

T = T + K,

where T is a Toeplitz and K is a compact operator.
Recall that each holomorphic function φ : D → D induces a composition

operator (bounded and linear) Cφ on H2 by Cφf = f ◦ φ (for instance, see
[18, Ch. 5]). Nazarov and Shapiro [23, Theorem 1.1] proved that a composi-
tion operator on H2 is uniformly asymptotically Toeplitz if and only if it is
either compact or the identity operator (it follows that the only composition
operator which is also Toeplitz is the identity operator).

Throughout, X will denote a complex Banach space and B (X) , the
algebra of all bounded linear operators on X. Let A, T , and B be in B (X) .
The main purpose of this paper is to find necessary and sufficient con-
ditions for convergence in operator norm of the sequences {AnTBn} and{

1
n

∑n−1
i=0 AiTBi

}
.

2. The Sequence {AnTBn}
In this section, we give some results concerning convergence in operator norm
of the sequence {AnTBn} for Hilbert space operators. Recall that an operator
T ∈ B (H) is said to be essentially isometric (resp. essentially unitary) if
I − T ∗T ∈ K (H) (resp. I − T ∗T ∈ K (H) and I − TT ∗ ∈ K (H)).

We have the following:

Theorem 2.1. Let A and B∗ be two essentially isometric operators on H such
that ‖Anx‖ → 0 and ‖B∗nx‖ → 0 for all x ∈ H. If T ∈ B (H) , then the
sequence {AnTBn} converges in operator norm if and only if we have the
decomposition

T = T0 + K,

where AT0B = T0 and K ∈ K (H) .

For the proof, we need some preliminary results.
As is well known (for instance, see [5, Ch.III, § 7]), there is a bounded

linear functional φ on the Banach space l∞ of all bounded complex-valued
sequences c = {cn} with the properties: (1) φ (c) ≥ 0 for all c with cn ≥
0 (∀n ∈ N) ; (2) φ (c) = φ (Dc), where D is the shift operator defined by
(Dc)(n) = cn+1; (3) φ (c) = limn→∞ cn if c is a convergent sequence. The
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functional φ is said to be a Banach limit (there is not necessary a unique
Banach limit). For convenience, φ (c) will be denoted by l.i.m.ncn.

Let H0 be the linear space of all weakly null sequences {xn} in H. Let
us define a semi-inner product in H0 by

〈{xn} , {yn}〉 = l.i.m.n〈xn, yn〉,
where l.i.m. is a fixed Banach limit. If

E :=
{

{xn} ∈ H0 : l.i.m.n ‖xn‖2 = 0
}

,

then H0�E becomes a pre-Hilbert space with respect to the inner product
defined by

〈{xn} + E, {yn} + E〉 = l.i.m.n〈{xn} , {yn}〉.
Let Ĥ be the Hilbert space defined by the completion of H0�E with respect
to the induced norm

‖{xn} + E‖ =
(
l.i.m.n ‖xn‖2

) 1
2

.

Now, for a given T ∈ B (H) we can define an operator T̂ on H0�E by

T̂ : {xn} + E 
→ {Txn} + E.

Consequently, we have
∥
∥
∥T̂ ({xn} + E)

∥
∥
∥ =

(
l.i.m.n ‖Txn‖2

) 1
2

. (2.1)

It follows that ∥
∥
∥T̂ ({xn} + E)

∥
∥
∥ ≤ ‖T‖ ‖{xn} + E‖ .

Since H0�E is dense in Ĥ, the operator T̂ can be extended to the whole
Ĥ which we also denote by T̂ . Clearly,

∥
∥
∥T̂

∥
∥
∥ ≤ ‖T‖ . The operator T̂ will be

called limit operator associated with T.

Proposition 2.2. If T̂ is the limit operator associated with T ∈ B (H), then:

(a) The map T 
→ T̂ is a contractive ∗− homomorphism.
(b) T is a compact operator if and only if T̂ = 0.

(c) T is an essentially isometry (resp. essentially unitary) if and only if T̂
is an isometry (resp. unitary).

(d) For an arbitrary T ∈ B (H) , we have
∥
∥
∥T̂

∥
∥
∥ = ‖T‖ess .

Proof. The proof of (a) being very easy is omitted.
(b) Let {xn} be a weakly null sequence in H. If T ∈ K (H), then as

‖Txn‖ → 0, by (2.1) we have T̂ = 0. Now, assume that T̂ = 0. We must
show that ‖Txn‖ → 0. As limn→∞ ‖Txn‖ ≥ 0, it suffices to show that
limn→∞ ‖Txn‖ = 0. Since T̂ = 0 by (2.1), l.i.m.n ‖Tyn‖2 = 0 for all weakly
null sequences {yn} . Observe that

lim
n→∞ ‖Txn‖ = lim

k→∞
‖Txnk

‖ ,
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for some subsequence {xnk
} of {xn} . Since xnk

→ 0 weakly,
(

lim
n→∞ ‖Txn‖

)2

= lim
k→∞

‖Txnk
‖2 = l.i.m.k ‖Txnk

‖2 = 0.

So we have limn→∞ ‖Txn‖ = 0.
(c) is an immediate consequence of (b).
(d) Let K̂ be the limit operator associated with K ∈ K (H) . Since

K̂ = 0, we get
∥
∥
∥T̂

∥
∥
∥ =

∥
∥
∥T̂ + K̂

∥
∥
∥ ≤ ‖T + K‖ for all K ∈ K (H) .

This implies
∥
∥
∥T̂

∥
∥
∥ ≤ ‖T‖ess . For the reverse inequality, recall [3, p. 94] that

‖T‖ess = sup
{

lim
n→∞ ‖Txn‖ : ‖xn‖ = 1, ∀n ∈ N, and xn → 0 weakly

}
.

It follows that for an arbitrary ε > 0, there exists a sequence {xn} in H such
that ‖xn‖ = 1 (∀n ∈ N) , xn → 0 weakly, and

lim
n→∞ ‖Txn‖ ≥ ‖T‖ess − ε.

Consequently, there exists a subsequence {xnk
} of {xn} such that

lim
k→∞

‖Txnk
‖ ≥ ‖T‖ess − ε.

On the other hand,
∥
∥
∥T̂

∥
∥
∥ = sup

{(
l.i.m.n ‖Txn‖2

) 1
2

: l.i.m.n ‖xn‖2 = 1 and xn → 0 weakly
}

.

As l.i.m.k ‖xnk
‖2 = 1 and xnk

→ 0 (k → ∞) weakly, by the preceding identity
we can write ∥

∥
∥T̂

∥
∥
∥ ≥ lim

k→∞
‖Txnk

‖ ≥ ‖T‖ess − ε.

Since ε is arbitrary, we have
∥
∥
∥T̂

∥
∥
∥ ≥ ‖T‖ess . �

Lemma 2.3. (a) Let A, B be in B (H) and assume that ‖Anx‖ → 0 and
‖B∗nx‖ → 0 for all x ∈ H. Then, for an arbitrary K ∈ K (H) we have

lim
n→∞ ‖AnKBn‖ = lim

n→∞ ‖AnK‖ = lim
n→∞ ‖KBn‖ = 0.

(b) Let A and B∗ be two essentially isometric operators on H. Assume
that either

lim
n→∞ ‖AnTBn‖ = 0, lim

n→∞ ‖AnT‖ = 0, or lim
n→∞ ‖TBn‖ = 0.

Then, T is a compact operator.

Proof. (a) Let us prove the identity limn→∞ ‖AnKBn‖ = 0. The proofs of
other identities are similar. For x, y ∈ H, let x ⊗ y be the rank-one operator
on H defined by

x ⊗ y : w 
→ 〈w, y〉x, w ∈ H.
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Since finite rank operators are dense (in operator norm) in K (H), we may
assume that K is a finite rank operator, say, K =

∑N
i=1 xi ⊗yi, where xi, yi ∈

H (i = 1, ..., N) . Consequently, we can write

‖AnKBn‖ =

∥
∥
∥
∥
∥

N∑

i=1

Anxi ⊗ B∗nyi

∥
∥
∥
∥
∥

≤
N∑

i=1

‖Anxi‖ ‖B∗nyi‖ → 0 (n → ∞) .

(b) Let Â, T̂ , and B̂ be the limit operators associated with A, T , and
B, respectively. By Proposition 2.2 , Â and B̂∗ are isometries. Since the map
T 
→ T̂ is a contractive homomorphism, we get

∥
∥
∥T̂

∥
∥
∥ =

∥
∥
∥ÂnT̂ B̂n

∥
∥
∥ ≤ ‖AnTBn‖ → 0 (n → ∞) .

Hence T̂ = 0. By Proposition 2.2, T is a compact operator. In the same way,
we can see that if either ‖AnT‖ → 0 or ‖TBn‖ → 0, then T is a compact
operator. �

We are now in a position to prove Theorem 2.1.
Proof of Theorem 2.1 If T = T0 + K, where AT0B = T0 and K ∈ K (H) ,
then

AnTBn = T0 + AnKBn for all n ∈ N.

By Lemma 2.3, ‖AnKBn‖ → 0 and therefore ‖AnTBn − T0‖ → 0. Now,
assume that there exists T0 ∈ B (H) such that ‖AnTBn − T0‖ → 0. Since

∥
∥An+1TBn+1 − AT0B

∥
∥ → 0,

we have AT0B = T0 which implies AnT0B
n = T0 for all n ∈ N. Further, since

‖An(T − T0)Bn‖ → 0,

by Lemma 2.3, T − T0 is a compact operator. So we have T = T0 + K, where
K ∈ K (H) . �

As an immediate consequence of Theorem 2.1 we have the following:

Corollary 2.4. Let A ∈ B (H) and assume that I−AA∗ ∈ K (H) and ‖A∗nx‖ →
0 for all x ∈ H. If T ∈ B (H) , then the sequence {A∗nTAn} converges in
operator norm if and only if we have the decomposition

T = T0 + K,

where A∗T0A = T0 and K ∈ K (H) .

Notice that the operator I − SS∗ is one dimensional and ‖S∗nf‖ → 0
for all f ∈ H2. By taking A = S in Corollary 2.4, we obtain Feintuch’s result
mentioned above.

Let φ, ψ ∈ L∞ and assume that one of the functions φ, ψ is a trigono-
metric polynomial, say, ψ =

∑N
−N ckeikθ. Then as

Tψ =
N∑

k=1

c−kS∗k +
N∑

k=0

ckSk,
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S∗nTφS∗kSn = S∗kTφ (∀n ≥ k) , and S∗nTφSkSn = TφSk (k = 0, 1, ...) , we
have

S∗nTφTψSn =
N∑

k=1

c−kS∗kTφ +
N∑

k=0

ckTφSk for all n ≥ N.

If φ =
∑N

−N ckeikθ, then as S∗nS∗kTψSn = S∗kTψ (k = 0, 1, ...) and
S∗nSkTψSn = TψSk (∀n ≥ k) , we have

S∗nTφTψSn =
N∑

k=1

c−kS∗kTψ +
N∑

k=0

ckTψSk for all n ≥ N.

Therefore, if one of the functions φ, ψ is continuous, then TφTψ is a uniformly
asymptotically Toeplitz operator. Further, if ψ = h + f , where h ∈ H∞ and
f ∈ C (T), then as TφTh = Tφh we get

S∗nTφTψSn = S∗nTφ (Th + Tf ) Sn

= S∗nTφhSn + S∗nTφTfSn

= Tφh + S∗nTφTfSn.

It follows that TφTψ is a uniformly asymptotically Toeplitz operator for all
φ ∈ L∞ and ψ ∈ H∞ + C (T) (recall that the algebraic sum H∞ + C (T) is a
uniformly closed subalgebra of L∞ and sometimes called a Douglas algebra).
Similarly, we can see that if φ = h + f , where h ∈ H∞ and f ∈ C (T), then
TφTψ is also a uniformly asymptotically Toeplitz operator.

It is known [2, Theorem 4] that if φ, ψ ∈ L∞, then S∗nTφTψSn → Tφψ

strongly. From this and from Feintuch’s result (or from Corollary 2.4) it
follows that the operator TφTψ is uniformly asymptotically Toeplitz if and
only if TφTψ − Tφψ is a compact operator. By the Axler–Chang–Sarason–
Volberg theorem [1,26], this is the case if and only if

H∞ [
φ
]
∩ H∞ [ψ] ⊆ H∞ + C (T) ,

where H∞ [ϕ] denotes the uniformly closed subalgebra of L∞ generated by
ϕ ∈ L∞ and H∞.

For a given symbol ϕ ∈ L∞, the Hankel operator Hϕ on H2 is defined
by

Hϕf = P+J (ϕf) ,

where J is a flip operator on L2, that is, Jh (z) = h (z). It is well known
that H ∈ B

(
H2

)
is a Hankel operator if and only if S∗H = HS. Hartman’s

theorem [25, Theorem 2.2.5] characterizes those ϕ ∈ L∞ for which Hϕ is
compact. This is the case if and only if ϕ ∈ H∞ + C (T) .

Proposition 2.5. A Hankel operator is uniformly asymptotically Toeplitz if
and only if it is compact.

Proof. Assume that a Hankel operator H is uniformly asymptotically Toeplitz.
By Feintuch’s result (or by Corollary 2.4), H = Tϕ+K, where Tϕ is a Teoplitz
operator with symbol ϕ ∈ L∞ and K ∈ K

(
H2

)
. We have S∗H = Tzϕ +S∗K

and HS = Tzϕ + KS. Since S∗H = HS, the operator Tzϕ−zϕ is compact. It
is well known that the only compact Teoplitz operator is 0. It follows that
ϕ = 0. �
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In Corollary 2.4, compactness condition of the operator I − AA∗ is
essential. To see this, let A = V be the Volterra integral operator on H =
L2 [0, 1] . Then I −V V ∗ /∈ K (H) and as ‖V n‖ → 0, we have ‖V ∗nx‖ → 0 for
all x ∈ H. Since ‖V ∗nTV n‖ → 0 for all T ∈ B (H) , the equation V ∗T0V = T0

has only zero solution. If the conclusion of Corollary 2.4 were true, we would
get B (H) ⊆ K (H) which is a contradiction.

Note that if T is a contraction on H, then Corollary 2.4 can be applied to
the model operator of T [21,22] in the case when the operator T satisfies the
following conditions: (1) ‖T ∗nx‖ → 0 for all x ∈ H; (2) The defect operator
DT ∗ := (I − TT ∗)

1
2 is compact.

Let X be a Banach space. Recall that an operator T ∈ B (X) is said to
be almost periodic if for every x ∈ X, the orbit {Tnx : n ∈ N} is relatively
compact. Clearly, an almost periodic operator is power bounded, that is,
supn≥0 ‖Tn‖ < ∞. If T ∈ B (X) is an almost periodic operator, then by the
Jacobs-Glicksberg-de Leeuw decomposition theorem [8, Ch.I, Theorem 1.15],
every x ∈ X can be written as x = x0 + x1, where

‖Tnx0‖ → 0 and x1 ∈ span {y ∈ X : ∃ξ ∈ T, T y = ξy} .

From now on, for a given T ∈ B (X) , the left and the right multiplica-
tion operators on B (X) will be denoted by LT and RT , respectively.

Proposition 2.6. Let A ∈ B (H) and assume that I−AA∗ ∈ K (H) , ‖Anx‖ →
0, and ‖A∗nx‖ → 0 for all x ∈ H. For an arbitrary T ∈ B (H) , the following
assertions are equivalent:
(a) {A∗nTAn : n ∈ N} is relatively compact in the operator norm topology.
(b) limn→∞ ‖A∗nTAn‖ = 0.
(c) T is a compact operator.

Proof. (a) ⇒ (b) Let E be the set of all Q ∈ B (H) such that

{(LA∗RA)n
Q : n ∈ N}

is relatively compact in the operator norm topology. Since the operator
LA∗RA is power bounded, E is a closed (in operator norm) LA∗RA-invariant
subspace. Consequently, LA∗RA |E , the restriction of LA∗RA to E is an al-
most periodic operator. Since T ∈ E, by the Jacobs-Glicksberg-de Leeuw
decomposition theorem, T = T0 + T1, where

lim
n→∞ ‖A∗nT0A

n‖ = 0 and T1 ∈ span‖·‖ {Q ∈ E : ∃ξ ∈ T, A∗QA = ξQ} .

We must show that T1 = 0. For this, it suffices to show that the identity
A∗QA = ξQ (ξ ∈ T) implies Q = 0. Indeed, since

A∗nQAn = ξnQ (∀n ∈ N) ,

we get

|〈Qx, y〉| = |〈QAnx,Any〉| ≤ ‖Q‖ ‖Anx‖ ‖Any‖ → 0, ∀x, y ∈ H.

Hence Q = 0.
(b) ⇒ (c) ⇒ (a) are obtained from Lemma 2.3. �

Next, we have the following:
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Theorem 2.7. Let A and B∗ be two essentially isometric contractions on H
and assume that ‖Anx‖ → 0 and ‖B∗nx‖ → 0 for all x ∈ H. Then, for an
arbitrary T ∈ B (H) we have

‖T‖ess = lim
n→∞ ‖AnTBn‖ = lim

n→∞ ‖AnT‖ = lim
n→∞ ‖TBn‖ .

Proof. If K ∈ K (H) , then by Lemma 2.3, ‖AnKBn‖ → 0. Since

‖An (T + K) Bn‖ ≤ ‖T + K‖ ,

we have
lim

n→∞ ‖AnTBn‖ ≤ ‖T‖ess .

For the reverse inequality, let Â, T̂ , and B̂ be the limit operators associated
with A, T, and B, respectively. By Proposition 2.2, Â and B̂∗ are isometries.
By using the same proposition again, we can write

‖T‖ess =
∥
∥
∥T̂

∥
∥
∥ =

∥
∥
∥ÂnT̂ B̂n

∥
∥
∥ ≤ ‖AnTBn‖ for all n ∈ N.

So we have
‖T‖ess ≤ lim

n→∞ ‖AnTBn‖ .

In the same way, we can see that

‖T‖ess = lim
n→∞ ‖AnT‖ = lim

n→∞ ‖TBn‖ . �

As an immediate consequence of Theorem 2.7, we have the following:

Corollary 2.8. Let A ∈ B (H) be a contraction and assume that I − AA∗ ∈
K (H) and ‖A∗nx‖ → 0 for all x ∈ H. Then, for an arbitrary T ∈ B (H),

‖T‖ess = lim
n→∞ ‖A∗nTAn‖ = lim

n→∞ ‖A∗nT‖ = lim
n→∞ ‖TAn‖ .

In particular, for an arbitrary T ∈ B
(
H2

)
,

‖T‖ess = lim
n→∞ ‖S∗nTSn‖ = lim

n→∞ ‖S∗nT‖ = lim
n→∞ ‖TSn‖ .

Recall that a contraction T on H is said to be completely non-unitary
(c.n.u.) if it has no proper reducing subspace on which it acts as a unitary
operator. If T is a c.n.u. contraction, then f (T ) (f ∈ H∞) can be defined by
the Nagy-Foiaş functional calculus [21, Ch.III]. A contraction T on H is a
C0-contraction if it is c.n.u. and there exists a nonzero function f ∈ H∞ such
that f (T ) = 0. If T is a C0-contraction, then ‖Tnx‖ → 0 and ‖T ∗nx‖ → 0
for all x ∈ H [21, Ch.III, Proposition 4.2]. In [13, Theorem 3.4], it was proved
that if T is an essentially isometric C0-contraction (an essentially isometric
C0-contraction is essentially unitary), then f (T ) is a compact operator if
and only if limn→∞ ‖Tnf (T )‖ = 0. By Corollary 2.8, we have the following
generalization of this result.

Corollary 2.9. Let T be an essentially isometric contraction on H and assume
that ‖Tnx‖ → 0 for all x ∈ H. Then, for an arbitrary f ∈ H∞ one has

‖f (T )‖ess = lim
n→∞ ‖Tnf (T )‖ .
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It is well known [6, Corollary 7.13] that every Toeplitz operator Tϕ with
symbol ϕ ∈ L∞ satisfies

‖Tϕ‖ess = ‖Tϕ‖ .

Notice that Corollary 2.8 contains this fact.
For A,B in B (H) , we put

TA,B = {T ∈ B (H) : ATB = T} .

Corollary 2.10. Assume that the operators A, B in B (H) satisfy the hypothe-
ses of Theorem 2.7. Then, for an arbitrary K ∈ K (H) we have

‖K + TA,B‖ ≥ 1
2

‖K‖ .

In the case AB = I, this estimate is the best possible.

Proof. Assume that there exists K ∈ K (H) such that

‖K + TA,B‖ <
1
2

‖K‖ .

Then, there exists T ∈ TA,B such that

‖K + T‖ <
1
2

‖K‖ .

By Theorem 2.7, ‖T‖ = ‖T‖ess which implies ‖T‖ ≤ ‖K + T‖. Consequently,
we can write

‖K‖ ≤ ‖K + T‖ + ‖T‖ ≤ 2 ‖K + T‖ < ‖K‖ ,

which is a contradiction.
In the case AB = I we have I ∈ TA,B . Let K = x ⊗ x, where x ∈ H

and ‖x‖ = 1. Then ‖K‖ = 1 and for T = − 1
2I we have ‖K + T‖ = 1

2 . �

Let T be the space of all Toeplitz operators. By taking A = S∗ and
B = S in Corollary 2.10, we have

‖K + T‖ ≥ 1
2

‖K‖ for all K ∈ K
(
H2

)
,

where this estimate is the best possible.

3. The Essential Norm

In this section, we present some results related to the essential norm of some
class of operators.

Let T be a contraction on H and assume that

lim
n→∞ ‖Tnx‖ = lim

n→∞ ‖T ∗nx‖ = 0 for all x ∈ H.

In addition, if

dim (I − TT ∗) H = dim (I − T ∗T ) H = 1,

then by the Model Theorem of Nagy–Foiaş [21, Ch.VI], T is unitary equivalent
to its model operator

Sθ = PθS |H2
θ
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acting on the model space

H2
θ = H2 � θH2,

where θ is an inner function and Pθ is the orthogonal projection from H2

onto H2
θ . Beurling’s theorem (for instance, see [6,24]) says that these spaces

are generic invariant subspaces for the backward shift operator

(S∗f) (z) =
f (z) − f (0)

z
, f ∈ H2.

Notice also that
Sθ =

(
S∗ |H2

θ

)∗
.

Let θ be an inner function and let Sθ be the model operator on the
model space H2

θ . For an arbitrary f ∈ H∞, we can define the operator

f (Sθ) = Pθf (S) |H2
θ

which is unitary equivalent to f (T ) . The map f 
→ f (Sθ) is linear, multi-
plicative, and by the Nehari formula [24, Lecture VIII],

‖f (Sθ)‖ = dist
(
θf,H∞)

.

Let us mention Sarason’s theorem [24, Lecture VIII] which asserts that an
operator Q ∈ B

(
H2

θ

)
is a commutant of Sθ if and only if Q = f (Sθ) for

some f ∈ H∞. Let us also mention that the classical theorem of Hartman
and Sarason [24, Lecture VIII] classifies compactness of the operators f (Sθ) .
The operator f (Sθ) (f ∈ H∞) is compact if and only if θf ∈ H∞ + C (T) .

We have the following quantitative generalization of the Hartman-Sarason
theorem.

Theorem 3.1. Let θ be an inner function and let Sθ be the model operator on
the model space H2

θ . Then, for an arbitrary f ∈ H∞ we have

‖f (Sθ)‖ess = dist
(
θf,H∞ + C (T)

)
.

For the proof, we need the following two lemmas.

Lemma 3.2. Let {En} be an increasing sequence of closed subspaces of a Ba-
nach space X. Then, for an arbitrary x ∈ X we have

lim
n→∞ dist (x,En) = dist

(

x,
∞⋃

n=1

En

)

.

Proof. If x ∈ X, then the sequence {dist (x,En)} is decreasing. Let

α := lim
n→∞ dist (x,En) = inf

n
dist (x,En) .

Since

dist

(

x,

∞⋃

n=1

En

)

≤ dist (x,En) ,

we have

dist

(

x,

∞⋃

n=1

En

)

≤ α.
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If

dist

(

x,

∞⋃

n=1

En

)

< α,

then ‖x − x0‖ < α for some x0 ∈
⋃∞

n=1 En. Consequently, x0 ∈ En0 for some
n0. Hence dist(x,En0) < α. This contradicts dist (x,En0) ≥ α. �
Lemma 3.3. For an arbitrary ϕ ∈ L∞ we have

lim
n→∞ dist (ϕ, znH∞) = dist (ϕ,H∞ + C (T)) .

Proof. We know that H∞ + C (T) is a uniformly closed subalgebra of L∞

generated by z and H∞. If En := znH∞ (n = 0, 1, . . .), then {En} is an
increasing sequence of closed subspaces of L∞. Since

H∞ + C (T) = spanL∞ {znH∞ : n ≥ 0}
and

znf1 + zmf2 = zn+m (zmf1 + znf2)
∈ zn+mH∞ = En+m, ∀f1, f2 ∈ H∞,

we have
∞⋃

n=1

En = H∞ + C (T) .

Applying Lemma 3.2 to the subspaces {En} , we obtain our result. �
Now, we can prove Theorem 3.1.

Proof of Theorem 3.1 As we have noted above, the model operator Sθ is an
essentially unitary contraction on H2

θ . Moreover, ‖Sn
θ h‖ → 0 and ‖S∗n

θ h‖ → 0
for all h ∈ H2

θ . By Corollary 2.8,

‖T‖ess = lim
n→∞ ‖TSn

θ ‖ for all T ∈ B
(
H2

θ

)
.

By taking T = f (Sθ) we have

‖f (Sθ)‖ess = lim
n→∞ ‖f (Sθ) Sn

θ ‖ .

On the other hand, by the Nehari formula mentioned above and by Lemma 3.3,
we can write

lim
n→∞ ‖f (Sθ) Sn

θ ‖ = lim
n→∞ dist

(
θfzn,H∞)

= lim
n→∞ dist

(
θf, znH∞)

= dist
(
θf,H∞ + C (T)

)
.

So we have ‖f (Sθ)‖ess = dist
(
θf,H∞ + C (T)

)
. �

Let Hϕ be the Hankel operator with symbol ϕ ∈ L∞. A classical result
of Nehari [24, Lecture VIII] gives distance from ϕ to H∞ as the norm of Hϕ;

‖Hϕ‖ = dist (ϕ,H∞) . (3.1)

The Adamyan–Arov–Krein formula [25, p.213] gives distance from ϕ to H∞+
C (T) as the essential norm of Hϕ;

‖Hϕ‖ess = dist (ϕ,H∞ + C (T)) .
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This formula is a quantitative generalization of the Hartman theorem men-
tioned above. Note that the Adamyan–Arov–Krein formula can be obtained
from the above mentioned results. Indeed, taking into account Corollary 2.8,
Lemma 3.3, formula (3.1), and the fact that S∗nHϕ = Hznϕ (∀n ∈ N) , we
get

‖Hϕ‖ess = lim
n→∞ ‖S∗nHϕ‖

= lim
n→∞ ‖Hznϕ‖

= lim
n→∞ dist (znϕ,H∞)

= lim
n→∞ dist (ϕ, znH∞)

= dist (ϕ,H∞ + C (T)) .

Let Cφ be the composition operator on H2. Since CφSn = φnCφ (∀n ∈ N) ,
by Corollary 2.8 we have the following:

Corollary 3.4. For an arbitrary composition operator Cφ on H2,

‖Cφ‖ess = lim
n→∞ ‖φnCφ‖ .

It follows from Corollary 3.4 that if ‖φ‖∞ < 1, then Cφ is a compact
operator [18, Theorem 5.1.16]. Moreover, if Cφ is a compact operator, then∣
∣
∣φ̃

(
eit

)∣∣
∣ < 1 a.e. [18, Theorem 5.1.17], where φ̃ is the boundary value of φ.

As usual, σ (T ) will denote the spectrum of T ∈ B (H) . Given T ∈
B (H) , we let AT denote the closure in the uniform operator topology of
all polynomials in T. Then, AT is a commutative unital Banach algebra.
The Gelfand space of AT can be identified with σAT

(T ), the spectrum of T
with respect to the algebra AT . Since σ (T ) is a (closed) subset of σAT

(T ) ,
for every λ ∈ σ (T ) there is a multiplicative functional φλ on AT such that
φλ (T ) = λ. By Q̂ we will denote the Gelfand transform of Q ∈ AT . Instead
of Q̂ (φλ) (= φλ (Q)) , where λ ∈ σ (T ) , we will use the notation Q̂ (λ) . It
follows from the Shilov Theorem [6, Theorem 2.54] that if T is a contraction,
then

σAT
(T ) ∩ T =σ (T ) ∩ T.

The following result was obtained in [19] (see also, [27]).

Theorem 3.5. If T is a contraction on a Hilbert space, then for an arbitrary
Q ∈ AT we have

lim
n→∞ ‖TnQ‖ = sup

ξ∈σ(T )∩T

∣
∣
∣Q̂ (ξ)

∣
∣
∣ .

For a non-empty closed subset Γ of T, by H∞
Γ we will denote the set

of all those functions f in H∞ that have a continuous extension f̃ to D ∪ Γ.
Clearly, H∞

Γ is a closed subspace of H∞. It follows from the general theory
of Hp spaces that if Γ has positive Lebesgue measure and f ∈ H∞

Γ is not
identically zero, then f̃ cannot vanish identically on Γ.

If T is a contraction on a Hilbert space H, then there is a canoni-
cal decomposition of H into two T -reducing subspaces H0 and Hu such that
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H = H0⊕Hu, T0 := T |H0 is c.n.u. and Tu := T |Hu
is unitary [21, Ch.I, The-

orem 3.2]. It can be seen that

σ (Tu) ⊆ σ (T ) ∩ T.

Let f be in H∞
σ(T )∩T

with continuous extension f̃ to D ∪ (σ (T ) ∩ T). As in
[11], we can define f (T ) ∈ B (H) by

f (T ) = f (T0) ⊕ f̃ (Tu) ,

where f (T0) is given by the Nagy–Foiaş functional calculus and

f̃ (Tu) =
(
f̃ |σ(T )∩T

)
(Tu) .

It can be seen that

‖f (T )‖ ≤ ‖f‖∞ for all f ∈ H∞
σ(T )∩T

.

Further, by the Gamelin–Garnett theorem [10], there exists a sequence {fn}
in H∞ such that each fn has an analytic extension gn to a neighborhood On

of D ∪ (σ (T ) ∩ T) and
lim

n→∞ ‖fn − f‖∞ = 0.

Then, gn (T ) can be defined by the Riesz–Dunford functional calculus. Since
fn (T ) = gn (T ) ∈ AT and

‖fn (T ) − f (T )‖ ≤ ‖fn − f‖∞ → 0,

we have that f (T ) ∈ AT . Moreover,

f̂ (T ) (ξ) = f̃ (ξ) for all ξ ∈ σ (T ) ∩ T.

As a consequence of Theorem 3.5, we have the following:

Corollary 3.6. Let T be a contraction on a Hilbert space. If f ∈ H∞
σ(T )∩T

with

continuous extension f̃ to D ∪ (σ (T ) ∩ T), then

lim
n→∞ ‖Tnf (T )‖ = sup

ξ∈σ(T )∩T

∣
∣
∣f̃ (ξ)

∣
∣
∣ .

Corollary 3.6 combined with Corollary 2.9 yields the next result.

Corollary 3.7. Let T be an essentially isometric contraction on H and assume
that ‖Tnx‖ → 0 for all x ∈ H. If f ∈ H∞

σ(T )∩T
with continuous extension f̃

to D ∪ (σ (T ) ∩ T), then

‖f (T )‖ess = sup
ξ∈σ(T )∩T

∣
∣
∣f̃ (ξ)

∣
∣
∣ .

In particular, if f is a function from the disc-algebra, then

‖f (T )‖ess = sup
ξ∈σ(T )∩T

|f (ξ)| .



36 Page 14 of 21 H. Mustafayev IEOT

Corollary 3.7 generalizes [13, Corollary 2.3].
Let θ be an inner function and let Sθ be the model operator on the model

space H2
θ . If f ∈ H∞

σ(Sθ)∩T
with continuous extension f̃ to D ∪ (σ (Sθ) ∩ T) ,

then by Corollary 3.6,

lim
n→∞ ‖Sn

θ f (Sθ)‖ = sup
ξ∈σ(Sθ)∩T

∣
∣
∣f̃ (ξ)

∣
∣
∣ .

On the other hand, by Corollary 2.8,

‖f (Sθ)‖ess = lim
n→∞ ‖f (Sθ) Sn

θ ‖ .

So we have
‖f (Sθ)‖ess = sup

ξ∈σ(Sθ)∩T

∣
∣
∣f̃ (ξ)

∣
∣
∣ .

Corollary 3.8. Let θ be an inner function and let Sθ be the model operator on
the model space H2

θ . For an arbitrary f ∈ H∞
σ(Sθ)∩T

with continuous extension

f̃ to D ∪ (σ (Sθ) ∩ T) , we have

‖f (Sθ)‖ess = sup
ξ∈σ(Sθ)∩T

∣
∣
∣f̃ (ξ)

∣
∣
∣ .

In particular, if f is a function from the disc-algebra, then

‖f (Sθ)‖ess = sup
ξ∈σ(Sθ)∩T

|f (ξ)| .

4. The Sequence
{

1
n

∑n−1
i=0 AiTBi

}

In this section, we give some results concerning convergence in operator norm
of the sequence

{
1
n

∑n−1
i=0 AiTBi

}
for Hilbert space operators.

Let X be a Banach space. It is easy to check that if T ∈ B (X) is power
bounded, then

(T − I) X =

{

x ∈ X : lim
n→∞

∥
∥
∥
∥
∥

1
n

n−1∑

i=0

T ix

∥
∥
∥
∥
∥

= 0

}

.

The following result is well known (for instance, see [14, Ch.2]).

Proposition 4.1. Let T ∈ B (X) be power bounded and let E be the set of all
x ∈ X such that the sequence

{
1
n

∑n−1
i=0 T ix

}
converges in norm. Then, we

have the decomposition

E = ker (T − I) ⊕ (T − I) X.

If X is reflexive, then E = X.

Lemma 4.2. Let T ∈ B (X) be power bounded and assume that

lim
n→∞

∥
∥Tn+1x − Tnx

∥
∥ = 0 for some x ∈ X.

(a) If the sequence
{

1
n

∑n−1
i=0 T ix

}
converges in norm, then the sequence

{Tnx} converges in norm (to same element), too.
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(b) If X is reflexive, then the sequence {Tnx} converges in norm.

Proof. (a) Notice that

F :=
{

y ∈ X : lim
n→∞

∥
∥Tn+1y − Tny

∥
∥ = 0

}

is a closed T -invariant subspace and x ∈ F. Since T is power bounded and

‖Tn(T − I)y‖ =
∥
∥Tn+1y − Tny

∥
∥ → 0 (∀y ∈ F ) ,

we have ‖Tny‖ → 0 for all y ∈ (T − I)F . Now, let E be the set of all y ∈ F

such that the sequence
{

1
n

∑n−1
i=0 T iy

}
converges in norm. Since x ∈ E, by

Proposition 4.1, x = x0 + y0, where Tx0 = x0 and y0 ∈ (T − I)F . As
Tnx = x0 + Tny0 and ‖Tny0‖ → 0, we have ‖Tnx − x0‖ → 0.

(b) If X is reflexive, then by Proposition 4.1 the sequence
{

1
n

∑n−1
i=0 T ix

}

converges in norm for every x ∈ X. By (a), the sequence {Tnx} converges in
norm. �

Next, we have the following:

Theorem 4.3. Let A and B∗ be two essentially isometric operators on H and
let T ∈ B (H) . Assume that:

(i) ‖Anx‖ → 0 and ‖B∗nx‖ → 0 for all x ∈ H.
(ii) ATB − T ∈ K (H) .

Then, the sequence
{

1
n

∑n−1
i=0 AiTBi

}
converges in operator norm if

and only if we have the decomposition T = T0 + K, where AT0B = T0 and
K ∈ K (H) .

Proof. Assume that the sequence
{

1
n

∑n−1
i=0 AiTBi

}
converges in operator

norm. As AiTBi = (LARB)iT , the sequence
{

1
n

∑n−1
i=0 (LARB)iT

}
converges

in operator norm. Since ATB − T ∈ K (H) , by Lemma 2.3,

lim
n→∞

∥
∥
∥(LARB)n+1

T − (LARB)n
T

∥
∥
∥ = lim

n→∞ ‖An (ATB − T ) Bn‖ = 0.

Notice also that the operator LARB is power bounded. Applying Lemma 4.2
to the operator LARB on the space B (X), we obtain that the sequence
{AnTBn} converges in operator norm. By Theorem 2.1, T = T0 + K, where
AT0B = T0 and K ∈ K (H) .

If T = T0 + K, where AT0B = T0 and K ∈ K (H) , then

1
n

n−1∑

i=0

AiTBi = T0 +
1
n

n−1∑

i=0

AiKBi.

By Lemma 2.3, ‖AnKBn‖ → 0 and therefore
∥
∥
∥ 1

n

∑n−1
i=0 AiKBi

∥
∥
∥ → 0. Hence

1
n

n−1∑

i=0

AiTBi → T0 in operator norm. �

Theorem 4.3 has several corollaries.
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Corollary 4.4. Assume that the operators A, T in B (H) satisfy the following
conditions:

(i) I − AA∗ ∈ K (H) .
(ii) ‖A∗nx‖ → 0 for all x ∈ H.
(iii) A∗TA − T ∈ K (H) .

Then, the sequence
{

1
n

∑n−1
i=0 A∗iTAi

}
converges in operator norm if

and only if we have the decomposition T = T0 + K, where A∗T0A = T0 and
K ∈ K (H) .

Recall that T ∈ B
(
H2

)
is an essentially Toeplitz operator if

S∗TS − T ∈ K
(
H2

)
.

It is easy to see that the operator T is an essentially Toeplitz if and only
if it is an essential commutant of the unilateral shift S. On the other hand,
essential commutant of the unilateral shift is a C∗-algebra. Consequently, the
set of all essentially Toeplitz operators is a C∗-algebra and therefore contains
the C∗-algebra generated by all Toeplitz operators (for instance, see [17]).

Corollary 4.5. An essentially Toeplitz operator T is a compact perturbation
of a Toeplitz operator if and only if the sequence

{
1
n

∑n−1
i=0 S∗iTSi

}
converges

in operator norm.

In [23, Theorem 1.1], it was proved that if the composition operator
Cφ on H2 is neither compact nor the identity, then Cφ cannot be compact
perturbation of a Toeplitz operator.

Corollary 4.6. Assume that the composition operator Cφ on H2 is essentially

Toeplitz. Then, the sequence
{

1
n

∑n−1
i=0 S∗iCφSi

}
converges in operator norm

if and only if either Cφ is compact or the identity operator.

5. Banach Space Operators

In this section, we present some convergence theorems in Banach spaces.
Let X be a Banach space. For T ∈ B (X) and x ∈ X, we define ρT (x)

to be the set of all λ ∈ C for which there exists a neighborhood Uλ of λ with
u (z) analytic on Uλ having values in X such that

(zI − T ) u (z) = x for all z ∈ Uλ.

This set is open and contains the resolvent set of T . By definition, the local
spectrum of T at x ∈ X, denoted by σT (x) , is the complement of ρT (x), so
it is a compact subset of σ (T ), the spectrum of T. This object is the most
tractable if the operator T has the single-valued extension property (SVEP),
i.e. for every open set U in C, the only analytic function u : U → X for which
the equation (zI − T ) u (z) = 0 holds is the constant function u ≡ 0. If T has
SVEP, then σT (x) �= ∅, whenever x ∈ X� {0} [15, Proposition 1.2.16].
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If T is power bounded, then clearly, σ (T ) ⊂ D and σT (x) ∩ T consists
of all ξ ∈ T such that the function z → (zI − T )−1

x (|z| > 1) has no analytic
extension to a neighborhood of ξ.

We mention the following classical result of Katznelson and Tzafriri [12,
Theorem 1]. If T ∈ B (X) is power bounded, then limn→∞

∥
∥Tn+1 − Tn

∥
∥ = 0

if and only if σ (T ) ∩ T ⊆ {1} .
Notice that local spectrum of T may be “very small” with respect to its

usual spectrum. To see this, let σ be a “small” clopen part of σ (T ), Pσ be
the spectral projection associated with σ, and let Xσ := PσX. Then, Xσ is a
closed T -invariant subspace of X and σ (T |Xσ

) = σ. Clearly, σT (x) ⊆ σ for
every x ∈ Xσ.

We have the following local version of the Katznelson–Tzafriri theorem
[20, Theorem 4.2].

Theorem 5.1. Let T ∈ B (X) be power bounded and let x ∈ X. If σT (x)∩T ⊆
{1} , then

lim
n→∞

∥
∥Tn+1x − Tnx

∥
∥ = 0.

In contrast with the Katznelson–Tzafriri theorem, the converse of Theo-
rem 5.1 does not hold, in general. Indeed, if S∗ is the backward shift operator
on H2, then as ‖S∗nf‖ → 0, we have

lim
n→∞

∥
∥
∥S∗(n+1)f − S∗nf

∥
∥
∥ = 0 for all f ∈ H2.

On the other hand, since

(λI − S∗)−1
f (z) =

λ−1f
(
λ−1

)
− zf (z)

1 − λz
(|λ| > 1) ,

σS∗ (f) ∩ T consists of all ξ ∈ T for which the function f has no analytic
extension to a neighborhood of ξ (see, [7, p.24]).

Theorem 5.1 combined with Lemma 4.2 yields the next result.

Theorem 5.2. Let T ∈ B (X) be power bounded and assume that σT (x)∩T ⊆
{1} for some x ∈ X. If the sequence

{
1
n

∑n−1
i=0 T ix

}
converges in norm to

y ∈ X, then Tnx → y in norm.

As a consequence of Theorem 5.2, we have the following:

Corollary 5.3. Let T ∈ B (X) be power bounded and let S := 1
N

∑N−1
i=0 T i

(N > 1 is a fixed integer). If the sequence
{

1
n

∑n−1
i=0 Six

}
converges in norm

to y ∈ X, then Snx → y in norm.

Proof. It is easy to check that S is power bounded, that is,

sup
n≥0

‖Sn‖ ≤ sup
n≥0

‖Tn‖ < ∞.

Notice also that if

f (z) =
1
N

N−1∑

i=0

zi (z ∈ C) ,
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then f (1) = 1 and |f (z)| < 1 for all z ∈ D� {1} . On the other hand, by [15,
Theorem 3.3.8],

σS (x) = σf(T ) (x) = f (σT (x)) .

Since σT (x) ⊆ D, we have σS (x) ∩ T ⊆ {1} . By Theorem 5.2, Snx → y in
norm. �

We put
D+ = {z ∈ C : Rez ≥ 1, Imz ≥ 0}

and
D− = {z ∈ C : Rez ≥ 1, Imz ≤ 0} .

Corollary 5.4. Assume that the operators A,B in B (X) satisfy the following
conditions:

(i) supn≥0 ‖AnTBn‖ < ∞ for every T ∈ B(X).
(ii) Either σ (A) ⊂ D+ and σ (B) ⊂ D− or σ (A) ⊂ D− and σ (B) ⊂ D+.

If for some T ∈ B (X) , the sequence
{

1
n

∑n−1
i=0 AiTBi

}
converges in

operator norm to Q ∈ B (X) , then AnTBn → Q in operator norm.

Proof. Notice that the operator LARB is power bounded and therefore
σ (LARB) ⊆ D. On the other hand, by the Lumer-Rosenblum theorem [16,
Theorem 10],

σ (LARB) = {λμ : λ ∈ σ (A) , μ ∈ σ (B)}

which implies
σ (LARB) ⊂ {z ∈ C : Rez ≥ 1} .

So we have
σ (LARB) ⊆ D ∩ {z ∈ C : Rez ≥ 1} = {1}.

It follows that σLARB
(T ) ⊆ {1} for all T ∈ B (X) . By Theorem 5.2,

AnTBn = (LARB)n
T → Q in operator norm. �

Next, we will show that the hypothesis σT (x)∩T ⊆ {1} in Theorem 5.2
is the best possible, in general.

Let N be a normal operator on a Hilbert space H with the spectral
measure P and let x ∈ H. Define a measure μx on σ (N) by

μx (Δ) = 〈P (Δ) x, x〉 = ‖P (Δ) x‖2 , (5.1)

where Δ is a Borel subset of σ (N) . It follows from the Spectral Theorem
that σ (N) =suppP and σN (x) =suppμx. It is easy to check that if N is
a contraction (a normal operator is power bounded if and only if it is a
contraction), then

1
n

n−1∑

i=0

N ix → P ({1}) x in norm for all x ∈ H. (5.2)
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Proposition 5.5. Let N be a normal contraction operator on H with the spec-
tral measure P and let x ∈ H. The sequence {Nnx} converges in norm if and
only if

P (σN (x) ∩ T� {1}) x = 0.

In this case, Nnx → P ({1}) x in norm.

Proof. Let μx be the measure on σ (N) defined by (5.1). Then, we can write

lim
n→∞

∥
∥Nn+1x − Nnx

∥
∥2

= lim
n→∞

∫

σN (x)

∣
∣zn+1 − zn

∣
∣2 dμx (z)

= lim
n→∞

∫

σN (x)�(σN (x)∩T)

|z|2n |z − 1|2 dμx (z)

+ lim
n→∞

∫

σN (x)∩T

|z|2n |z − 1|2 dμx (z)

=
∫

σN (x)∩T

|z − 1|2 dμx (z)

=
∫

σN (x)∩T�{1}
|z − 1|2 dμx (z) .

It follows that
∥
∥Nn+1x − Nnx

∥
∥ → 0 if and only if

μx (σN (x) ∩ T� {1}) = 0.

By Lemma 4.2, the sequence {Nnx} converges in norm if and only if

P (σN (x) ∩ T� {1}) x = 0.

Under this condition, by (5.2) we have

lim
n→∞ Nnx = lim

n→∞
1
n

n−1∑

i=0

N ix = P ({1}) x. �

Let W ∗ (N) be the von Neumann algebra generated by N. Recall that
x ∈ H is a separating vector for N if the only operator A in W ∗ (N) such
that Ax = 0 is A = 0. As is known [5, Ch.IX, Sect.8.1], each normal operator
has a separating vector. If x is a separating vector for N, then the spectral
measure of N and the measure μx are mutually absolutely continuous [5,
Ch.IX, Proposition 8.3], where μx is defined by (5.1).

Corollary 5.6. Let N be a normal contraction operator on H with the spec-
tral measure P. If x is a separating vector for N, then the sequence {Nnx}
converges in norm if and only if

P (σN (x) ∩ T� {1}) = 0. (5.3)

Let K be a compact subset of D such that 1 ∈ K and let ν be a
regular positive Borel measure in C with support K. Define the operator N
on L2 (K, ν) by Nf = zf. Then, N is a normal contraction on L2 (K, ν) and
σ (N) = K. Moreover,

P (Δ) f = χΔf , ∀f ∈ L2 (K, ν) ,
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where χΔ is the characteristic function of Δ. It can be seen that the identity
one function 1 on K is a separating vector for N and σ (N) = σN (1) . By
(5.3), the sequence {Nn1} converges in norm if and only if χσN (1)∩T = χ{1}
or σN (1) ∩ T = {1} .
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[9] Feintuch, A.: On asymptotic Toeplitz and Hankel operators. In the Gohberg
anniversary collection. Oper. Theory Adv. Appl. 41, 241–254 (1989)

[10] Gamelin, T., Garnett, J.: Uniform approximation to bounded analytic func-
tions. Rev. Un. Mat. Argentina 25, 87–94 (1970)

[11] Jung, I.B., Ko, E., Pearcy, C.: A note on the spectral mapping theorem. Kyung-
pook Math. J. 47, 77–79 (2007)

[12] Katznelson, Y., Tzafriri, L.: On power bounded operators. J. Funct. Anal. 68,
313–328 (1986)

[13] Kellay, K., Zarrabi, M.: Compact operators that commute with a contraction.
Integr. Equ. Oper. Theory 65, 543–550 (2009)

[14] Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)

[15] Laursen, K.B., Neumann, M.M.: An Introduction to Local Spectral Theory.
Clarendon Press, Oxford (2000)



IEOT Convergence Theorems Page 21 of 21 36

[16] Lumer, G., Rosenblum, M.: Linear operator equations. Proc. Am. Math. Soc.
10, 32–41 (1959)

[17] Martinez-Avendaño, R.A.: Essentially Hankel operators. J. Lond. Math. Soc.
66, 741–752 (2002)

[18] Martinez-Avendaño, R.A., Rosenthal, P.: An Introduction to Operators on
the Hardy-Hilbert Space. Graduate Texts in Mathematics, vol. 237. Springer,
Berlin (2007)

[19] Mustafayev, H.S.: Asymptotic behavior of polynomially bounded operators. C.
R. Math. Acad. Sci. Paris 348, 517–520 (2010)

[20] Mustafayev, H.S.: Growth conditions for conjugate orbits of operators on Ba-
nach spaces. J. Oper. Theory 74, 281–306 (2015)
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