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Strongly Mixing Convolution Operators on
Fréchet Spaces of Entire Functions of a
Given Type and Order

Blas M. Caraballo and Vińıcius V. Fávaro

Abstract. We show that convolution operators on certain spaces of en-
tire functions of a given type and order on Banach spaces are strongly
mixing with respect to an invariant Borel probability measure with full
support (a stronger property than frequent hypercyclicity). Based on
results of S. Muro, D. Pinasco and M. Savransky we also show the ex-
istence of frequently hypercyclic entire functions of exponential growth,
and the existence of frequently hypercyclic subspaces for such convolu-
tion operators.
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1. Introduction

Motivated by classical results of Malgrange [38] for convolution equations on
the space H(Cn) of all complex-valued entire functions on C

n, Martineau
[39] in 1967 proved existence and approximation theorems for solutions of
convolution equations on spaces of entire functions on C

n of a given type and
order. These spaces encompass the classical notion of function of exponential
type, which has been extensively studied in the last century, both for their
applications and for their own sake. Recall that an entire function f : C → C

is said to be of exponential type if there are non-negative constants c and A
such that
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|f(z)| < Aec|z|,

for all z ∈ C.

A natural step in this line of investigation is to consider convolution
operators on spaces of entire functions on a complex Banach space. References
[38,39] can be regarded as starting points of a series of related results for
convolution operators on spaces of holomorphic functions on complex Banach
spaces (see Gupta [35] 1969 and [36] 1970, Dineen [17] 1971, Dwyer III [21]
1971 and [20] 1976, Colombeau-Matos [15] 1980, Colombeau-Perrot [16] 1980,
Matos-Nachbin [43] 1981, Matos [40] 1980, [41] 1984 and [42] 1986, Fávaro
[22] 2008 and [23] 2009, Fávaro and Jatobá [24] 2010 and [25] 2012, and
Fávaro-Mujica [28] 2018).

On the other hand, in the last 30 years the study of dynamics of convolu-
tion operators on spaces of entire functions has also been explored by several
authors (see for instance [1,9,14,27–31,46,49,50]). The main notion studied
in linear dynamics is hypercyclicity. Recall that, for a topological vector space
X, a continuous linear operator T : X −→ X is hypercyclic if the orbit of x,
given by {x, T (x), T 2(x), . . .} is dense in X for some x ∈ X. In this case, x
is said to be a hypercyclic vector for T . There are several other versions of
hypercyclicity explored in linear dynamics. In this work we are mainly inter-
ested in exploring the notion of frequent hypercyclicity. Roughly speaking, a
continuous linear operator T : X −→ X is frequently hypercyclic if there is
a vector x ∈ X, called a frequently hypercyclic vector, whose orbit intersects
each nonempty open set along a set of integers having positive lower density.
This notion was introduced by Bayart and Grivaux [2,4] and explored by
many authors in the last decade, see for instance [4,5,7,8,12,13,32,45,46,52].
A recent criterion of Bayart and Matheron [7] gives sufficient conditions for
a continuous linear operator T on a Fréchet space to be strongly mixing in
the gaussian sense, a stronger property than frequent hypercyclicity (details
in Section 3).

In this article, using this aforementioned criterion, we will show that un-
der suitable conditions, nontrivial convolution operators on the space Expk

Θ,0

(E) of complex-valued entire functions of type zero and a given order k ∈
(1,∞] on a complex Banach space E are strongly mixing in the gaussian
sense, in particular frequently hypercyclic. By a nontrivial convolution op-
erator we mean a convolution operator which is not a scalar multiple of the
identity. As very particular cases, we recover results of the same type ob-
tained in [12,28,46]. This result also generalizes some hypercyclicity results
obtained in [9,10,14,27,31,37]. An important investigation in linear dynamics
is the growth of hypercyclic entire functions of differentiation or translation
operators at infinity (see [10,19,33,37,51], for instance). Blasco, Bonilla and
Grosse-Erdmann [11], Bonilla and Grosse-Erdmann [12] and Muro, Pinasco
and Savranski [46] study the growth at infinity of frequently hypercyclic entire
functions associated to these operators. Inspired by results and techniques of
[12,46] we obtain the existence of frequently hypercyclic entire functions of
exponential growth associated to convolution operators. Moreover, we show
the existence of closed infinite-dimensional vector subspaces of Expk

Θ,0 (E)
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formed, excepted by the null function, by frequently hypercyclic functions.
These results also extend results of the same type obtained in [12,13,46].

It is worth mentioning that the spaces introduced in [46, Definition 3.2]
to prove the result about existence of frequently hypercyclic entire functions
of exponential growth (see [46, Theorem 3.11]) are particular cases of the
spaces Exp1

Θ,0,A(E) of all complex-valued entire functions of a given type
A > 0 and order one explored in [25,26].

Throughout this paper N denotes the set of positive integers and N0

denotes the set N ∪ {0}. By D and ∂D we mean the open unit disk and
the unit circle in the complex field C, respectively. E and F are always
complex Banach spaces and E′ denotes the topological dual of E. The Banach
space of all continuousj-homogeneous polynomials from E into F endowed
with its usual sup norm is denoted by P(jE;F ). The subspace of P(jE;F )
of all polynomials of finite type, that is the linear span of {ϕj · b : ϕ ∈
E′ and b ∈ F}, is represented by Pf (jE;F ). H(E;F ) denotes the vector
space of all holomorphic mappings from E into F . In all these cases, when
F = C we write P(jE), Pf (jE) and H(E) instead of P(jE; C), Pf (jE; C) and
H(E; C), respectively. For the general theory of homogeneous polynomials
and holomorphic functions or any unexplained notation we refer to Dineen
[18], Mujica [44] and Nachbin [48].

2. Preliminaires

We start recalling several concepts and results involving holomorphy on infi-
nite dimensional spaces.

Definition 2.1. Let U be an open subset of E. A function f : U −→ F is said
to be holomorphic on U if for every a ∈ U there exists a sequence (Pj)∞

j=0,
where each Pj ∈ P(jE;F ) (P(0E;F ) = F ), such that f(x) =

∑∞
j=0 Pj(x−a)

uniformly on some open ball with center a. The j-homogeneous polynomial
j!Pj is called the j-th derivative of f at a and it is denoted by d̂jf(a). In
particular, if P ∈ P(jE;F ), a ∈ E and k ∈ {0, 1, . . . , j}, then

d̂kP (a)(x) =
j!

(j − k)!
P̌ (x, . . . , x

︸ ︷︷ ︸
k times

, a, . . . , a)

for every x ∈ E, where P̌ is the unique symmetric j-linear mapping associated
to P .

Definition 2.2. (Nachbin [48]) A holomorphy type Θ from E to F is a sequence
of Banach spaces (PΘ(jE;F ))∞

j=0, the norm on each of them being denoted
by ‖ · ‖Θ, such that the following conditions hold true:
(1) Each PΘ(jE;F ) is a vector subspace of P(jE;F ) and PΘ(0E;F ) coin-

cides with F as a normed vector space;
(2) There is a real number σ ≥ 1 for which the following is true: given

any k ∈ N0, j ∈ N0, k ≤ j, a ∈ E, and P ∈ PΘ(jE;F ), we have
d̂kP (a) ∈ PΘ(kE;F ) and
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∥
∥
∥
∥

1
k!

d̂kP (a)
∥
∥
∥
∥

Θ

≤ σj‖P‖Θ‖a‖j−k.

A holomorphy type from E to F shall be denoted by either Θ or
(PΘ(jE;F ))∞

j=0. When F = C we write PΘ(jE) instead of PΘ(jE; C), for
every j ∈ N0.

It is obvious that each inclusion PΘ(jE;F ) ⊂ P(jE;F ) is continuous
and ‖P‖ ≤ σj‖P‖Θ.

Now we recall the definition of the spaces Bk
Θ,ρ (E) that will be used in Defi-

nitions 2.4 and 2.6 .

Definition 2.3. ( [25, Definition 2.2]) Let (PΘ(jE))∞
j=0 be a holomorphy type

from E to C. For ρ > 0 and k ≥ 1, we denote by Bk
Θ,ρ (E) the complex Banach

space of all f ∈ H (E) such that d̂jf (0) ∈ PΘ

(
jE

)
, for all j ∈ N0 and

‖f‖Θ,k,ρ =
∞∑

j=0

ρ−j

(
j

ke

) j
k

∥
∥
∥
∥

1
j!

d̂jf (0)
∥
∥
∥
∥

Θ

< ∞,

with the norm given by ‖·‖Θ,k,ρ .

Now we are in the position to introduce the spaces of entire functions of
a given type A and a given order k on a Banach space E. These spaces and
their notation were inspired by the finite dimensional case E = C

n studied
by Martineau [39], who introduced these spaces to generalize results on the
growth of functions of exponential type to the so-called functions of infinite
order, and also to obtain results for convolution equations.

Definition 2.4. ( [25, Definition 2.4]) Let
(PΘ(jE)

)∞
j=0

be a holomorphy type
from E to C, A ∈ [0,∞) and k ≥ 1. We denote by Expk

Θ,0,A (E) the complex

vector space
⋂

ρ>A

Bk
Θ,ρ (E) with the locally convex projective limit topology.

In case A = 0 we denote

Expk
Θ,0 (E) := Expk

Θ,0,0 (E) =
⋂

ρ>0

Bk
Θ,ρ (E) .

By [25, Proposition 2.7] Expk
Θ,0,A (E) is a Fréchet space.

Proposition 2.5. ( [25, Proposition 2.5]) Let
(PΘ(jE)

)∞
j=0

be a holomorphy

type from E to C and k ∈ [1,∞). If f ∈ H (E) is such that d̂jf (0) ∈ PΘ

(
jE

)
,

for any j ∈ N0, then for each A ∈ [0,∞) , f ∈ Expk
Θ,0,A (E) if, and only if,

lim sup
j→∞

(
j

ke

) 1
k

∥
∥
∥
∥

1
j!

d̂jf (0)
∥
∥
∥
∥

1
j

Θ

≤ A.

Now we recall the definition of the space of holomorphic functions of
type A and infinite order.
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Definition 2.6. ( [25, Definition 2.8]) Let
(PΘ(jE)

)∞
j=0

be a holomorphy type
from E to C. If A ∈ [0,∞) , we denote by Exp∞

Θ,0,A (E) the Fréchet space of

all f ∈ H
(
B 1

A
(0)

)
such that d̂jf (0) ∈ PΘ

(
jE

)
, for all j ∈ N0 and

lim sup
j→∞

∥
∥
∥
∥

1
j!

d̂jf (0)
∥
∥
∥
∥

1
j

Θ

≤ A,

endowed with the locally convex topology generated by the family of semi-
norms

(
p∞
Θ,ρ

)

ρ>A
, where

p∞
Θ,ρ (f) =

∞∑

j=0

ρ−j

∥
∥
∥
∥

1
j!

d̂jf (0)
∥
∥
∥
∥

Θ

.

Here B
(
0; 1

A

)
denotes the open ball in E with center 0 and radius 1

A ,
and by convention B

(
0; 1

0

)
:= E. Usually we write Exp∞

Θ,0 (E) instead of
Exp∞

Θ,0,0 (E).

Remark 2.7. Note that the space Exp∞
Θ,0 (E) coincides with the space HΘb(E)

explored in [9,24,28].

The aim of this work is the study of the notion of linear dynamics called
frequent hypercyclicity for convolution operators on Expk

Θ,0 (E), k ∈ (1,∞].
Our results are closely related with the results obtained by Muro et al [46].
Since Exp∞

Θ,0 (E) = HΘb(E) the results obtained in this work extend the
corresponding results obtained in [46]. If k 
= ∞, E = C

n and Θ is the
current holomorphy type, then the space Expk

Θ,0 (Cn) coincides with the so-
called space of entire functions of finite order (see Martineau [39, page 112]).

For our purpose, the injectivity of the Fourier-Borel transform obtained
in [25, Theorems 4.6] plays a central hole. First we recall the concepts of
π1 and π2,k-holomorphy types. The definitions of π1 and π2 were introduced
in [24] as tool to obtain a general method to prove existence and approx-
imation results for convolution operators on HΘb(E). In [9, Definition 2.5]
these concepts were refined to obtain hypercyclicity results for convolution
operators on HΘb(E). Using these refinements Fávaro and Mujica [28] ob-
tained frequent hypercyclicity results for convolution operators on HΘb(E).
Recently, with the aim of obtaining a general method to prove existence and
approximation results for convolution operators on Expk

Θ,0 (E), Fávaro and
Jatobá [26, Definition 3.7] introduced the notion of π2,k-holomorphy type,
which is a variation of the notion of π2-holomorphy type. In [26] the authors
also obtained hypercyclicity results for convolution operators on Expk

Θ,0 (E).

Definition 2.8. A holomorphy type (PΘ(jE;F ))∞
j=0 is said to be a

π1-holomorphy type if the following conditions hold:

(1) Pf (jE;F ) ⊂ PΘ(jE;F ) and there exists K > 0 such that ‖ϕj · b‖Θ ≤
Kj‖ϕ‖j‖b‖, for all ϕ ∈ E′, b ∈ F and j ∈ N0.

(2) For j ∈ N0, Pf (jE;F ) is dense in
(PΘ(jE;F ), ‖ · ‖Θ

)
.
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In the sequel, if P ∈ P(jE), let P̌ denote the unique symmetric j-linear
mapping associated to P , and for 0 ≤ m ≤ j write

P̌ (x)m(y)j−m := P̌ (x, . . . , x
︸ ︷︷ ︸
m times

, y, . . . , y), x, y ∈ E.

Definition 2.9. Let k ∈ [1,∞] and A ∈ [0,∞). A holomorphy type
(PΘ(jE))∞

j=0 from E to C is said to be a π2,k-holomorphy type if, for each
T ∈ [

Expk
Θ,0,A (E)

]′, the following conditions hold:

(1) For j ∈ N0 and m ∈ N0, m ≤ j, if P ∈ PΘ

(
jE

)
then the polynomial

T
(

̂P̌ (·)m
)

: E −→ C

y �−→ T
(
P̌ (·)myj−m

)

belongs to PΘ

(
j−mE

)
.

(2) For any constants C > 0 and ρ > A such that
|T (f)| ≤ C ‖f‖Θ,k,ρ , if k ∈ [1, ∞),

|T (f)| ≤ Cp∞
Θ,ρ (f) , if k = ∞,

for all f ∈ Expk
Θ,0,A (E), and for each ε > 0, there is D(ε) > 0 such

that
∥
∥
∥T

(
̂̌P (·)m

)∥
∥
∥

Θ
≤ CD(ε)(1 + ε)jρ−m

( m

ke

)m
k ‖P‖Θ , if k ∈ [1,∞),

∥
∥
∥T

(
̂P̌ (·)m

)∥
∥
∥

Θ
≤ CD(ε)(1 + ε)jρ−m ‖P‖Θ , if k = ∞.

for every P ∈ PΘ

(
jE

)
, j ∈ N0 and m ∈ N0, m ≤ j.

Remark 2.10. (i) Note that the constants C and ρ of Definition 2.9 (2)
exist because T ∈ [

Expk
Θ,0,A (E)

]′.
(ii) When k = ∞ and A = 0 the concepts of π2,∞-holomorphy type and

π2-holomorphy type coincide (see [9, Definition 2.5]). So in this case we
write π2 instead of π2,∞.

(iii) The condition (2) of the definition of π2,k-holomorphy type is slightly
different from the original definition introduced in [26, Definition 3.7].
In the original definition, condition (2) is replaced by: (2′) For any con-
stants C > 0 and ρ > A such that

|T (f)| ≤ C ‖f‖Θ,k,ρ , if k ∈ [1,∞),

|T (f)| ≤ Cp∞
Θ,ρ (f) , if k = ∞,

for all f ∈ Expk
Θ,0,A (E), there is a constant M > 0 such that

∥
∥
∥T

(
̂̌P (·)m

)∥
∥
∥

Θ
≤ CM jρ−m

( m

ke

)m
k ‖P‖Θ , if k ∈ [1,∞),

∥
∥
∥T

(
̂̌P (·)m

)∥
∥
∥

Θ
≤ CM jρ−m ‖P‖Θ , if k = ∞.

for every P ∈ PΘ

(
jE

)
, j ∈ N0 and m ∈ N0, m ≤ j.
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However, all the results in the present paper where the hypothesis
of π2,k is made work equally well with both conditions (2) and (2′),
except Proposition 3.13 and its consequences, that is, Theorem 3.8 and
Corollaries 3.9 and 3.16 , where we need to use (2). It is worth to mention
that all examples of holomorphy types explored in [9,14,17,24,26–29,46]
satisfy (2).

The following result is an important tool for our purpose.

Theorem 2.11. ( [25, Theorem 4.6]) Let k ∈ (1,∞], A ∈ [0,∞) and
(PΘ(jE))∞

j=0 be a π1-holomorphy type from E to C.
Then the Fourier-Borel transform

F :
[
Expk

Θ,0,A (E)
]′ −→ H(E′),

given by FT (ϕ) = T (eϕ) , for all T ∈ [
Expk

Θ,0,A (E)
]′ and ϕ ∈ E′, is an

injective linear transformation.

Proposition 2.12. ( [26, Proposition 3.1]) Let
(PΘ(jE)

)∞
j=0

be a holomorphy
type from E to C, a ∈ E, k ∈ [1,∞] , A ∈ [0,∞) and f ∈ Expk

Θ,0,A (E) .

Then d̂nf (·) a ∈ Expk
Θ,0,σA (E) , for any constant σ satisfying condition (2)

of Definition 2.2. Besides

d̂nf (·) a =
∞∑

j=0

1
j!

������
(dj+nf (0))(·)j (a) ,

in the topology of Expk
Θ,0,σA (E) .

We recall that τaf = f(·−a) denotes the translation operator by a. The
following proposition ensures that the translation operators on Expk

Θ,0 (E)
are well-defined and continuous.

Proposition 2.13. ( [26, Proposition 3.3]) Let
(PΘ(jE)

)∞
j=0

be a holomorphy
type from E to C and k ∈ [1,∞] . If f ∈ Expk

Θ,0 (E) and a ∈ E, then
τ−af ∈ Expk

Θ,0 (E) and

τ−af =
∞∑

n=0

1
n!

d̂nf (·) a,

in the topology of Expk
Θ,0 (E) .

Now we are able to define convolution operators on Expk
Θ,0 (E).

Definition 2.14. Let
(PΘ(jE)

)∞
j=0

be a holomorphy type from E to C and
k ∈ [1,∞].
(a) A convolution operator on Expk

Θ,0 (E) is a continuous linear operator

L : Expk
Θ,0 (E) −→ Expk

Θ,0 (E)

such that L (τaf) = τa (Lf) for all a ∈ E and f ∈ Expk
Θ,0 (E) . By

Proposition 2.13, the convolution operators on Expk
Θ,0 (E) are well-

defined. We denote the set of all convolution operators on Expk
Θ,0 (E)

by Ak
Θ,0.
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(b) We denote by γk
Θ,0 the linear transformation

γk
Θ,0 : Ak

Θ,0 −→
[
Expk

Θ,0 (E)
]′

given by γk
Θ,0 (L) (f) = (Lf) (0) , for f ∈ Expk

Θ,0 (E) and L ∈ Ak
Θ,0.

3. Frequently Hypercyclic Convolution Operators on
Expk

Θ,0(E)

We begin this section recalling the definition of frequently hypercyclic oper-
ators, which was recently introduced by Bayart and Grivaux in [3,4] and it
is a stronger condition than hypercyclicity.

Definition 3.1. Let X be a separable Fréchet space. A continuous linear op-
erator T : X → X is said to be frequently hypercyclic if there exists x ∈ X
such that, for every non-empty open set U ⊂ X we have that

lim inf
N→∞

card{0 ≤ n ≤ N − 1 : Tnx ∈ U}
N

> 0.

In this case x is said to be a frequently hypercyclic vector, and the set of all
frequently hypercyclic vectors is denoted by FCH(T ).

Definition 3.2. ( [6, Chapter 5]) Let X be a topological vector space, let
T : X → X be a continuous linear operator, and let μ be a Borel probability
measure on X.

(a) μ is said to be T -invariant if μ(T−1(A)) = μ(A) for every Borel set
A ⊂ X.

(b) μ is said to have full support if μ(U) > 0 for every non-empty open set
U ⊂ X.

(c) T is said to be strongly mixing with respect to μ if for any two Borel sets
A,B ⊂ X we have that

lim
n→∞ μ(A ∩ T−n(B)) = μ(A)μ(B).

The main result of this section is the next theorem. First, recall that if X
is a topological vector space, then a continuous linear operator T : X → X is
said to be (topologically) mixing if for any two non-empty open sets U, V ⊂ X,
there is n0 ∈ N such that Tn(U) ∩ V 
= ∅, for all n ≥ n0.

Theorem 3.3. Let k ∈ (1,∞], E be a Banach space with separable dual
and (PΘ(jE))∞

j=0 be a π1-holomorphy type from E to C. If L is a nontrivial
convolution operator on Expk

Θ,0(E), then L is strongly mixing with respect to
an L-invariant Borel probability measure μ, on Expk

Θ,0(E), with full support.
In particular L is (topologically) mixing and μ-almost every f ∈ Expk

Θ,0(E)
is a frequently hypercyclic function for L.

The proof of this theorem has several ingredients. It rests on the follow-
ing criterion which is a corollary of [7, Theorem 1.1].
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Theorem 3.4. ( [7, Theorem 1.1]) Let X be a separable Fréchet space and let
L : X → X be a continuous linear operator. Assume that for any D ⊂ ∂D such
that ∂D \D is dense in ∂D, the linear span of

⋃
λ∈∂D\D ker(L−λ) is dense in

X. Then L is strongly mixing with respect to an L-invariant Borel probability
measure μ, on X, with full support. In particular L is (topologically) mixing
and μ-almost every x ∈ X is frequently hypercyclic for L.

We also need the following results:

Lemma 3.5. Let k ∈ (1,∞], E be a Banach space with separable dual and
(PΘ(jE))∞

j=0 be a π1-holomorphy type from E to C. Let f ∈ H(E′) be non
constant and B ⊂ C. Suppose that there is ϕ0 ∈ E′ such that f(ϕ0) is an
accumulation point of B. Then span{eϕ : ϕ ∈ E′, f(ϕ) ∈ B} is dense in
Expk

Θ,0(E).

Proof. By the Hahn-Banach theorem it suffices to prove that if a functional
T ∈ [Expk

Θ,0(E)]′ vanishes on span{eϕ : f(ϕ) ∈ B}, then T is identically zero.
Since the Fourier-Borel transform F : [Expk

Θ,0(E)]′ → H(E′) is injective, it
is enough to show that FT = 0. Let {Ui : i ∈ I} be a basis for the open sets
of E′. Since f is a nonconstant entire function, for each i ∈ I there is ϕi ∈ Ui

such that f(ϕ0) 
= f(ϕi). Now, for i ∈ I, we denote by Li the complex line
through ϕ0 that intersects Ui in ϕi, that is

Li := {ϕ0 + z(ϕi − ϕ0) : z ∈ C}.

Then f is non constant on Li and
⋃

i∈I Li is dense in E′. By considering the
restriction

f |Li
: z ∈ C → f(ϕ0 + z(ϕi − ϕ0)) ∈ C,

since f |Li
is a non constant holomorphic function, it follows from the classi-

cal open mapping theorem that f |Li
is an open function. Since (f |Li

)(0) =
f(ϕ0) is an accumulation point of B, then 0 is an accumulation point of
(f |Li

)−1(B). By the hypothesis, (FT )(ϕ) = 0 for every ϕ ∈ f−1(B), in par-
ticular (FT )(ϕ0 + z(ϕi − ϕ0)) = 0 for every z ∈ (f |Li

)−1(B). So, the set
of zeros of the entire function z ∈ C → (FT )(ϕ0 + z(ϕi − ϕ0)) ∈ C has an
accumulation point, which implies that FT = 0 on each Li, i ∈ I. Therefore
FT vanishes on

⋃
i∈I Li and by the density of

⋃
i∈I Li in E′, we have FT = 0

on E′. �

The next lemma was proved in [26] and it will be very useful in the
proof of Theorem 3.3.

Lemma 3.6. ( [26, Lemma 4.4]) Let k ∈ (1,∞], E be a Banach space with
separable dual, (PΘ(jE))∞

j=0 be a π1-holomorphy type from E to C and L be
convolution operator on Expk

Θ,0(E). Then:

(a) L(eϕ) = F [γk
Θ,0(L)](ϕ)eϕ for every ϕ ∈ E′.

(b) L is a scalar multiple of the indentity if and only if the entire function
F [γk

Θ,0(L)] : E′ → C is constant.

With these results we are able to prove Theorem 3.3.
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Proof of Theorem 3.3. Since L is a convolution operator on Expk
Θ,0(E) which

is not a scalar multiple of the identity, it follows from Lemma 3.6 (b) that
the entire function F [γk

Θ,0(L)] is not constant. Consider the sets

V = {ϕ ∈ E′ : |F [γk
Θ,0(L)](ϕ)| < 1} = [F [γk

Θ,0(L)]]−1(D)

and

W = {ϕ ∈ E′ : |F [γk
Θ,0(L)](ϕ)| > 1} = [F [γk

Θ,0(L)]]−1(C \ D).

By Liouville’s Theorem, both sets V and W are disjoint non-empty open
subsets of E′. By considering a path in E′ from a point in V to a point in W ,
we can find a point ϕ0 ∈ E′ such that |F [γk

Θ,0(L)](ϕ0)| = 1. Let D ⊂ ∂D such
that ∂D \ D is dense in ∂D. Thus F [γk

Θ,0(L)](ϕ0) is an accumulation point
of ∂D \ D, since ∂D is a metric space without isolated points. Therefore, it
follows from Lemma 3.5 that

span{eϕ : F [γk
Θ,0(L)](ϕ) ∈ ∂D \ D}

is dense in Expk
Θ,0(E). By Lemma 3.6 (a)

{eϕ : F [γk
Θ,0(L)](ϕ) ∈ ∂D \ D} ⊂

⋃

F [γk
Θ,0(L)](ϕ)∈∂D\D

ker(L − F [γk
Θ,0(L)](ϕ))

⊂
⋃

λ∈∂D\D

ker(L − λ),

and then the linear span of ∪λ∈∂D\D ker(L − λ) is also dense in Expk
Θ,0(E).

By Theorem 3.4 L is strongly mixing with respect to an L-invariant Borel
probability measure μ, on Expk

Θ,0(E), with full support. �

3.1. Frequently Hypercyclic Functions in Exp1
Θ,0,A(E)

As mentioned in the introduction, the problem of determining possible rates
of growth of frequently hypercyclic entire functions for convolution operators
on H(Cn) was studied for the first time in [11,12]. For some spaces of entire
functions on infinite-dimensional Banach spaces the same kind of growth was
firstly explored by Muro et al [46].

In this section we study the rate of growth of frequently hypercyclic
entire functions for convolution operators on Expk

Θ,0(E).

Definition 3.7. (Nachbin [47, p. 226, Remark 1]) Let E be a Banach space
and let A ∈ [0,∞). A function f ∈ H(E) is said to be of exponential type less
than A if, for each ε > 0, there is c > 0 such that

|f(x)| ≤ ce(A+ε)‖x‖

for every x ∈ E.

Nachbin proved that, f ∈ H(E) is of exponential type less than A if,
and only if,

lim sup
j→∞

∥
∥
∥d̂jf(0)

∥
∥
∥

1
j ≤ A.
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Using Proposition 2.5 it is easy to see that every function in Exp1
Θ,0,A(E)

satisfies

lim sup
j→∞

∥
∥
∥d̂jf(0)

∥
∥
∥

1
j

Θ
≤ A. (3.1)

Our main result in this section is the following:

Theorem 3.8. Let k ∈ (1,∞] and E be a Banach space with separable dual,
let (PΘ(jE))∞

j=0 be a π1-π2,k-holomorphy type from E to C, and let L be
a nontrivial convolution operator on Expk

Θ,0(E). Then, there exists αL ≥
0 such that for each ε > 0, L has a frequently hypercyclic function f in
Exp1

Θ,0,K(αL+ε)(E), where K > 0 comes from condition in Definition 2.8 (1).
Besides, the function f satisfies the following growth condition: given any
δ > 0 there is Cδ > 0 such that

|f(x)| ≤ Cδe
(K(αL+ε)+δ)‖x‖ for every x ∈ E.

Since Exp∞
Θ,0(E) = HΘb(E) we obtain, as particular case of Theo-

rem 3.8, the result of growth of frequently hypercyclic entire functions for
convolution operators due to Muro et al [46, Theorem 3.11] and consequently
the corresponding result due to Bonilla and Grosse-Erdmann [12, Theorem
3.4]. More precisely, using the nomenclature considered in this paper, we
obtain [46, Theorem 3.11] as the following corollary:

Corollary 3.9. Let E be a Banach space with separable dual, let (PΘ(jE))∞
j=0

be a π1-π2-holomorphy type from E to C, and let L be a nontrivial convolu-
tion operator on HΘb(E). Then, there exists αL ≥ 0 such that for each ε > 0,
L admits a frequently hypercyclic function f ∈ Exp1

Θ,0,K(αL+ε)(E), where
K > 0 comes from condition in Definition 2.8 (1).

In order to prove Theorem 3.8 we need several preparatory results. We
start studying the relationship among the spaces Exp1

Θ,0,A(E) and Expk
Θ,0(E),

for each A > 0 and k ∈ (1,∞].
First we recall that the topology of Expk

Θ,0,A(E) coincides with the
topology generated by the family of norms

‖f‖Θ,k,ρ =
∞∑

j=0

ρ−j

(
j

ke

) j
k ∥

∥
∥ 1

j! d̂
jf(0)

∥
∥
∥

Θ
, if 1 ≤ k < ∞

and

p∞
Θ,ρ (f) =

∞∑

j=0

ρ−j
∥
∥
∥ 1

j! d̂
jf(0)

∥
∥
∥

Θ
, if k = ∞.

Note also that for ρ > A, (3.1) ensures that the mapping

f ∈ Exp1
Θ,0,A (E) 
−→ ‖f‖Θ,ρ :=

∞∑

j=0

ρ−j
∥
∥
∥d̂jf(0)

∥
∥
∥

Θ
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is a seminorm well-defined on Exp1
Θ,0,A (E). Since lim

j→∞
j

e j
√

j!
= 1, for each

ρ > A there exist ρ′, ρ+ > A and c, C > 0 such that

‖f‖Θ,1,ρ ≤ c‖f‖Θ,ρ′ and ‖f‖Θ,ρ ≤ C‖f‖Θ,1,ρ+ (3.2)

for every f ∈ Exp1
Θ,0,A (E). In fact, since lim

j→∞
j

e j
√

j!
= 1, for each ε > 0 there

exists c > 0 such that
(

j

e

)j 1
j!

< c(1 + ε)j , for all j ∈ N0. (3.3)

So, let ρ > A. Choosing ρ > ρ′ > A, it follows from (3.3) that there exists
c > 0 such that

(
j

e

)j 1
j!

< c(ρ/ρ′)j , for all j ∈ N0.

Hence,

‖f‖Θ,1,ρ =
∞∑

j=0

ρ−j

(
j

e

)j ∥
∥
∥ 1

j! d̂
jf(0)

∥
∥
∥

Θ
≤ c

∞∑

j=0

ρ−j(ρ/ρ′)j
∥
∥
∥d̂jf(0)

∥
∥
∥

Θ
= c‖f‖Θ,ρ′ .

On the other hand, since we may write

‖f‖Θ,ρ = ‖f(0)‖Θ +
∞∑

j=1

ρ−j

(
e

j

)j

j!
(

j

e

)j ∥
∥
∥
∥

1
j!

d̂jf(0)
∥
∥
∥
∥

Θ

,

a similar argument shows the second estimate in (3.2).

Proposition 3.10. Let k ∈ (1,∞], A > 0 and
(PΘ(jE)

)∞
j=0

be a holomorphy
type from E to C. Then:

(a) Exp1
Θ,0,A(E) ⊂ Expk

Θ,0(E) and the inclusion Exp1
Θ,0,A(E) ↪→ Expk

Θ,0(E)
is continuous.

(b) If Θ is a π1-holomorphy type, then Exp1
Θ,0,A(E) is a dense subspace of

Expk
Θ,0(E).

Proof. (a) First let k ∈ (1,∞). Since

lim
j→∞

(
j

ke

) 1
k

(
e

j

)

= 0

whenever k > 1, for each ε > 0 there exists C(ε) > 0 such that

(
j

ke

) j
k

(
e

j

)j

≤ C(ε)εj ,
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for every j ∈ N0. Let ρ > 0. Choosing ε > 0 such that ε
ρ < 1

A , we can find
γ > A such that ε

ρ < 1
γ < 1

A . So

‖f‖Θ,k,ρ =
∞∑

j=0

ρ−j

(
j

ke

) j
k ∥

∥
∥ 1

j! d̂
jf(0)

∥
∥
∥

Θ

≤
∞∑

j=0

C(ε)
(

ε

ρ

)j (
j

e

)j ∥
∥
∥ 1

j! d̂
jf(0)

∥
∥
∥

Θ

≤ C(ε)
∞∑

j=0

γ−j

(
j

e

)j ∥
∥
∥ 1

j! d̂
jf(0)

∥
∥
∥

Θ
= C(ε)‖f‖Θ,1,γ ,

for every f ∈ Exp1
Θ,0,A(E). Therefore the inclusion is continuous.

Now, let k = ∞. Since

lim
j→∞

e

j
= 0,

for each ρ > 0 we may choose ε > 0, C(ε) > 0 and γ > A such that

ε

ρ
<

1
γ

<
1
A

and
(

e

j

)j

≤ C(ε)εj ,

for every j ∈ N0. Thus

p∞
Θ,ρ(f) =

∞∑

j=0

ρ−j

∥
∥
∥
∥

1
j!

d̂jf(0)
∥
∥
∥
∥

Θ

=
∞∑

j=0

ρ−j

(
e

j

)j (
j

e

)j ∥
∥
∥
∥

1
j!

d̂jf(0)
∥
∥
∥
∥

Θ

≤ C(ε)
∞∑

j=0

γ−j

(
j

e

)j ∥
∥
∥
∥

1
j!

d̂jf(0)
∥
∥
∥
∥

Θ

= C(ε)‖f‖θ,1,γ ,

for every f ∈ Exp1
Θ,0,A(E), proving that the inclusion is continuous.

(b) For ϕ ∈ E′, we have that d̂j(eϕ)(0) = ϕj and ‖ϕj‖Θ ≤ Kj‖ϕ‖j for
every j ∈ N0, where K > 0 is the constant of Definition 2.8(1). Thus

lim sup
j→∞

∥
∥
∥d̂j(eϕ)(0)

∥
∥
∥

1
j

Θ
≤ K‖ϕ‖

and it follows from Proposition 2.5 that eϕ ∈ Exp1
Θ,0,A(E) if and only if

‖ϕ‖ ≤ A/K. Since

span{eϕ : ϕ ∈ E′ with ‖ϕ‖ ≤ A/K}
is a dense subspace of Expk

Θ,0(E) (see [26, Proposition 4.3]), the result follows.
�

Proposition 3.10 assures that Exp1
Θ,0,A (E) is a Fréchet space which

is continuously and densely embedded in Expk
Θ,0 (E). Now we will prove

that, under suitable conditions, the restriction of a convolution operator on
Expk

Θ,0 (E) to Exp1
Θ,0,A (E) is also a convolution operator. Before that, we

recall the concept of convolution product and a result of [26].



31 Page 14 of 27 B. M. Caraballo IEOT

Definition 3.11. Let
(PΘ(jE)

)∞
j=0

be a holomorphy type from E to C, k ∈
[1,∞] , T ∈ [

Expk
Θ,0 (E)

]′ and f ∈ Expk
Θ,0 (E). We define the convolution

product of T and f by (T ∗ f) (x) = T (τ−xf) , for all x ∈ E.

Theorem 3.12. ( [26, Theorem 3.11]) If k ∈ [1,∞] and (PΘ(jE))∞
j=0 is a π2,k-

holomorphy type from E to C, then the mapping γk
Θ,0 is a linear bijection

and its inverse is the mapping

Γk
Θ,0 :

[
Expk

Θ,0 (E)
]′

−→ Ak
Θ,0

given by Γk
Θ,0 (T ) (f) = T ∗ f , for T ∈ [

Expk
Θ,0 (E)

]′ and f ∈ Expk
Θ,0 (E).

Proposition 3.13. Let A > 0, k ∈ (1,∞] and (PΘ(jE))∞
j=0 be a

π2,k-holomorphy type from E to C. If

L : Expk
Θ,0(E) → Expk

Θ,0(E)

is a convolution operator, then the restriction

L
∣
∣
∣Exp1

Θ,0,A(E) : Exp1
Θ,0,A(E) → Exp1

Θ,0,A(E)

is a well-defined convolution operator.

Proof. By Theorem 3.12 there is T ∈ [Expk
Θ,0(E)]′ such that Lf = T ∗

f , for every f ∈ Expk
Θ,0(E). To prove that L

∣
∣
∣Exp1

Θ,0,A(E) is a well-defined
continuous linear operator, it is sufficient to prove that for γ > A there exist
γ+ > A and D > 0 such that

‖Lf‖Θ,1,γ ≤ D‖f‖Θ,1,γ+

for every f ∈ Exp1
Θ,0,A(E). By Propositions 2.12 and 2.13 and by the linearity

and continuity of T , we have that

T ∗ f(x) = T (τ−xf) =
∞∑

n=0

1
n!

T
(
d̂nf(·)(x)

)

=
∞∑

n=0

1
n!

∞∑

j=0

1
j!

T

(
������
(dj+nf(0))(·)j

)

(x)

=
∞∑

n=0

1
n!

∞∑

j=n

1
(j − n)!

T

(
������
(djf(0))(·)j−n

)

(x)

for every f ∈ Exp1
Θ,0,A(E) and x ∈ E. Since (PΘ(jE))∞

j=0 is a π2,k-
holomorphy type, k ∈ (1,∞], we have that the mappings

x ∈ E 
→ T

(
������
(dj+nf(0))(·)j

)

(x) ∈ C and

x ∈ E 
→ 1
(j − n)!

T

(
������
(djf(0))(·)j−n

)

(x) ∈ C
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belong to PΘ(nE) and satisfy the condition (2) of Definition 2.9. It is
not difficult to see that

∞∑

j=0

∥
∥
∥
∥
∥

1

j!
T

(������
(dj+nf(0))(·)j

)∥
∥
∥
∥
∥

< ∞ and
∞∑

j=n

∥
∥
∥
∥
∥

1

(j − n)!
T

(������
(djf(0))(·)j−n

)∥
∥
∥
∥
∥

< ∞,

and since P(nE) is complete, it follows that

∞∑

j=0

1
j!

T

(
������
(dj+nf(0))(·)j

)

and
∞∑

j=n

1
(j − n)!

T

(
������
(djf(0))(·)j−n

)

belong to P(nE). On the other hand, it is not difficult to show that the power
series

∞∑

n=0

1

n!

∞∑

j=0

1

j!
T

(������
(dj+nf(0))(·)j

)

(x) and
∞∑

n=0

1

n!

∞∑

j=n

1

(j − n)!
T

(������
(djf(0))(·)j−n

)

(x)

have infinite radius of convergence. Thus, it follows from [44, Example 5.4]
that

d̂n(T ∗ f)(0) =
∞∑

j=0

1
j!

T

(
������
(dj+nf(0))(·)j

)

=
∞∑

j=n

1
(j − n)!

T

(
������
(djf(0))(·)j−n

)

for every f ∈ Exp1
Θ,0,A(E) and n ∈ N0. Since Θ is a π2,k-holomorphy type,

for each j, n ∈ N0 with j ≤ n and f ∈ Expk
Θ,0(E) the mapping

x ∈ E → T

(
������
(djf(0))(·)j−n

)

(x) ∈ C

belongs to PΘ(nE), and for all ε > 0 there exists M(ε) > 0 such that
∥
∥
∥
∥
∥
T

(
������
(djf(0))(·)j−n

)∥
∥
∥
∥
∥

Θ

≤ CM(ε)(1 + ε)jρn−j
∥
∥
∥d̂jf(0)

∥
∥
∥

Θ
,

if k = ∞ and

∥
∥
∥
∥
∥
T

(
������
(dj+nf(0))(·)j

)∥
∥
∥
∥
∥

Θ

≤ CM(ε)(1 + ε)j+nρ−j

(
j

ke

) j
k ∥

∥
∥d̂j+nf(0)

∥
∥
∥

Θ
,

if k > 1, for some positive constants C and ρ as in Definition 2.9.
We divide the proof into two cases.
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Case k = ∞: Let f ∈ Exp1
Θ,0,A(E) and γ > A. By (3.2) there are

constants Bγ > 0 and γ′ > A such that

‖Lf‖Θ,1,γ =
∞∑

n=0

γ−n

(
n

e

)n ∥
∥
∥
∥
1

n!
d̂n(T ∗ f)(0)

∥
∥
∥
∥
Θ

(3.2)
≤ Bγ

∞∑

n=0

(γ′)−n
∥
∥
∥d̂n(T ∗ f)(0)

∥
∥
∥
Θ

≤ BγCM(ε)
∞∑

n=0

(γ′)−n
∞∑

j=n

1

(j − n)!
(1 + ε)jρn−j

∥
∥
∥d̂jf(0)

∥
∥
∥
Θ

= BγCM(ε)
∞∑

j=0

(1 + ε)j
∥
∥
∥d̂jf(0)

∥
∥
∥
Θ

j∑

n=0

(γ′)−n ρn−j

(j − n)!

≤ BγCM(ε)

∞∑

j=0

(
1 + ε

γ′

)j ∥
∥
∥d̂jf(0)

∥
∥
∥
Θ

j∑

n=0

(
γ′

ρ

)j−n

(j − n)!

≤ BγCM(ε)e(γ′/ρ)
∞∑

j=0

(
1 + ε

γ′

)j ∥
∥
∥d̂jf(0)

∥
∥
∥
Θ

.

Choosing 0 < ε < γ′

A − 1 we obtain

‖Lf‖Θ,1,γ ≤ BγCM(ε)e(γ′/ρ)‖f‖
Θ,

γ′

1+ε

.

Using again (3.2), it follows that there exist constants Kγ > 0 and
γ+ > A such that

‖Lf‖Θ,1,γ ≤ KγBγCM(ε)e(γ′/ρ)‖f‖Θ,1,γ+ .

Hence L
∣
∣
∣Exp1

Θ,0,A(E) is a well-defined continuous linear operator.

Case k > 1: Let f ∈ Exp1
Θ,0,A(E) and γ > A. Then

‖Lf‖Θ,1,γ =
∞∑

n=0

γ−n

(
n

e

)n ∥
∥
∥
∥
1

n!
d̂n(T ∗ f)(0)

∥
∥
∥
∥
Θ

(3.2)
≤ Bγ

∞∑

n=0

(γ′)−n
∥
∥
∥d̂n(T ∗ f)(0)

∥
∥
∥
Θ

≤ BγCM(ε)
∞∑

n=0

(γ′)−n
∞∑

j=0

1

j!
(1 + ε)j+nρ−j

(
j

ke

) j
k

∥
∥
∥d̂j+nf(0)

∥
∥
∥
Θ

≤ BγCM(ε)cδ

∞∑

n=0

(γ′)−n
∞∑

j=0

(1 + ε)j+n

(
δ

1
k

ρ

)j ∥
∥
∥d̂j+nf(0)

∥
∥
∥
Θ

= BγCM(ε)cδ

∞∑

n=0

(γ′)−n
∞∑

j=n

(1 + ε)j

(
δ

1
k

ρ

)j−n ∥
∥
∥d̂jf(0)

∥
∥
∥
Θ

= BγCM(ε)cδ

∞∑

j=0

(1 + ε)j
∥
∥
∥d̂jf(0)

∥
∥
∥
Θ

j∑

n=0

(γ′)−n

(
δ

1
k

ρ

)j−n

= BγCM(ε)cδ

∞∑

j=0

(
1 + ε

γ′

)j ∥
∥
∥d̂jf(0)

∥
∥
∥
Θ

j∑

n=0

(
γ′δ

1
k

ρ

)j−n

.

Taking 0 < ε < γ′

A − 1 and 0 < δ <
(

ρ
γ′

)k

we obtain

‖Lf‖Θ,1,γ ≤ KγBγCM(ε)cδ
ρ

ρ − γ′δ
1
k

‖f‖Θ,1,γ+ . (3.4)
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for some constants Kγ > 0 and γ+ > A. �

Remark 3.14. Since eϕ ∈ Exp1
Θ,0,A(E) whenever ϕ ∈ E′ and ‖ϕ‖ ≤ A/K

where K comes from condition in Definition 2.8(1), the natural way to define
the Fourier-Borel transform on [Exp1

Θ,0,A(E)]′ is FT (ϕ) = T (eϕ), for every
T ∈ [Exp1

Θ,0,A(E)]′ and every ϕ ∈ E′ with ‖ϕ‖ < A/K. With this definition
F is an injective linear operator from [Exp1

Θ,0,A(E)]′ into H(BE′(0;A/K)),
where BE′(0;A/K) denotes the open ball in E′ with center 0 and radius
A/K.

The proof of the following lemma is very similar to the proof of Lemma 3.5
and thus we omit it.

Lemma 3.15. Let A > 0, E be a Banach space with separable dual, and
(PΘ(jE))∞

j=0 be a π1-holomorphy type from E to C. Let f ∈ H(BE′(0;A))
be non constant and B ⊂ C. Suppose that there is ϕ0 ∈ BE′(0;A) such
that f(ϕ0) is an accumulation point of B. Then span{eϕ : ϕ ∈ E′, f(ϕ) ∈
B, ‖ϕ‖ < A} is dense in Exp1

Θ,0,KA(E), where K > 0 comes from Definition
2.8(1).

Now we are able to prove the main result of this section.

Proof of Theorem 3.8. Let k ∈ (1,∞] and L be a nontrivial convolution op-
erator on Expk

Θ,0(E). Defining

αL := inf{‖ϕ‖ : ϕ ∈ E′ with |L(eϕ)(0)| = 1}
it follows from the proof of Theorem 3.3 that αL is finite. Given ε > 0 let
ϕ0 ∈ E′ be such that

αL ≤ ‖ϕ0‖ < αL + ε and |L(eϕ0)(0)| = 1.

Let A = αL + ε. Since Exp1
Θ,0,KA(E) is continuously and densely embedded

in Expk
Θ,0(E), by applying the hypercyclic comparison principle [34, p. 338]

to show Theorem 3.8, it suffices to prove that the restriction L|Exp1
Θ,0,KA(E) :

Exp1
Θ,0,KA(E) → Exp1

Θ,0,KA(E) is frequently hypercyclic. Since eϕ is an
eigenvector of L associated to the eigenvalue L(eϕ)(0), by Theorem 3.4 we
only need to show that for each D ⊂ ∂D such that ∂D \ D is dense in ∂D,
the linear space

span{eϕ : ϕ ∈ E′, ‖ϕ‖ < A, L(eϕ)(0) ∈ ∂D \ D}
is also dense in Exp1

Θ,0,KA(E).
Let T ∈ [Exp1

Θ,0,KA(E)]′ be such that Lf = T ∗ f for every f ∈
Exp1

Θ,0,KA(E). Note that the functional T is the restriction to Exp1
Θ,0,KA(E)

of the functional S defined on Expk
Θ,0(E) and such that Lf = S ∗ f for every

f ∈ Expk
Θ,0(E) (see Theorem 3.12). Moreover, Proposition 3.13 ensures that

the convolution product T ∗ f is well-defined. In particular,

L(eϕ)(0) = (T ∗ eϕ)(0) = T (τ0e
ϕ) = T (eϕ) = FT (ϕ)
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for every ϕ ∈ E′ with ‖ϕ‖ < A. Since L is a nontrivial convolution operator,
it follows from Lemma 3.6 that the holomorphic function FT defined on the
ball BE′(0;A) is non constant.

Finally, let D be a subset of ∂D, such that ∂D \ D is dense in ∂D. Since
FT (ϕ0) = L(eϕ0)(0) ∈ ∂D, we have that FT (ϕ0) is an accumulation point
of ∂D \ D. Therefore, it follows from Lemma 3.15 that

span{eϕ : ϕ ∈ E′, ‖ϕ‖ < A, FT (ϕ) ∈ ∂D \ D}
is dense in Exp1

Θ,0,KA(E). �

As an immediate application of this result, in the particular case of
translation operators on Expk

Θ,0(E), the growth condition of Theorem 3.8
can be rewritten according to Corollary 3.16 (a). The proof is similar to the
proof of [46, Proposition 4.5].

Corollary 3.16. Let k ∈ (1,∞], E be a Banach space with separable dual,
let (PΘ(jE))∞

j=0 be a π1-π2,k-holomorphy type from E to C and τa be the
translation operator by a non-zero vector a on Expk

Θ,0(E). Then

(a) given any ε > 0 there are C > 0 and a entire function f ∈ Expk
Θ,0(E),

which is frequently hypercyclic for τa, satisfying

|f(x)| ≤ Ceε‖x‖ for every x ∈ E,

(b) let ε : R+ → R+ be a function such that lim inf
r→∞ ε(r) = 0 and C > 0.

Then there is no frequently hypercyclic entire function f ∈ Expk
Θ,0(E)

for τa satisfying

|f(x)| ≤ Ceε(‖x‖)‖x‖ for every x ∈ E.

Proof. (a) Observe that τa(eϕ)(0) = eϕ(0−a) = e−ϕ(a), for every ϕ ∈ E′. Thus
ατa

= 0, since |τa(eϕ)(0)| = 1 when ϕ = 0. On the other hand, since τa is
a nontrivial convolution operator, it follows from Theorem 3.8 that, for each
ε > 0 there is a frequently hypercyclic function f ∈ Expk

Θ,0(E) for τa which
satisfies the following growth condition: given δ > 0 there is Cδ > 0 such
that

|f(x)| ≤ Cδe
(K(ατa+

ε
2K )+δ)‖x‖

for every x ∈ E. Taking δ = ε
2 the result follows.

(b) Consider the complex line L := {za : z ∈ C} and the restriction
operator RL : Expk

Θ,0(E) → H(C) given by

RL(g)(z) := g |L(z) = g(za),

for every g ∈ Expk
Θ,0(E) and z ∈ C. In particular,

RL(τag)(z) = τag(za) = g((z − 1)a) = RL(g)(z − 1) = τ1(RL(g))(z)
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for every g ∈ Expk
Θ,0(E) and z ∈ C. Thus, the following diagram is commu-

tative

Expk
Θ,0(E)

τa ��

RL

��

Expk
Θ,0(E)

RL

��
H(C)

τ1
�� H(C)

Since RL(ϕn)(z) = ϕn(za) = ϕn(a)zn for every ϕ ∈ E′, z ∈ C and n ∈ N0,
it follows that RL(ϕn) = ϕn(a)(·)n ∈ H(C) for every n ∈ N0. Therefore,
RL has dense range. Now, assume that the result is false, that is, suppose
that there exists a frequently hypercyclic entire function f for τa such that
|f(x)| ≤ Ceε(‖x‖)‖x‖ for all x ∈ E. Applying the hypercyclic comparison
principle, RL(f) is a frequently hypercyclic entire function for τ1 such that

|RL(f)(z)| = |f(za)| ≤ Ceε(‖za‖)‖za‖, (3.5)

for all z ∈ C. This, however, contradicts [34, Theorem 9.26], since it was
proved that there is no frequently hypercyclic function for the translation
operators on H(C) satisfying (3.5). �

4. Frequently Hypercyclic Subspaces

In this section we will show the existence of a frequently hypercyclic sub-
space of Expk

Θ,0(E) for a given nontrivial convolution operator, that means,
a closed infinite-dimensional subspace of Expk

Θ,0(E) formed, excepted by the
null function, by frequently hypercyclic functions of this given convolution
operator. Our main result is the following theorem:

Theorem 4.1. Let k ∈ (1,∞], E be a Banach space with separable dual,
with dim E > 1, and (PΘ(jE))∞

j=0 be a π1-holomorphy type from E to C.
Then, every nontrivial convolution operator L on Expk

Θ,0(E) has a frequently
hypercyclic subspace.

In 2016, Bayart et al [2] showed that the differentiation operator D on
H(C) (or more generally the operator P (D), where P is a non-constant poly-
nomial) does not have a frequently hypercyclic subspace. Since Exp∞

Θ,0(C) =
H(C), Theorem 4.1 is not valid for k = ∞ and dim E = 1.

The proof of Theorem 4.1 is a slightly modified version of [46, Theorem
4.4]. We need some preliminary results.

Proposition 4.2. ( [34, Remark 9.10]) Let T be a continuous linear operator
on a separable F -space X. Suppose that there exists a dense subset X0 of X
and for any x ∈ X0 there is a sequence (un(x))∞

n=0 in X such that,
1.

∑∞
n=0 Tnx converges unconditionally,

2.
∑∞

n=0 un(x) converges unconditionally,
3. u0(x) = x and Tmun(x) = un−m(x), for every m ≤ n.

Then T is frequently hypercyclic.
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Theorem 4.3. ([46, Theorem 4.3]) Let X be a separable F -space with a con-
tinuous norm, I be the identity operator on X and let T be a continuous
linear operator on X that satisfies the hypothesis of the previous proposi-
tion. If dim ker(T − λI) = ∞ for some scalar λ with |λ| < 1, then T has a
frequently hypercyclic subspace.

The following lemma is very useful to show the main result of this
section, and its proof is based on arguments of [34, Theorems 9.22 and 9.25]
and of the second proof of [12, Theorem 1.3].

Lemma 4.4. Let k ∈ (1,∞], E be a Banach space with separable dual,
(PΘ(jE))∞

j=0 be a π1-holomorphy type from E to C, and let L be a non-
trivial convolution operator on Expk

Θ,0(E). Then:

(a) there are C2-functions En : ∂D → Expk
Θ,0(E), n ∈ N, such that

L(En(λ)) = λEn(λ) for every λ ∈ ∂D;

(b) if B ⊂ ∂D is a Borel subset of ∂D of full Lebesgue measure in ∂D, then

span{En(λ) : λ ∈ B,n ∈ N}
is dense in Expk

Θ,0(E);
(c) if for each j ∈ Z and each n ∈ N, we define

xn,j =
∫

∂D

λjEn(λ)dλ

where the integral is in the sense of Riemann, then the space

X0 := span{xn,j : j ∈ Z, n ∈ N}
is dense in Expk

Θ,0(E);
(d) if for each x =

∑p
l=1 alxnl,jl

∈ X0 and each m ∈ N0 we define

um(x) =
p∑

l=1

alxnl,jl−m,

then the series
∞∑

m=0

Lmx and
∞∑

m=0

um(x)

converge unconditionally for every x ∈ X0.

Proof. (a) Let ϕ0 ∈ E′ with |F [γk
Θ,0(L)](ϕ0)| = 1. Since F [γk

Θ,0(L)] is a non
constant entire function on E′ and since E′ is separable, we can find a
sequence Ln, n ∈ N, of complex lines through ϕ0 on which F [γk

Θ,0(L)]
is non constant and such that

⋃
n∈N

Ln is a dense subset of E′. Thus,
for each n ∈ N, the restriction F [γk

Θ,0(L)]|Ln
belongs to H(C) and it is

an open function. So we can choose non-empty open subarcs βn of ∂D

and C2-functions ψn : βn → Ln such that

F [γk
Θ,0(L)](ψn(λ)) = λ for every λ ∈ βn.
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Now, for each n ∈ N, consider a non-empty open subarc β̃n of βn and a
C2-function fn : ∂D → C being non-zero in β̃n and zero outside of β̃n.
We now define En : ∂D → Expk

Θ,0(E) by

En(λ) = fn(λ)eψn(λ) if λ ∈ βn

and

En(λ) = 0 if λ /∈ βn.

To show that En is a C2-function, it is enough to prove that the map-
ping

eψn : βn → Ln → Expk
Θ,0(E)

is a C2-function. To do this, note that it is enough to show that the
mapping

λ ∈ C → eλϕ ∈ Expk
Θ,0(E),

with ϕ ∈ E′ fixed, is holomorphic. Since eϕ ∈ Expk
Θ,0(E) and d̂j(eϕ)(0) =

ϕj , for every j ∈ N0, we have that

m∑

j=0

1
j!

ϕj → eϕ in Expk
Θ,0(E) (4.1)

and

lim sup
j→∞

(
j

ke

) 1
k

∥
∥
∥
∥

1
j!

ϕj

∥
∥
∥
∥

1
j

Θ

= 0. (4.2)

By (4.1) we have

eλϕ − eλ0ϕ

λ − λ0
− ϕeλ0ϕ =

∞∑

j=1

1
j!

(
λj − λj

0

λ − λ0
− jλj−1

)

ϕj in Expk
Θ,0(E),

for every λ, λ0 ∈ C, with λ 
= λ0. Since

λj − λj
0

λ − λ0
− jλj−1 =

(
λj−1 + λj−2λ0 + λj−3λ2

0 + · · · + λλj−2
0 + λj−1

0

)
− jλj−1,

we have

lim
λ→λ0

(
λj − λj

0

λ − λ0
− jλj−1

)

= jλj−1
0 − jλj−1

0 = 0.
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Thus, for ρ > 0 we have
∥
∥
∥
∥

eλϕ − eλ0ϕ

λ − λ0
− ϕeλ0ϕ

∥
∥
∥
∥

Θ,k,ρ

=

∥
∥
∥
∥
∥
∥

∞∑

j=1

1
j!

(
λj − λj

0

λ − λ0
− jλj−1

)

ϕj

∥
∥
∥
∥
∥
∥

Θ,k,ρ

=
∞∑

j=1

ρ−j

(
j

ke

) j
k

∥
∥
∥
∥
∥

1
j!

(
λj − λj

0

λ − λ0
− jλj−1

)

ϕj

∥
∥
∥
∥
∥

Θ

=
∞∑

j=1

ρ−j

(
j

ke

) j
k

∥
∥
∥
∥

1
j!

ϕj

∥
∥
∥
∥

Θ

∣
∣
∣
∣
∣

λj − λj
0

λ − λ0
− jλj−1

∣
∣
∣
∣
∣
.

Making λ → λ0 we get

eλϕ − eλ0ϕ

λ − λ0
→ ϕeλ0ϕ in Expk

Θ,0(E).

Hence, the function λ ∈ C → eλϕ ∈ Expk
Θ,0(E) is holomorphic and

so each En is a C2-function. Now, if λ ∈ βn then

L(En(λ)) = L(fn(λ)eψn(λ)) = fn(λ)L(eψn(λ))

= fn(λ)F [γk
Θ,0(L)](ψn(λ))eψn(λ) = λEn(λ),

and if λ /∈ βn then L(En(λ)) = 0 = λEn(λ). Therefore

L(En(λ)) = λEn(λ) for every λ ∈ ∂D.

(b) It is not difficult to prove that

span{En(λ) : λ ∈ B,n ∈ N} = span{eϕ : ϕ ∈ ψn(β̃n ∩ B), n ∈ N}.

To show that

span{En(λ) : λ ∈ B,n ∈ N}
is dense in Expk

Θ,0(E), using the Hahn-Banach theorem, it suffices to
prove that if a functional T ∈ [Expk

Θ,0(E)]′ vanishes on span{eϕ : ϕ ∈
ψn(β̃n ∩ B), n ∈ N}, then T is identically zero. Assume that T vanishes
on span{eϕ : ϕ ∈ ψn(β̃n ∩ B), n ∈ N}, then FT (ϕ) = T (eϕ) = 0
for every ϕ ∈ ψn(β̃n ∩ B) and all n ∈ N. Note that ψn(β̃n ∩ B) has an
accumulation point in Ln , since B has full Lebesgue measure. It follows
that the set of the zeros of the entire function

[FT ]|Ln
: z ∈ C → [FT ](ϕ0 + zϕn) ∈ C (for some ϕn ∈ E′)

has an accumulation point in C. Hence [FT ]|Ln
= 0 for every n ∈ N.

Since
⋃

n∈N

Ln is dense in E′, FT = 0, and then T = 0.
(c) Again, we will use the Hahn-Banach theorem. Let T ∈ [Expk

Θ,0(E)]′

such that Txn,j = 0 for every n ∈ N and j ∈ Z. By the linearity and
continuity of T , we have

0 = T (xn,j) =
∫

∂D

λjT (En(λ))dλ =
∫ 2π

0

ieit(j+1)T (En(eit))dt. (4.3)
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On the other hand, for each n ∈ N, the function t ∈ [0, 2π] → T (En(eit))
∈ C is continuous and therefore it belongs to the Hilbert space L2[0, 2π].
Since the set

{
1√
2π

eitj : j ∈ Z

}
is an orthonormal basis for L2[0, 2π], it

follows from (4.3) that the functions t ∈ [0, 2π] → T (En(eit)) ∈ C, n ∈
N, are identically zero, that is, T (En(eit)) = 0 for every t ∈ [0, 2π] and
all n ∈ N. Since span{En(λ) : λ ∈ ∂D, n ∈ N} is dense in Expk

Θ,0(E),
it follows that T is identically zero on Expk

Θ,0(E). Thus X0 is dense in
Expk

Θ,0(E).
(d) By the Riemann-Lebesgue lemma (see [34, Lemma 9.23]) the series

∞∑

m=0

∫ 2π

0

ieit(j+m+1)En(eit)dt and
∞∑

m=0

∫ 2π

0

ieit(j−m+1)En(eit)dt

converge unconditionally for every n ∈ N and j ∈ Z. Since

Lmxn,j =
∫ 2π

0

ieit(j+m+1)En(eit)dt and

um(xn,j) = xn,j−m =
∫ 2π

0

ieit(j−m+1)En(eit)dt,

it follows that the series
∞∑

m=0

Lmxn,j and
∞∑

m=0

um(xn,j)

converge unconditionally for every n ∈ N and j ∈ Z. By the linearity
of Lm and by definition of um, we have that the series

∑∞
m=0 Lmx and∑∞

m=0 um(x) converge unconditionally for every x ∈ X0.
�

Proof of Theorem 4.1. We will apply Theorem 4.3. By Lemma 4.4, every
nontrivial convolution operator L on Expk

Θ,0(E) satisfies the first two condi-
tions of Proposition 4.2. To complete the proof we only need to prove that L
satisfies the following two conditions:

(i) u0(x) = x and Lmun(x) = un−m(x), for every m ≤ n and x ∈ X0.
(ii) dim ker(L − λI) = ∞ for some scalar λ with |λ| < 1.

Here, X0 and un(x) are as in Lemma 4.4. Note that (i) follows immediately
from the fact that

Lmxn,j = xn,j+m for every j ∈ Z and all m,n ∈ N.

On the other hand, given λ ∈ C, let

Z(F [γk
Θ,0(L)] − λ) = {ϕ ∈ E′ : F [γk

Θ,0(L)](ϕ) − λ = 0},

that is, the set of zeros of the complex-valued entire function F [γk
Θ,0(L)]−λ.

Since L(eϕ) = F [γk
Θ,0(L)](ϕ)eϕ for every ϕ ∈ E′, it follows that

ker(L − λI) ⊃ {eϕ : ϕ ∈ Z(F [γk
Θ,0(L)] − λ)}.
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Since {eϕ : ϕ ∈ E′} is a linearly independent set in Expk
Θ,0(E), to show that

dim ker(L − λI) = ∞ for some scalar λ with |λ| < 1, it suffices to prove that
Z(F [γk

Θ,0(L)] − λ) is infinite, for some scalar λ with |λ| < 1. Since

[F [γk
Θ,0(L)]]−1(D) = {ϕ ∈ E′ : |F [γk

Θ,0(L)](ϕ)| < 1}
is non-empty, there exists ϕ0 ∈ E′ such that |F [γk

Θ,0(L)](ϕ0)| < 1. Denoting
λ0 := F [γk

Θ,0(L)](ϕ0), since dim E > 1 and Z(F [γk
Θ,0(L)]−λ0) 
= ∅, it follows

that Z(F [γk
Θ,0(L)] − λ0) is an infinite set. �
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on Fréchet spaces of holomorphic functions. Integr. Equ. Oper. Theory 80,
453–468 (2014)

[47] Nachbin, L.: Lectures on the Theory of Distributions. Universidade de Recife,
Recife (1964)

[48] Nachbin, L.: Topology on Spaces of Holomorphic Mappings. Springer, New
York (1969)

[49] Petersson, H.: Hypercyclic convolution operators on entire functions of Hilbert–
Schmidt holomorphy type. Ann. Math. Blaise Pascal 8, 107–114 (2001)

[50] Petersson, H.: Hypercyclic subspaces for Fréchet space operators. J. Math.
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Universidade Federal de Uberlândia
Uberlândia MGCep: 38.400-902
Brazil
e-mail: vvfavaro@gmail.com

Received: October 24, 2019.

Revised: June 13, 2020.


	Strongly Mixing Convolution Operators on Fréchet Spaces of Entire Functions of a Given Type and Order
	Abstract
	1. Introduction
	2. Preliminaires
	3. Frequently Hypercyclic Convolution Operators on ExpΘ,0k(E)
	3.1. Frequently Hypercyclic Functions in ExpΘ,0,A1(E)

	4. Frequently Hypercyclic Subspaces
	Acknowledgements
	References




