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Schauder Estimates for Equations Associated
with Lévy Generators
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Abstract. We study the regularity of solutions to the integro-differential
equation Af −λf = g associated with the infinitesimal generator A of a
Lévy process. We show that gradient estimates for the transition density
can be used to derive Schauder estimates for f . Our main result allows
us to establish Schauder estimates for a wide class of Lévy generators,
including generators of stable Lévy processes and subordinated Brown-
ian motions. Moreover, we obtain new insights on the (domain of the)
infinitesimal generator of a Lévy process whose characteristic exponent
ψ satisfies Re ψ(ξ) � |ξ|α for large |ξ|. We discuss the optimality of our
results by studying in detail the domain of the infinitesimal generator
of the Cauchy process.
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1. Introduction

Let (Xt)t≥0 be a Lévy process. By the Lévy–Khintchine formula, the infini-
tesimal generator (A,D(A)) of (Xt)t≥0 has the representation

Af(x) = b · ∇f(x) +
1
2

tr(Q · ∇2f(x))

+
∫

y �=0

(
f(x + y) − f(x) − ∇f(x) · y1(0,1)(|y|)) ν(dy)

for smooth compactly supported functions f ∈ C∞
c (Rd) where (b,Q, ν) is

the Lévy triplet of (Xt)t≥0, cf. Sect. 2. In this paper, we study the Hölder
regularity of solutions f ∈ D(A) to the integro-differential equation

Af + �f = g (1)
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for fixed � ∈ R. We are interested in the following question: If g is β-Hölder
continuous for some β ≥ 0, then what can we say about the regularity of f?
In particular: How regular is a function f ∈ D(A)?

For the particular case that A is a second order differential operator, i. e.
ν = 0, the regularity of solutions to (1) is well understood, see e. g. [12], and
therefore our focus is on non-local Lévy generators. An important example
of a non-local Lévy generator is the fractional Laplacian

−(−Δ)α/2f(x) = cd,α

∫
y �=0

(
f(x + y) − f(x)−∇f(x) · y1(0,1)(|y|)) 1

|y|d+α
dy

which is the infinitesimal generator of the isotropic α-stable Lévy process,
α ∈ (0, 2), and which plays an important role in analysis and probability
theory, see e. g. the survey paper [27] for further information. Bass [3] showed
that the solution to −(−Δ)α/2f = g satisfies the Schauder estimate

‖f‖Cα+β
b (Rd) ≤ L

(
‖f‖∞ + ‖g‖Cβ

b (Rd)

)

for β ≥ 0 such that neither β nor α + β are integers. More recently, Ros-
Oton and Serra [29] established Schauder estimates for solutions to (1) for
generators of symmetric stable Lévy processes. Bae and Kassmann [1] intro-
duced generalized Hölder space and studied, in particular, the regularity of
solutions for Lévy operators of the form

Af(x) =
∫

y �=0

(
f(x + y) − f(x) − ∇f(x) · y1(0,1)(|y|)) 1

|y|dϕ(|y|) dy

where ϕ : Rd → (0,∞) is a “nice” function. Furthermore, it is known that
the classical theory for pseudo-differential operators can be used to study the
regularity of solutions to (1) if the characteristic exponent ψ of (Xt)t≥0 is
sufficiently smooth, see [17,37]. Since

ψ ∈ C2n(Rd) ⇐⇒
∫

|y|>1

|y|2n ν(dy) < ∞ ⇐⇒ E(|X1|2n) < ∞, n ∈ N,

cf. [20,30], this approach excludes many interesting examples of Lévy pro-
cesses which do not have moments of sufficiently high order. Let us mention
that the questions, which we discuss in this paper, are also related to the
regularity of harmonic functions: If g = 0 and � = 0 in (1), i. e. Af = 0, then
f is harmonic for A, and there is an extensive literature on the regularity of
functions which are harmonic for a Lévy generator, cf. [13,16,26,38] and the
references therein. The regularity of solutions to elliptic integro-differential
equations Af = g has been studied, more generally, for classes of Lévy-type
operators, see e. g. [1,3,11,17,22], and for non-linear integro-differential op-
erators, greatly influenced by the works of Barles et al. [2] and Caffarelli and
Silvestre [9].

The approach, which we follow in this paper, relies on regularizing prop-
erties of the resolvent Rλ associated with the Lévy process (Xt)t≥0,

Rλh(x) :=
∫
(0,∞)

e−λtEh(x + Xt) dt, λ > 0, h ∈ Bb(Rd), x ∈ Rd.
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The main idea is to use gradient estimates for the transition density pt of Xt

to measure the regularizing effect of Rλ. More precisely, we will show that
the gradient estimate∫

Rd

|∇pt(x)| dx ≤ Mt−1/α, t ∈ (0, T ],

implies that Rλ has a regularizing effect of order α, i. e.

h ∈ Cδ
b (Rd) =⇒ Rλh ∈ Cα+δ

b (Rd)

for any δ ≥ 0, cf. Sect. 2 for the definition of the Hölder–Zygmund spaces
Cγ

b (Rd). As D(A) = Rλ(C∞(Rd)) this gives, in particular, D(A) ⊆ Cα
b (Rd).

Our main result, Theorem 1.1, shows that, more generally, the implication

Af ∈ Cδ
b (Rd) =⇒ f ∈ Cα+δ

b (Rd)

holds for any δ ≥ 0.

1.1. Theorem. Let (Xt)t≥0 be a Lévy process with infinitesimal generator
(A,D(A)) and characteristic exponent ψ : Rd → C satisfying the Hartman–
Wintner condition

lim
|ξ|→∞

Re ψ(ξ)
log(|ξ|) = ∞. (HW)

Assume that there exist constants M > 0, T > 0 and α ∈ (0, 2] such that the
transition density pt of (Xt)t≥0 satisfies∫

Rd

|∇pt(x)| dx ≤ Mt−1/α, t ∈ (0, T ]. (2)

If f ∈ D(A) is such that

Af + �f = g ∈ Cδ
b (Rd)

for some δ ≥ 0 and � ∈ R, then f ∈ Cα+δ
b (Rd) and the Schauder estimate

‖f‖Cα+δ
b (Rd) ≤ L

(‖g‖Cδ
b (R

d) + ‖f‖∞
)

(3)

holds for a constant L = L(�, δ, α,M, d, T ). In particular, D(A) ⊆ Cα
∞(Rd).

1.2. Remark. (i) From the proof of Theorem 1.1 it is possible to obtain an
explicit expression for the constant L in terms of δ, α, M , d and T .

(ii) Condition (2) is equivalent to saying that the associated semigroup
Ptu(x) := Eu(x + Xt) satisfies the gradient estimate

‖∇Ptu‖∞ ≤ M ′t−1/α‖u‖∞, t ∈ (0, T ), u ∈ Bb(Rd),

cf. [24, Lemma 4.1] for details.
(iii) It is no restriction to assume that α ≤ 2. If (2) holds for some α ≥ 0,

then α ≤ 2, cf. Remark 3.2(ii).
(iv) The Hartman–Wintner condition (HW) ensures that Xt has a smooth

density pt for all t > 0, see [19] for a thorough discussion of (HW).
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Gradient estimates for Lévy processes have been intensively studied in
the last years, e. g. [14,18,21,26,35] to mention but a few, and therefore Theo-
rem 1.1 applies to a wide class of Lévy processes. If (Xt)t≥0 is a subordinated
Brownian motion, then it is possible to derive gradient estimates from heat
kernel estimates for the transition density using the dimension walk formula,
cf. [23, Corollary 3.2].

Theorem 1.1 will be proved in Sects. 3 and 4 we will illustrate Theo-
rem 1.1 with some examples and applications. In particular, we will present
Schauder estimates for elliptic equations Af + �f = g associated with gener-
ators of continuous Lévy processes, stable Lévy processes and subordinated
Brownian motions. Moreover, we will study in detail the infinitesimal gen-
erator (A,D(A)) of a Lévy process whose characteristic exponent ψ satisfies
the sector condition, | Im ψ(ξ)| ≤ c|Re ψ(ξ)|, and

Re ψ(ξ) � |ξ|α as |ξ| → ∞;

combining Theorem 1.1 with results from [25,35] we will show that

Cα+
∞ (Rd) :=

⋃
β>α

Cβ
∞(Rd) ⊆ D(A) ⊆ Cα

∞(Rd), (4)

and this, in turn, will allow us to prove that D(A) is an algebra, that is
f · g ∈ D(A) for any f, g ∈ D(A), and that

A(f · g) = g · Af + f · Ag + Γ(f, g), f, g ∈ D(A)

where Γ is the Carré du Champ operator, cf. Theorem 4.3. It is natural to ask
whether the inclusions in (4) are strict and whether (4) is the optimal way to
describe D(A) in terms of Hölder spaces. In Sect. 5 we will investigate these
questions for the case α = 1, which is of particular interest since there is no
canonical way to define the Hölder space C1(Rd). We will show for the two-
dimensional Cauchy process that (4) (with α = 1) is indeed the best possible
way to describe the domain in terms of Hölder spaces and, moreover, we will
see that the inclusions are strict.

2. Basic Definitions and Notation

We consider the d-dimensional Euclidean space Rd with the canonical scalar
product x · y :=

∑d
j=1 xjyj and the Borel σ-algebra B(Rd) generated by

the open balls B(x, r). For functions f, g : Rd → (0,∞) we write f � g as
|x| → ∞ if there exist constants c > 0 and R > 0 such that

1
c
f(x) ≤ g(x) ≤ cf(x) for all |x| ≥ R.

If f is a real-valued function, then supp f denotes its support, ∇f the gradient
and ∇2f the Hessian of f . For α ≥ 0 we set


α� := max{k ∈ N0; k ≤ α} and �α� := max{k ∈ N0; k < α}. (5)

Function spaces Bb(Rd) is the space of bounded Borel-measurable functions
f : Rd → R. The smooth functions with compact support are denoted by
C∞

c (Rd), and C∞(Rd) is the space of continuous functions f : Rd → R
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vanishing at infinity. Superscripts k ∈ N are used to denote the order of
differentiability, e. g. f ∈ Ck

∞(Rd) means that f and its derivatives up to
order k are C∞(Rd)-functions. For α ≥ 0 we define Hölder–Zygmund spaces
Cα

b (Rd) by

Cα
b (Rd) :=

{
f ∈ Cb(R

d); ‖f‖Cα
b (Rd) := ‖f‖∞ + sup

x∈Rd,h�=0

|Δ�α�+1
h f(x)|

|h|α < ∞
}

(6)

where

Δhf(x) := f(x + h) − f(x) Δj
hf(x) := Δh(Δj−1

h f)(x), j ≥ 2

are iterated difference operators. Moreover, we set

Cα
∞(Rd) := Cα

b (Rd) ∩ C�α�
∞ (Rd) and Cα+

∞ (Rd) :=
⋃
ε>0

Cα+ε
∞ (Rd). (7)

For α ∈ (0,∞)\N the Hölder space Cα
b (Rd) coincides with the “classical”

Hölder space Cα
b (Rd) equipped with norm

‖f‖Cα
b (Rd) := ‖f‖∞ +

�α�∑
j=0

∑
β∈Nd

0
|β|=j

‖∂βf‖∞ + max
β∈Nd

0
|β|=�α�

sup
x�=y

|∂βf(x) − ∂βf(y)|
|x − y|α−�α� .

If α ∈ N is an integer, then the Hölder–Zygmund space Cα
b (Rd) is strictly

larger than Cα
b (Rd). For α = 1 it is possible to show that C1

b (Rd) is strictly
larger than the space of bounded Lipschitz continuous functions, cf. [36,
p. 148], which is, in turn, strictly larger than C1

b (Rd). By [39, Theorem
2.7.2.2], it holds for all α > 0 that

‖f‖Cα
b (Rd) � ‖f‖C�

b(R
d) +

∑
β∈Nd

0
|β|≤	

sup
x∈Rd

0<|h|<δ

|Δk
h∂β

xf(x)|
|h|α−	

(8)

for any δ ∈ (0,∞] and k, 
 ∈ N0 such that 
 < α and 
 + k > α. We will use
the following result from interpolation theory. If T : Cb(Rd) → Cb(Rd) is a
linear operator such that

‖T‖
C

α1
b →Cβ1

b
< ∞ and ‖T‖

C
α2
b →Cβ2

b
< ∞

for some constants αi ≥ 0, βi ≥ 0 where

‖T‖X→Y := inf{c > 0;∀f ∈ Y, ‖f‖Y ≤ 1 : ‖Tf‖X ≤ c},

then

‖T‖Cλα1+(1−λ)α2
b →Cλβ1+(1−λ)β2

b

≤ ‖T‖λ

C
α1
b →Cβ1

b

‖T‖1−λ

C
α2
b →Cβ2

b

(9)

for all λ ∈ (0, 1); this inequality follows from the interpolation theorem, see
e. g. [39, Sect. 1.3.3] or [28, Theorem 1.6], and the fact that Cλα

b (Rd) is the
real interpolation space (Cb(Rd), Cα

b (Rd)λ,∞, cf. [39, Theorem 2.7.2.1].
Lévy processes Throughout, (Ω,A,P) is a probability space. A stochastic
process Xt : Ω → Rd is a (d-dimensional) Lévy process if X0 = 0 almost
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surely, (Xt)t≥0 has independent and stationary increments and t �→ Xt(ω)
is right-continuous with finite left-hand limits for almost all ω ∈ Ω. By the
Lévy–Khintchine formula, any Lévy process is uniquely determined in distri-
bution by its characteristic exponent ψ : Rd → C through the relation

E exp(iξXt) = exp(−tψ(ξ)), t ≥ 0, ξ ∈ Rd.

The characteristic exponent ψ has the Lévy–Khintchine representation

ψ(ξ) = −ib · ξ +
1
2
ξ · Qξ +

∫
y �=0

(
1 − eiy·ξ + iy · ξ1(0,1)(|y|)) ν(dy), ξ ∈ Rd,

where (b,Q, ν) is the Lévy triplet consisting of a vector b ∈ Rd (drift vec-
tor), a symmetric positive semi-definite matrix Q ∈ Rd×d (diffusion ma-
trix) and a measure ν on Rd\{0} which satisfies the integrability condition∫

y �=0
min{1, |y|2} ν(dy) < ∞, the so-called Lévy measure. If the character-

istic exponent ψ of a Lévy process (Xt)t≥0 satisfies the Hartman–Wintner
condition

lim
|ξ|→∞

Re ψ(ξ)
log(|ξ|) = ∞,

then Xt has a density pt with respect to Lebesgue measure for any t > 0 and
pt has bounded derivatives of arbitrary order; we refer to [19] for a detailed
discussion.

It follows from the independence and stationarity of the increments
that any Lévy process (Xt)t≥0 is a time-homogeneous Markov process, i. e.
Ptf(x) := Ef(x + Xt) defines a Markov semigroup. We denote by (A,D(A))
the infinitesimal generator associated with (Xt)t≥0,

D(A) :=
{

f ∈ C∞(Rd);∃g ∈ C∞(Rd) : lim
t→0

∥∥∥∥Ptf − f

t
− g

∥∥∥∥
∞

= 0
}

,

Af := lim
t→0

Ptf − f

t
, f ∈ D(A).

It is well-known that C∞
c (Rd) is contained in D(A) and that

Af(x) = b · ∇f(x) +
1
2

tr(Q · ∇2f(x))

+
∫

y �=0

(
f(x + y) − f(x) − ∇f(x) · y1(0,1)(|y|)) ν(dy)

for any f ∈ C∞
c (Rd), see e. g. [30, Theorem 31.5]; here (b,Q, ν) denotes the

Lévy triplet of (Xt)t≥0. Moreover, the resolvent

Rλf(x) :=
∫
(0,∞)

e−λtPtf(x) dt, f ∈ Bb(Rd), λ > 0, x ∈ Rd,

satisfies Rλ(C∞(Rd)) = D(A) for any λ > 0. Our standard reference for Lévy
processes is the monograph [30] by Sato.
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3. Proof of Theorem 1.1

The first two results in this section prepare the proof of Theorem 1.1 but are
of independent interest.

3.1. Proposition. Let (Xt)t≥0 be a Lévy process with resolvent (Rλ)λ>0 and
infinitesimal generator (A,D(A)). Assume that the Hartman–Wintner con-
dition (HW) holds. If the transition density pt satisfies∫

Rd

|∂xj
pt(x)| dx ≤ Memtt−1/α, t > 0, j ∈ {1, . . . , d}, (10)

for some constants M > 0, m ≥ 0, and α ∈ (0, 2], then each of the following
statements hold true.

(i) Rλ(Bb(Rd)) ⊆ Cα
b (Rd) for any λ ≥ 3m and

‖Rλf‖Cα
b (Rd) ≤ K‖f‖∞, f ∈ Bb(Rd) (11)

for a constant K = K(m,α, d, λ,M).
(ii) If α > 1 then Rλ(C∞(Rd)) ⊆ C1

∞(Rd) for any λ > m.
(iii) D(A) ⊆ Cα

∞(Rd).

Proof of Proposition 3.1. (i) It was shown in [24, Lemma 4.1] that (10) im-
plies ∫

Rd

|∂xi
∂xj

p2t(x)| dx ≤ c(t)2 for all t > 0, i, j = 1, . . . , d (12)

where c(t) := Memtt−1/α. For the readers’ convenience we briefly explain the
idea of the proof. By the Chapman–Kolmogorov equation, we have

p2t(x) =
∫
Rd

pt(x − y)pt(y) dy,

and so

∂xi
p2t(x) =

∫
Rd

pt(y)∂xi
pt(x − y) dy =

∫
Rd

pt(x − z)∂xi
pt(z) dz (13)

which implies

∂xj
∂xi

p2t(x) =
∫
Rd

(
∂xj

pt(x − z)
)(

∂xi
pt(z)

)
dz.

Applying Tonelli’s theorem we conclude that∫
Rd

|∂xi
∂xj

p2t(x)| dx ≤
(∫

Rd

|∂xi
pt(z)| dz

) (∫
Rd

|∂xj
pt(z)| dz

)
≤ c(t)2,

and this proves (12). Iterating the procedure, we get∫
Rd

|∂β
x pt(x)| dx ≤ c(t)|β| for all β ∈ Nd

0. (14)

Now fix f ∈ Bb(Rd), λ ≥ 3m and x, h ∈ Rd. Since

Rλf(z) =
∫
(0,∞)

∫
Rd

e−λtf(y)pt(y − z) dy dt



10 Page 8 of 21 F. Kühn IEOT

we have

|Rλf(x + 3h) + 3Rλf(x + h) − 3Rλf(x + 2h) − Rλf(x)| ≤ I1 + I2

where

I1 :=

∣∣∣∣∣
∫

t≤|h|α

∫
Rd

e−λtf(y)q(t, y) dy dt

∣∣∣∣∣
I2 :=

∣∣∣∣∣
∫

t>|h|α

∫
Rd

e−λtf(y)q(t, y) dy dt

∣∣∣∣∣
with

q(t, y) := (pt(y − x − 3h) + 3pt(y − x − h) − 3pt(y − x − 2h) − pt(y − x).

Using
∫
Rd |pt(z + y)| dy = 1 it follows from the triangle inequality that

I1 ≤ 8‖f‖∞ sup
z∈Rd

∫
Rd

|pt(z + y)| dy

∫ |h|α

0

dt = 8|h|α‖f‖∞.

To estimate I2 we note that, by the multivariate version of Taylor’s theorem,

|q(t, y)| ≤ C|h|3
3∑

i=1

∑
|β|=3

∫ 1

0

|∂β
x pt(y − x − irh)| dr

for an absolute constant C > 0. Applying Tonelli’s theorem and using (14)
we get

I2 ≤ Cd3|h|3‖f‖∞ max
|β|=3

3∑
i=1

∫
t>|h|α

e−λt

∫ 1

0

∫
Rd

|∂β
x pt(y − x − irh)| dy dr dt

≤ Cd3M3|h|3‖f‖∞
∫

t>|h|α
e(3m−λ)tt−3/α dt

As λ ≥ 3m and α ∈ (0, 2] this implies

I2 ≤ Cd3M3|h|3‖f‖∞
∫

t>|h|α
t−3/α dt = Cd3M3 α

3 − α
‖f‖∞|h|α.

Consequently, we have shown that

|Rλf(x + 3h) + 3Rλf(x + h) − 3Rλf(x + 2h) − Rλf(x)| ≤ C ′|h|α

for all x, h ∈ Rd, and by (8) this proves (11).
(ii) If α > 1 then a straight-forward application of the differentiation lemma
for parametrized integrals, see e. g. [32, Theorem 12.5] or [24, Proposition A.1],
shows that

∂xj
Rλf(x) = −

∫
(0,∞)

∫
Rd

e−λtf(y)∂xj
pt(y − x) dy dt

for f ∈ Bb(Rd), λ > m and j ∈ {1, . . . , d}. Since this clearly implies that

∂xj
Rλf(x) = −

∫
(0,∞)

∫
Rd

e−λtf(x + y)∂xj
pt(y) dy dt,
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the dominated convergence theorem entails that lim|x|→∞ |∂xj
Rλf(x)| = 0

for any f ∈ C∞(Rd).
(iii) Since Rλ(C∞(Rd)) = D(A) for any λ > 0, the assertion is obvious from
(i) and (ii). �

3.2. Remark. (i) If there are constants M > 0, T > 0 and α ∈ (0, 2] such
that∫

Rd

|∂xi
pt(x)| dx ≤ Mt−1/α, t ∈ (0, T ], i ∈ {1, . . . , d}, (15)

then there exists m ≥ 0 such that (10) holds. Indeed: Fix t ∈ (0, T ) and
i ∈ {1, . . . , d}. It follows from (13) that∫

Rd

|∂xi
p2t(x)| dx ≤

∫
Rd

|∂xi
pt(z)|

(∫
Rd

|pt(x − z)| dx

)
dz

=
∫
Rd

|∂xi
pt(z)| dz ≤ c(t) := Mt−1/α,

which gives∫
Rd

|∂xi
ps(x)| dx ≤ c(s/2) = M21/αs−1/α for all s ∈ [T, 2T ).

By iteration we find that∫
Rd

|∂xi
ps(x)| dx ≤ M(21/α)ks−1/α for all s ∈ [2k−1T, 2kT ), k ∈ N.

Hence, (10) holds for m := log(21/(αT )).
(ii) If (15) holds for some α ≥ 0, then α ≤ 2. Indeed: The Fourier transform

of x �→ ∂xj
pt(x) equals iξje

−tψ(ξ), and therefore

sup
ξ∈Rd

|ξje
−tψ(ξ)| ≤ ‖∂xj

pt‖L1 =
∫
Rd

|∂xj
pt(x)| dx.

Since the characteristic exponent ψ satisfies |ψ(ξ)| ≤ c(1+ |ξ|2), ξ ∈ Rd,
for some constant c > 0 this gives∫

Rd

|∂xj
pt(x)| dx ≥ sup

ξ∈Rd

|ξje
−ct(1+|ξ|2) ≥ c′t−1/2.

In Proposition 3.1 we have seen that Rλf ∈ Cα
b (Rd) for f ∈ Cb(Rd).

Our next result, Corollary 3.3, shows that, more generally,

f ∈ Cβ
b (Rd) =⇒ Rλf ∈ Cα+β

b (Rd)

for any β ≥ 0.

3.3. Corollary. Let (Xt)t≥0 be a Lévy process with resolvent (Rλ)λ>0 and
infinitesimal generator (A,D(A)) such that its characteristic exponent ψ sat-
isfies the Hartman–Wintner condition (HW). If there exist constants M > 0,
m ≥ 0 and α ∈ (0, 2] such that the transition density pt satisfies∫

Rd

|∂xi
pt(x)| dx ≤ Memtt−1/α, t > 0, i ∈ {1, . . . , d},
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then there exists for any k ∈ N a constant K = K(d,M,α, λ, k) > 0 such
that

‖Rλf‖Cα+β
b (Rd) ≤ K‖f‖Cβ

b (Rd) for all f ∈ Cβ
b (Rd), β ∈ (0, k), λ ≥ 3m.

(16)

Proof. Fix λ ≥ 3m and k ∈ N, and let f ∈ Ck
b (Rd). Since

Rλf(x) =
∫
(0,∞)

∫
Rd

e−λtf(x + y)pt(y) dy dt, x ∈ Rd

it follows from an application of the differentiation lemma for parametrized
integrals that

∂γ
xRλf(x) =

∫
(0,∞)

∫
Rd

e−λt∂γ
xf(x + y)pt(y) dy dt = Rλ(∂γ

xf)(x) (17)

for any multi-index γ ∈ Nd
0 with |γ| :=

∑d
i=1 γi ≤ k. By Proposition 3.1,

there exists a constant K > 0 such that

‖∂γRλf‖Cα
b (Rd) = ‖Rλ(∂γf)(x)‖Cα

b (Rd) ≤ K‖∂γf‖∞,

and so, by (8),

‖Rλf‖Cα+k
b (Rd) ≤ cK‖f‖Ck

b (Rd) for all f ∈ Ck
b (Rd)

for some constant c = c(k) ≥ 1. On the other hand, Proposition 3.1 shows
that

‖Rλh‖Cα
b (Rd) ≤ K‖h‖Cb(Rd) for all h ∈ Cb(Rd).

Applying the interpolation theorem, cf. (9), we thus find that

‖Rλh‖Cα+β
b (Rd) ≤ cK‖h‖Cβ

b (Rd), h ∈ Cβ
b (Rd)

for any β ∈ (0, k). �

A close look at the proof of Corollary 3.3 shows that Rλf ∈ C
�β�+�α�
∞ (Rd)

for any f ∈ Cβ
∞(Rd), cf. (5) for the definition of �α� and �β�; this is a conse-

quence of (17) and Proposition 3.1(ii).
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let f ∈ D(A) be such that Af + �f = g ∈ Cδ
b (Rd) for

some δ ≥ 0 and � ∈ R. It follows from (2) and Remark 3.2(i) that pt satisfies
(10) for some m ≥ 0, and we set λ := 3m+1. Since D(A) = Rλ(C∞(Rd)) there
is h ∈ C∞(Rd) such that f = Rλh. As Af+�f = g we have ARλh+�Rλh = g,
and using that (λ id −A)Rλh = h this gives

h = (λ + �)Rλh − g. (18)

We claim that for any k ∈ N0 there exists a constant ck > 0 (not depending
on f , g) such that

h ∈ Cδ∧(kα)
b (Rd) and ‖h‖Cδ∧(kα)

b (Rd)
≤ ck

(
‖g‖Cδ

b (R
d) + ‖h‖∞

)
; (19)

we prove (19) by induction. For k = 0 the assertion is obvious as h ∈ Cb(Rd)
and ‖λRλh‖∞ ≤ ‖h‖∞. Now suppose that (19) holds for some k ∈ N0. It
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follows from Corollary 3.3 (with β = δ ∧ (αk)) that Rλh ∈ Cα+(δ∧(αk))
b (Rd)

and

‖Rλh‖Cα+(δ∧(αk))
b (Rd)

≤ K‖h‖Cδ∧(kα)
b (Rd)

.

Since, by assumption, g ∈ Cδ
b (Rd) we find from (18) that h ∈ C((k+1)α)∧δ

b (Rd)
and

‖h‖Cδ∧((k+1)α)
b (Rd)

≤ ‖g‖Cδ
b (R

d) + |λ + �| ‖Rλh‖Cα+(δ∧(αk))
b (Rd)

≤ ‖g‖Cδ
b (R

d) + K|λ + �| ‖h‖Cδ∧(kα)
b (Rd)

≤ ‖g‖Cδ
b (R

d) + K|λ + �|ck

(
‖g‖Cδ

b (R
d) + ‖h‖∞

)
,

i.e. (19) holds for k + 1. We conclude that (19) holds for any k ∈ N0. If we
choose k ∈ N sufficiently large such that kα ≥ δ, then we find in particular
h ∈ Cδ

b (Rd). Applying once more Corollary 3.3 we obtain that

‖Rλh‖Cα+δ
b (Rd) ≤ K‖h‖Cδ

b (R
d) ≤ Kck

(‖g‖Cδ
b (R

d) + ‖h‖∞
)
.

Finally we note that h = (λ id −A)f implies

‖h‖∞ ≤ λ‖f‖∞ + ‖Af‖∞ = λ‖f‖∞ + ‖g‖∞,

and therefore we conclude that

‖f‖Cα+δ
b (Rd) = ‖Rλh‖Cα+δ

b (Rd) ≤ L
(‖g‖Cδ

b (R
d) + ‖f‖∞

)
. �

4. Examples

In this section we illustrate Theorem 1.1 with some examples and
applications.

Applying Theorem 1.1 to Lévy processes with continuous sample paths,
we recover a classical result, see e. g. [12], on the regularity of the solutions
to the second order elliptic differential equation

�f(x) +
d∑

j=1

bj∂xj
f(x) +

1
2

d∑
i=1

d∑
j=1

qij∂xi
∂xj

f(x) = g(x).

4.1. Example. Let (Bt)t≥0 be a d-dimensional Brownian motion, b ∈ Rd,
and let Q ∈ Rd×d be a symmetric positive definite matrix. The infinitesimal
generator (A,D(A)) of the Lévy process Xt := bt + Q · Bt satisfies

Af(x) = b · ∇f(x) +
1
2

tr(Q · ∇2f(x)), f ∈ C2
∞(Rd),

and has the following properties:
(i) D(A) ⊆ C2

∞(Rd),
(ii) If Af + �f = g ∈ Cδ

b (Rd) for some δ ≥ 0 and � ∈ R, then f ∈ C2+δ
b (Rd).

Moreover, there exists a finite constant L = L(d, δ, �) > 0 such that

‖f‖Cδ+2
b (Rd) ≤ L

(
‖Af‖Cδ

b (R
d) + ‖f‖∞

)
, f ∈ D(A).
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For the definition of the Hölder spaces Cα
∞(Rd) and Cα

b (Rd) we refer the
reader to Sect. 2. Since there is a closed formula for the transition density pt

of Xt – which is of course of Gaussian type – it can be easily verified that
the assumptions of Theorem 1.1 are satisfied for α = 2, and this proves the
assertion of Example 4.1.

Our next result applies to a large class of Lévy processes, including
stable Lévy processes.

4.2. Example. Let (Lt)t≥0 be a pure-jump Lévy process with infinitesimal
generator (A,D(A)). Assume that its Lévy measure ν satisfies

ν(A) ≥
∫ r0

0

∫
Sd−1

1A(rθ)r−1−α μ(dθ) dr

+
∫ ∞

r0

∫
Sd−1

1A(rθ)r−1−β μ(dθ) dr, A ∈ B(Rd\{0})

for some constants α ∈ (0, 2), β ∈ (0,∞] and a finite measure μ on the unit
sphere Sd−1 ⊆ Rd which is non-degenerate, in the sense that its support is
not contained in Sd−1 ∩ V where V ⊆ Rd is a lower-dimensional subspace.
Then:

(i) D(A) ⊆ Cα
∞(Rd),

(ii) If f ∈ D(A) is such that Af + �f = g ∈ Cδ
b (Rd) for some δ ≥ 0 and

� ∈ R, then f ∈ Cα+δ
b (Rd). Moreover, there exists for any δ ≥ 0 a finite

constant L = L(α, β, μ, d, δ, �) such that

‖f‖Cα+δ
b (Rd) ≤ L

(
‖Af‖Cδ

b (R
d) + ‖f‖∞

)
, f ∈ D(A).

Example 4.2 is a direct consequence of Theorem 1.1, Remark 1.2(ii) and
[35, Example 1.5].

The remaining part of this section is devoted to Lévy processes whose
characteristic exponent ψ satisfies

Re ψ(ξ) � |ξ|α as |ξ| → ∞
for some α ∈ (0, 2). This class of Lévy processes covers many important and
interesting examples, e. g.

• isotropic stable, relativistic stable and tempered stable Lévy processes,
• subordinated Brownian motions with characteristic exponent of the

form ψ(ξ) = f(|ξ|2) for a Bernstein function f satisfying f(λ) � λα/2

for large λ, cf. [34] for details.
• Lévy processes with symbol of the form

ψ(ξ) = |ξ|α + |ξ|β , ξ ∈ Rd,

for β ∈ (0, α).

4.3. Theorem. Let (Xt)t≥0 be a Lévy process with infinitesimal generator
(A,D(A)). If the characteristic exponent ψ satisfies the sector condition,
| Im ψ(ξ)| ≤ cRe ψ(ξ), and

Re ψ(ξ) � |ξ|α as |ξ| → ∞ (20)

for some α ∈ (0, 2), then:
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(i) Cα+
∞ (Rd) :=

⋃
β>α Cβ

∞(Rd) ⊆ D(A) ⊆ Cα
∞(Rd).

(ii) If f ∈ D(A) is such that Af + �f ∈ Cδ
b (Rd) for some δ ≥ 0 and � ∈ R,

then f ∈ Cα+δ
b (Rd) and

‖f‖Cα+δ
b (Rd) ≤ L

(
‖Af‖Cδ

b (R
d) + ‖f‖∞

)
, f ∈ D(A).

for some constant L = L(δ, �, α).
(iii) D(A) is an algebra, i. e. f, g ∈ D(A) implies f · g ∈ D(A), and

A(f · g)(x) = f(x)Ag(x) + g(x)Af(x) + Γ(f, g)(x) (21)

for any f, g ∈ D(A) where

Γ(f, g)(x) :=
∫

y �=0

(
f(x + y) − f(x)

)(
g(x + y) − g(x)

)
ν(dy) (22)

is the Carré du Champ operator, cf. Remark (iii); here ν denotes the
Lévy measure of (Xt)t≥0.

Part (i) and (ii) of Theorem 4.3 follow by combining Theorem 1.1 with
results obtained in [25,35]. The main part of the proof is concerned with part
(iii); they key point is to prove that

lim
t→0

E ([f(x + Xt) − f(x)] · [g(x + Xt) − g(x)])
t

= Γ(f, g)(x), f, g ∈ D(A),

and for this the information on the regularity of f, g ∈ D(A) (i.e. part (i))
plays the crucial role; in particular, it allows us to show that the integral on
the right-hand side of (22) is well-defined.

4.4. Remark. (i) The proof of Theorem 4.3(iii) shows the following slightly
more general statement: Let (Xt)t≥0 be a Lévy process with generator
(A,D(A)) and characteristic exponent ψ satisfying

lim sup
|ξ|→∞

|ψ(ξ)|
|ξ|α < ∞

for some α ∈ (0, 2). Let f, g ∈ D(A) be such that

|f(x + y) − f(x)| ≤ C1|y|β1 and |g(x + y) − g(x)| ≤ C2|y|β2

for all x ∈ Rd and |y| ≤ 1. If β1 + β2 > α then f · g ∈ D(A) and (21)
holds.

(ii) Theorem 4.3 can be used to prove inclusions of the form D(A) ⊆ D(L)
for Lévy generators A and L. More precisely, if (Xt)t≥0 and (Yt)t≥0

are Lévy processes with characteristic exponent ψ and ψ̃, respectively,
which both satisfy the sector condition and

Re ψ(ξ) � |ξ|α and Re ψ̃(ξ) � |ξ|β as |ξ| → ∞
for α < β, then Theorem 4.3 shows that the domain of the genera-
tor of (Yt)t≥0 is contained in the domain of the generator of (Xt)t≥0.
For instance, the domain D(A(α)) of the generator associated with the
isotropic α-stable Lévy process, α ∈ (0, 2], satisfies D(A(β)) ⊆ D(A(α))
for α < β; this is a well-known result which can be, for instance, also
proved using subordination, cf. [34, Theorem 13.6].
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(iii) In contrast to other authors, we consider the Carré du champ operator
Γ as an operator on C∞(Rd) and not on L2(dx). For further information
on the Carré du champ operator we refer the reader to [8,10].

Proof of Theorem 4.3. Under the growth condition (20) it is shown in [35]
that the semigroup Ptf(x) := Ef(x + Xt) satisfies the gradient estimate

‖∇Ptf‖∞ ≤ ct−1/α‖f‖∞, t ∈ (0, 1], f ∈ Bb(Rd)

for some absolute constant c > 0. Since this implies
∫ |∇pt(x)| dx ≤ c′t−1/α,

cf. Remark 1.2(ii), Theorem 1.1 gives (ii) and D(A) ⊆ Cα
∞(Rd). To prove

Cβ
∞(Rd) ⊆ D(A), β > α, we need some properties of the Lévy triplet (b,Q, ν)

which are consequences of the growth condition (20) and the sector condition.
As α < 2 it follows from [25, Lemma A.3] that Q = 0 and [25, Lemma A.3]
also shows b =

∫
|y|<1

y ν(dy) if α < 1. Moreover,
∫
0<|y|<1

|y|β ν(dy) < ∞ for all β > α, (23)

see e. g. [5,31] or [25, Lemma A.2] for a detailed proof. By [25, Theorem 4.1],
these properties of the Lévy triplet imply that Cβ

∞(Rd) ⊆ D(A) for β > α.
It remains to prove (iii). Let f, g ∈ D(A) and fix x ∈ Rd. We will first show
that

lim
t→0

E([f(x + Xt) − f(x)] · [g(x + Xt) − g(x)])
t

= Γ(f, g)(x) (24)

with Γ(f, g)(x) defined in (22). Pick a truncation function χ ∈ C∞
c (Rd),

1B(0,1) ≤ χ ≤ 1B(0,2) and set χε(y) := χ(ε−1y). Since the function

y �→ (1 − χε(y))(f(x + y) − f(x))(g(x + y) − g(x))

is continuous and equal to zero in a neighbourhood of x, the weak convergence
t−1P(Xt ∈ ·) → ν(·) as t → 0, cf. [30, Corollary 8.9] or [25, Corollary 3.3],
yields

lim
t→0

E
(
(1 − χε(Xt))(f(x + Xt) − f(x))(g(x + Xt) − g(x))

)
t

=
∫

y �=0

(1 − χε(y))(f(x + y) − f(x))(g(x + y) − g(x)) ν(dy).

By (i), we have f, g ∈ D(A) ⊆ Cα
∞(Rd) and so

|(f(x + y) − f(x)) (g(x + y) − g(x))| ≤ C min{|y|2(α∧1), 1}, x, y ∈ Rd;
(�)

using (23) a straight-forward application of the dominated convergence the-
orem now shows that the right-hand side of the previous equation converges
to Γ(f, g)(x) as ε → 0. On the other hand, suppχε ⊆ B(0, 2ε) and (�) give∣∣E(

χε(Xt)(f(x + Xt) − f(x))(g(x + Xt) − g(x))
)∣∣

≤ E
(
|Xt|2(α∧1)1{|Xt|≤2ε}

)
=

∫
(0,2ε)

P
(
|Xt|2(α∧1) ≥ r

)
dr.
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Applying the maximal inequality, see e. g. [7, Corollary 5.2], and invoking the
growth condition (20) we thus find

∣∣E(
χε(Xt)(f(Xt) − f(x))(g(Xt) − g(x))

)∣∣ ≤ ct

∫ 2ε

0

sup
|ξ|≤r−1/2(α∧1)

|ψ(ξ)| dr

≤ c′t
∫ 2ε

0

r−α/2(α∧1) dr

for absolute constants c, c′ > 0. As
∫ 1

0
r−α/2(α∧1) dr < ∞ an application of

the monotone convergence theorem yields

lim sup
ε→0

lim sup
t→0

∣∣E(
χε(Xt)(f(Xt) − f(x))(g(Xt) − g(x))

)∣∣
t

= 0,

and combining this with the earlier consideration, this proves (24). Now let
f, g ∈ D(A) and fix x ∈ Rd. Clearly,

E (f(x + Xt)g(x + Xt)) − f(x)g(x)

= f(x)E(g(x + Xt) − g(x)) + g(x)E(f(x + Xt) − f(x))

+ E ((f(x + Xt) − f(x))(g(x + Xt) − g(x))).

Dividing both sides by t and letting t to 0 we obtain from (24) and the very
definition of the generator A that

L(f · g)(x) := lim
t→0

1
t

[E (f(x + Xt)g(x + Xt)) − f(x)g(x)]

= f(x)Ag(x) + g(x)Af(x) + Γ(f, g)(x).

Using the estimate (�) it follows from the dominated convergence theorem
that Γ(f, g) ∈ C∞(Rd), and, hence, L(f · g) ∈ C∞(Rd). This implies that
f · g ∈ D(A) and A(f · g) = L(f · g), see e. g. [7, Theorem 1.33]. �

5. Domain of the Infinitesimal Generator of Two-Dimensional
Cauchy Process

Let (Xt)t≥0 be an isotropic α-stable Lévy process, α ∈ (0, 2). It follows from
Theorem 4.3(i) that the domain D(A) of the infinitesimal generator of (Xt)t≥0

satisfies

Cα+
∞ (Rd) :=

⋃
β>α

Cβ
∞(Rd) ⊆ D(A) ⊆ Cα

∞(Rd).

In this section we investigate whether this is the optimal way to describe
D(A) in terms of Hölder spaces and whether the inclusions are strict. The
case α = 1 is particularly interesting since there are several functions spaces
which are possible candidates to describe the domain:

• the space of Lipschitz continuous functions Lip(Rd) vanishing at infinity,
• the space C1

∞(Rd) of differentiable functions vanishing at infinity,
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• the Zygmund space C1
∞(Rd) of functions f vanishing at infinity and

satisfying

|Δ2
hf(x)| = |f(x + h) + f(x − h) − 2f(x)| ≤ C|h|, x, h ∈ Rd,

for some constant C > 0, see (6).
We will show that the domain D(A) of the generator of the two-dimensional
Cauchy process has the following properties:

• There exists a function f ∈ C1
∞(R2) which is not in D(A), cf. Proposi-

tion 5.1.
• There exists a function f ∈ D(A) which is not Lipschitz continuous, cf.

Theorem 5.2.
This implies that

D(A) �⊆ Lip(R2) ∩ C∞(R2) Lip(R2) ∩ C∞(R2) �⊆ D(A)

D(A) �⊆ C1
∞(R2) C1

∞(R2) �⊆ D(A)

which clearly shows that the function spaces Lip(R2)∩C∞(R2) and C1
∞(R2)

are not well suited for describing D(A). We conclude that

C1+
∞ (R2) ⊆ D(A) ⊆ C1

∞(R2)

is the best possible way to describe D(A) in terms of Hölder spaces and,
moreover, the inclusions are strict.

5.1. Proposition. Let (Xt)t≥0 be a d-dimensional Cauchy process with gen-
erator (A,D(A)). Then there exists a function f ∈ C1

∞(Rd) which is not in
D(A).

Proof. Let χ ∈ C∞
c (Rd) be such that 1B(0,1/4) ≤ χ ≤ 1B(0,1/2), and define

f(x) := 1Rd\{0}(x)
|x|

| log |x||χ(x), x ∈ Rd.

If we set ϕ(r) := | log r|−1, then ϕ(r) → 0 as r → 0 and

f(x) = 0 + 0 · x + |x|ϕ(|x|), |x| <
1
2

which shows that f is differentiable at x = 0 and ∇f(0) = 0. For x �= 0
the differentiability is obvious. Clearly, f and its derivatives are vanishing at
infinity, and so f ∈ C1

∞(Rd). Since the transition density pt of Xt satisfies

pt(y) ≥ c
t

|y|d+1
, |y| ≥ t,

for some constant c > 0, we find from
Ef(Xt) − f(0)

t
≥ 1

t
E

( |Xt|
| log(|Xt|)|1{0<|Xt|<1/4}

)

that
Ef(Xt) − f(0)

t
≥ 1

t

∫
0<|y|<1/4

|y|
| log(|y|)|pt(y) dy

≥ c

∫
t<|y|<1/4

1
|y|d

1
| log(|y|)| dy

t→0−−−→ ∞,
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and so f /∈ D(A). �

5.2. Theorem. Let (Xt)t≥0 be a 2-dimensional Cauchy process with generator
(A,D(A)). Then there exists a function f ∈ D(A) which is not Lipschitz
continuous.

Let us mention that the proof of Theorem 5.2 has been inspired by
Günter [15] who constructed a function f ∈ C∞(R3) which is in the domain
of the generator of three-dimensional Brownian motion but which is not twice
differentiable, see [33, Example 7.25] for a modern account.

For the proof of Theorem 5.2 we need an auxiliary result concerning the
potential operator of an isotropic α-stable Lévy process (Xt)t≥0. Recall that
the potential operator (R0,D(R0)) (in the sense of Yoshida) associated with
a Lévy process (Xt)t≥0 and resolvent (Rλ)λ>0 is defined by

D(R0) := {f ∈ C∞(Rd);∃g ∈ C∞(Rd) : lim
λ→0

‖Rλf − g‖∞ = 0},

R0f := lim
λ→0

Rλf, f ∈ D(R0),

see [4, Sect. 11] for a thorough discussion.

5.3. Lemma. Let (Xt)t≥0 be a d-dimensional isotropic α-stable Lévy process
with resolvent (Rλ)λ>0. If α < d then there exists a finite constant cd,α > 0
such that

sup
λ>0

Rλu(x) = cd,α

∫
Rd

|z|−d+αu(x + z) dz (25)

for any non-negative u ∈ C∞(Rd). In particular, any non-negative function
u ∈ C∞(Rd) ∩ L1(dx) is in the domain D(R0) of the potential operator R0.

Proof of Lemma 5.3. Identity (25) is a direct consequence of the scaling prop-
erty of the transition density of (Xt)t≥0; it is a classical result in poten-
tial theory, see e. g. [6] for a proof. For the second assertion, we note that∫
Rd∩B(0,1)

|y|α−d dy < ∞ implies, by dominated convergence, that supλ>0 Rλ

u ∈ C∞(Rd) for any non-negative function u ∈ C∞(Rd) ∩ L1(dx). By [33,
Theorem 7.24(d)] this entails that u ∈ D(R0) for any such function u. �

Proof of Theorem 5.2. As R0(D(R0)) ⊆ D(A), cf. [4, Lemma 11.13(vi)], it
suffices to find u ∈ D(R0) such that R0u is not Lipschitz continuous. It
follows from Lemma 5.3 and the linearity of R0 that

R0u(x) = c

∫
R2

|z|−1u(x − z) dz, x ∈ R2

for any function u ∈ C∞(R2) ∩ L1(dx). Pick a function f ∈ Cc([0, 1)) such
that f ≥ 0 and f(0) = 0. If we define

u(x1, x2) :=
x1√

x2
1 + x2

2

|x2|√
x2
1 + x2

2

f

(√
x2
1 + x2

2

)
, x = (x1, x2) ∈ R2,

then u ∈ C∞(R2) ∩ L1(dx) ⊆ D(R0). We will show that f can be chosen in
such a way that x �→ R0u(x) is not Lipschitz continuous at x = 0. Introducing
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polar coordinates we find

R0u(0, x2) = c

∫ 1

0

rf(r)

(∫ 2π

0

| sin ϕ| cos ϕ√
x2
2 + r2 − 2rx2 cos ϕ

dϕ

)
dr.

Writing

I :=

∫ 2π

0

| sin ϕ| cos ϕ√
x2
2 + r2 − 2rx2 cos ϕ

dϕ =

(∫ π

0

+

∫ 2π

π

) | sin ϕ| cos ϕ√
x2
2 + r2 − 2rx2 cos ϕ

dϕ

and performing a change of variables, t :=
√

x2
2 + r2 − 2rx2 cos ϕ, we get for

x2 > 0

I =
1

rx2

∫ x2+r

|x2−r|
cos ϕ(t) dt − 1

rx2

∫ |x2−r|

x2+r

cos ϕ(t) dt

=
2

rx2

∫ x2+r

|x2−r|

x2
2 + r2 − t2

rx2
dt

and so

I =
4
3

r

x2
2

1{r≤x2} +
4
3

x2

r2
1{r>x2}.

Hence,

R0u(0, x2) =
4
3
c

(
1
x2
2

∫ x2

0

r2f(r) dr + x2

∫ 1

x2

f(r)
r

dr

)
.

As u(x) = −u(−x) we have∫
R2

|z|−1u(z) dz =
∫
R2

|z|−1u(−z) dz = −
∫
R2

|z|−1u(z) dz

which implies R0u(0) = 0. Consequently, we have shown that

R0u(0, x2) − R0u(0)
x2

=
4
3
c

(
1
x3
2

∫ x2

0

r2f(r) dr +
∫ 1

x2

f(r)
r

dr

)
.

If we choose f(r) = | log(r)|−1χ(r)1(0,∞)(r) for a cut-off function χ satisfying
1[0,1/2] ≤ χ ≤ 1[0,1), then limx2↓0

∫ 1

x2

f(r)
r dr = ∞ and∣∣∣∣ 1

x3
2

∫ x2

0

r2f(r) dr

∣∣∣∣ =
∣∣∣∣ 1
x3
2

∫ x2

0

r2

| log r| dr

∣∣∣∣ ≤ 1
| log |x2||

1
x3
2

∫ x2

0

r2 dr
x2↓0−−−→ 0.

Thus,

lim
x2↓0

R0u(0, x2) − R0u(0)
x2

= ∞,

i. e. x �→ R0u(x) is not Lipschitz continuous at x = 0. �
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I am grateful to Niels Jacob and René Schilling for valuable comments which
helped to improve the presentation of this paper; I owe the proof of Re-
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[24] Kühn, F., Schilling, R.L.: Strong convergence of the Euler–Maruyama approxi-
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Institut de Mathématiques de Toulouse
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