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Abstract. In this paper we prove a quaternionic positive real lemma as
well as its generalized version, in case the associated kernel has negative
squares for slice hyperholomorphic functions. We consider the case of
functions with positive real part in the half space of quaternions with
positive real part, as well as the case of (generalized) Schur functions in
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1. Introduction

Scalar rational function which analytically map the open right half of the
complex plane to its closure are called in system and control engineering
positive real and we shall denote them by PR. More generally, matrix-valued
functions analytic in the open unit disk and having a positive real part there
play an important role in engineering, network theory and operator theory.
They can be characterized in a number of ways, and we mention in particular
Herglotz integral representations. They admit numerous generalizations, for
instance to quaternions (see e.g. [1,6]) and to the case of negative squares.
The latter was initiated and studied in much details by Krein and Langer;
see e.g. [34,35].

The scalar rational case is of special interest. Indeed, for nearly a cen-
tury it has been recognized that the driving point impedance of an electrical
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circuit comprised of resistors, inductors and capacitors is a PR function and
conversely every PR function may be realized as a driving point impedance
of such a circuit; see [20,21]. A classical electro-mechanical duality reveals
that mechanical systems comprised of mass-damper-spring (strictly speak-
ing, mass should be replaced by inerter; see [38] for the latter) are described
by PR functions. Thus positive real functions are perceived as a mathemat-
ical model of linear passive systems. The positive real lemma (also called
Kalman–Yakubovich–Popov lemma) offers an easy-to-check characterization
of matrix-valued PR functions with no pole at infinity. There are a few hun-
dreds of papers on this subject. The purpose of this work is to introduce an
extension of the positive real lemma in the setting of quaternionic analysis
and rational slice hyperholomorphic functions. To set the framework, we first
discuss the complex setting, and recall that an important question in the
theory of matrix-valued rational functions is to relate metric properties of
the function to those of one of its minimal realization. The case of functions
taking unitary values on the boundary is considered in [14,32]. The positive
real lemma characterizes minimal realizations of functions having a positive
real part in a half-plane and reads (see [16,24,29,30]):

Theorem 1.1. Let R be a C
n×n-valued rational function, analytic at infinity,

and with minimal realization

R(z) = D + C(zIN − A)−1B, (1.1)

with D = R(∞) ∈ C
n×n and (C,A,B) ∈ C

n×N × C
N×N × C

N×n. Then R
has a real positive real part in the open right half-plane if and only if there
exists a negative definite matrix H ∈ C

N×N satisfying(
H 0
0 In

) (
A B
C D

)
+

(
A B
C D

)∗ (
H 0
0 In

)
≥ 0. (1.2)

Remark 1.2. The matrix H is not unique and the set of all matrices H satisfy-
ing (1.2) is convex. Assuming D+D∗ positive definite, the Schur complement
formula shows that (1.2) holds if and only if H satisfies the Riccati inequality

HA + A∗H − (HB + C∗)(D + D∗)−1(C + B∗H) ≤ 0, (1.3)

see [15, Propositions 3.1 and 3.2], and it can be proved (see [29]) that this set
has a minimal and a maximal solution. The minimal solution correspond to
the spectral factorization. To see the link with factorizations, write the left
side of (1.2) as (

L
M

)(
L∗ M∗) ,

with L ∈ C
N×� and M ∈ C

n×�, and where � is equal to the rank of the left
hand side of (1.2).

We have for z ∈ C (see [29, p. 26])

R(z) + R(−z)∗ =(M+C(zI − A)−1H−1L)(M + C(−zI − A)−1H−1L)∗

(1.4)
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and so, for x ∈ R

R(x) + R(−x)∗ = (M + C(xI − A)−1H−1L)(M + C(−xI − A)−1H−1L)∗.
(1.5)

Note that (1.5) (and not (1.4) because of the noncommutativity) makes sense
in the quaternionic setting, and then can be extended from x ∈ R to general
quaternions q ∈ H using the �-product see formulas (4.13) and (4.11) and
next section.

Remark 1.3. Theorem 1.1 has been extended in [24] to the case of rational
functions which are only positive on the imaginary axis. The matrix H in
(1.2) is then only Hermitian non-singular.

Closely related to the above right-half plane Kalman–Yakubovich
–Popov lemma in (1.2) (and its generalization to generalized positive func-
tions) is the analogous result for rational matrix-valued functions analytic in
the open unit disk and contractive on the unit circle (i.e. Schur functions),
or possibly having a (finite) number of poles in the open unit disk (i.e. gen-
eralized Schur functions). See [24, (16), p. 604] for the following theorem.

Theorem 1.4. Let S be a C
n×m-valued rational function, analytic at infinity,

with minimal realization S(z) = D+C(zIN −A)−1B. Then, S takes contrac-
tive values on the unit circle if and only if there is an invertible Hermitian
matrix H such that(

H 0
0 In

)
−

(
A B
C D

)∗ (
H 0
0 In

)(
A B
C D

)
≥ 0. (1.6)

Furthermore, S is a Schur function if and only if H is negative.

Generalized Schur functions were characterized in [34] as quotient of
Schur functions, the denominator being a finite matrix Blaschke product.
This result allows to reduce the study of realizations of generalized Schur
functions to the study of Schur functions. They are been studied in a number
of works; see e.g. [13,17,19,33], [39, Section II].

When leaving the setting of the complex numbers and going to quater-
nionic slice hyperholomorphic functions, a number of questions have to be
addressed, the first one being what are the objects to be studied, that is,
what are now Schur and generalized Schur functions, and positive real and
generalized positive real Schur functions. Since the spectral theorem holds
for Hermitian matrices with quaternionic entries, one can defined positive
definite kernels, and kernels having a finite number of negative squares; see
[9] and Definition 5.1 below. We will define the classes of functions to be
studied in terms of the number of negative squares of an associated kernel;
in the complex setting the two definitions are equivalent, but this is not
the case anymore in the quaternionic setting. The following definitions first
appeared in [7,8]. In the statement, and in this paper in general, H denotes
the skew-field of the quaternions.

Definition 1.5. A H
n×n-valued function φ, rational slice hyperholomorphic

in a neighborhood Ω of the origin in H is called positive (resp. generalized
positive) if the kernel
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Kφ(p, q) = (φ(p) + φ(q)∗) � (p + q)−� (1.7)

is positive definite (resp. has a finite number of negative squares) in Ω.

Definition 1.6. A H
n×m-valued function S , rational slice hyperholomorphic

in a neighborhood Ω of the origin in H is called a Schur function (resp. a
generalized Schur function) if the kernel

KS(p, q) =
∞∑

u=0

pu(In − S(p)S(q)∗)qu = (In − S(p)S(q)∗) � (1 − pq)−� (1.8)

is positive definite (resp. has a finite number of negative squares) in Ω.

Remark 1.7. Realizations of operator-valued slice hyperholomorphic func-
tions with real positive part have been considered in [7,9]. There the main
tools were reproducing kernel Hilbert spaces and the theory of relations in
Hilbert and Pontryagin spaces. Here the strategy is different (although a bit
overlapping). The strategy used to prove a quaternionic positive real lemma
is to start from a positive definite kernel in the quaternions, restrict it to
the real line and apply the map χ (see (2.1)) to obtain a condition on a
complex matrix-valued positive definite on an open interval of the real line.
An extension theorem (called Fitzgerald’s theorem in [28, Theorem p. 144];
see [31]) allows to extend it to the complex plane and so apply the classical
positive real lemma on the new kernel. The case of negative squares requires
an extension of this result. The underlying structure allows to go back to the
quaternionic setting.

Remark 1.8. When the kernel KΦ is not assumed to have a finite number of
negative squares, one can still obtain realizations with an interesting structure
using Krein spaces; see [25,26] and, in the quaternionic setting, [10].

The paper contains eight sections besides the introduction, and we now
proceed to describe their contents. Section 2 contains some preliminaries on
quaternions and slice hyperholomorphic functions. Section 3 provides some
characterizations of the image of quaternionic matrices under a suitable map
denoted by χ and also of the minimality of a triple of matrices. In Sect. 4
we prove a quaternionic version of the positive real lemma in the case of the
half space and unit ball. Section 5 contains the extension result in the case of
kernels with negative squares mentioned in the previous paragraph. Finally,
in Sect. 6 we extend the results in Sect. 4 to the case of negative squares.

2. Slice Hyperholomorphic Functions

In this section we recall some basic facts about quaternions and slice hyper-
holomorphic functions which may be useful in the sequel. We refer the inter-
ested reader to the book [9] for a more complete treatment of these topics.
The skew field H of quaternions consists of elements of the form p = x0 +
x1i+x2j +x3k, xi ∈ R, i = 0, 1, 2, 3, where the imaginary units i, j, k satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.



IEOT Quaternionic Positive Real Lemma Page 5 of 22 4

The real number x0 also denoted by Re(p) is called real part of p while
x1i + x2j + x3k is called vector part or imaginary part of p. A quaternion
p = x0 + x1i + x2j + x3k may be identified with a vector in R

4 and its norm
is the Euclidean norm in R

4, i.e. |p| =
√

x2
0 + x2

1 + x2
2 + x2

3. For any p ∈ H

as above its conjugate is defined by p = x0 − x1i − x2j − x3k; note that
pp = pp = |p|2.

By selecting one of the imaginary units of the basis, e.g. the unit i, a
quaternion p can be written in terms of two complex numbers z1, z2 belonging
to the complex plane containing elements of the form x + iy, namely p =
z1 + z2j with z1 = x0 + ix1, z2 = x2 + ix3. Moreover, one may identify the
quaternion p with a 2 × 2 complex valued matrix via the map χi defined by
(see [40])

χi(p) =
(

z1 z2

−z2 z1

)
. (2.1)

In the sequel, in order to ease the notation the subscript will be omitted
and we will write χ instead of χi. The map χ : H → C

2×2 is an injective
homomorphism of rings, i.e. χ(p + q) = χ(p) + χ(q) and χ(pq) = χ(p)χ(q),
for any p, q ∈ H. Further properties of χ may be found in [40].
It is also useful to introduce the set S of purely imaginary quaternions with
square equal −1. This set coincides with the set of purely imaginary quater-
nions with norm 1 and it is a 2-dimensional sphere in H identified with R

4.
Any nonreal quaternion q uniquely identifies the element I ∈ S defined by
I = x1i + x2j + x3k/|x1i + x2j + x3k|, so that p = x + Iy with x = x0

and y = |x1i + x2j + x3k|. Moreover p defines a 2-sphere [p] given by
[p] = {x + Jy, J ∈ S}.
We now introduce the notion of slice hyperholomorphic function with values
in a quaternionic Banach space. These functions are naturally defined on
open sets Ω which are axially symmetric, i.e. such that p ∈ Ω implies that
[p] ⊂ Ω. It is immediate that the quaternionic unit ball B and the half space
H+ of quaternions with positive real part are axially symmetric.

Definition 2.1. Let Ω ⊆ H be an axially symmetric set and let X be a two
sided quaternionic Banach space. A function f : Ω → X of the form f(p) =
f(x + Iy) = α(x, y) + Iβ(x, y) where α, β : Ω → X depend only on x, y, are
real differentiable, satisfy the Cauchy-Riemann equations{

∂xα − ∂yβ = 0
∂yα + ∂xβ = 0,

(2.2)

and

α(x,−y) = α(x, y), β(x,−y) = −β(x, y) (2.3)

is said to be (left) slice hyperholomorphic.

Observe that, in the definition, if p = x is a real quaternion, then I
is not uniquely defined but the hypothesis that β is odd in the variable y
implies β(x, 0) = 0.
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One can also introduce the definition of right slice hyperholomorhic function:
the only change in the previous definition is that f(p) = f(x+Iy) = α(x, y)+
β(x, y)I.
The definition holds, in particular, when X = H

n×m the quaternionic two
sided Banach space of n × m matrices with quaternionic entries and in the
scalar valued case.
When we consider two slice hyperholomorhic functions f, g on Ω with values
in X , X1, respectively, and it makes sense to define the product AB of A ∈ X ,
B ∈ X1 we can define the �-product of f and g as follows: let f(p) = f(x +
Iy) = α(x, y) + Iβ(x, y), g(p) = g(x + Iy) = γ(x, y) + Iδ(x, y), then

f � g = (αγ − βδ) + I(αδ + βγ).

In the case a function f is scalar valued, it makes sense to define its �-
reciprocal. We refer the reader to [9,22] for more details. Here it is sufficient
to recall how to construct the �-inverses of the functions ϕ(p) = p+q, ψ(p) =
1−pq which are left hyperholomorphic in p (and right slice hyperholomorphic
in q):

(1 − pq)−� = (1 − 2Re(q)p + |q|2p2)−1(1 − pq)

(p + q)−� = (|q|2 + 2Re(q)p + p2)−1(p + q).

3. Minimality

The map χ = χi that has been introduced in the previous section can be
extended to quaternionic matrices, in fact if M = (q�s) ∈ H

n×m, q�s =
z1,�s + z2,�sj, z1,�s, z2,�s ∈ C we set M = A + Bj where A = (z1,�s), B =
(z2,�s) ∈ C

n×m. Then we define

χ(M) = χ(A + Bj) =
(

A B
−B A

)
.

In this section, we study the connections between the matrices associated to
a quaternionic realization and their images under the map χ. Our first goal
is to characterize the range of χ.

Proposition 3.1. Let (A,B) ∈ C
n×m×C

n×m and let ξ1, ξ2 ∈ C
m be such that(

A B
−B A

) (
ξ1

−ξ2

)
=

(
0n

0n

)
. (3.1)

Then (
A B

−B A

)(
ξ2

ξ1

)
=

(
0n

0n

)
. (3.2)

Proof. Applying conjugation to both sides of (3.1) we get(
A B

−B A

) (
ξ1

−ξ2

)
=

(
0n

0n

)
, (3.3)
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and so(
0 −Im

Im 0

) (
A B

−B A

)(
0 Im

−Im 0

)
︸ ︷︷ ︸⎛

⎝ A B
−B A

⎞
⎠

(
0 −Im

Im 0

) (
ξ1

−ξ2

)
=

(
0n

0n

)
,

(3.4)

which is (3.2). �

As a corollary we get:

Corollary 3.2. With A,B, ξ1 and ξ2 as above,

χ(A + Bj)
(

ξ1

−ξ2

)
=

(
0n

0n

)
⇐⇒ (A + Bj)(ξ1 + ξ2j) = 0. (3.5)

Lemma 3.3. A matrix M ∈ (Cn×m)2×2 is of the form(
A B

−B A

)

if and only if it satisfies

E−1
n MEm = M, (3.6)

where

Em =
(

0 Im

−Im 0

)
. (3.7)

Proof. Let

M =
(

M11 M12

M21 M22

)

be the decomposition of M into C
n×m matrices. We have

E−1
n MEm =

(
M22 −M21

−M12 M11

)
,

which will be equal to M if and only if M11 = M22 and M12 = −M21, that
is, if and only if M is of the form (3.6). �

Remark 3.4. We note that

E−1
m = −Em = E∗

m (3.8)

and that the map a defined by

a(M) = E−1
m MEm (3.9)

is an involution and is real-linear. Moreover, a maps positive matrices into
positive matrices since E−1

m = E∗
m.

The notion of minimality in this section is according to the following
definition:
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Definition 3.5. We say that the triple of matrices (C,A,B) ∈ H
n×N ×H

N×N ×
H

N×m is minimal if the following two conditions hold: The pair (C,A) is
observable, that is

∞⋂
t=0

ker CAt = {0} (3.10)

and the pair (A,B) is controllable, that is
∞⋂

t=0

ker B∗A∗t = {0} . (3.11)

Note that these intersections are finite (see [9], Section 9). The map χ
allows to reduce the study of minimality to the case of matrices with complex
entries.

Theorem 3.6. Let (C,A,B) ∈ H
n×N × H

N×N × H
N×m.

(1) The pair (C,A) ∈ H
n×N ×H

N×N is controllable if and only if the corre-
sponding pair (χ(C), χ(A) is controllable.
(2) The pair (A,B) ∈ H

N×N × H
N×n is observable if and only if the corre-

sponding pair (χ(A), χ(B) is controllable.
(3) The triple (C,A,B) ∈ H

n×N ×H
N×N ×H

N×m is minimal if and only if
the corresponding triple (χ(C), χ(A), χ(B)) is minimal.

Proof. Using (3.5) we have

ξ1 + ξ2j ∈ ∩∞
u=0 ker CAu ⇐⇒

(
ξ1

−ξ2

)
∈ ∩∞

u=0 ker χ(C)χ(A)u,

from which we get the first claim; the other claims follow easily. �

We remark that other kind of realizations are possible. Assuming that
R is slice hyperholomorphic at ∞ (that is, in a set of the form |p| > r) one
can consider realizations of the form

R(p) = D + C � (pI − A)−�B.

In the setting of complex numbers and analytic functions, a matrix-
valued analytic function is contractive in the open unit disk if and only if the
kernel

KS(z, w) =
In − S(z)S(w)∗

1 − zw
(3.12)

is positive definite in the open unit disk. We now mention an extension result
(see [4, Théorème 2.6.5, p. 45], which roughly speaking, states that, in the
positive case, positivity of the kernel KS implies analyticity of the function
S. Such results (for Carathéodory functions rather than Schur functions)
originate in the work of Loewner, see [28,36], when the positivity is assumed
on the boundary. Here we use a different result , where the positivity is not
on the boundary. For completeness we give a proof.
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Theorem 3.7. Let S be a C
n×m-valued function defined on a subset Ω ⊂ D

and such that the kernel KS is positive definite in Ω. Assume that Ω has an
accumulation point inside D. Then, S is the restriction of a uniquely defined
Schur function in D, and conversely.

Outline of the proof. To ease the notation we consider the scalar case and
write s(z) rather than S(z). Only one direction is non trivial and will be
proved. Let H2 denote the Hardy space of the disk. Define a linear relation
R in H2 × H2 as the linear span of the pairs(

1
1 − zw

,
s(w)

1 − zw

)
, w ∈ Ω.

R is densely defined since Ω has an accumulation point, and is contractive
because the kernel KS is positive definite on Ω. It follows that R extends to
the graph of an everywhere defined contraction, say T . Its adjoint satisfies

(T ∗1)(w) = s(w), w ∈ Ω

and is analytic, and hence s extends to a uniquely defined analytic function.
To see that this function is a contraction, first check that for every integer n,
and with Mz denoting the operator of multiplication by z,

(T ∗Mn
z 1)(w) = wns(w), w ∈ Ω.

Thus T ∗ is the multiplication operator by s, and so s is contractive since T ∗

is contractive. �

Remark 3.8. An alternative proof consists of solving the Nevanlinna-Pick
theorem for an increasing family of finite subsets of Ω and use Montel’s
theorem, see also Corollary 3.4 in [5] for the quaternionic setting. An earlier
result, also for the quaternionic setting and for a subclass of Schur functions,
is given in [8, Theorem 4.9, p. 98].

In the quaternionic setting, the kernel KS (defined by (3.12)) takes now
the form

(In − S(p)S(q)∗) � (1 − pq)−�. (3.13)

The equivalence of the positivity of (3.13) with the fact that S is slice hyper-
holomorphic in the quaternionic unit ball and bounded by 1 in norm there
holds for H-valued functions (see [5]), but not for matrix-valued functions, as
illustrated by the example (see [9, §8.4, p. 213])

U(p) =
1√
2

(
p i
pi 1

)
.

By Cayley transform a similar remark holds for Herglotz functions.

4. The Quaternionic Positive Real Lemma

We now give the quaternionic version of the positive real lemma. As in the
case of complex numbers, the set of Hermitian matrices H appearing in the
statement form a convex set.
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Theorem 4.1. Let φ be a H
n×n-valued slice hyperholomorphic rational func-

tion, slice hyperholomorphic at infinity, with minimal realization

φ(p) = D + C � (pIN − A)−�B. (4.1)

Then,

(φ(p) + φ(q)∗) � (p + q)−� ≥ 0, p, q ∈ H+ (4.2)

if and only if there exists a negative definite matrix H ∈ H
N×N such that(

H 0
0 In

) (
A B
C D

)
+

(
A B
C D

)∗ (
H 0
0 In

)
≥ 0. (4.3)

Proof. Restricting to the positive real line and using the map χ, we get that
the kernel

χ(φ)(x) + χ(φ)(y)∗

x + y
(4.4)

is positive definite for x, y on the positive real line. By Theorem 3.6 the
realization

χ(φ)(x) = χ(D) + χ(C) (xI2N − χ(A))−1
χ(B)

is minimal. It follows from Theorem 3.7 (using Cayley transforms both on the
variable and on χ(φ)) that the kernel is positive definite in the whole right
half-plane. We can therefore apply the positive real lemma which asserts that
there exits a negative definite matrix H ∈ C

2N×2N such that(
H 0
0 I2n

)(
χ(A) χ(B)
χ(C) χ(D)

)
+

(
χ(A) χ(B)
χ(C) χ(D)

)∗ (
H 0
0 I2n

)
≥ 0. (4.5)

We now show that there exists a solution H1 to (4.5) such that H1 = a(H),
where a is defined by (3.9). By Lemma 3.3 and Remark 3.4, we deduce that
there exists a positive quaternionic matrix X such that H1 = χ(X). To that
purpose, we show that if H satisfies (4.5) so does a(H). Then, H+a(H)

2 satisfies
the symmetry (3.6). Using (3.8) we first note that(

E−1
N 0
0 E−1

n

)
=

(
EN 0
0 En

)∗
.

Thus, we have from (4.5)(
E−1

N 0
0 E−1

n

) (
H 0
0 I2n

) (
EN 0
0 En

)(
E−1

N 0
0 E−1

n

)

×
(

χ(A) χ(B)
χ(C) χ(D)

)(
EN 0
0 En

)

+
(

E−1
N 0
0 E−1

n

)(
χ(A) χ(B)
χ(C) χ(D)

)∗ (
EN 0
0 En

) (
E−1

N 0
0 E−1

n

)

×
(

H 0
0 I

)(
EN 0
0 En

)
≥ 0. (4.6)



IEOT Quaternionic Positive Real Lemma Page 11 of 22 4

Using Lemma 3.3 we have(
E−1

N 0
0 E−1

n

)(
H 0
0 I2n

)(
EN 0
0 En

)(
χ(A) χ(B)
χ(C) χ(D)

)
+

+
(

χ(A) χ(B)
χ(C) χ(D)

)∗ (
E−1

N 0
0 E−1

n

) (
H 0
0 In

)(
EN 0
0 En

)
≥ 0. (4.7)

Thus E−1
N HEN satisfies (4.5), and so H1 = H+a(H)

2 is in the range of
χ. By Lemma 3.3 with H = χ(X) it follows (4.3).

The converse follows the computations in [29, p. 26] and in [30, p. 129].
As in [29] we denote by (

Q S
S∗ R

)
≥ 0

the right handside of (4.3). Then

HA + A∗H = Q (4.8)
HB + C∗ = S (4.9)

D + D∗ = R. (4.10)

For x, y ∈ R, and replacing B by H−1(S − C∗) we have

φ(x) + φ(y)∗ = D + C(xI − A)−1B + D∗ + B∗(yI − A∗)−1C∗

= D + C(xI − A)−1H−1(S − C∗) + D∗

+ (S∗ − C)H−1(yI − A∗)−1C∗

= R + C(xI − A)−1H−1S + S∗H−1(yI − A∗)−1−
− {

C(xI − A)−1H−1C∗ + CH−1(yI − A∗)−1C∗}
= R + C(xI − A)−1H−1S + S∗H−1(yI − A∗)−1−

− (x + y)
{
C(xI − A)−1H−1(yI − A∗)−1C∗} +

+ C(xI − A)−1H−1QH−1(yI − A∗)−1C∗.

Hence

Kφ(x, y) =
φ(x) + φ(y)∗

x + y
= −C(xI − A)−1H−1(yI − A∗)−1C∗ +

+

(
C(xI − A)−1H−1 I

) (
Q S
S∗ R

)(
H−1(yI − A∗)−1C∗

I

)

x + y
.

(4.11)

The kernel (4.11) admits an extension slice hyperholomorphic in p and right
slice hyperholomorphic in q given by
Kφ(p, q) = (φ(p) + φ(q)∗)(p + q)−�

= −C � (pI − A)−�H−1(q − A∗)−�r �r C∗+

+

((
C � (pI − A)−�H−1 I

) (
Q S
S∗ R

) (
H−1(qI − A∗)−�r �r C∗

I

))
� (p + q)−�

(4.12)



4 Page 12 of 22 D. Alpay et al. IEOT

(where all the �-product are computed in the variable p) and so Kφ is positive
definite in the right half-space. �

Remark 4.2. Alternatively, and replacing now C by S∗ − HB∗ we also have

φ(x) + φ(y)∗ = D + C(xI − A)−1B + D∗ + B∗(yI − A∗)−1C∗

= R + (S − B∗H)(xI − A)−1B + B∗(yI − A∗)−1(S∗ − HB)

= R + S(xI − A)−1B + B∗(yI − A)−∗S∗−
− {

B∗H(xI − A)−1B + B∗(yI − A∗)−1HB
}

= R + S(xI − A)−1B + B∗(yI − A)−∗S∗−
− {

B∗(yI − A∗)−1 (H(xI − A) + (yI − A∗)H) B

+B∗(xI − A)−1B
}

= R + S(xI − A)−1B + B∗(yI − A)−∗S∗−
− (x + y)B∗(yI − A∗)−1H(xI − A)−1B+

+ B∗(yI − A∗)−1Q(xI − A)−1B.

Hence
φ(x) + φ(y)∗

x + y
= −B∗(yI − A∗)−1H(xI − A)−1B+

+

(
B∗(yI − A∗)−1 I

) (
Q S
S∗ R

) (
(xI − A)−1B

I

)

x + y
.

(4.13)

We now consider the case of the quaternionic unit ball.

Theorem 4.3. A H
n×n-valued rational function slice hyperholomorhic at ∞

and with minimal realization (4.1) is contractive in the quaternionic unit ball
if and only if there exists a negative definite matrix H ∈ H

N×N such that(
H 0
0 In

)
−

(
A B
C D

)∗ (
H 0
0 In

)(
A B
C D

)
≥ 0. (4.14)

Proof. As in the previous, one reduces the claim to the complex setting using
the map χ, and use [24, Theorem 2]. We then go back to the quaternionic
setting as in the proof of the previous theorem. �

We also remark that the set of Hermitian matrices H satisfying (4.14)
form a convex set.

5. The Case of Negative Squares: An Extension Theorem

We start this section by recalling a definition which, as explained in the
introduction, makes sense since the spectral theorem holds for quaternionic
Hermitian matrices (see also [9]).
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Definition 5.1. Let K(u, v) be a H
n×n-valued function defined for u, v in some

set Ω and assume that K(u, v) = K(v, u)∗ for all u, v ∈ Ω. The function
K(u, v) is said to have κ negative squares if the following condition holds:
for every N ∈ N, and every choice of points u1, . . . , uN ∈ Ω and vectors
ξ1, . . . , ξN ∈ H

n the N ×N Hermitian matrix with (k, j) entry ξ∗
kK(uk, uj)ξj

has at most κ strictly negative eigenvalues, and exactly κ strictly negative
eigenvalues for some choice of N,u1, . . . , uN , ξ1, . . . , ξN .

Theorem 5.2. Let F be a C
n×n-valued rational function, analytic at infinity.

Then the following are equivalent:
(1) Re F (iy) ≥ 0, y ∈ R.
(2) The kernel

KF (z, w) =
F (z) + F (w)∗

z + w

has a finite number of negative squares in the right half-plane.

Proof. Assume (1). By maybe adding to F a term of the form iεIn we do
not change the first condition but may assume that the Cayley transform
S = (In + F )−1(In − F ) is well defined. We make another Cayley transform
this time on the variable, to get to a function S1 contractive on the unit circle.
By multiplying S1 by a finite scalar Blaschke factor b we get a function bS1

which is analytic in D and contractive on the unit circle. It is therefore a
Schur function S0 and so S1 = S0

b is a generalized Schur function, and the
corresponding kernel

KS1(z, w) =
In − S1(z)S1(w)∗

1 − zw

has a finite number of negative squares, see [34]. Since KF and KS1 are related
by Cayley transforms, we get that KF has a finite number of negative squares.

The converse is proved by reading backwards the above arguments. �

We now remark that Theorem 3.7 will not hold in general in the case
of negative squares. As recalled in [13, p. 82], the function defined by

S(z) =

{
1, z ∈ D\ {0}
0, z = 0,

is not meromorphic in the open unit disk, while the corresponding kernel KS

has one negative square. A claim on a counterpart of the extension theorem
was made in [11, Theorem 3.2], but the proof turned out to be flawed; see
[12]. We now prove a weaker result, which is enough for our purposes, when
one knows ahead of time that the function KS is meromorphic in the open
unit disk, and has a finite number of negative squares in a subset Ω which
has an accumulation point. We focus on the matrix-valued rational case for
simplicity, and which is what is needed in the present paper. The result itself
can be seen as an extension of [28, p. 144] to the setting of negative squares
(although beyond the scope of the current work, note that the case of analytic
functions can be similarly treated).
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Theorem 5.3. Let S be a C
n×n-valued rational function such that the kernel

KS(z, w) has a finite number of negative squares in (−1, 1), from which have
been removed possibly a finite number of points P . Then, the kernel KS(z, w)
has the same number of negative squares in the open unit disk, from which
have been removed possibly a finite number of points P1.

Before proving the theorem we recall a result on positive definite kernels.

Theorem 5.4. Let Λ1(z, w) and Λ2(z, w) be two C
n×n-valued kernels, positive

definite on the set Ω, and let H(Λ1),H(Λ2) and H(Λ1 +Λ2) denote the repro-
ducing kernel Hilbert spaces associated to Λ1, Λ2 and Λ1 + Λ2 respectively.
Then

H(Λ1 + Λ2) = H(Λ1) + H(Λ2). (5.1)

More precisely, every element in H(Λ1 + Λ2) can be written as a (in general
non-unique) sum f = f1 + f2, where fj ∈ H(Λj), j = 1, 2. For every such
decomposition

‖f‖2
H(Λ1+Λ2)

≤ ‖f1‖2
H(Λ1)

+ ‖f2‖2
H(Λ2)

, (5.2)

and there is a unique decomposition for which equality holds. For the function

f(z) =
U∑

u=1

(Λ1(z, wu) + Λ2(z, wu))cu, (5.3)

the minimal (unique) decomposition for which equality holds in (5.2) is given
by

f1(z) =
U∑

u=1

Λ1(z, wu)cu, and f2(z) =
U∑

u=1

Λ2(z, wu)cu. (5.4)

The proof of this result can be found in [18]. The fact that the equality
in (5.2) holds for (5.4) when f is of the form (5.3) is crucial in the proof.

Proof of Theorem 5.3. The strategy of the proof is as follows.

KS(z, w) =
In

1 − zw
− S(z)S(w)∗

1 − zw

is a difference of two positive definite functions, and hence is the reproducing
kernel of a (in general not uniquely defined) reproducing kernel Krein space;
see [37]. We study the restriction of the elements of this space to (−1, 1)\P
to see that it is a Pontryagin space.

We proceed in a number of steps.

STEP 1: The function

MS(z, w) =
In

1 − zw
+

S(z)S(w)∗

1 − zw

is positive definite in D\P1. It is the reproducing kernel of a (uniquely defined)
Hilbert space of Cn-valued functions analytic in D\P1.
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The first part of the claim is just Aronszajn-Moore result; the second
part follows from the joint analyticity of MS(z, w) in z and w. Such kernels are
called Bergman kernels in [28]. See e.g. [28, Theorem p. 92] or [4, Théorème
2.3.5, p.31] for the latter claim on analyticity. We will denote the reproducing
kernel Hilbert space with reproducing kernel MS(z.w) by H(MS).

STEP 2: The linear relation R of H(MS)×H(MS) spanned by the functions

(MS(·, w)c , KS(·, w)c) (5.5)

extends to the graph of a contractive self-adjoint map from H(MS) into itself.
The proof follows, with slight modifications, the arguments in [3, Proof

of Lemma 4, p. 177]. It is convenient to set

Λ1(z, w) =
In

1 − zw
and Λ2(z, w) =

S(z)S(w)∗

1 − zw
. (5.6)

Let first f be a finite linear combination of kernels:

f(z) =
U∑

u=1

MS(z, wu)cu = f1(z) + f2(z),

with

f1(z) =
U∑

u=1

cu

1 − zwu
∈ H(Λ1) (5.7)

f2(z) =
U∑

u=1

S(z)S(wu)∗cu

1 − zwu
∈ H(Λ2), (5.8)

and assume f(z) ≡ 0. We have (0, g) ∈ R with g(z) =
∑U

u=1 KS(z, wu)cu

and we wish to show that g(z) ≡ 0. We have
U∑

u=1

c∗
vMS(wv, wu)cu = 0, v = 1, . . . , U

and so
U∑

u,v=1

c∗
vMS(wv, wu)cu = 0,

which implies in particular that
U∑

u,v=1

c∗
vcu

1 − wvwv
= 0

U∑
u,v=1

c∗
vS(wv)S(wu)∗cu

1 − wvwv
= 0

and so, by positivity of the functions In
1−zw and S(z)S(w)∗

1−zw we get

f1(z) ≡ 0 and f2(z) ≡ 0,

that is, g(z) ≡ 0, and R is the graph of a densely defined operator T . We
note that

‖f‖2
H(MS) = min

f=h1+h2
hj∈H(Λj) j=1,2

‖h1‖2 + ‖h2‖2 = ‖f1‖2
H(Λ1)

+ ‖f2‖2
H(Λ2)

. (5.9)
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STEP 3: We show now that the operator T is a self-adjoint contraction.

We have with f, f1, f2 as above,

f = f1 + f2 and T (f1 + f2) = f1 − f2
def.= g.

Note that Theorem 5.4 insures that Tf ∈ H(MS). Moreover

‖g‖2
H(MS) = min

(
‖g1‖2

H(Λ1)
+ ‖g2‖2

H(Λ2)

)
,

where the infimum, which in fact is a minimum, is computed over all decom-
position g = g1 − g2 with g1 ∈ H(Λ1) and g2 ∈ H(Λ2). Thus, by (5.9)

‖Tf‖2 = ‖g‖2 ≤ ‖f1‖2
H(Λ1)

+ ‖f2‖2
H(Λ2)

= ‖f‖2. (5.10)

We now show that T is self-adjoint. We prove it on the kernels and will show
that

〈T ((Λ1(·, w) + Λ2(·, w))c) , (Λ1(·, v) + Λ2(·, v))d)〉H(MS) =

= 〈(Λ1(·, w) + Λ2(·, w))c) , T ((Λ1(·, v) + Λ2(·, v))d)〉H(MS),
(5.11)

or equivalently

〈(Λ1(·, w) − Λ2(·, w))c) , (Λ1(·, v) + Λ2(·, v))d)〉H(MS) =

= 〈(Λ1(·, w) + Λ2(·, w))c , (Λ1(·, v) − Λ2(·, v))d〉H(MS).
(5.12)

The reproducing kernel property shows that both sides of (5.12) coincide and
are equal to

d∗(Λ1(v, w) − Λ2(v, w))c.

Being contractive and densely defined, T extends to a unique everywhere
defined self-adjoint contraction from H(MS) into itself, which we still denote
by T .

We set T = σP , where P is the unique positive squareroot of T 2 and σ
is the sign of T . Recall that

P =
∫
R

|t|dEt and σ =
∫
R\{0}

t

|t|dEt

where T =
∫
R

tdEt is the spectral decomposition of T (and where the integral
is in fact on a bounded integral since T is bounded), and that σ and P
commute.

STEP 4: The space

K =
{

F =
√

Pu, u ∈ H(MS) ; ‖F‖ = ‖(I − π)u‖H(MS)

}
(5.13)

where π is the orthogonal projection onto ker P , is a Hilbert space.

STEP 5: Define

[Tu, Tv]K = 〈Tu, v〉H(MS) (5.14)

and

〈Tu, Tv〉K = 〈Pu, v〉H(MS). (5.15)
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Then, (K, 〈·, ·〉K) is a Hilbert space, and there exists a bounded and boundedly
invertible self-adjoint operator G such that

[Tu, Tv]K = 〈Tu,GTv〉K. (5.16)

We have
[σTu, σTv]K = [Tu, Tv]K
[σTu, Tv]K = [Tu, σTv]K

so that σ satisfies the equations σ2 = I and σ = σ∗ in K. We take G = σ.

STEP 6: By its definition, the space K with the indefinite inner product (5.14)
is a reproducing kernel Krein space the inner product with reproducing kernel
KS .

By (5.5) we have that z �→ KS(z, w)c belongs to K. Furthermore, we
have:

K = [Tu, T (MS(·, w)c)]K
= 〈Tu, (MS(·, w)c)〉H(MS)

= c∗(Tu)(w).
(5.17)

STEP 7: The linear span M of the functions KS(·, x)c with x ∈ (−1, 1)\P is
dense in K.

Indeed, by the reproducing kernel property, any element f orthogonal
to the linear span vanishes on (−1, 1)\P . In view of the analyticity of the
element of K, and since D\P1 is connected (since P1 is finite), we get f ≡ 0.

At this stage of the proof we define P(KS) to be the (uniquely defined)
reproducing kernel Pontryagin space with reproducing kernel KS(z, w) with
z, w restricted to (−1, 1)\P .

STEP 8: The restriction map f �→ f|(−1,1)\P is one to one from M into
P(KS).

The proof of this step follows directly from the analyticity of the ele-
ments of M.

STEP 9: The inner products of the elements of M (and restricted to (−1, 1)
\P ) coincide in K and P(KS) respectively.

Step 9 follows from the reproducing kernel property.

STEP 10: K is in fact a Pontryagin space, made of the analytic extensions of
the functions of P(KS) to D\P1.

The linear span M′ of the functions KS(·, y)c with y ∈ (−1, 1)\P and
c ∈ C

n (i.e. of the restrictions of the elements of M to (−1, 1)\P ) is dense in
the Pontryagin space P(KS) because of the reproducing kernel property. It
contains therefore a maximal strictly negative subspace P−. Write

P(KS) = P+[+]P−

and for f ∈ M′ write

f = f+ + f−.
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Both f+ and f− are by definition finite linear combinations of elements of
the form K(·, y)c. Denote by I the restriction map appearing in Step 8. The
spaces{

I−1(f+); f =f+ + f−; f ∈ M′} and
{
I−1(f−); f = f+ + f−; f ∈ M′}

(5.18)

are orthogonal in K, and respectively positive and negative in K thanks to
Step 9. Since the second one is finite dimensional, (5.18) is a fundamental
decomposition of K with a finite dimensional negative part, and K is a Pon-
tryagin space. �
Remark 5.5. One can also build a reproducing kernel Krein space with repro-
ducing kernel KS of functions analytic in |z| < r < 1 by multiplying KS(z, w)
by a scalar function f(z)f(w) and apply [2, Theorem 3.1 p. 1198].

Let S be a rational slice function, hyperholomorphic at the origin, and
with realization S(p) = D + pC � (I − pA)−�B. The map x �→ χ(S)(x) is the
restriction of the rational function of a complex variable

χ(S)(z) = D + zχ(C)(I − zχ(A))−1χ(B)

to the interval (−1, 1)\P (at the possible exception of a finite set P1 in (−1, 1)
where det(I − xA) vanishes). By the above theorem, the kernel KS has κ
negative squares in (−1, 1) if and only if it has κ negative squares in D\P1,
where P1 are the zeros of det(zI − A) in D.

6. Generalized Quaternionic Positive Real Lemma

In this section we prove a generalized version of Theorem 4.1 in case the
kernel has negative squares.

Theorem 6.1. Let φ be a H
n×n-valued slice hyperholomorphic rational func-

tion, slice hyperholomorphic at infinity, with minimal realization (4.1) Then,
the kernel KΦ (defined by (4.2)) has a finite number of negative squares in the
open right half-space H+, from which is possibly removed a finite set of points,
if and only if there exists an Hermitian non-singular matrix H ∈ H

N×N such
that (4.3) holds.

Proof. Assume first that KΦ has a finite number of negative squares in H+\Q,
where Q is a finite set of points (or is the empty set). Restricting p and q to
R+\Q and applying the map χ we see that the kernel (4.4) has a finite number
of negative squares on R+\Q. This kernel is the restriction to (R+\Q)2 of
the kernel

(χ(φ))(z) + ((χ(φ))(w))∗

z + w
. (6.1)

It follows from the representation theorem of Krein-Langer for generalized
Schur function, and using a Cayley transform, or by the representation the-
orem of generalized positive real functions due to [23,27] (both in the scalar
case; see also [15]) we see that Re χ(φ)(x) ≥ 0 on the imaginary line. We can
now resort to the result of [24] to assert that there is an Hermitian matrix
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H satisfying (4.5). The rest of this side of the proof goes as in the proof of
Theorem 4.1.

The converse is as in the converse of Theorem 4.1, since formula (4.11)
still holds for any invertible Hermitian matrix H. In (4.12) the kernel

− C � (pI − A)−�H−1(q − A∗)−�r �r C∗+

+
((

C � (pI − A)−�H−1 I
)(

Q S
S∗ R

)(
H−1(qI − A∗)−�r �r C∗

I

))

� (p + q)−�

has now (possibly) a finite number of negative squares and the kernel
(
C � (pI − A)−�H−1 I

) (
Q S
S∗ R

)(
H−1(qI − A∗)−�r �r C∗

I

)
(p + q)−�

is still positive negative, for real x, y in both cases and then in the open right
half-space by slice hyperholomorphic extension. �

We now consider the counterpart of Theorem 1.4 in the quaternionic
setting for generalized Schur functions. Here we omit the proof since it makes
use of the map χ and of the proof of Theorem 6.1. We also remark that the
set of Hermitian matrices which satisfy (6.2) form a convex set.

Theorem 6.2. A H
n×n-valued rational function slice hyperholomorhic at ∞

and with minimal realization (4.1) is contractive on the quaternionic unit
sphere if and only if there exists an Hermitian non-singular matrix H ∈
H

N×N such that(
H 0
0 In

)
−

(
A B
C D

)∗ (
H 0
0 In

)(
A B
C D

)
≥ 0. (6.2)
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spaces. In: Helson, H., Arsene, G. (eds.) Operators in Indefinite Metric Spaces,
Scattering Theory and Other Topics (Bucharest, 1985), volume 24 of Oper.
Theory Adv. Appl., pp. 123–143. Birkhäuser, Basel (1987)
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[29] Faurre, P.: Réalisations markoviennes de processus stationnaires. Ph.D. thesis,
INRIA (1973)

[30] Faurre, P., Clerget, M., Germain, F.: Opérateurs rationnels positifs, volume 8 of
Méthodes Mathématiques de l’Informatique [Mathematical Methods of Infor-
mation Science]. Dunod, Paris, (1979). Application à l’hyperstabilité et aux
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