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Wavenumber-Explicit Regularity Estimates
on the Acoustic Single- and Double-Layer
Operators
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Abstract. We prove new, sharp, wavenumber-explicit bounds on the
norms of the Helmholtz single- and double-layer boundary-integral oper-
ators as mappings from L2(∂Ω) → H1(∂Ω) (where ∂Ω is the boundary
of the obstacle). The new bounds are obtained using estimates on the
restriction to the boundary of quasimodes of the Laplacian, building
on recent work by the first author and collaborators. Our main moti-
vation for considering these operators is that they appear in the stan-
dard second-kind boundary-integral formulations, posed in L2(∂Ω), of
the exterior Dirichlet problem for the Helmholtz equation. Our new
wavenumber-explicit L2(∂Ω) → H1(∂Ω) bounds can then be used in a
wavenumber-explicit version of the classic compact-perturbation anal-
ysis of Galerkin discretisations of these second-kind equations; this
is done in the companion paper (Galkowski, Müller, and Spence in
Wavenumber-explicit analysis for the Helmholtz h-BEM: error estimates
and iteration counts for the Dirichlet problem, 2017. arXiv:1608.01035).
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1. Introduction

1.1. Statement of the Main Results

Let Φk(x, y) be the fundamental solution of the Helmholtz equation (Δu +
k2u = 0) given by

Φk(x, y) :=
i
4
H

(1)
0

(
k|x−y|), d = 2, Φk(x, y) :=

eik|x−y|

4π|x − y| , d = 3, (1.1)

where d is the spatial dimension. Let Ω be a bounded Lipschitz open set such
that the open complement Ω+ := R

d\Ω is connected (so that the scattering
problem with obstacle Ω is well-defined). Recall that, for almost every x ∈ ∂Ω,
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there exists a unique outward-pointing unit normal vector, which we denote
by n(x). For φ ∈ L2(∂Ω) and x ∈ ∂Ω, the single- and double-layer potential
operators are defined by

Skφ(x) :=
∫

∂Ω

Φk(x, y)φ(y) ds(y), Dkφ(x) :=
∫

∂Ω

∂Φk(x, y)
∂n(y)

φ(y) ds(y),

(1.2)
and the adjoint-double-layer operator is defined by

D′
kφ(x) :=

∫

∂Ω

∂Φk(x, y)
∂n(y)

φ(y) ds(y) (1.3)

(recall that D′
k is the adjoint of Dk with respect to the real-valued L2(∂Ω)

inner product; see, e.g., [7, p. 120]).
Before stating our main results, we need to make the following

definitions.

Definition 1.1. (Smooth hypersurface). We say that Γ ⊂ R
d is a smooth hyper-

surface if there exists Γ̃ a compact embedded smooth d − 1 dimensional sub-
manifold of R

d, possibly with boundary, such that Γ is an open subset of Γ̃,
with Γ strictly away from ∂Γ̃, and the boundary of Γ can be written as a
disjoint union

∂Γ =

(
n⋃

�=1

Y�

)

∪ Σ,

where each Y� is an open, relatively compact, smooth embedded manifold of
dimension d− 2 in Γ̃, Γ lies locally on one side of Y�, and Σ is closed set with
d − 2 measure 0 and Σ ⊂ ⋃n

l=1 Yl. We then refer to the manifold Γ̃ as an
extension of Γ.

For example, when d = 3, the interior of a 2-d polygon is a smooth
hypersurface, with Yi the edges and Σ the set of corner points.

Definition 1.2. (Curved). We say a smooth hypersurface is curved if there is
a choice of normal so that the second fundamental form of the hypersurface
is everywhere positive definite.

Recall that the principal curvatures are the eigenvalues of the matrix of
the second fundamental form in an orthonormal basis of the tangent space,
and thus “curved” is equivalent to the principal curvatures being everywhere
strictly positive (or everywhere strictly negative, depending on the choice of
the normal).

Definition 1.3. (Piecewise smooth). We say that a hypersurface Γ is piecewise
smooth if Γ =

⋃N
i=1 Γi where Γi are smooth hypersurfaces and Γi ∩ Γj = ∅.

Definition 1.4. (Piecewise curved). We say that a piecewise smooth hyper-
surface Γ is piecewise curved if Γ is as in Definition 1.3 and each Γj is curved.

The main results of this paper are contained in the following theorem.
We use the notation that a � b if there exists a C > 0, independent of k,
such that a ≤ Cb.
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Theorem 1.5. (Bounds on ‖Sk‖L2(∂Ω)→H1(∂Ω), ‖Dk‖L2(∂Ω)→H1(∂Ω),
‖D′

k‖L2(∂Ω)→H1(∂Ω)).
Let Ω be a bounded Lipschitz open set such that the open complement Ω+ :=
R

d\Ω is connected.
(a) If ∂Ω is a piecewise smooth hypersurface (in the sense of Definition 1.3),

then, given k0 > 1,

‖Sk‖L2(∂Ω)→H1(∂Ω) � k1/2 log k, (1.4)

for all k ≥ k0. Moreover, if ∂Ω is piecewise curved (in the sense of
Definition 1.4), then, given k0 > 1, the following stronger estimate holds
for all k ≥ k0

‖Sk‖L2(∂Ω)→H1(∂Ω) � k1/3 log k. (1.5)

(b) If ∂Ω is a piecewise smooth, C2,α hypersurface, for some α > 0, then,
given k0 > 1,

‖Dk‖L2(∂Ω)→H1(∂Ω) + ‖D′
k‖L2(∂Ω)→H1(∂Ω) � k5/4 log k

for all k ≥ k0. Moreover, if ∂Ω is piecewise curved, then, given k0 > 1,
the following stronger estimates hold for all k ≥ k0

‖Dk‖L2(∂Ω)→H1(∂Ω) + ‖D′
k‖L2(∂Ω)→H1(∂Ω) � k7/6 log k.

(c) If Ω is convex and ∂Ω is C∞ and curved (in the sense of Definition 1.2)
then, given k0 > 0,

‖Sk‖L2(∂Ω)→H1(∂Ω) � k1/3,

‖Dk‖L2(∂Ω)→H1(∂Ω) + ‖D′
k‖L2(∂Ω)→H1(∂Ω) � k (1.6)

for all k ≥ k0.

Note that the requirement in Part (b) of Theorem 1.5 that ∂Ω is C2,α

arises since this is the regularity required of ∂Ω for Dk and D′
k to map L2(∂Ω)

to H1(∂Ω); see [38, Theorem 4.2], [15, Theorem 3.6].

Remark 1.6. (Sharpness of the bounds in Theorem 1.5). In Sect. 3 we show
that, modulo the factor log k, all of the bounds in Theorem 1.5 are sharp
(i.e. the powers of k in the bounds are optimal). The sharpness (modulo the
factor log k) of the L2(∂Ω) → L2(∂Ω) bounds in Theorem 2.10 was proved
in [31, §A.2–A.3]. Earlier work in [6, §4] proved the sharpness of some of the
L2(∂Ω) → L2(∂Ω) bounds in 2-d; we highlight that Sect. 3 and [31, §A.2–
A.3] contain the appropriate generalisations to multidimensions of some of
the arguments of [6, §4] (in particular [6, Theorems 4.2 and 4.4]).

Remark 1.7. (Comparison to previous results). The only previously-existing
bounds on the L2(∂Ω) → H1(∂Ω)-norms of Sk, Dk, and D′

k are the following:

‖Sk‖L2(∂Ω)→H1(∂Ω) � k(d−1)/2 (1.7)

when ∂Ω is Lipschitz [29, Theorem 1.6 (i)], and

‖Dk‖L2(∂Ω)→H1(∂Ω) + ‖D′
k‖L2(∂Ω)→H1(∂Ω) � k(d+1)/2 (1.8)

when ∂Ω is C2,α [29, Theorem 1.6 (ii)].
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We see that (1.7) is a factor of log k sharper than the bound (1.4) when
d = 2, but otherwise all the bounds in Theorem 1.5 are sharper than (1.7)
and (1.8).

Remark 1.8. (Bounds for general dimension and k ∈ R). We have restricted
attention to 2- and 3-dimensions because these are the most practically-
interesting ones. From a semiclassical point of view, it is natural work in
d ≥ 1, and the results of Theorem 1.5 apply for any d ≥ 1 (although when
d = 1 it is straightforward to get sharper bounds; see [26, §1]). We have also
restricted attention to the case when k is positive and bounded away from
0. Nevertheless, the methods used to prove the bounds in Theorem 1.5 show
that if one replaces log k by log〈k〉 [where 〈·〉 = (2+ | · |2)1/2] and includes an
extra factor of log〈k−1〉 when d = 2, then the resulting bounds hold for all
k ∈ R.

As explained in Sect. 1.2 below, the motivation for proving the
L2(∂Ω) → H1(∂Ω) bounds of Theorem 1.5 comes from interest in second-
kind Helmholtz boundary integral equations (BIEs) posed in L2(∂Ω). How-
ever, there is also a large interest in both first- and second-kind Helmholtz
BIEs posed in the trace spaces H−1/2(∂Ω) and H1/2(∂Ω) (see, e.g., [47, §3.9],
[51, §7.6]). The k-explicit theory of Helmholtz BIEs in the trace spaces is
much less developed than the theory in L2(∂Ω), so we therefore highlight
that the L2(∂Ω) → H1(∂Ω) bounds in Theorem 1.5 can be converted to
Hs−1/2(∂Ω) → Hs+1/2(∂Ω) bounds for |s| ≤ 1/2.

Corollary 1.9. (Bounds from Hs−1/2(∂Ω) → Hs+1/2(∂Ω) for |s| ≤ 1/2).
Theorem 1.5 is valid with all the norms from L2(∂Ω) → H1(∂Ω) replaced by
norms from Hs−1/2(∂Ω) → Hs+1/2(∂Ω) for |s| ≤ 1/2.

Remark 1.10. (The idea behind Theorem 1.5). The bounds of Theorem 1.5
are proved using estimates on the restriction of quasimodes of the Laplacian
to hypersurfaces from [5,14,32,52,54], and [53] (and recapped in Sect. 2.3
below). The reason why these restriction estimates can be used to prove
bounds on boundary-integral operators is explained in Sect. 2.4.2 below; this
idea was first introduced in [26], [31, Appendix A] and [24], where L2(∂Ω) →
L2(∂Ω) bounds were proved on Sk,Dk,D′

k.

1.2. Motivation for Proving Theorem 1.5

Our motivation for proving Theorem 1.5 has four parts.

1. The integral operators Sk,Dk, and D′
k appear in the standard second-

kind BIE formulations of the exterior Dirichlet problem for the
Helmholtz equation.

2. The standard analysis of the Galerkin method applied to these second-
kind BIEs is based on the fact that, when ∂Ω is C1, the operators
Sk,Dk, and D′

k are all compact, and thus A′
k,η and Ak,η are compact

perturbations of 1
2I.

3. To perform a k-explicit analysis of the Galerkin method applied to A′
k,η

or Ak,η via these compact-perturbation arguments, we need to have
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k-explicit information about the smoothing properties of Sk, Dk, and
D′

k.
4. When ∂Ω is C2,α, the operators Sk, Dk, and D′

k all map L2(∂Ω)
to H1(∂Ω), and k-explicit bounds on these norms therefore give the
required k-explicit smoothing information.

Regarding Point 1: if u is the solution of the exterior Dirichlet problem
for the Helmholtz equation

Δu(x) + k2u(x) = 0, x ∈ Ω+,

satisfying the Sommerfeld radiation condition

∂u

∂r
(x) − iku(x) = o

(
1

r(d−1)/2

)

as r := |x| → ∞, uniformly in x/r, then Green’s integral representation
theorem implies that

u(x) = −
∫

∂Ω

Φk(x, y)∂+
n u(y)ds(y) +

∫

∂Ω

∂Φk(x, y)
∂n(x)

γ+u(y) ds(y), x ∈ Ω+,

(1.9)
where ∂+

n u is the (unknown) Neumann trace on ∂Ω and γ+u is the (known)
Dirichlet trace. Taking the Dirichlet and Neumann traces of (1.9), using
the jump relations for the single- and double-layer potentials (see, e.g. [7,
Equations 2.41–2.43]), and then taking a linear combination of the resulting
equations, we obtain the so-called “direct” BIE

A′
k,η∂+

n u = fk,η (1.10)

where

A′
k,η :=

1
2
I + D′

k − iηSk, (1.11)

η ∈ R\{0}, and fk,η is given in terms of the known Dirichlet trace; see,
e.g., [7, Equation 2.68] (the exact form of fk,η is not important for us here).
Alternatively, one can pose the ansatz

u(x) =
∫

∂Ω

∂Φk(x, y)
∂n(y)

φ(y) ds(y) − iη
∫

∂Ω

Φk(x, y)φ(y) ds(y), (1.12)

for x ∈ Ω+, φ ∈ L2(∂Ω), and η ∈ R\{0}. Taking the Dirichlet trace of (1.12),
we obtain the so-called “indirect” BIE

Ak,ηφ = γ+u, (1.13)

where

Ak,η :=
1
2
I + Dk − iηSk. (1.14)

The motivation for considering these “combined BIEs” (i.e. BIEs involving a
linear combination of Sk,Dk, and D′

k) is that, when η ∈ R\{0}, the operators
A′

k,η and Ak,η are bounded, invertible operators on L2(∂Ω) for all k > 0 (see,
e.g., [7, Theorem 2.27]). In contrast, the integral operators Sk, (1

2I + D′
k),

and (1
2I + Dk) are not invertible for all k > 0 (see, e.g., [7, §2.5]).
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Regarding Point 2: Sk is compact when ∂Ω is Lipschitz (since Sk :
L2(∂Ω) → H1(∂Ω) in this case [56, Theorem 1.6]), and Dk and D′

k are
compact when ∂Ω is C1 [23, Theorem 1.2(c)].

Regarding Points 3 and 4: [29] performed a k-explicit version of the
classic compact-perturbation argument appearing in, e.g., [3, Chapter 3]. The
two k-explicit ingredients were the L2(∂Ω) → H1(∂Ω) bounds on Sk,Dk, and
D′

k discussed in Remark 1.7 (and proved in [29, Theorem 1.6]) and the sharp
L2(∂Ω) → L2(∂Ω) bound on (A′

k,η)−1 and A−1
k,η when Ω is star-shaped with

respect to a ball from [12, Theorem 4.3]. The paper [25] shows how the results
of [29] are improved by using the new, sharp L2(∂Ω) → H1(∂Ω) bounds on
Sk,Dk, and D′

k from Theorem 1.5, along with the sharp L2(∂Ω) → L2(∂Ω)
bounds on (A′

k,η)−1 and A−1
k,η for nontrapping Ω from [4, Theorem 1.13].

1.3. Discussion of the Results of Theorem 1.5 in the Context of Using Semi-
classical Analysis in the Numerical Analysis of the Helmholtz Equation

In the last 10 years, there has been growing interest in using results about
the k-explicit analysis of the Helmholtz equation from semiclassical analysis
to design and analyse numerical methods for the Helmholtz equation.1 The
activity has occurred in, broadly speaking, four different directions:
1. The use of the results of Melrose and Taylor [41]—on the rigorous

k → ∞ asymptotics of the solution of the Helmholtz equation in the
exterior of a smooth convex obstacle with strictly positive curvature—
to design and analyse k-dependent approximation spaces for integral-
equation formulations [2,17,19–21,28].

2. The use of the results of Melrose and Taylor [41], along with the work
of Ikawa [37] on scattering from several convex obstacles, to analyse
algorithms for multiple scattering problems [1,22].

3. The use of bounds on the Helmholtz solution operator (also known
as resolvent estimates) due to Vainberg [55] (using the propagation of
singularities results of Melrose and Sjöstrand [40]) and Morawetz [45] to
prove bounds on both ‖(A′

k,η)−1‖L2(∂Ω)→L2(∂Ω) and the inf-sup constant
of the domain-based variational formulation [4,12,13,48], and also to
analyse preconditioning strategies [27].

4. The use of identities originally due to Morawetz [45] to prove coercivity
of A′

k,η [50] and to introduce new coercive formulations of Helmholtz
problems [44,49].

This paper concerns a fifth direction, namely proving sharp k-explicit bounds
on Sk,Dk and D′

k using estimates on the restriction of quasimodes of the
Laplacian to hypersurfaces from [5,14,32,52,54], and [53] (and recapped in
Sect. 2.3 below). This direction was initiated in [26], [31, Appendix A], and
[24], where sharp, k-explicit L2(∂Ω) → L2(∂Ω) bounds on Sk,Dk and D′

k

were proved using this idea. The present paper extends this method to obtain
sharp L2(∂Ω) → H1(∂Ω) bounds. The companion paper [25] then explores

1A closely-related activity is the design and analysis of numerical methods for the

Helmholtz equation based on proving new results about the k → ∞ asymptotics of
Helmholtz solutions for polygonal obstacles; see [9,11,34,35], and [33].
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the implications of both the L2(∂Ω) → L2(∂Ω) and L2(∂Ω) → H1(∂Ω)
bounds (used in conjunction with the results in Points 3 and 4 above) on the
k-explicit numerical analysis of the Galerkin method applied to the second-
kind Eqs. (1.10) and (1.13).

1.4. Outline of the Paper

In Sect. 2 we prove Theorem 1.5 [the L2(∂Ω) → H1(∂Ω) bounds] and Corol-
lary 1.9, and in Sect. 3 we show that the bounds in Theorem 1.5 are sharp
in their k-dependence.

2. Proof of Theorem 1.5 and Corollary 1.9

In this section we prove Theorem 1.5 and Corollary 1.9. The vast majority of
the work will be in proving Parts (a) and (b) of Theorem 1.5, with Part (c)
of Theorem 1.5 following from the results in [24, Chapter 4], and Corollary
1.9 following from the results of [29].

The outline of this section is as follows: in Sect. 2.1 we discuss some
preliminaries from the theory of semiclassical pseudodifferential operators,
with our default references the texts [57] and [18]. In Sect. 2.2 we recap
facts about function spaces on piecewise smooth hypersurfaces. In Sect. 2.3
we recap restriction bounds on quasimodes—these results are central to our
proof of Theorem 1.5. In Sect. 2.4 we prove of Parts (a) and (b) of Theorem
1.5, in Sect. 2.5 we prove Part (c) of Theorem 1.5 Sect. 2.5, and in Sect. 2.6
we prove Corollary 1.9.

We drop the � notation in this section and state every bound with a
constant C (independent of k); we do this because later in the proof it will
be useful to be able to indicate whether or not the constant in our estimates
depends on the order s of the Sobolev space, or on a particular hypersurface
Γ (we do this via the subscript s and Γ—see, e.g., (2.20) below).

2.1. Semiclassical Preliminaries

2.1.1. Symbols and Quantization. Following [57, §3.3], for k > 0 and u ∈
S(Rd), we define the semiclassical Fourier transform Fk(u) by

Fk(u)(ξ) :=
∫

Rd

exp
(− ik〈y, ξ〉)u(y) dy, (2.1)

where 〈x, ξ〉 :=
∑d

j=1 xjξj . We recall the inversion formula

u(x) :=
kd

(2π)d

∫

Rd

exp
(
ik〈x, ξ〉)Fk(u)(ξ) dξ.

We use the standard notation that D := −i∂, so that Fk(k−1Dju)(ξ) =
ξjFk(u)(ξ). We let 〈ξ〉 := (1+ |ξ|2)1/2 and, following [18, §E.1.2], we say that
a(x, ξ; k) ∈ C∞(R2d

x,ξ) lies in Sm(R2d
x,ξ) if for all α, β ∈ N

d and K � R
d, there

exists Cα,β,K > 0 so that

sup
x∈K,ξ∈Rd

〈ξ〉−m+|β||∂α
x ∂β

ξ a(x, ξ)| ≤ Cα,β,K .
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From here on, we follow the usual convention of suppressing the depen-
dence of a(x, ξ; k) on k, writing instead a(x, ξ) (see, e.g., [57, Remark on p.
72]), and also writing Sm(R2d) instead of Sm(R2d

x,ξ). We write S−∞(R2d) =
∩m∈RSm(R2d). We say that a ∈ Scomp(R2d) if a ∈ S−∞(R2d) with supp a ⊂
K for some compact set K ⊂ R

2d independent of k.
For an element a ∈ Sm, we define its quantization to be the operator

u �→ a(x, k−1D)u :=
kd

(2π)d

∫

Rd

∫

Rd

exp
(
ik〈x − y, ξ〉) a(x, ξ)u(y) dydξ (2.2)

for u ∈ S(Rd). These operators can be defined by duality on u ∈ S ′(Rd).
We say that an operator A(k) : C∞

c (Rd) → D′(Rd) is OΨ−∞(k−∞) if it is
smoothing (i.e. its Schwartz kernel K is smooth) and each seminorm of K
on C∞(Rd × R

d) is O(k−∞). Note that, by introducing an operator R =
OΨ−∞(k−∞) as an error, we can make the operator a(x, k−1D) properly
supported (i.e. so that for any K � R

d, the kernel K of a(x, k−1D) + R has
the property that both π−1

R (K) ∩ suppK and π−1
L (K) ∩ suppK are compact

where πR, πL : R
d × R

d → R
d are projection onto the right and left factors

respectively).
Now, we say that A(k) is a pseudodifferential operator of order m

and write A(k) ∈ Ψm(Rd) if A(k) is properly supported and for some
a ∈ Sm(R2d),

A(k) := a(x, k−1D) + OΨ−∞(k−∞).

We say that A(k) ∈ Ψcomp(Rd) if

A(k) = a(x, k−1D) + OΨ−∞(k−∞)

for some a ∈ Scomp(R2d).
Suppose that A(k) ∈ Ψm(Rd) has A(k) = a(x, k−1D) + OΨ−∞(k−∞).

Then we call a the full symbol of A. The principal symbol of A ∈ Ψm(Rd),
denoted by σ(A), is defined by

σ(A) := a mod k−1Sm−1(R2d).

Lemma 2.1. [18, Proposition E.16]. Let a ∈ Sm1(R2d) and b ∈ Sm2(R2d).
Then we have

a(x, k−1D)b(x, k−1D) = (ab)(x, k−1D) + k−1r1(x, k−1D) + OΨ−∞(k−∞)

[a(x, k−1D), b(x, k−1D)] := a(x, k−1D)b(x, k−1D) − b(x, k−1D)a(x, k−1D)

=
1
ik

{a, b}(x, k−1D)+k−2r2(x, k−1D)+OΨ−∞(k−∞)

where r1 ∈ Sm1+m2−1(R2d), r2 ∈ Sm1+m2−2(R2d), supp ri ⊂ supp a ∩ supp b,
and the Poisson bracket {a, b} is defined by

{a, b} :=
d∑

j=1

(∂ξj
a)(∂xj

b) − (∂ξj
b)(∂xj

a).
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2.1.2. Action on Semiclassical Sobolev Spaces. We define the Semiclassical
Sobolev spaces Hs

k(Rd) to be the space Hs(Rd) equipped with the norm

‖u‖2
Hs

k(Rd) := ‖〈k−1D〉su‖2
L2(Rd).

Note that for s an integer, this norm is equivalent to

‖u‖2
Hs

k(Rd) =
∑

|α|≤s

‖(k−1∂)αu‖2
L2(Rd).

The definition of the semiclassical Sobolev spaces on a smooth compact man-
ifold Γ of dimension d−1, i.e. Hs

k(Γ) for |s| ≤ 1, follows from the definition of
Hs

k(Rd−1) (see, e.g., [39, p. 98]). Because solutions of the Helmholtz equation
(−k−2Δ − 1)u = 0 oscillate at frequency k, scaling derivatives by k−1 makes
the k-dependence of these norms uniform in the number of derivatives.

With these definitions in hand, we have the following lemma on bound-
edness of pseudodifferential operators.

Lemma 2.2. [18, Proposition E.22]. Let A ∈ Ψm(Rd). Then for χ1, χ2 ∈
C∞

c (Rd), ‖χ2Aχ1‖Hs
k(Rd)→Hs−m

k (Rd) ≤ C.

2.1.3. Ellipticity. For A ∈ Ψm(Rd), we say that (x, ξ) ∈ R
2d is in the elliptic

set of A, denoted ell(A), if there exists U a neighborhood of (x, ξ) such that
for some δ > 0,

inf
U

|σ(A)(x, ξ)| ≥ δ.

We then have the following lemma

Lemma 2.3. [18, Proposition E.31]. Suppose that A ∈ Ψm1(Rd), b ∈
Scomp(R2d) with supp b ⊂ ell(A). Then there exists R1, R2 ∈ Ψcomp(Rd) with

R1A = b(x, k−1D) + OΨ−∞(k−∞), AR2 = b(x, k−1D) + OΨ−∞(k−∞).

Moreover, if b ∈ Sm2(R2d) and there exists M > 0, δ > 0

inf
supp b

|σ(A)|〈ξ〉−m1 > δ,

then the same conclusions hold with Ri ∈ Ψm2−m1(Rd).

2.1.4. Pseudodifferential Operators on Manifolds. Since we only use the
notion of a pseudodifferential operator on a manifold in passing (in Lemma
2.15 and Sect. 2.5 below), we simply note that it is possible to define pseudo-
differential operators on manifolds (see, e.g., [57, Chapter 14]). The analogues
of Lemmas 2.1, 2.2, and 2.3 all hold in this setting. Moreover, the principal
symbol map can still be defined although its definition is somewhat more
involved.

2.2. Function Spaces on Piecewise Smooth Hypersurfaces

We now define the spaces Hs(Γ) and Ḣs(Γ) (with the notation for these
spaces taken from [36, §B.2]).
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Definition 2.4. (Extendable Sobolev space Hs(Γ) on a smooth hypersurface).
Let Γ be a smooth hypersurface of R

d (in the sense of Definition 1.1) and let
Γ̃ be an extension of Γ. Given s ∈ R, we say that u ∈ Hs(Γ) if there exists
u ∈ Hs

comp(Γ̃) such that u|Γ = u.
Let (Uj , ψj)j∈J be an atlas of Γ̃ such that Uj ∩∂Γ∩∂Γ̃ = ∅ for all j ∈ J ,

and let

JΓ :=
{
j ∈ J, Uj ∩ Γ �= ∅} and J∂ :=

{
j ∈ J, Uj ∩ ∂Γ �= ∅}

(observe that if ∂Γ = ∅ then J∂ = ∅). Let (χj)j∈J be a partition of unity
of Γ̃ subordinated to (Uj)j∈J . Given χ ∈ C∞

c (Int(Γ̃)) such that χ = 1 in a
neighborhood of Γ, we define

‖u‖Hs(Γ) =
∑

j∈JΓ\J∂

‖(χju) ◦ ψ−1
j ‖Hs(Rd−1)

+ inf
u∈Hs

comp(Γ̃),u|Γ=u

∑

j∈J∂

‖(χjχu) ◦ ψ−1
j ‖Hs(Rd−1). (2.3)

We make two remarks:

1. The definition of the norm Hs(Γ) depends on Γ̃, χ, and the choice of
charts (Uj , ψj) and partition of unity (χj). One can however prove that
two different choices of charts (Uj , ψj) and partition of unity (χj) lead
to equivalent norms Hs(Γ). In what follows, (Uj , ψj , χj) will be traces
on Γ̃ of charts and partition of unity on R

d.
2. This definition is the same as, e.g., the definition of Hs(Γ) for Γ ⊂ R

d

any non-empty open set in [39, p. 77]. However, we use the specific nota-
tion Hs(Γ) for the following two reasons: (i) parallelism with the space
Hs(∂Ω) in Definition 2.6 below, and (ii) the fact that, without using
the overline, Hs(·) would be defined differently depending on whether
the · is a smooth hypersurface or the boundary of a Lipschitz domain.

Definition 2.5. (Sobolev space Ḣs(Γ) on a smooth hypersurface). Let Γ be a
smooth hypersurface of R

d (in the sense of Definition 1.1) and let Γ̃ be an
extension of Γ. Given s ∈ R, We say that u ∈ Ḣs(Γ) if u ∈ Hs

comp(Γ̃) and
suppu ⊂ Γ. Then,

‖u‖Ḣs(Γ) := ‖u‖Hs(Γ̃).

Since Γ has C0 boundary, one can show [10, Theorem 3.3, Lemma 3.15]
that the dual of Hs(Γ) is given by Ḣ−s(Γ) with the dual pairing inherited
from that of Hs

comp(Γ̃) and H−s
comp(Γ̃).

For piecewise smooth ∂Ω, it is useful to consider the following
“piecewise-Hs” spaces.

Definition 2.6. (Sobolev space Hs(∂Ω)). Let Ω be a bounded Lipschitz open
set such that its open complement is connected and ∂Ω is a piecewise smooth
hypersurface (in the sense of Definition 1.3); i.e., ∂Ω =

⋃N
i=1 Γi where Γi are

smooth hypersurfaces. With |s| ≤ 1, we say that u ∈ Hs(∂Ω) if
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u =
N∑

i=1

ui, for ui ∈ Hs(Γi), and we let ‖u‖Hs(∂Ω) :=

√√
√
√

N∑

i=1

‖ui‖2
Hs(Γi)

.

We similarly define the norms Hs
k(Γ) and Ḣs

k(Γ) replacing ‖ · ‖Hs(Rd−1)

in (2.3) with the weighted-norm ‖ · ‖Hs
k(Rd−1) (see, e.g., [18, Definition E.21]).

The following lemma implies that, when Sk, Dk, and D′
k map L2(∂Ω) to

H1(∂Ω), to bound the H1(∂Ω) norms of Skφ, Dkφ, and D′
kφ, it is sufficient

to bound their H1(∂Ω) norms.

Lemma 2.7. Let Ω be a bounded Lipschitz open set such that its open comple-
ment is connected and ∂Ω is a piecewise smooth hypersurface (in the sense
of Definition 1.3). If u ∈ H1(∂Ω) then

‖u‖H1(∂Ω) ≤ ‖u‖H1(∂Ω) (2.4)

Proof. Recall that H1(∂Ω) can be defined as the completion of C∞
comp(∂Ω) :=

{u|∂Ω : u ∈ C∞
0 (Rd)} with respect to the norm

∫

∂Ω

(
|∇∂Ωu|2 + |u|2

)
ds (2.5)

[7, pp. 275–276] where ∇∂Ω is the surface gradient, defined in terms of a
parametrisation of the boundary by, e.g., [7, Equations (A.13) and (A.14)].
By the definition of the H1(Γi) norm from Definition 2.4, u restricted to Γi

satisfies

‖u‖2
H1(Γi)

=
∫

Γi

(
|∇Γi

u|2 + |u|2
)
ds(Γi) + inf

u|Γ=u

∫

Γ̃i\Γi

(
|∇Γ̃i

u|2 + |u|2
)
ds(Γ̃i),

≥
∫

Γi

(
|∇Γi

u|2 + |u|2
)
ds(Γi).

Then,

‖u‖2
H1(∂Ω) =

∫

∂Ω

(
|∇∂Ωu|2 + |u|2

)
ds =

N∑

i=1

∫

Γi

(
|∇Γi

u|2 + |u|2
)
ds(Γi)

≤
N∑

i=1

‖u‖2
H1(Γi)

= ‖u‖2
H1(∂Ω)

and the proof is complete. �

Observe that Lemma 2.7 also holds when H1(∂Ω) and H1(∂Ω) are
replaced by H1

k(∂Ω) and H1
k(∂Ω) respectively.

2.3. Recap of Restriction Estimates for Quasimodes

Theorem 2.8. Let U ⊂ R
d be open and precompact with Γ a smooth hyper-

surface (in the sense of Definition 1.1) satisfying Γ ⊂ U . Given k0 > 0, there
exists C > 0 (independent of k) so that if ‖u‖L2(U) = 1 with

(−k−2Δ − 1)u = OL2(U)(k−1), (2.6)
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(i.e. ‖k−2Δu + u‖L2(U) = O(k−1)) then, for all k ≥ k0,

‖u‖L2(Γ) ≤
{

Ck1/4,

Ck1/6, Γ curved,
(2.7)

and
‖∂νu‖L2(Γ) ≤ Ck (2.8)

where ∂ν is a choice of normal derivative to Γ.

References for the Proof of Theorem 2.8. The bound (2.7) for general Γ is
proved in [52, Theorem 1.7] and [5, Theorem 1] and for curved Γ in [32,
Theorem 1.3]. The bound (2.8) is proved in [53, Theorem 0.2] (with the
analogous estimate for proper eigenfunctions appearing in [14, Theorem 1.1]).

We highlight that the analogues of the estimates (2.7) and (2.8) in the
context of the wave equation on smooth Riemannian manifolds appear in
[54, Theorem 1] (along with their Lp generalizations in [54, Theorem 8]),
with [54, pp. 187 and 188] noting that the L2 bounds are a corollary of an
estimate in [30]. �
Remark 2.9. (Smoothness of Γ required for the quasimode estimates). The
k1/4-bound in (2.7) is valid when Γ is only C1,1, and the k1/6-bound is valid
when Γ is C2,1 and curved. Therefore, with some extra work it should be pos-
sible to prove that the bounds on Sk in Theorem 1.5 hold with the assump-
tion “piecewise smooth” replaced by “piecewise C1,1” and “piecewise C2,1

and curved” respectively. On the other hand, the bound (2.8) is not known
in the literature for lower regularity Γ.

2.4. Proof of Parts (a) and (b) of Theorem 1.5

When proving these results, it is more convenient to work in semiclassical
Sobolev spaces, i.e. to prove the bounds from L2(∂Ω) to H1

k(∂Ω), where
(following Sect. 2.1.2),

‖w‖2
H1

k(∂Ω) := k−2 ‖∇∂Ωw‖2
L2(∂Ω) + ‖w‖2

L2(∂Ω) , (2.9)

where ∇∂Ω is the surface gradient on ∂Ω (defined by, e.g., [7, Equations
(A.13) and (A.14)]). We therefore now restate Theorem 1.5 as Theorem 2.10
below, working in these spaces.

Theorem 2.10. (Restatement of Theorem 1.5 as bounds from L2(∂Ω) →
H1

k(∂Ω)).
Let Ω be a bounded Lipschitz open set such that the open complement Ω+ :=
R

d\Ω is connected.
(a) If ∂Ω is a piecewise smooth hypersurface (in the sense of Definition 1.3),

then, given k0 > 1, there exists C > 0 (independent of k) such that

‖Sk‖L2(∂Ω)→H1
k(∂Ω) ≤ C k−1/2 log k. (2.10)

for all k ≥ k0. Moreover, if ∂Ω is piecewise curved (in the sense of
Definition 1.4), then, given k0 > 1, the following stronger estimate holds
for all k ≥ k0

‖Sk‖L2(∂Ω)→H1
k(∂Ω) ≤ Ck−2/3 log k. (2.11)
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(b) If ∂Ω is a piecewise smooth, C2,α hypersurface, for some α > 0, then,
given k0 > 1, there exists C > 0 (independent of k) such that

‖Dk‖L2(∂Ω)→H1
k(∂Ω) + ‖D′

k‖L2(∂Ω)→H1
k(∂Ω) ≤ Ck1/4 log k. (2.12)

Moreover, if ∂Ω is piecewise curved, then, given k0 > 1, there exists
C > 0 (independent of k) such that the following stronger estimates
hold for all k ≥ k0

‖Dk‖L2(∂Ω)→H1
k(∂Ω) + ‖D′

k‖L2(∂Ω)→H1
k(∂Ω) � k1/6 log k.

(c) If Ω is convex and ∂Ω is C∞ and curved (in the sense of Definition 1.2)
then, given k0 > 1, there exists C such that, for k ≥ k0,

‖Sk‖L2(∂Ω)→H1
k(∂Ω) ≤ Ck−2/3,

‖Dk‖L2(∂Ω)→H1
k(∂Ω) + ‖D′

k‖L2(∂Ω)→H1
k(∂Ω) ≤ C.

Because Theorem 2.10 works in the weighted space H1
k(∂Ω), the

L2(∂Ω) → L2(∂Ω) bounds contained in Theorem 2.10 are one power of k
stronger than those contained in Theorem 1.5. The L2(∂Ω) → L2(∂Ω) bounds
contained in Theorem 2.10 were originally proved in [26, Theorem 1.2], [31,
Appendix A], and [24, Theorems 4.29, 4.32].

In Sect. 2.4.2 below, we give an outline of the proof of Parts (a) and (b).
This outline, however, requires the definitions of Sk, Dk, and D′

k in terms of
the free resolvent (a.k.a. the Newtonian, or volume, potential), given in the
next subsection.

2.4.1. Sk , Dk , and D′
k Written in Terms of the Free Resolvent R0(k). We

now recall the definitions of Sk, Dk, and D′
k in terms of the free resolvent

R0(k), these expressions are well-known in the theory of BIEs on Lipschitz
domains [16], [39, Chapters 6 and 7]. We then specialise these to the case
when ∂Ω is a piecewise smooth hypersurface (in the sense of Definition 1.3)

Let R0(k) be the free (outgoing) resolvent at k; i.e. for ψ ∈ C∞
comp(Rd)

we have
(
R0(k)ψ

)
(x) :=

∫

Rd

Φk(x, y)ψ(y) dy,

where Φk(x, y) is the (outgoing) fundamental solution defined by (1.1) for
d = 2, 3. Recall that R0(k) : Hs

comp(Rd) → Hs+2
loc (Rd); see, e.g., [39, Equation

6.10].
With Ω a bounded Lipschitz open set with boundary ∂Ω and 1/2 <

s < 3/2, let γ+ : Hs
loc(Ω+) → Hs−1/2(∂Ω) and γ− : Hs(Ω) → Hs−1/2(∂Ω),

be the trace maps [16, Lemma 3.6], [39, Theorem 3.38]. When γ+u = γ−u
we write both as γu (so that γ : Hs

loc(R
d) → Hs−1/2(∂Ω)), and we then let

γ∗ : H−s+1/2(∂Ω) → H−s
comp(Rd) be the adjoint of γ [39, Equation 6.14]. Then

Sk can be written as
Sk = γR0(k)γ∗ (2.13)

[39, p. 202 and Equation 7.5], [16, Proof of Theorem 1]. With ∂∗
n denoting

the adjoint of the normal derivative trace (see, e.g., [39, Equation 6.14]), we
have that the double-layer potential, Dk, is defined by
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Dk := R0(k)∂∗
n

[39, p. 202]. Recalling that the normal vector n points out of Ω and into Ω+,
we have that the traces of Dk from Ω± to Γ are given by

γ±Dk = ±1
2
I + Dk

[39, Equation 7.5 and Theorem 7.3] and thus

Dk = ∓1
2
I + γ±R0(k)∂∗

n. (2.14)

Similarly, results about the normal-derivative traces of the single-layer poten-
tial Sk imply that

∂±
n Sk = ∓1

2
I + D′

k

so

D′
k = ±1

2
I + ∂±

n R0(k)γ∗. (2.15)

When ∂Ω is Lipschitz, Sk : L2(∂Ω) → H1(∂Ω) by [56, Theorem 1.6] (see
also, e.g., [42, Chapter 15, Theorem 5], [43, Proposition 3.8]), and when ∂Ω
is C2,α for some α > 0, then Dk,D′

k : L2(∂Ω) → H1(∂Ω) by [38, Theorem
4.2] (see also [15, Theorem 3.6]).

We now consider the case when ∂Ω is a piecewise smooth hypersurface
(in the sense of Definition 1.3) and use the notation that Γ̃i are the compact
embedded smooth manifolds of R

d such that, for each i, Γi is an open subset
of Γ̃i. Let Li be a vector field whose restriction to Γ̃i is equal to ∂νi

, the unit
normal to Γ̃i that is outward pointing with respect to ∂Ω. Let γi : Hs

loc(R
d) →

Hs−1/2(Γi) denote restriction to Γi. We note that γ∗
i is the inclusion map

f �→ fδΓi
where δΓi

is d−1 dimensional Hausdorff measure on Γ. Finally, we
let γ±

i denote restrictions from the interior and exterior respectively, where
“interior” and “exterior” are defined via considering Γi as a subset of ∂Ω.
With these notations, we have that

Dk = ∓1
2
I +
∑

i,j

γ±
i R0(k)L∗

jγ
∗
j (2.16)

and

D′
k = ±1

2
I +
∑

i,j

γ±
i LiR0(k)γ∗

j ; (2.17)

the advantage of these last two expressions over (2.14) and (2.15) is that they
involve γi and Li instead of ∂∗

n and ∂±
n .

In the rest of this section, we use the formulae (2.13), (2.16), and (2.17)
as the definitions of Sk, Dk, and D′

k. Note that we slightly abuse notation by
omitting the sums in (2.16) and (2.17) and instead writing

Dk = ±1
2
I + γ±R0(k)Lγ∗, D′

k = ∓1
2
I + γ±LR0(k)γ∗. (2.18)
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2.4.2. Outline of the Proof of Parts (a) and (b) of Theorem 2.10. The proof
of Parts (a) and (b) of Theorem 2.10 will follow in two steps. In Lemma 2.11,
we obtain estimates on frequencies ≤ Mk and in Lemma 2.20 we complete
the proof by estimating the high frequencies (≥ Mk).

To estimate the low frequency components, we spectrally decompose
the resolvent using the Fourier transform. We are then able to reduce the
proof of the low-frequency estimates to the estimates on the restriction of
eigenfunctions (or more precisely quasimodes) to ∂Ω that we recalled in Sect.
2.3. To understand this reduction, we proceed formally. From the description
of Sk in terms of the free resolvent, (2.13), the spectral decomposition of Sk

via the Fourier transform is formally

Skf =
∫ ∞

0

1
r2 − (k + i0)2

〈
f, γu(r)

〉
L2(∂Ω)

γu(r) dr (2.19)

where u(r) is a generalized eigenfunction of −Δ with eigenvalue r2, and
k + i0 denotes the limit of k + iε as ε → 0+. Observe that the integral in
(2.19) is not well-defined (hence why this calculation is only formal), but
(2.19) nevertheless indicates that estimating Sk amounts to estimating the
restriction of the generalized eigenfunction u(r) to ∂Ω.

At very high frequency, we compare the operators Sk, Dk, and D′
k with

the corresponding operators when k = 1 (recall that the mapping properties
of boundary integral operators with k = 1 have been extensively studied on
rough domains; see, e.g. [42, Chapter 15], [39,43]). By using a description of
the resolvent at very high frequency as a pseudodifferential operator, we are
able to see that these differences gain additional regularity and hence obtain
estimates on them easily.

The new ingredients in our proof compared to [26] and [31] are that we
have Hs norms in Lemma 2.11 and Lemma 2.20 rather than the L2 norms
appearing in the previous work.

2.4.3. Proof of Parts (a) and (b) of Theorem 2.10.

Low-Frequency Estimates. Following the outline in Sect. 2.4.2, our first task
is to estimate frequencies ≤ kM . We start by proving a conditional result that
assumes a certain estimate on restriction of the Fourier transform of surface
measures to the sphere of radius r (Lemma 2.11). In Lemma 2.13 we then
show that the hypotheses in Lemma 2.11 are a consequence of restriction
estimates for quasimodes. In Lemma 2.17 we show how the low-frequency
estimates on Sk, Dk, and D′

k follow from Lemma 2.11.
In this section we denote the sphere of radius r by Sd−1

r and we denote
the surface measure on Sd−1

r by dσ. We also use ·̂ to denote the non-
semiclassical Fourier transform, i.e. û(ξ) is defined by the right-hand side
of (2.1) with k = 1.
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Lemma 2.11. Suppose that for Γ ⊂ R
d any precompact smooth hypersurface,

s ≥ 0, f ∈ Ḣ−s(Γ), and some α , β > 0,
∫

Sd−1
r

|L̂∗fδΓ|2(ξ)dσ(ξ) ≤ CΓ〈r〉2α+2s‖f‖2
Ḣ−s(Γ)

, (2.20)
∫

Sd−1
r

|f̂ δΓ|2(ξ)dσ(ξ) ≤ CΓ〈r〉2β+2s‖f‖2
Ḣ−s(Γ)

. (2.21)

Let Γ1, Γ2 ⊂ R
d be compact embedded smooth hypersurfaces. Recall that Li

is a vector field with Li = ∂ν on Γi for some choice of unit normal ν on Γi

and ψ ∈ C∞
c (R) with ψ ≡ 1 in neighborhood of 0. With the frequency cutoff

ψ(k−1D) defined as in (2.2), we then define for f ∈ Ḣ−s1(Γ1), g ∈ Ḣ−s2(Γ2),
si ≥ 0,

QS(f, g) :=
∫

Rd

R0(k)(ψ(k−1D)fδΓ1)ḡδΓ2dx ,

QD(f, g) :=
∫

Rd

R0(k)(ψ(k−1D)L∗
1(fδΓ1))ḡδΓ2dx,

QD′(f, g) :=
∫

Rd

R0(k)(ψ(k−1D)fδΓ1)L∗
2(gδΓ2) dx.

Then there exists CΓ1,Γ2,ψ so that for k > 1,

|QS(f, g)| ≤ CΓ1,Γ2,ψ〈k〉2β−1+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1)
‖g‖Ḣ−s2 (Γ2)

, (2.22)

|QD(f, g)| + |QD′(f, g)|
≤ CΓ1,Γ2,ψ〈k〉α+β−1+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1)

‖g‖Ḣ−s2 (Γ2)
. (2.23)

The key point is that, modulo the frequency cutoff ψ(k−1D), QS(f, g),
QD(f, g), and QD′(f, g) are given respectively by 〈Skf, g〉Γ, 〈Dkf, g〉Γ, and
〈D′

kf, g〉Γ, where f is supported on Γ1 and g on Γ2.

Proof of Lemma 2.11. We follow [26,31] to prove the lemma. First, observe
that due to the compact support of fδΓi

, (2.20) and (2.21) imply that for
Γ ⊂ R

d precompact,
∫

Sd−1
r

∣
∣
∣∇ξ L̂∗fδΓ(ξ)

∣
∣
∣
2

dσ(ξ) ≤ CΓ 〈r〉2α+2s‖f‖2
Ḣ−s(Γ)

, (2.24)
∫

Sd−1
r

∣
∣
∣∇ξ f̂ δΓ(ξ)

∣
∣
∣
2

dσ(ξ) ≤ CΓ 〈r〉2β+2s‖f‖2
Ḣ−s(Γ)

. (2.25)

Indeed, ∇ξ f̂ δΓ = x̂fδΓ and since Γ is compact,

‖xf‖Ḣ−s(Γ) ≤ CΓ‖f‖Ḣ−s(Γ).

Also, ∇ξ
̂L∗(fδΓ) = F(xL∗(fδΓ)). Thus,

xL∗(fδΓ) = L∗(xfδΓ) + [x,L∗]fδΓ

and [x,L∗] ∈ C∞. Therefore, using compactness of Γ,

‖xf‖Ḣ−s(Γ) + ‖[x,L∗]f‖Ḣ−s(Γ) ≤ CΓ‖f‖Ḣ−s(Γ).
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Now, gδΓ2 ∈ Hmin(−s,−1/2−ε)(Rd), L∗
2(gδΓ2) ∈ Hmin(−s−1,−3/2−ε)(Rd) and

since ψ ∈ C∞
c (R),

R0(k)(ψ(k−1|D|)L∗(fδΓ1)) ∈ C∞(Rd), R0(k)(ψ(k−1|D|))fδΓ1) ∈ C∞(Rd).

By Plancherel’s theorem,

QS(f, g) =
∫

Rd

ψ(k−1|ξ|) f̂ δΓ1(ξ)ĝδΓ2(ξ)
|ξ|2 − (k + i0)2

dξ,

QD(f, g) =
∫

Rd

ψ(k−1|ξ|) L̂∗
1fδΓ1(ξ) ĝδΓ2(ξ)
|ξ|2 − (k + i0)2

dξ,

and QD′(f, g) =
∫

Rd

ψ(k−1|ξ|) f̂ δΓ1(ξ) L̂∗
2gδΓ2(ξ)

|ξ|2 − (k + i0)2
dξ,

where k + i0 is understood as the limit of k + iε as ε → 0+.
Therefore, to prove the lemma, we only need to estimate

∫

Rd

ψ(k−1|ξ|) F (ξ)G(ξ)
|ξ|2 − (k + i0)2

dξ (2.26)

where, by (2.20), (2.21), (2.24), and (2.25),

‖F‖L2(Sd−1
r ) + ‖∇ξF‖L2(Sd−1

r ) ≤ CΓ1〈r〉δ1+s1‖f‖Ḣ−s1 (Γ1)
, and (2.27)

‖G‖L2(Sd−1
r ) + ‖∇ξG‖L2(Sd−1

r ) ≤ CΓ2〈r〉δ2+s2‖g‖Ḣ−s2 (Γ2)
. (2.28)

Consider first the integral in (2.26) over
∣
∣|ξ| − |k|∣∣ ≥ 1. Since

∣
∣|ξ|2 − k2

∣
∣ ≥∣

∣|ξ|2 − |k|2∣∣, by the Schwartz inequality, (2.20), and (2.21), this piece of the
integral is bounded by
∫

||ξ|−|k||≥1

∣
∣
∣∣ψ(k−1|ξ|)F (ξ) G(ξ)

|ξ|2 − k2

∣
∣
∣∣ dξ

≤
∫

Mk≥|r−|k||≥1

1

r2 − |k|2
∫

Sd−1
r

F (rθ) G(rθ)dσ(θ)dr

≤ CΓ1,Γ2‖f‖Ḣ−s1 (Γ1)‖g‖Ḣ−s2 (Γ2)

∫

M|k|≥|r−|k||≥1

〈r〉δ1+δ2+s1+s2
∣
∣r2 − |k|2∣∣−1

dr

≤ CΓ1,Γ2,ψ‖f‖Ḣ−s1 (Γ1)‖g‖Ḣ−s2 (Γ2)|k|δ1+δ2−1+s1+s2

∫

M|k|≥|r−|k||≥1

|r − |k||−1 dr

≤ CΓ1,Γ2,ψ |k|δ1+δ2−1+s1+s2 log |k| ‖f‖Ḣ−s1 (Γ1)‖g‖Ḣ−s2 (Γ2), (2.29)

where the constant M in the intermediate steps depends on the support of
ψ. Since k > 1, we write

1
|ξ|2 − (k + i0)2

=
1

|ξ| + (k + i0)
ξ

|ξ| · ∇ξ log
(|ξ| − (k + i0)

)
,

where the logarithm is well defined since Im(|ξ|− (k +i0)) < 0. In particular,
we may take the branch cut of the logarithm that has log(x) ∈ R for x ∈
(0,∞) and has the branch cut on i[0,∞). Let χ(r) = 1 for |r| ≤ 1 and vanish
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for |r| ≥ 3/2. We then use integration by parts, together with (2.27) and
(2.28)
∣
∣
∣
∣∣

∫

Rd

χ(|ξ| − |k|) ψ(k−1|ξ|) 1

|ξ| + k + i0
F (ξ) G(ξ)

ξ

|ξ| · ∇ξ log
(|ξ| − (k + i0)

)
dξ

∣
∣
∣
∣∣

≤ CΓ1,Γ2,ψ |k|δ1+δ2−1+s1+s2 ‖f‖Ḣ−s1 (Γ1)‖g‖Ḣ−s2 (Γ2).

Now, taking δ1 = δ2 = β gives (2.22), and taking δ1 = α and δ2 = β gives
(2.23). �
Remark 2.12. The estimate (2.29) is the only term where the log |k| appears,
which leads to the log k factors in the bounds of Theorem 1.5 (without which
these bounds would be sharp).

The proofs of the estimates (2.20) and (2.21) are contained in the fol-
lowing lemma.

Lemma 2.13. Let Γ ⊂ R
d be a precompact smooth hypersurface. Then estimate

(2.21) holds with β = 1/4. For L = ∂ν on Γ, estimate (2.20) holds with α = 1.
Moreover, if Γ is curved then (2.21) holds with β = 1/6.

To prove this lemma, we need to understand certain properties of the
operator Tr defined by

Trφ(x) :=
∫

Sd−1
r

φ(ξ)ei〈x,ξ〉dσ(ξ). (2.30)

Indeed, with A : Hs(Rd) → Hs−1(Rd), to estimate
∫

Sd−1
r

|Â∗(fδΓ)(ξ)|2dσ(ξ),

we write

〈Â∗(fδΓ)(ξ), φ(ξ)〉Sd−1
r

=
∫

Sd−1
r

∫

Rd

A∗(f(x)δΓ)φ(ξ)ei〈x,ξ〉dxdσ(ξ)

=
∫

Γ

fATrφ dx = 〈f,ATrφ〉Γ,

(2.31)

with Tr defined by (2.30).
Before proving Lemma 2.13 we prove two lemmas (Lemma 2.14 and

2.15) collecting properties of Tr.

Lemma 2.14. Let Tr be defined by (2.30) and χ ∈ C∞
c (Rd). Then,

‖χTrφ‖L2(Rd) ≤ C‖φ‖L2(Sd−1
r ).

Proof of Lemma 2.14. We estimate B := (χTr)∗χTr : L2(Sd−1
r ) → L2(Sd−1

r ).
This operator has kernel

B(ξ, η) =
∫

Rd

χ2(y) exp (i〈y, ξ − η〉) dy = χ̂2(η − ξ).

Now, for η ∈ Sd−1
r , and any N > 0,

∫

Sd−1
r

|χ̂2(η − ξ)|dσ(ξ) ≤
∫

B(0,r/2)

〈ξ′〉−N

[
1 − |ξ′|2

r2

]−1/2

dξ′ + C〈r〉−N ≤ C.
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Thus, by Schur’s inequality, B is bounded on L2(Sd−1
r ) uniformly in r. There-

fore,

‖χTrφ‖2
L2(Rd) ≤ C‖φ‖2

L2(Sd−1
r )

. �

In the next lemma, we use r (the radius of Sd−1
r ) as a semiclassical

parameter, with the space Hs
r (Γ) defined in exactly the same way as Hs

k(Γ)
is defined in Sect. 2.2.

Lemma 2.15. With Tr be defined by (2.30), let Γ̃ denote an extension of Γ,
χ ∈ C∞

c (Rd) and A ∈ Ψ1(Rd) with χ ≡ 1 in a neighborhood of Γ̃. Then for
s ∈ R,

‖χATrφ‖Hs
r (Γ) ≤ Cs‖χATrφ‖L2(Γ̃).

Proof of Lemma 2.15. Since T̂rφ is supported on |ξ| ≤ 2r, χTrφ is compactly
microlocalized in the sense that for ψ ∈ C∞

c (R) with ψ ≡ 1 on [−2, 2] with
support in [−3, 3],

ψ(r−1|D|)χATrφ = χATrφ + OΨ−∞(r−∞)χTrφ.

(Note that ψ(r−1|D|) can be defined using (2.2) since ψ(t) is constant near
t = 0.)

Let γΓ̃ denote restriction to Γ̃, and γ|Γ restriction to Γ. Let χΓ ∈ C∞
c (Γ̃)

with χΓ ≡ 1 on Γ. Then for ψ1 ∈ C∞
c (R) with ψ1 ≡ 1 on [−4, 4],

χΓψ1(r−1|D′|g)χΓγΓ̃χATrφ = χ2
ΓγΓ̃χATrφ + OΨ−∞(r−∞)γΓ̃χTrφ

where ψ1(r−1|D′|g) is a pseudodifferential operator on Γ̃ with symbol
ψ1(|ξ′|g) and | · |g denotes the metric induced on T ∗Γ̃ from R

d (see Remark
2.16 below).

Hence, for r > 1,

‖γΓχATrφ‖Hs
r (Γ) ≤ Cs‖χATrφ‖L2(Γ̃). �

Remark 2.16. (The definition of | · |g used in the proof of Lemma 2.15).
We now briefly review the definition of | · |g from Riemannian geometry.
Observe that the metric on R

d is given by ge =
∑d

i=1(dyi)2 where yi are
standard coordinates on R

d. To induce a metric on Γ̃, at a point x0 we identify
V,W ∈ Tx0 Γ̃ with V ′,W ′ ∈ Tx0R

d and define g(V,W ) = ge(V ′,W ′). That is,
if V =

∑
i V i∂yi

, W =
∑

i W i∂yi
, then g(V,W ) =

∑
i V iW i. By doing this at

each point x0 ∈ Γ̃, we obtain a metric on Γ̃, Next, choose coordinates xi on Γ̃
and write the metric g as g(

∑
ai∂xi ,

∑
bj∂xj ) =

∑
ij gij(x)aibj . Then, for the

corresponding dual coordinates ξ on T ∗Γ̃, we have |ξ|g =
√∑

ij gijξiξj where

gij denotes the inverse matrix of gij . Note that this definition is independent
of all of the choices of coordinates.

We are now in a position to prove Lemma 2.13.
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Proof of Lemma 2.13. The key observation for the proof of Lemma 2.13 is
that for χ ∈ C∞

c (Rd), with χ ≡ 1 in a neighborhood of Γ, χTrφ is a quasimode
of the Laplacian with k = r in the sense of (2.6) in Theorem 2.8. To see this,
observe first that −ΔTrφ = r2Trφ by the definition (2.30). Therefore,

−ΔχTrφ = r2χTrφ + [−Δ, χ]Trφ.

Now, observe that for χ̃ ∈ C∞
c (Rd) with supp χ̃ ⊂ {χ ≡ 1}, χ̃[−Δ, χ] = 0.

Therefore, taking such a χ̃ with χ̃ ≡ 1 in a neighborhood, U of Γ shows that
χTrφ is a quasimode.

To prove (2.21), we let A = I. Then, by the bounds (2.7) in Theorem
2.8 together with Lemmas 2.14 and 2.15, for s ≥ 0,

‖χTrφ‖Hs(Γ) ≤ Cs〈r〉s‖χTrφ‖L2(Γ̃) ≤ Cs〈r〉 1
4+s‖χTrφ‖L2(Rd)

≤ Cs〈r〉 1
4+s‖φ‖L2(Sd−1

r ), (2.32)

and if Γ is curved then

‖χTrφ‖Hs(Γ) ≤ C〈r〉 1
6+s‖φ‖L2(Sd−1

r ). (2.33)

To prove (2.20), we take A = L. Observe that

γΓ̃χLTrφ = γΓ̃LχTrφ.

Hence, using the fact that L = ∂ν on Γ together with the bound (2.8) in
Theorem 2.8, we can estimate LTrφ.

‖χLTrφ‖L2(Γ̃) = ‖LχTrφ‖L2(Γ̃) ≤ C〈r〉‖χTrφ‖L2(Rd). (2.34)

In particular, for s ≥ 0,

‖χLTrφ‖Hs(Γ) ≤ Cs〈r〉s+1‖φ‖L2(Sd−1
r ).

Applying the Cauchy–Schwarz inequality together with (2.31), (2.32), (2.33)
and (2.34) completes the proof of Lemma 2.13, since we have shown that

|〈f̂ δΓ(ξ), φ(ξ)〉L2(Sd−1
r )| ≤ Cs〈r〉 1

4+s‖f‖Ḣ−s(Γ)‖φ‖L2(Sd−1
r ),

|〈 ̂L∗(fδΓ)(ξ), φ(ξ)〉L2(Sd−1
r )| ≤ Cs〈r〉1+s‖f‖Ḣ−s(Γ)‖φ‖L2(Sd−1

r ),

and if Γ is curved,

|〈f̂ δΓ(ξ), φ(ξ)〉L2(Sd−1
r )| ≤ Cs〈r〉 1

6+s‖f‖Ḣ−s(Γ)‖φ‖L2(Sd−1
r ). �

Lemma 2.17. (Low-frequency estimates). Let s2 be either 0 or 1. If ∂Ω is
both Lipschitz and piecewise smooth (in the sense of Definition 1.3), then

‖γ±R0(k)ψ(k−1D)γ∗f‖Hs2 (∂Ω) ≤ C∂Ω,ψ〈k〉2β−1+s2 log〈k〉‖f‖L2(∂Ω)

(2.35)

‖γR0(k)ψ(k−1D)L∗
1γ

∗f‖Hs2 (∂Ω) ≤ C∂Ω,ψ〈k〉β+s2 log〈k〉‖f‖L2(∂Ω)

(2.36)

‖γ±L2R0(k)ψ(k−1D)γ∗f‖Hs2 (∂Ω) ≤ C∂Ω,ψ〈k〉β+s2 log〈k〉‖f‖L2(∂Ω).

(2.37)

with β = 1/4. If ∂Ω is piecewise curved and Lipschitz then (2.35)–(2.37) hold
with β = 1/6.
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Proof of Lemma 2.17. By the duality property of Hs(Γ) and Ḣ−s(Γ) (dis-
cussed after Definition 2.5), Lemma 2.13 and the estimates (2.22) and (2.23)
imply for s1, s2 ≥ 0 that there exists C > 0 independent of k > 1 so that

‖γΓ2R0(k)ψ(k−1D)γ∗
Γ1f‖Hs2 (Γ2) ≤ CΓ1,Γ2,ψ〈k〉2β−1+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1),

(2.38)
‖γΓ2R0(k)ψ(k−1D)L∗

1γ
∗
Γ1f‖Hs2 (Γ2) ≤ CΓ1,Γ2,ψ〈k〉β+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1),

(2.39)
‖γΓ2L2R0(k)ψ(k−1D)γ∗

Γ1f‖Hs2 (Γ2) ≤ CΓ1,Γ2,ψ〈k〉β+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1).

(2.40)

Since ∂Ω is piecewise smooth, ∂Ω =
∑N

i=1 Γi with Γi smooth hypersur-
faces. Since ψ(k−1D) is a smoothing operator on S ′, by elliptic regularity
R0(k)ψ(k−1D) is smoothing and hence its restriction to ∂Ω maps compactly
supported distributions into H1(∂Ω). Applying (2.38)–(2.40) with s1 = 0,
Γ = Γi, summing over i, and using Definition 2.6, we find that, for 0 ≤ s2 ≤ 1,

‖γR0(k)ψ(k−1D)γ∗f‖Hs2 (∂Ω) ≤ C∂Ω,ψ〈k〉2β−1+s2 log〈k〉‖f‖L2(∂Ω)

(2.41)

‖γ±R0(k)ψ(k−1D)L∗
1γ

∗f‖Hs2 (∂Ω) ≤ C∂Ω,ψ〈k〉β+s2 log〈k〉‖f‖L2(∂Ω)

(2.42)

‖γ±L2R0(k)ψ(k−1D)γ∗f‖Hs2 (∂Ω) ≤ C∂Ω,ψ〈k〉β+s2 log〈k〉‖f‖L2(∂Ω).

(2.43)

Applying (2.41)–(2.43) with s2 = 1 (using the norm bound (2.4)) and s2 = 0,
we obtain the estimates (2.35)–(2.37). �
High Frequency Estimates. Next, we obtain an estimate on the high fre-
quency (≥ kM) components of Sk, Dk, and D′

k. We start by analyzing the
high frequency components of the free resolvent, proving two lemmata on the
structure of the free resolvent there.

Lemma 2.18. Suppose that z ∈ [−E,E]. Let ψ ∈ C∞
c (R) with ψ ≡ 1 on

[−2E2, 2E2]. Then for χ ∈ C∞
c (Rd).

χR0(zk)χ(1 − ψ(|k−1D|)) = B1, (1 − ψ(|k−1D|))χR0(zk)χ = B2

where Bi ∈ k−2Ψ−2(Rd) with

σ(Bi) =
χ2k−2(1 − ψ(|ξ|))

|ξ|2 − z2
.

Proof of Lemma 2.18. Let χ0 = χ ∈ C∞
c (Rd) and χn ∈ C∞

c (Rd) have χn ≡ 1
on suppχn−1 for n ≥ 1. Let ψ0 = ψ ∈ C∞

c (R) have ψ ≡ 1 on [−2E2, 2E2], let
ψn ∈ C∞

c (R) have ψn ≡ 1 on [−3E2/2, 3E2/2] and suppψn ⊂ {ψn−1 ≡ 1}
for n ≥ 1. Finally, let ϕn = (1 − ψn) and ϕ = ϕ0 = (1 − ψ). Then,

k2χR0(zk)χ(−k−2Δ − z2) = (χ2 − χk2χ1R0(zk)χ1[χ, k−2Δ]). (2.44)

Now, by Lemma 2.3 there exists A0 ∈ k−2Ψ−2(Rd) with

A0 = k−2a0(x, k−1D) + OΨ−∞(k−∞), supp a0 ⊂ {supp ϕ0} (2.45)
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such that
k2(−k−2Δ − z2)A0 = ϕ(|k−1D|) + OΨ−∞(k−∞) (2.46)

and A0 has

σ(A0) =
k−2ϕ(|ξ|)
|ξ|2 − z2

. (2.47)

(Indeed, since we are working on R
d,

k2(−k−2Δ − z2)
k−2ϕ(|k−1D|)
|k−1D|2 − z2

= ϕ(|k−1D|)

with no remainder.)
Composing (2.44) on the right with A0, we have

χR0χϕ(|k−1D|) = χ2A0 − k2χχ1R0χ1ϕ1(|k−1D|)[χ, k−2Δ]A0 + OΨ−∞(k−∞),

= χ2A0 + χχ1R0χ1ϕ1(|k−1D|)k−1E1 + OΨ−∞(k−∞),

where E1 ∈ Ψ−1(Rd) and we have used that ϕ1 ≡ 1 on suppϕ0 and hence

ϕ1(|k−1D|)[χ, k−2Δ]A0 = [χ, k−2Δ]A0 + OΨ−∞(k−∞).

Now, applying the same arguments, but with An such that

k2(−k−2Δ − z2)An = ϕn(|k−1D|)En + OΨ−∞(k−∞)

there exists An ∈ k−2Ψ−2−n(Rd) such that

χnR0χnϕn(|k−1D|)En = χ2
nAn + χnχn+1R0χn+1ϕn+1(|k−1D|)k−1En+1

+ OΨ−∞(k−∞)

with En+1 ∈ Ψ−1−n(Rd). Let

BN
1 := χ2A0 +

N−1∑

j=1

χk−jAk.

and assume that

χR0χϕ(|k−1D|) = BN
1 + χχNR0χNϕN (|k−dD|)k−NEN + OΨ−∞(k−∞).

for some N . Then,

χχNR0χNϕN (|k−1D|)k−NEN

= χ
(
χ2

NAN + χNχN+1R0χN+1ϕN+1(|k−1D|)k−1EN+1 + OΨ−∞(k−∞)
)

= χk−NAN + χχN+1R0χN+1ϕN+1(|k−1D|)k−(N+1)EN+1 + OΨ−∞(k−∞)

and thus by induction, for all N ≥ 1,

χR0χϕ(|k−1D|)
= BN+1

1 + χχN+1R0χN+!ϕN+1(|k−1D|)k−(N+1)EN+1 + OΨ−∞(k−∞).

Since Ak ∈ Ψ−2−k(Rd), we may let

B1 ∼ χ2A0 +
∞∑

j=1

χk−jAk
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to obtain

χR0χϕ(|k−1D|) = B1 ∈ k−2Ψ−2(Rd)

with

σ(B1) =
k−2χ2(1 − ψ(|ξ|))

|ξ|2 − z2
.

The proof of the statement for B2 is identical. �

Next, we prove an estimate on the difference between the resolvent at
high energy and that at fixed energy.

Lemma 2.19. Suppose that z ∈ [0, E]. Let ψ ∈ C∞
c (R) with ψ ≡ 1 on

[−2E2, 2E2]. Then for χ ∈ C∞
c (Rd),

χ(R0(zk) − R0(1))χ(1 − ψ(|k−1D|)) ∈ k−2Ψ−4(Rd).

Proof of Lemma 2.19. We proceed as in the proof of Lemma 2.18. Let χ0 =
χ ∈ C∞

c (Rd) and χn ∈ C∞
c (Rd) have χn ≡ 1 on suppχn−1 for n ≥ 1.

Let ψ0 = ψ ∈ C∞
c (R) have ψ ≡ 1 on [−2E2, 2E2], let ψn ∈ C∞

c (R) have
ψn ≡ 1 on [−3E2/2, 3E2/2] and suppψn ⊂ {ψn−1 ≡ 1} for n ≥ 1. Finally,
let ϕn = (1 − ψn). Then,

k2χ(R0(zk) − R0(1))χ(−k−2Δ − z2)
= χR0(1)

(
z2k2 − 1

)
χ − χk2χ1(R0(zk) − R0(1))χ1[χ, k−2Δ]).

(2.48)

Now, by Lemma 2.3 there exists A0 ∈ k−2Ψ−2(Rd) such that (2.45), (2.46),
and (2.47) hold. Composing (2.48) on the right with k−2A0, we have

χ(R0(zk) − R0(1))χϕ(|k−1D|)
= k2χR0(1)χ(z2 − k−2)A0

−k2χχ1(R0(zk) − R0(1))χ1ϕ1(|k−1D|)[χ, k−2Δ]A0 + OΨ−∞(k−∞).

(2.49)

In particular, iterating using the same argument to write

χ1(R0(zk) − R0(1))χ1ϕ1(|k−1D|)
= k2χ1R0(1)χ1(z2 − k−2)A1

− k2χ1χ2(R0(zk) − R0(1))χ2ϕ2(|k−1D|)[χ1, k
−2Δ]A1 + OΨ−∞(k−∞),

we see that the right hand side of (2.49) is in k−2Ψ−4(Rd). �

With Lemmas 2.18 and 2.19 in hand, we obtain the high-frequency
estimates of the boundary-integral operators by comparing them to those at
fixed frequency.

Lemma 2.20. (High-frequency estimates). Let M > 1 and ψ ∈ C∞
c (R) with

ψ ≡ 1 for |ξ| < M . Suppose that ∂Ω is both Lipschitz and piecewise smooth
(in the sense of Definition 1.3). Then for k > 1 and χ ∈ C∞

c (Rd)

γR0(k)χ(1 − ψ(|k−1D|))γ∗ = OL2(∂Ω)→H1
k(∂Ω)(k

−1(log k)1/2). (2.50)



6 Page 24 of 35 J. Galkowski and E. A. Spence IEOT

If, in addition, ∂Ω is C2,α for some α > 0, then

∓ 1
2
I + γ±R0(k)χ(1 − ψ(|k−1D|))L∗γ∗ = OL2(∂Ω)→H1

k(∂Ω)(log k) (2.51)

±1
2
I + γ±LR0(k)χ(1 − ψ(|k−1D|))γ∗ = OL2(∂Ω)→H1

k(∂Ω)(log k). (2.52)

Remark 2.21. The factors of log k in the bounds of Lemma 2.20 are likely
artifacts of our proof, but since they do not affect our final results, we do not
attempt to remove them here. In fact, if ∂Ω is smooth (rather than piecewise
smooth), then one can show that the logarithmic factors can be removed from
the bounds in Lemma 2.20 using the analysis in [24, Section 4.4].

Proof of Lemma 2.20. By Lemma 2.19,

Ak := χ(R0(k) − R0(1))χ(1 − ψ(k−1D)) ∈ k−2Ψ−4.

Note that for s > 1/2,

γ = O
Hs

k(Rd)→H
s−1/2
k (∂Ω)

(k1/2); (2.53)

this bound follows from repeating the proof of the trace estimate in [39,
Lemma 3.35] but working in semiclassically rescaled spaces.

Let Bk := γAkγ∗, Ck := γAkL∗γ∗, C ′
k := γLAkγ∗. Then, using (2.53)

and the fact that L,L∗ = OHs
k→Hs−1

k
(k), we have that Bk = OL2→H1

k
(k−1)

and Ck, C ′
k = OL2→H1

k
(1).

Recalling the notation for Sk (2.13), Dk, and D′
k (2.18), and the mapping

properties recapped in Sect. 2.4.1, we have

γR0(1)χγ∗ : L2(∂Ω) → H1(∂Ω)

when ∂Ω is Lipschitz, and

±1
2
I + γ±R0(1)χL∗γ∗ : L2(∂Ω) → H1(∂Ω)

∓1
2
I + γ±LR0(1)χγ∗ : L2(∂Ω) → H1(∂Ω)

when ∂Ω is C2,α.
Now, note that for Γ̃ a precompact smooth hypersurface, and ψ ∈

C∞
c (R),

‖ψ(|k−1D|)γ∗
Γ̃
‖L2(Γ̃)→Hs(Rd) + ‖γΓ̃ψ(|k−1D|)‖

H−s(Rd)→H−s−1/2(Γ̃)

≤ C

⎧
⎨

⎩

1 s < −1/2
(log k)1/2 s = −1/2
k(s+1/2) s > −1/2.

Thus, since ψ(|k−1D|) : S ′(Rd) → C∞(Rd) and in particular, γψ(|k−1D|) :
S ′(Rd) → H1(Γ),

‖ψ(|k−1D|)γ∗‖L2(Γ)→Hs(Rd) + ‖γΓψ(|k−1D|)‖
H−s(Rd)→H−s−1/2(Γ)

≤ C

⎧
⎪⎨

⎪⎩

1 s < −1/2
(log k)1/2 s = −1/2
k(s+1/2) s > −1/2.

(2.54)
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Furthermore, notice that by Lemma 2.18, if ψ1 ∈ C∞
c (R) has ψ1 ≡ 1 on

suppψ, then

χR0(1)χψ(|k−1D|) = ψ1(|k−1D|)χR0(1)χψ(|k−1D|) + OΨ−∞(k−∞).

In particular, using this estimate together with (2.54) and that χR0(1)χ :
Hs(Rd) → Hs+2(Rd),

γ±R0(1)χψ(|k−1D|)γ∗ =

{
OL2(Γ)→H1(Γ)((log k)1/2),
OL2(Γ)→L2(Γ)(1),

γ±R0(1)χψ(|k−1D|)L∗γ∗ =

{
OL2(Γ)→H1(Γ)(k),
OL2(Γ)→L2(Γ)(log k),

γ±LR0(1)χψ(|k−1D|)γ∗ =

{
OL2(Γ)→H1(Γ)(k),
OL2(Γ)→L2(Γ)(log k).

Hence,

γR0(k)χ(1 − ψ(|k−1D|))γ∗

= γR0(1)χ(1 − ψ(|k−1D|))γ∗ + Bk = OL2→H1((log k)1/2).

Furthermore, since R0(k)χ(1 − ψ(|k−1D|)) ∈ k−2Ψ−2(Rd), and we have
(2.53),

γR0(k)χ(1 − ψ(|k−1D|))γ∗ = OL2→L2(k−1). (2.55)

Next, observe that

∓1
2

+ γ±R0(k)χ(1 − ψ(|k−1D|))L∗γ∗

= ∓1
2

+ γ±R0(1)χ(1 − ψ(|k−1D|))L∗γ∗ + Ck

=

{
OL2→H1(k)
OL2→L2(log k),

(2.56)

±1
2

+ γ±LR0(k)χ(1 − ψ(|k−1D|))γ∗

= ±1
2

+ γ±LR0(1)χ(1 − ψ(|k−1D|))γ∗ + C ′
k

=

{
OL2→H1(k)
OL2→L2(log k).

(2.57)

Since ∂Ω is piecewise smooth, ∂Ω =
∑N

i=1 Γi. Applying (2.55)–(2.57) with
Γ = Γi, summing over i, and then using the result (2.4) we obtain (2.50)-
(2.52). �

Proof of Parts (a) and (b) of Theorem 2.10. This follows from combining
the low-frequency estimates (2.35)–(2.37) in Lemma 2.17 with the high-
frequency estimates (2.50)–(2.52) in Lemma 2.20, recalling the decomposi-
tions (2.13) and (2.18). �
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2.5. Proof of Part (c) of Theorem 2.10

Proof of Part (c) of Theorem 2.10. Observe that [24, Theorems 4.29, 4.32]
imply that for ψ ∈ C∞

c (R) with ψ ≡ 1 on [−2, 2],

ψ(|k−1D′|)Sk = OL2→H1
k
(k−2/3), ψ(|k−1D′|)Dk = OL2→H1

k
(1).

Then [24, Lemma 4.25] shows that (1 − ψ(|k−1D′|))Sk ∈ k−1Ψ−1(∂Ω) and
(1 − ψ(|k−1D′|))Dk ∈ k−1Ψ−1(∂Ω) and hence

(1 − ψ(|k−1D′|))Sk = OL2→H1
k
(k−1), (1 − ψ(|k−1D′|))Dk=OL2→H1

k
(k−1).

An identical analysis shows that

D′
k = OL2→H1

k
(1). �

2.6. Proof of Corollary 1.9

This follows in exactly same way as [29, Proof of Corollary 1.2, p. 193]. The
two ideas are that (i) the relationships

∫

Γ

φ Skψ ds =
∫

Γ

ψ Skφ ds, and
∫

Γ

φ Dkψ ds =
∫

Γ

ψ D′
kφ ds,

for φ, ψ ∈ L2(∂Ω) (see, e.g., [7, Equation 2.37]), and the duality of H1(∂Ω)
and H−1(∂Ω) (see, e.g., [39, p. 98]) allow us to convert bounds on Sk, Dk,
and D′

k as mappings from L2(∂Ω) → H1(∂Ω) into bounds on these operators
as mappings from H−1(∂Ω) → L2(∂Ω); and
(ii) interpolation then allows us to obtain bounds from Hs−1/2(∂Ω) →
Hs+1/2(∂Ω) for |s| ≤ 1/2.

Remark 2.22. (Using the triangle inequality on ‖D′
k − iηSk‖L2(∂Ω)→H1(∂Ω)).

As explained in Sect. 1.2, the motivation for proving the L2(∂Ω) → H1(∂Ω)
bounds on Sk,Dk, and D′

k is so that they can be used to estimate (in
a k-explicit way) the smoothing power of D′

k − iηSk in the analysis of
the Galerkin method via the classic compact-perturbation argument (see
[25, Proof of Theorem 1.10]). We now show that we do not lose anything,
from the point of view of k-dependence, by using the triangle inequality
‖D′

k −iηSk‖L2(∂Ω)→H1(∂Ω) ≤ ‖D′
k‖L2(∂Ω)→H1(∂Ω)+|η|‖Sk‖L2(∂Ω)→H1(∂Ω). As

a consequence, therefore, the bounds on ‖D′
k − iηSk‖L2(∂Ω)→H1(∂Ω) obtained

from using the bounds on ‖Dk‖L2(∂Ω)→H1(∂Ω) and ‖Sk‖L2(∂Ω)→H1(∂Ω) in The-
orem 1.5 are sharp.

First, recall that D′
k and Sk have wavefront set relation given by the

billiard ball relation (see for example [24, Chapter 4]). Let B∗∂Ω and S∗∂Ω
denote respectively the unit coball and cosphere bundles in ∂Ω. That is,

B∗∂Ω := {(x, ξ)∈T ∗∂Ω : |ξ|g(x) < 1}, S∗∂Ω := {(x, ξ)∈T ∗∂Ω : |ξ|g(x) = 1}.

Denote the relation by Cβ ⊂ B∗∂Ω × B∗∂Ω i.e.

Cβ =
{
(x, ξ, y, η) : (x, ξ) = β(y, η)

}

where β is the billiard ball map (see Fig. 1). To see that the optimal bound
in terms of powers of k for ‖D′

k − iηSk‖L2(∂Ω)→H1(∂Ω) is equal to that for
‖D′

k‖L2(∂Ω)→H1(∂Ω) + |η|‖Sk‖L2(∂Ω)→H1(∂Ω), observe that the largest norm



IEOT Estimates on the Single- and Double-Layer Operators Page 27 of 35 6

for Sk corresponds microlocally to points (q1, q2) ∈ Cβ ∩ (S∗∂Ω × S∗∂Ω)
(i.e. “glancing” to “glancing”). On the other hand, these points are damped
(relative to the worst bounds) for D′

k. In particular, microlocally near such
points, one expects that

‖D′
kfq2‖H1(∂Ω) ≤ Ck, ‖Skfq2‖H1(∂Ω) ≥

{
Ck1/2, ∂Ω flat,
Ck1/3, ∂Ω curved,

where ‖fq2‖L2(∂Ω) = 1 and fq2 is microlocalized near q2.
The norm for D′

k is maximized microlocally near (p1, p2) ∈ Cβ∩(S∗∂Ω×
B∗∂Ω) (i.e. “transversal” to “glancing”), but near these points, the norm of
Sk is damped relative to its worst bound. In particular, microlocally near
(p1, p2), one expects

‖D′
kfp2‖H1(∂Ω) ≥

{
Ck5/4, ∂Ω flat,
Ck7/6, ∂Ω curved,

‖Skfp2‖H1(∂Ω) ≤
{

Ck1/4, ∂Ω flat,
Ck1/6, ∂Ω curved,

where ‖fp2‖L2(∂Ω) = 1 and fp2 is microlocalized near p2. Therefore, even if
|η| is chosen so that ‖D′

k‖L2(∂Ω)→H1(∂Ω) ∼ |η|‖Sk‖L2(∂Ω)→H1(∂Ω), this anal-
ysis shows that there cannot be cancellation since the worst norms occur at
different points of phase space.

3. Sharpness of the Bounds in Theorem 1.5

We now prove that the powers of k in the ‖Sk‖L2(∂Ω)→H1(∂Ω) bounds in
Theorem 2.10 are optimal. The analysis in [31, §A.3] proves that the powers
of k in the ‖Dk‖L2(∂Ω)→L2(∂Ω) bounds are optimal, but can be adapted in
a similar way to below to prove the sharpness of the ‖Dk‖L2(∂Ω)→H1(∂Ω)

bounds.
In this section we write x ∈ R

d as x = (x′, xd) for x′ ∈ R
d−1, and

x′ = (x1, x
′′) (in the case d = 2, the x′′ variable is superfluous).

Lemma 3.1. (Lower bound on ‖Sk‖L2(∂Ω)→H1(∂Ω) when ∂Ω contains a line
segment). If ∂Ω contains the set

{
(x1, 0) : |x1| < δ

}

for some δ > 0 and is C2 in a neighborhood thereof (i.e. ∂Ω contains a line
segment), then there exists k0 > 0 and C > 0 independent of k), such that,
for all k ≥ k0,

‖Sk‖L2(∂Ω)→L2(∂Ω) ≥ Ck−1/2 and ‖Sk‖L2(∂Ω)→H1(∂Ω) ≥ Ck1/2.

Lemma 3.1 shows that the bound (1.4), when ∂Ω is piecewise smooth,
is sharp up to a factor of log k.
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S∗
πx(β(q))R

d

x ξ
S∗

xR
d

∂Ω

Figure 1. A recap of the billiard ball map. Let q = (x, ξ) ∈
B∗∂Ω (the unit ball in the cotangent bundle of ∂Ω). The
solid black arrow on the left denotes the covector ξ ∈ B∗

x∂Ω,
with the dashed arrow denoting the unique inward-pointing
unit vector whose tangential component is ξ. The dashed
arrow on the right is the continuation of the dashed arrow on
the left, and the solid black arrow on the right is ξ(β(q)) ∈
B∗

πx(β(q))∂Ω. The center of the left circle is x and that of
the right is πx(β(q)). If this process is repeated, then the
dashed arrow on the right is reflected in the tangent plane
at πx(β(q)): the standard “angle of incidence equals angle of
reflection” rule

Lemma 3.2. (General lower bound on ‖Sk‖L2(∂Ω)→H1(∂Ω))) If ∂Ω is C2 in a
neighborhood of a point then there exists k0 > 0 and C > 0 (independent of
k), such that, for all k ≥ k0,

‖Sk‖L2(∂Ω)→L2(∂Ω) ≥ Ck−2/3 and ‖Sk‖L2(∂Ω)→H1(∂Ω) ≥ Ck1/3.

Lemma 3.2 shows that the bound (1.5), when ∂Ω is piecewise curved,
is sharp up to a factor of log k and that the bound (1.6), when ∂Ω is smooth
and curved, is sharp.

Remark 3.3. The lower bound ‖Sk‖Ḣs(Γ)→Hs+1(Γ) ≥ Ck1/2 when Γ is a flat
screen (i.e. a bounded and relatively open subset of {x ∈ R

d : xd = 0}) and
s ∈ R is proved in [8, Remark 4.2] (recall that Ḣs(Γ) is defined in Definition
2.5).

Proof of Lemma 3.1. By assumption Γ ⊂ ∂Ω, where

Γ :=
{

(x1, x
′′, γ(x′)) : |x′| < δ

}

for some γ(x′) with γ(x1, 0) = 0 for |x1| < δ (since the line segment {(x1, 0) :
|x1| < δ} ⊂ Γ).

By the definition of the operator norm, it is sufficient to prove that there
exists uk ∈ L2(∂Ω) with suppuk ⊂ Γ, k0 > 0, and C > 0 (independent of k),
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such that, for all k ≥ k0,

‖Skuk‖L2(Γ) ≥ Ck−1/2‖u‖L2(Γ) and ‖∂x1Skuk‖L2(Γ) ≥ Ck1/2‖u‖L2(Γ).
(3.1)

We begin by observing that the definition of Φk(x, y) (1.1) and the asymp-
totics of Hankel functions for large argument and fixed order (see, e.g., [46,
§10.17]) imply that

Φk(x, y) = Cdkd−2eik|x−y|
(
(
k|x − y|)−(d−1)/2

+ O
((

k|x − y|)−(d+1)/2
))

, (3.2)

〈V, ∂x〉Φk(x, y) = C′
dkd−1 〈V, x − y〉

|x − y| eik|x−y|
(
(
k|x − y|)−(d−1)/2

+ O
((

k|x − y|)−(d+1)/2
))

. (3.3)

Let χ ∈ C∞
c (R) with suppχ ⊂ [−2, 2], χ(0) ≡ 1 on [−1, 1] and define

χε,γ1,γ2(x
′) = χ

(
ε−1kγ1x1

)
χ
(
ε−1kγ2 |x′′|), (3.4)

In what follows, we suppress the dependence of u on k for convenience. Let
u(x′, γ(x′)) := eikx1χε,0,1/2(x′). The definition of χ implies that

supp u =
{

(x′, γ(x′)) : |x1| ≤ 2ε, |x′′| ≤ 2εk−1/2
}

,

and thus suppu ⊂ Γ for ε sufficiently small and k sufficiently large (say
ε < (2

√
2)−1δ and k > 1); for the rest of the proof we assume that ε and k

are such that this is the case. Observe also that

‖u‖L2(Γ) ∼ Cεk
−(d−2)/4. (3.5)

Let

U :=
{

(x′, γ(x′)) : Mε ≤ x1 ≤ 2Mε, |x′′| ≤ εk−1/2, M � 1
}

;

the motivation for this choice comes from the analysis in Remark 2.22 below.
Indeed, we know that Sk is largest microlocally near points that are glancing
in both the incoming and outgoing variables. Since u concentrates microlo-
cally at x = 0, ξ = (1, 0) up to scale k−1/2, the billiard trajectory emanating
from this point is {t(1, 0) : t > 0}. This ray is always glancing since Γ is flat.
Therefore, we choose U to contain this ray up to scale k−1/2.

Then for x ∈ U , y ∈ suppu,

|(x′, γ(x′)) − (y′, γ(y′))|2 = (x1 − y1)2 + |x′′ − y′′|2 + |γ(x′) − γ(y′)|2,
Then, observe that by Taylor’s formula

γ(x′) − γ(y′) = γ(x1, 0) − γ(y1, 0) + ∂x′′γ(x1, 0)(x′′ − y′′)

+ y′′(∂x′′γ(x1, 0) − ∂x′′γ(y1, 0)
)

+ O(|x′′|2 + |y′′|2).
Since γ(x1, 0) = 0 for |x1| < δ,

|γ(x′) − γ(y′)|2 = O(|x′′ − y′′|2) + O(|x′′|2 + |y′′|2).
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In particular,

|(x′, γ(x′)) − (y′, γ(y′))| = (x1 − y1)

+O
((

|x′′ − y′′|2 + |x′′|2 + |y′′|2
)
|x1 − y1|−1

)

= x1 − y1 + O(k−1M−1ε
)
, (3.6)

= x1

(
1 + O(M−1

)
+ O(k−1M−2

)
)

. (3.7)

We have from the Hankel-function asymptotics (3.2) and the definition of u
that, for x ∈ U ,

Sku(x) = Cdk
d−2

∫

Γ

eik|x−y|+iky1

(
k−(d−1)/2|x − y|−(d−1)/2

+ O
((

k|x − y|)−(d+1)/2
))

χε,0,1.2(y′)ds(y),

and then using the asymptotics (3.6) in the exponent of the integrand and
the asymptotics (3.7) in the rest of the integrand, we have, for x ∈ U ,

Sku(x) =Cdk
d−2 eikx1

k(d−1)/2|x1|(d−1)/2

×
∫

Γ

(
1 + O(M−1ε)

)
(

1 + O(M−1) + Oε,M (k−1)
)

χε,0,1/2(y′)ds(y).

Therefore, with M large enough, ε small enough, and then k0 large enough,
the contribution from the integral over Γ is determined by the cutoff χε,0,1/2,
yielding k−(d−2)/2, and thus

|Sku(x′)| ≥ Ck(d−2)/2 1
k(d−1)/2|x1|(d−1)/2

, x′ ∈ U, k ≥ k0. (3.8)

In the step of taking ε sufficiently small, we can also take ε small enough to
ensure that U ⊂ Γ for all k ≥ 1. Using (3.8), along with the fact that the
measure of U ∼ k−(d−2)/2, we have that

‖Sku‖L2(U) ≥ Ck−1/2−(d−2)/4. (3.9)

Since we have ensured that U ⊂ Γ, (3.9) and (3.5) imply that the first bound
in (3.1) holds. It easy to see that if we repeat the argument above but with
(3.3) instead of (3.2), then we obtain the second bound in (3.1). �
Proof of Lemma 3.2. Let x0 ∈ ∂Ω be a point so that ∂Ω is C2 in a neighbor-
hood of x0 and let x′ be coordinates near x0 so that

Γ :=
{

(x′, γ(x′)) : |x′| < δ
}

⊂ ∂Ω, with γ ∈ C2, γ(0) = ∂γ(0) = 0.

Similar to the proof of Lemma 3.1, it is sufficient to prove that there exists
uk ∈ L2(∂Ω) with suppuk ⊂ Γ, k0 > 0, and C > 0 (independent of k), such
that

‖Skuk‖L2(Γ) ≥ Ck−1/2‖uk‖L2(Γ) and ‖∂x1Sku‖L2(Γ) ≥ Ck1/2‖u‖L2(Γ)

(3.10)
for all k ≥ k0.
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The idea in the curved case is the same as in the flat case: choose u
concentrating as close as possible to a glancing point and measure near the
point given by the billiard map. More practically, this amounts to ensuring
that |x− y| looks like x1 − y1 modulo terms that are much smaller than k−1.
The fact that Γ may be curved will force us to choose u differently and cause
our estimates to be worse than in the flat case (leading to the weaker but
still sharp lower bound).

With χε,γ1,γ2 defined by (3.4), let u(x′, γ(x′)) := eikx1χε,1/3,2/3(x′)
where, as in the proof of Lemma 3.1, we have x′ = (x1, x

′′) and as in Lemma
3.1, suppu ⊂ Γ for ε sufficiently small and k sufficiently large, and for the
rest of the proof we assume that this is the case. Then

‖u‖L2(Γ) ≤ Cεk
−1/6k−(d−2)/3. (3.11)

Define

U :=
{

(x′, γ(x′)) : Mεk−1/3 ≤ x1 ≤ 2Mεk−1/3, |x′′| ≤ εk−2/3, M � 1
}

.

Then, for y ∈ suppu and x ∈ U ,

|(x′, γ(x′)) − (y′, γ(x′))|
= (x1 − y1) + O((|x′|2 + |y′|2)2|x1 − y1|−1

)
+ O(|x′′ − y′′|2|x1 − y1|−1

)

= x1 − y1 + O(k−1M3ε3
)

+ O(εk−1M−1
)

(3.12)

= x1

(
1 + O(M−1

)
+ O(k−2/3M2ε2

)
+ O(k−2/3M−2

)
)

. (3.13)

From (3.2) and the definition of u, we have for x′ ∈ U ,

Sku(x) = Cdk
d−2

∫

Γ

eik|x−y|+iky1

(
k−(d−1)/2|x − y|−(d−1)/2

+ O
((

k|x − y|)−(d+1)/2
))

χε,1/3,2/3(y′)ds(y),

and then, using (3.12) in the exponent of the integrand and (3.13) in the rest,
we have, for x′ ∈ U ,

Sku(x) = Cdk
d−2 eikx1

k(d−1)/2|x1|(d−1)/2

×
∫

Γ

(
1 + O(M3ε3) + O(M−1ε)

)

×
(
1 + O(M−1) + Oε,M (k−2/3)

)
χε,1/3,2/3(y′)ds(y).

Thus, fixing M large enough, then ε small enough, then k0 large enough, we
have

|Sku(x′)| ≥ Ck(d−2)/3 1
k(d−1)/2|x1|(d−1)/2

k−1/3, x′ ∈ U, k ≥ k0. (3.14)

In the step of taking ε sufficiently small, we can also take ε small enough so
that when x′ ∈ U , |x′| < δ, and thus x′ ∈ Γ. Using the lower bound (3.14),
and the fact that the measure of U ∼ k−1/3k−2(d−2)/3, we have that

‖Sku‖L2(Γ) ≥ ‖Sku‖L2(U) ≥ Ck−2/3−1/6−(d−2)/3,
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and so using (3.11) we obtain the first bound in (3.10). Similar to before, if
we repeat this argument with (3.3) instead of (3.2), we find the second bound
in (3.10). �
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