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Abstract. Let Ω be a bounded pseudoconvex domain in C
2 with Lipschitz

boundary or a bounded convex domain in C
n and φ ∈ C(Ω) such that

the Hankel operator Hφ is compact on the Bergman space A2(Ω). Then
φ ◦ f is holomorphic for any holomorphic f : D → bΩ.
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Let Ω be a domain in C
n and A2(Ω) denote the Bergman space of

Ω, the space of square integrable holomorphic functions on Ω. Since A2(Ω)
is a closed subspace of L2(Ω), the space of square integrable functions on
Ω, there exists an orthogonal projection P : L2(Ω) → A2(Ω), called the
Bergman projection. The Hankel operator Hφ : A2(Ω) → L2(Ω) with symbol
φ ∈ L∞(Ω) is defined as Hφf = (I − P )(φf) where I denotes the identity
operator. Hankel operators have been well studied on the Bergman space of
the unit disc. Sheldon Axler in [2] proved the following interesting theorem.

Theorem (Axler). Let φ ∈ A2(D). Then Hφ is compact if and only if (1 −
|z|2)φ′(z) → 0 as |z| → 1.

The space of holomorphic functions satisfying the condition in the theo-
rem is called little Bloch space. One can check that φ(z) = exp((z+1)/(z−1))
is bounded on D but it does not belong to the little Bloch space. Hence not
every bounded symbol that is smooth on the domain produces compact Han-
kel operator on the disc. However, Hankel operators with symbols continuous
on the closure are compact for bounded domains in C (see, for instance, [22,
Proposition 1]). We refer the reader to [26] for more information on the the-
ory of Hankel operators (as well as Toeplitz operators) on the Bergman space
of the unit disc. We note that Sheldon Axler’s result has been extended to
a small class of domains in C

n, such as strongly pseudoconvex domains, by
Peloso [20] and Li [17].
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The situation in C
n for n ≥ 2 is radically different. For instance, Hz1

is not compact when Ω is the bidisc (see, for instance, [4,5,8,16]). Hence in
higher dimensions compactness of Hankel operators is not guaranteed even
if the symbol is smooth up to the boundary. We refer the reader to [13,23]
for more information about Hankel operators in higher dimensions and their
relations to ∂-Neumann problem.

We are interested in studying compactness of Hankel operators on
Bergman spaces defined on domains in C

n. We would like to understand
compactness of Hankel operators in terms of the interaction of the symbol
with the boundary geometry. This interaction does not surface for domains
in C as the boundary has no complex geometry. However, to relate the sym-
bol to the boundary geometry we will restrict ourselves to symbols that are
at least continuous up to the boundary. The first results in this direction
are due to Željko Čučković and the third author in [6]. They obtain results
about compactness of Hankel operators in terms of the behavior of the sym-
bols along analytic discs in the boundary, on smooth bounded pseudoconvex
domains (with a restriction on the Levi form) and on smooth bounded convex
domains in C

n. Moreover, for convex domains in C
2 they obtain a charac-

terization for compactness (see [6, Corollary 2]). We note that even though
they state their results for C∞-smooth domains and symbols, observation of
the proofs shows that only C1-smoothness is sufficient. One of their results,
stated with C1 regularity, is the following theorem.

Theorem (Čučković-Şahutoğlu). Let Ω be a C1-smooth bounded convex
domain in C

2 and φ ∈ C1(Ω). Then Hφ is compact if and only if φ ◦ f
is holomorphic for any holomorphic f : D → bΩ.

The theorem above can be interpreted as follows: Hφ is compact if
and only if φ is “holomorphic along” every non-trivial analytic disc in the
boundary.

The situation for symbols that are only continuous up to the boundary
is less understood. When Ω is a bounded convex domain in C

n with no non-
trivial discs in bΩ (that is, any holomorphic mapping f : D → bΩ is constant)
all of the Hankel operators with symbols continuous on Ω are compact. This
follows from the following two facts: on such domains the ∂-Neumann oper-
ator is compact (see [11]); compactness of the ∂-Neumann operator implies
that Hankel operators with symbols continuous on closure are compact (see
[23, Proposition 4.1]).

In case of the polydisc Trieu Le in [16] proved the following characteri-
zation.

Theorem (Le). Let φ be continuous on Dn for n ≥ 2. Then Hφ is compact
if and only if there exist φ1, φ2 ∈ C(Dn) such that φ1 is holomorphic on
D

n, φ2 = 0 on bDn, and φ = φ1 + φ2.

A domain Ω ⊂ C
n is called Reinhardt if (z1, . . . , zn) ∈ Ω implies that

(eiθ1z1, . . . , e
iθnzn) ∈ Ω for any θ1, . . . , θn ∈ R. That is, Reinhardt domains

are invariant under rotation in each variable. These are generalizations of the
ball and the polydisc. Reinhardt domains are useful in describing domain of
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convergence for power series centered at the origin (see, for instance, [15,19,
21]).

Motivated by the previous results mentioned above, recently, the first
and the last authors proved the following result on convex Reinhardt domains
in C

2 (see [8]), generalizing the results in [6] (in terms of regularity of the
symbol but on a small class of domains) and [16] (in terms of the domain in
C

2).

Theorem (Clos-Şahutoğlu). Let Ω be a bounded convex Reinhardt domain in
C

2 and φ ∈ C(Ω). Then Hφ is compact if and only if φ ◦ f is holomorphic
for any holomorphic f : D → bΩ.

We note that on piecewise smooth bounded convex Reinhardt domains
in C

2, the first author studied compactness of Hankel operators with conju-
gate holomorphic square integrable functions in [4]. Furthermore, compact-
ness of products of two Hankel operators with symbols continuous up to the
boundary was studied by Željko Čučković and the last author in [7].

In this paper we are able to partially generalize the result of Clos-
Şahutoğlu to more general domains. In case the domain is in C

2 we have
the following result.

Theorem 1. Let Ω be a bounded pseudoconvex domain in C
2 with Lipschitz

boundary and φ ∈ C(Ω) such that Hφ is compact on A2(Ω). Then φ ◦ f is
holomorphic for any holomorphic f : D → bΩ.

However, for convex domains we can prove the following result in C
n.

Theorem 2. Let Ω be a bounded convex domain in C
n and φ ∈ C(Ω) such

that Hφ is compact on A2(Ω). Then φ◦f is holomorphic for any holomorphic
f : D → bΩ.

As a corollary of Theorem 2 we obtain the following result for locally
convexifiable domains in C

n.

Corollary 1. Let Ω be a bounded locally convexifiable domain in C
n and φ ∈

C(Ω) such that Hφ is compact on A2(Ω). Then φ ◦ f is holomorphic for any
holomorphic f : D → bΩ.

A domain Ω ⊂ C
n is called complete Reinhardt if (z1, . . . , zn) ∈ Ω and

ξ1, . . . , ξn ∈ C with |ξj | ≤ 1 for all j then (ξ1z1, . . . , ξnzn) ∈ Ω. We note that
convex Reinhardt domains are complete Reinhardt but the converse is not
true.

As a second corollary we obtain the following result for pseudoconvex
complete Reinhardt domains in C

2.

Corollary 2. Let Ω be a bounded pseudoconvex complete Reinhardt domain
in C

2 and φ ∈ C(Ω) such that Hφ is compact on A2(Ω). Then φ ◦ f is
holomorphic for any holomorphic f : D → bΩ.

Remark 1. Peter Matheos, in his thesis [18] (see also [12, Theorem 10] and
[23, Theorem 4.25]), constructed a smooth bounded pseudoconvex complete
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Hartogs domain in C
2 that has no analytic disc in its boundary, yet the ∂-

Neumann operator on the domain is not compact. Furthermore, Zeytuncu
and the third author [24, Theorem 1] proved that on smooth bounded pseu-
doconvex Hartogs domains in C

2, compactness of the ∂-Neumann operator
is equivalent to compactness of all Hankel operators with symbols smooth
up to the boundary. Therefore, on Matheos’ example the condition of The-
orem 1 is trivially satisfied, yet there exists a non-compact Hankel operator
with a symbol smooth on the closure of the domain. Namely, the converse
of Theorem 1 is not true. On the other hand, the converse of Theorem 2 is
open.

The plan of the paper is as follows: First we will prove a localization
result for compactness of Hankel operators with bounded (not necessarily
continuous) symbols. Then we concentrate on the proof of Theorem 1. Finally,
we prove Theorem 2 and the corollaries.

Localization of Compactness

We note that HU
φ denotes the Hankel operator on A2(U) with symbol φ which

is an essentially bounded function on a domain U . Furthermore, we will use
the following notation: A � B means that there exists c > 0 that does not
depend on quantities of interest such that A ≤ cB. Also the constant c might
change at every appearance. In the following lemma and the rest of the paper,
B(p, r) denotes the open ball centered at p with radius r.

Lemma 1. Let Ω be a bounded pseudoconvex domain in C
n, φ ∈ L∞(Ω),

p ∈ bΩ, 0 < r1 < r2, and Rr2,r1 : A2(B(p, r2) ∩ Ω) → A2(B(p, r1) ∩ Ω) be
the restriction operator defined as Rr2,r1f = f |B(p,r1)∩Ω. Assume that HΩ

φ is

compact on A2(Ω). Then H
B(p,r1)∩Ω
φ Rr2,r1 is compact on A2(B(p, r2) ∩ Ω).

Proof. First we will simplify the notation and define the necessary operators.
Let Uj = B(p, rj) ∩ Ω, QUj = I − PUj : L2(Uj) → L2(Uj) for j = 1, 2, and
QΩ = I − PΩ : L2(Ω) → L2(Ω). Also, in the following calculations ‖.‖Uj

and
‖.‖Ω denote the L2 norms on Uj and Ω, respectively.

By [22, Lemma 3] we have a bounded operator Eε : A2(U2) → A2(Ω)
with the following estimate

‖RU1(f − Eεf)‖U1 ≤ ε‖RU1f‖U1

for f ∈ A2(U2) where RU1 denotes the restriction onto U1. Then, HU1
φ RU1g =

QU1RU1H
Ω
φ g for any g ∈ A2(Ω). Then for f ∈ A2(U2) we have

∥
∥
∥HU1

φ Rr2,r1f
∥
∥
∥

2

U1

= 〈RU1(φ(f − Eεf)), QU1RU1(φf)〉U1

+ 〈RU1(φEεf), QU1RU1(φf)〉U1

� ε‖RU1f‖2
U1

+
∣
∣〈RU1(φEεf), QU1RU1(φ(f − Eεf))〉U1

∣
∣

+
∥
∥
∥HU1

φ RU1(Eεf)
∥
∥
∥

2

U1
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� (ε + ε(1 + ε))‖RU1f‖2
U1

+
∥
∥QU1RU1H

Ω
φ Eεf

∥
∥

2

U1

� ε(2 + ε)‖RU1f‖2
U1

+
∥
∥RU1H

Ω
φ Eεf

∥
∥

2

U1
.

Next we will use the compactness characterization of operators in [23, Lemma
4.3] (see also [9, Proposition V.2.3]). Since HΩ

φ is compact, for every ε′ > 0
there exists a compact operator Kε′ : A2(Ω) → L2(Ω) such that

∥
∥RU1H

Ω
φ Eεf

∥
∥

2

U1
≤ ∥

∥HΩ
φ Eεf

∥
∥

2

Ω
≤ ε′‖Eεf‖2

Ω + ‖Kε′Eεf‖2
Ω.

Therefore, we have
∥
∥RU1H

Ω
φ Eεf

∥
∥

2

U1
≤ ε′‖Eε‖2‖f‖2

U1
+ ‖Kε′Eεf‖2

Ω.

We note that Kε′Eε : A2(U2) → L2(Ω) is compact for any ε and ε′. Now we
choose ε′ sufficiently small so that ε′‖Eε‖2 < ε. Hence, there exists C > 0
(independent of ε, ε′ and f) such that

∥
∥
∥HU1

φ Rr2,r1f
∥
∥
∥

2

U1

≤ Cε(3 + ε)‖f‖2
U2

+ ‖Kε′Eεf‖2
Ω.

Finally, [23, Lemma 4.3] implies that HU1
φ Rr2,r1 is compact on A2(U2). �

Remark 2. We note that the third author proved a localization result pre-
viously in [22]. In [22, Theorem 1] the domain may be very irregular but
the symbol was assumed to be C1-smooth up to the boundary. In Lemma 1,
however, we assume that the symbol is only bounded on the domain.

Proof of Theorem 1

Lemma 2. Let U be a domain in C and φ ∈ C(U) that is not holomorphic.
Assume that {φk} ⊂ C1(U) such that 〈φk, h〉 → 〈φ, h〉 as k → ∞ for all
h ∈ C∞

0 (U). Then there exists a subsequence {φkj
}, δ > 0, and h ∈ C∞

0 (U)
such that

∣
∣
∣
∣

〈
∂φkj

∂z
, h

〉∣
∣
∣
∣
≥ δ

for all j.

Proof. We want to show that there exists h ∈ C∞
0 (U) such that 〈(φk)z, h〉

does not converge to 0 as k → ∞. Suppose that 〈(φk)z, h〉 → 0 as k → ∞ for
all h ∈ C∞

0 (U). Then,

〈φk, hz〉 → 〈φ, hz〉 as k → ∞.

Hence, in the limit we have 〈φ, hz〉 = 0 for all h ∈ C∞
0 (U). This implies

that φ is in the kernel of the ∂ operator (in the distribution sense) on U .
In particular, φ is harmonic. Then φ is C∞-smooth (see, for instance, [10,
Corollary 2.20]) and, in turn, it is holomorphic. This contradicts with the
assumption that φ is not holomorphic.

Therefore, there exists δ > 0, h ∈ C∞
0 (U), and a subsequence φkj

such
that

|〈(φkj
)z, h〉| ≥ δ
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for all j. �

Lemma 3. Let Ω1 and Ω2 be two bounded domains in C
n, F : Ω1 → Ω2 be

a biholomorphism, and φ ∈ L∞(Ω2). Furthermore, let U1 is an open set in
Ω1, F (U1) = U2, and Rj : A2(Ωj) → A2(Uj) be the restriction operators for
j = 1, 2. Assume that HU2

φ R2 is compact. Then HU1
φ◦F R1 is compact.

Proof. First, we mention the following formula about Bergman projections.
Let JF denote the determinant of (complex) Jacobian of F and g ∈ L2(U2).
Then by [3, Theorem 1] we have

PU1(JF · (g ◦ F )) = JF · PU2(g) ◦ F

(see also [14, Proof of Theorem 12.1.11]).
Next, using the equality above, we will get an equality between Hankel

operators on U1 and U2. To that end let h be a square integrable holomorphic
function on U2. Then

HU1
φ◦F (h ◦ F ) = φ ◦ F · h ◦ F − PU1(φ ◦ F · h ◦ F )

= JF · φ ◦ F · h ◦ F

JF
− JF · PU2

(
φ ◦ F · h ◦ F

JF
◦ F−1

)

◦ F

= JF ·
(

φ · h

JF ◦ F−1
− PU2

(

φ · h

JF ◦ F−1

))

◦ F

= JF · HU2
φ

(
h

JF ◦ F−1

)

◦ F.

We need to make sure that f◦F −1

JF ◦F −1 ∈ A2(Ω2) for any f ∈ A2(Ω1). In
fact,

∥
∥
∥
∥

f ◦ F−1

JF ◦ F−1

∥
∥
∥
∥

2

Ω2

=
∫

Ω2

∣
∣
∣
∣

f ◦ F−1(w)
JF ◦ F−1(w)

∣
∣
∣
∣

2

dV (w)

=
∫

Ω1

∣
∣
∣
∣

f ◦ F−1(F (z))
JF ◦ F−1(F (z))

∣
∣
∣
∣

2

|JF (z)|2dV (z)

=
∫

Ω1

∣
∣
∣
∣

f(z)
JF (z)

∣
∣
∣
∣

2

|JF (z)|2dV (z)

=
∫

Ω1

|f(z)|2dV (z)

= ‖f‖2
Ω1

.

So far we have shown that if {fj} is a bounded sequence in A2(Ω1) then
{

fj ◦ F−1/(JF ◦ F−1)
}

is a bounded sequence in A2(Ω2) and

HU1
φ◦F R1(fj) = JF · HU2

φ R2

(
fj ◦ F−1

JF ◦ F−1

)

◦ F.(1)

Then compactness of HU2
φ R2 implies that

{

HU2
φ R2

(
fj◦F −1

JF ◦F −1

)}

has a con-

vergent subsequence in L2(U2). Using the fact that ‖h‖U2 = ‖JF · h ◦ F‖U1
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for any h ∈ L2(U2) together with (1), we conclude that {HU1
φ◦F R1(fj)} has a

convergent subsequence in L2(U1). Therefore, HU1
φ◦F R1 is compact. �

Let χ ∈ C∞
0 (B(0, 1)) such that

∫

B(0,1)
χ(z)dV (z) = 1. We define

χk(z) = k2nχ(kz)

for k = 1, 2, 3, . . .

Proof of Theorem 1. We assume that Hφ is compact and there is a holo-
morphic map f : D → bΩ such that φ ◦ f is not holomorphic. Then f is a
non-constant mapping. We can use Lemma 1 to localize the compactness of
Hφ near a boundary point f(ξ0) = p ∈ bΩ such that φ ◦ f is not holomorphic
near ξ0. That is, we choose 0 < r1 < r2 such that H

Ω∩B(p,r1)
φ Rr2,r1 is compact

on A2(Ω∩B(p, r2)) and φ◦f is not holomorphic on f−1(B(p, r1)). To simplify
the geometry we want to straighten the disc near p yet keep compactness of
the Hankel operator locally. So, shrinking r1, r2 if necessary, we use a local
holomorphic change of coordinates

F : Ω ∩ B(p, r2) → C
2

so that F ◦f maps f−1(B(p, r2)) onto an open set on z1-axis and F ◦f(ξ0) = 0.
To simplify the notation, let us denote Ω1 = F (Ω ∩ B(p, r1)) and Ω2 =

F (Ω∩B(p, r2)). Lemma 3 implies that HΩ1
φ◦F −1R is compact on A2(Ω2) where

R : A2(Ω2) → A2(Ω1) is the restriction operator. Therefore, without loss of
generality, we may assume that

i. φ ∈ C(C2), using Tietze extension theorem,
ii. (0, 0) ∈ Γ1 × {0} ⊂ bΩ2 is a non-trivial affine disc where Γ1 = {z ∈ C :

|z| < s1},
iii. Ω2 ⊂ {

(z1, z2) ∈ C
2 : |arg(z2)| < θ1

}

for some 0 < θ1 < π,
iv. HΩ1

φ R is compact on A2(Ω2).

Next we will use mollifiers (approximations to the identity) and trivial
extensions to approximate φ on z1-axis by suitable smooth functions φk. We
define φ̃ = φ|{(z1,z2)∈C2:z2=0} and

φk = E(φ̃ ∗ χk)

where ∗ and E denote the convolution and the trivial extension from
{(z1, z2) ∈ C

2 : z2 = 0} to C
2, respectively. Then φk → φ uniformly on

compact subsets in {(z1, z2) ∈ C
2 : z2 = 0} as k → ∞ (see, for instance, [1,

2.29 Theorem]). We note that, since φks are extended trivially in z2-variable,
the sequence {φk} is uniformly convergent on compact sets in C

2. Hence,
{φk} is uniformly bounded on Ω1.

Lemma 2 implies that there exist δ > 0, h ∈ C∞
0 (Γ1), and a subsequence

{φkj
} such that

∣
∣〈(φkj

)z1 , h〉Γ1

∣
∣ ≥ δ > 0
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for all j = 1, 2, 3, . . .. By passing to a subsequence, if necessary, we can assume
that

|〈(φk)z1 , h〉Γ1 | ≥ δ > 0

for all k = 1, 2, 3, . . ..
Since Ω2 has Lipschitz boundary there exist s2 > s1, 0 < t1 < t2, and

0 < θ1 < π/2 < θ2 < π such that

Γ1 × Wt1,θ1 ⊂ Ω1 ⊂ Ω2 ⊂ Γ2 × Wt2,θ2

where Γ2 = {z ∈ C : |z| < s2} and

Wtj ,θj
=

{

ρeiθ ∈ C : 0 < ρ < tj , |θ| < θj

}

for j = 1, 2.
We define a sequence of functions on Ω2 as

fj(z1, z2) =
αj

z
βj

2

where βj = 1 − 1/j and αj → 0 such that ‖fj‖L2(Wt1,θ1 ) = 1 for all j.
One can show that {fj} is a bounded sequence in A2(Ω2) as ‖fj‖L2(Wt2,θ2 )

are uniformly bounded. Furthermore, the sequence {fj} converges to zero
uniformly on compact subsets that are away from {(z1, z2) ∈ C

2 : z2 =
0}. Then fj → 0 weakly in A2(Ω2) as j → ∞. Later on we will reach a
contradiction by showing that ‖HΩ1

φ Rfj‖Ω1 stays away from zero.
We remind the reader that for any f ∈ A2(Ω2) and k we have

(HΩ1
φk

Rf)z1 = (Rfφk)z1 − (PΩ1R(fφk))z1 = R (f(φk)z1) .

Using the identity above (when we pass from second to third line below) and
the Cauchy-Schwarz inequality (in z1 on Γ1 on the second inequality below)
we get

δ2 = δ2‖fj‖2
L2(Wt1,θ1 ) ≤

∫

Wt1,θ1

|〈(φk)z1 , h〉Γ1 |2 fj(., z2)fj(., z2)dV (z2)

=
∫

Wt1,θ1

〈(φkfj)z1 , h〉Γ1〈(φkfj)z1 , h〉Γ1dV (z2)

=
∫

Wt1,θ1

∣
∣
∣〈(HΩ1

φk
Rfj)z1 , h〉Γ1

∣
∣
∣

2

dV (z2)

=
∫

Wt1,θ1

∣
∣
∣〈HΩ1

φk
Rfj , hz1〉Γ1

∣
∣
∣

2

dV (z2)

≤
∫

Wt1,θ1

‖HΩ1
φk

Rfj(., z2)‖2
Γ1

‖hz1‖2
Γ1

dV (z2)

= ‖HΩ1
φk

Rfj‖2
Γ1×Wt1,θ1

‖hz1‖2
Γ1

.

Then, for all j and k, we have
δ

‖hz1‖Γ1

≤ ‖HΩ1
φk

Rfj‖Ω1 .
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Using the facts that φk → φ uniformly on Γ1, the sequence {φk} is uniformly
bounded on Ω1, and fj → 0 uniformly on compact subsets away from z1-axis,
one can show that

‖HΩ1
φk−φRfj‖Ω1 ≤ ‖(φk − φ)Rfj‖Ω1 → 0 as j, k → ∞.

Then we have
δ

‖hz1‖Γ1

≤ ‖HΩ1
φk

Rfj‖Ω1 ≤ ‖HΩ1
φk−φRfj‖Ω1 + ‖HΩ1

φ Rfj‖Ω1 .

Then if we let j, k → ∞ we get

0 <
δ

‖hz1‖Γ1

≤ lim inf
j→∞

‖HΩ1
φ Rfj‖Ω1 .

Finally, we conclude that HΩ1
φ R is not compact on A2(Ω2) because if it

were, the sequence {HΩ1
φ Rfj} would converge to zero in norm. Therefore,

using Lemma 1, we reach a contradiction with the assumption that Hφ is
compact. �

Proof of Theorem 2 and Corollaries

In Lemma 4 below we will use the following notation: Lz0,z1 : D → bΩ is
defined as Lz0,z1(ξ) = z0 + ξz1 where z0, z1 ∈ C

n.

Lemma 4. Let Ω be a bounded convex domain in C
n and φ ∈ C(Ω). Assume

that there exists a holomorphic function f : D → bΩ so that φ ◦ f is not
holomorphic. Then there exist z0 ∈ bΩ, z1 ∈ C

n such that Lz0,z1(D) ⊂ bΩ and
φ ◦ Lz0,z1 is not holomorphic.

Proof. We first use [6, Lemma 2] (see also [11, Section 2]) to conclude that
the convex hull of f(D) is contained in an affine variety V ⊂ bΩ. So φ|V
is not holomorphic. Next we use the following fact: a continuous function is
holomorphic on an open set U if and only if it is holomorphic on every complex
line in U . Therefore, we conclude that there is a complex line Lz0,z1(D) ⊂ V
such that φ ◦ Lz0,z1 is not holomorphic on D. �

We will need the following lemma in the proof of Theorem 2.

Lemma 5. Let Ω be a domain in C
n with Lipschitz boundary such that 0 ∈ bΩ.

Then the function f(z) = |zn|−p is not square integrable on Ω for p ≥ n.

Proof. We can use rotation to assume that positive yn-axis is transversal to
bΩ and there exists α, ε > 0 such that

Wε,α = {(z′, zn) ∈ C
n−1 × C : |z′|2 + x2

n < α2y2
n,−ε < yn < 0} ⊂ Ω

where zn = xn + iyn. In the following calculation wε,α = {xn + iyn ∈ C :
|xn| + αyn < 0,−ε < yn < 0} is a wedge in zn-axis.

∫

Ω

|zn|−2pdV (z) ≥
∫

Wε,α

|zn|−2pdV (z′, zn)

=
∫

zn∈wε,α

∫

|z′|2<α2y2
n−x2

n

|zn|−2pdV (z′)dV (zn)
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�
∫

zn∈wε,α

(α2y2
n − x2

n)n−1|zn|−2pdV (zn)

�
∫ ε

0

1
r1+2(p−n)

dr.

Therefore, if p ≥ n the function f(z) = |zn|−p is not square integrable on Ω
as the last integral above is infinite. �

Proof of Theorem 2. Using holomorphic linear translation, if necessary, we
may assume that Ω ⊂ {yn < 0} and the origin is in the boundary of Ω. Fur-
thermore, by Lemma 4 we may assume that 0 ∈ Γ = {z ∈ C : (z, 0, . . . , 0) ∈
bΩ} is a non-trivial affine analytic disc such that φ(., 0, . . . , 0) is not holo-
morphic. Finally, since convex domains have Lipschitz boundary (see, for
instance, [25]), we may also assume that positive yn-axis is transversal to bΩ
on Γ.

Let Ωz1 = {z′′ ∈ C
n−1 : (z1, z

′′) ∈ Ω} be the slice of Ω perpendicular to
Γ at z1 ∈ Γ. Convexity of Ω and the fact that 0 ∈ Γ × {0} ⊂ bΩ imply that

(
z1

2
,
z′′

2

)

=
1
2
(z1, 0) +

1
2
(0, z′′) ∈ Ω

for z1 ∈ Γ and z′′ ∈ Ω0. That is, Ω0 ⊂ 2Ωz1/2 for z1 ∈ Γ. Equivalently,
Ω0 ⊂ 2Ωz1 for z1 ∈ 1

2Γ. Hence,

1
2
(Γ × Ω0) ⊂ Ω.(2)

To get another inclusion, let 0 < r1 such that {z1 ∈ C : |z1| < r1} ⊂ Γ
and z′′ ∈ Ωz1 . Then, we have (z1, z

′′) ∈ Ω and (−z1, 0) ∈ Γ. Hence
(

0,
z′′

2

)

=
1
2
(−z1, 0) +

1
2
(z1, z

′′) ∈ Ω.

That is, 1
2Ωz1 ⊂ Ω0 for |z1| < r1. Namely, Ωz1 ⊂ 2Ω0 for |z1| < r1. Hence,

Ω ∩ B(0, r1) ⊂ 2(Γ × Ω0).

Therefore, combining the previous inclusion with (2) we get

1
2
(Γ × Ω0) ∩ B(0, r1) ⊂ Ω ∩ B(0, r1) ⊂ 2(Γ × Ω0).

Next we will use Lemma 5 to produce a bounded sequence {fj} in
A2(Ω) that is convergent to zero weakly but its image under a “local” Hankel
operator does not converge to zero.

Since, by Lemma 5, the function f(z) = z−n+1
n is not square integrable

on Ω0 (an (n − 1)-dimensional slice of Ω) and the L2-norm of (zn − iδ)−n+1

on Ω0 continuously depends on δ > 0, we can choose a positive sequence {δj}
such that δj → 0 as j → ∞ and ‖fj‖ 1

2Ω0 = 1 where

fj(z) =
1

j(zn − iδj)n−1
.(3)
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Furthermore, |fj(4z)| ≤ |fj(z)| for all z ∈ 1
2Ω0 as Ω ⊂ {yn < 0} and δj > 0.

Then,
∫

2Ω0
|fj(ξ)|2dV (ξ) = 16n−1

∫

1
2Ω0

|fj(4η)|2dV (η)

≤ 16n−1

∫

1
2Ω0

|fj(η)|2dV (η)

= 16n−1.

Hence {fj} is a bounded sequence in A2(Ω) (as ‖fj‖2Ω0 is uniformly bounded)
and fj → 0 weakly in A2(Ω) as j → ∞.

The rest of the proof follows the proof of Theorem 1. Namely, we define
Γ1 = {z ∈ C : |z| < r1

2 } and φ̃ = φ|Γ×{0}. Without loss of generality, we may
assume that φ ∈ C(Cn). We define

φk = E(φ̃ ∗ χk)

where E denotes trivial extension from {(z1, z
′′) ∈ C

2 : z′′ = 0} to C
n,

respectively. Using Lemma 2 we can choose δ > 0 and h ∈ C∞
0 (Γ1) so that,

by passing to a subsequence if necessary, we can assume that

|〈(φk)z1 , h〉Γ1 | ≥ δ > 0

for all k = 1, 2, 3, . . .. Then for Ω1 = Ω ∩ B(p, r1) we get

δ

‖hz1‖Γ1

≤ ‖HΩ1
φk

Rfj‖Ω1

for all j, k where R : A2(Ω) → A2(Ω1) is the restriction operator. Then letting
j, k → ∞ we get

0 <
δ

‖hz1‖Γ1

≤ lim inf
j→∞

‖HΩ1
φ Rfj‖Ω1 .(4)

Hence, HΩ1
φ R is not compact and we reach a contradiction with the assump-

tion that Hφ is compact. Therefore, the proof of Theorem 2 is complete. �

Proof of Corollary 1. Suppose Ω ⊂ C
n is a bounded locally convexifiable

domain, φ ∈ C(Ω) is such that Hφ is compact on A2(Ω), and f : D → bΩ is
a holomorphic function. Let p ∈ f(D) and choose r > 0 such that B(p, r)∩Ω
is convexifiable. Furthermore, without loss of generality, we may assume that
the range of f is contained in B(p, r/2). Then using Lemma 1 and Lemma 3
(and shrinking r is necessary) we may assume that U = B(p, r)∩Ω is convex
and HV

φ R is compact on A2(U) where V = B(p, r/2) ∩ Ω and R : A2(U) →
A2(V ) is the restriction from U onto V . Then the proof of Theorem 2 implies
that φ ◦ f is holomorphic. �

Proof of Corollary 2. Let Ω ⊂ C
2 be a bounded pseudoconvex complete

Reinhardt domain, φ ∈ C(Ω), and Hφ is compact on A2(Ω). By [21, Theorem
3.28], Ω is locally convexifiable away from the coordinate axes under the map
(z1, z2) → (log z1, log z2).
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Assume that there is a non-trivial analytic disc in the boundary away
from the coordinate axes. Then there exists a non-constant holomorphic func-
tion f : D → bΩ such that f(D) ⊂ {(z1, z2) ∈ C

2 : z1 �= 0 and z2 �= 0}. Using
an argument similar to the one in the proof of Corollary 1 we conclude that
φ ◦ f is holomorphic. Therefore, φ is holomorphic along any disc away from
the coordinate axis.

Next, if the disc intersects one of the coordinate axis, without loss of
generality, we assume that f(D) ∩ {(z1, z2) ∈ C

2 : z1 = 0} �= ∅. Let f =
(f1, f2). Then f1 : D → C has a zero. Since zeroes of a holomorphic function
on a planar domain are isolated, we can choose f so that f1(z) = 0 if and
only if z = 0. Therefore, we may assume that f(z) is on a coordinate axis if
and only if z = 0. Then, similarly as in the previous paragraph, we conclude
that φ◦f is holomorphic on D\{0}. Furthermore, 0 is a removable singularity
for φ ◦ f as φ ◦ f is continuous on D. That is, φ ◦ f is holomorphic on D. �
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