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Abstract. This paper is devoted to the study of operator-valued Triebel–
Lizorkin spaces. We develop some Fourier multiplier theorems for square
functions as our main tool, and then study the operator-valued Triebel–
Lizorkin spaces on R

d. As in the classical case, we connect these spaces
with operator-valued local Hardy spaces via Bessel potentials. We show
the lifting theorem, and get interpolation results for these spaces. We
obtain Littlewood–Paley type, as well as the Lusin type square function
characterizations in the general way. Finally, we establish smooth atomic
decompositions for the operator-valued Triebel–Lizorkin spaces. These
atomic decompositions play a key role in our recent study of mapping
properties of pseudo-differential operators with operator-valued sym-
bols.
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0. Introduction and Preliminaries

Let ϕ be a Schwartz function on R
d such that suppϕ ⊂ {ξ: 1

2 ≤ |ξ| ≤ 2},
ϕ > 0 on {ξ: 1

2 < |ξ| < 2}, and
∑

k∈Z
ϕ(2−kξ) = 1 for all ξ �= 0. For each

k ∈ N, let ϕk be the function whose Fourier transform is equal to ϕ(2−k·), and
let ϕ0 be the function whose Fourier transform is equal to 1−∑k>0 ϕ(2−k·).
Then {ϕk}k≥0 gives a Littlewood–Paley decomposition on R

d. The classical
(inhomogeneous) Triebel–Lizorkin spaces Fα

p,q(R
d) for 0 < p < ∞, 0 < q ≤ ∞

and α ∈ R are defined as

Fα
p,q(R

d) =
{

f ∈ S ′(Rd): ‖f‖F α
p,q

< ∞
}

with the (quasi-)norm

‖f‖F α
p,q

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

2qjα|ϕj ∗ f |q
⎞

⎠

1
q

∥
∥
∥
∥
∥
∥
∥

p

.

We refer the reader to Triebel’s books [31,32] for more concrete definition
and properties of Triebel–Lizorkin spaces on R

d. This kind of function spaces
is closely related to some other function spaces, such as Sobolev and Besov
spaces. In particular, Triebel–Lizorkin spaces can be viewed as the general-
izations of Hardy spaces, since the Bessel potential Jα is known to be an
isomorphism between Fα

p,2(R
d) and hp(Rd) (local Hardy spaces introduced

in [6]). All these spaces are basic for many branches of mathematics such as
harmonic analysis, PDE, functional analysis and approximation theory.

This paper is devoted to the study of operator-valued Triebel–Lizorkin
spaces, motivated by the development of noncommutative martingale the-
ory (see for instance [9,10,12–14,17,21,23,25–28]) and the Littlewood–Paley–
Stein theory of quantum Markov semigroups (cf. [11,15,16]). As in the classi-
cal case, it can be viewed as an extension of our recent work [33] on operator-
valued local Hardy spaces. On the other hand, the Triebel–Lizorkin spaces
studied here are Euclidean counterparts of those on usual and quantum tori
studied in [37]. Our main motivation is to build a kind of function spaces
where we can carry out the investigation of pseudo-differential operators with
operator-valued symbols.

Due to noncommutativity, there are several obstacles on our route,
which do not appear in the classical case. First of all, in the noncommutative
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integration, the simple replacement of the usual absolute value by the modu-
lus of operators in the formula

∥
∥(
∑

j≥0 2qjα|ϕj ∗f |q) 1
q

∥
∥

p
does not give a norm

except for q = 2. Even though one could use Pisier’s definition of �q-valued
noncommutative Lp-spaces by complex interpolation (see [22]), we will not
study that kind of spaces and will focus only on the case q = 2. The reason for
this choice is that, for q = 2, the Triebel–Lizorkin spaces of operator-valued
distributions are isomorphic to the Hardy spaces developed in [33], as men-
tioned above. Another difficulty is the lack of pointwise maximal functions
in the noncommutative case. As is well known, the maximal functions play
a crucial role in the classical theory; but they are no longer at our disposal
in the noncommutative setting. In [37], when studying the Triebel–Lizorkin
spaces on quantum tori, we use Calderón–Zygmund and Fourier multiplier
theory as substitution. In this paper, we will still rely heavily on this theory.
However, we have to consider its local (or inhomogeneous) counterpart, since
the theory used in [37] for quantum tori is the nonlocal (or homogeneous)
one. Besides the local nature, we also develop Hilbert space valued Fourier
multiplier theory, which will be used to deduce general characterizations of
operator-valued Triebel–Lizorkin spaces by the Lusin type square function.

Let M be a von Neumann algebra equipped with a normal semifinite
faithful trace τ . Our definition of (column) operator-valued Triebel–Lizorkin
space for 1 ≤ p < ∞ is

Fα,c
p (Rd,M) =

{
f ∈ S ′(Rd;L1(M) + M): ‖f‖F α,c

p
< ∞

}
,

where

‖f‖F α,c
p

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

Here ‖ · ‖p is the norm of the semi-commutative Lp-space Lp(L∞(Rd)⊗M).
Different from the classical case, we have also row and mixture versions; see
Sect. 3 for concrete definitions.

We present here two major results of this paper. The first one gives gen-
eral characterizations of Fα,c

p (Rd,M) by any reasonable convolution kernels
in place of the Littlewood–Paley decomposition {ϕj}j≥0. These characteriza-
tions can be realized either by the Littlewood–Paley type g-function or by the
Lusin type integral function, with the help of the Calderón–Zygmund theory
and Fourier multiplier theory mentioned above. The second major result is
the atomic decomposition of Fα,c

1 (Rd,M). When α = 0, the problem is re-
duced to the case of noncommutative Hardy spaces. In this case, the atomic
decompositions of both noncommutative martingale Hardy spaces and Mei’s
operator-valued Hardy spaces are deduced from the h1-bmo duality (see for
instance [1,8,18]). In [33], we use a similar method to get an atomic decom-
position of h1(Rd,M), which does not require any smooth condition on each
atom. In this paper, we refine the smoothness of that atomic decomposition
by the Calderón reproducing identity, via tent spaces. Using the same trick,
we extend that refinement to Fα,c

1 (Rd,M); but compared with the case of
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local Hardy spaces, subatoms enter in the game. These smooth atomic decom-
positions will play a crucial role in the study of pseudo-differential operators
in the forthcoming paper [34].

In the following, let us recall some notation and background in the
interface between harmonic analysis and operator algebras that we will need
throughout the paper, although they are probably well-known to experts.

0.1. Noncommutative Lp -Spaces

We start with a brief introduction of noncommutative Lp spaces. Let M
be a von Neumann algebra equipped with a normal semifinite faithful trace
τ ; for 1 ≤ p ≤ ∞, let Lp(M) be the noncommutative Lp-space associated
to (M, τ). The norm of Lp(M) will be often denoted simply by ‖ · ‖p. But
if different Lp-spaces appear in a same context, we will sometimes precise
the respective Lp-norms in order to avoid possible ambiguity. The reader is
referred to [24,38] for more information on noncommutative Lp-spaces. We
will also need Hilbert space-valued noncommutative Lp-spaces (see [11] for
more details). Let H be a Hilbert space and v ∈ H with ‖v‖ = 1. Let pv be
the orthogonal projection onto the one-dimensional subspace generated by v.
Define

Lp(M;Hr) = (pv ⊗ 1M)Lp(B(H)⊗M)

and

Lp(M;Hc) = Lp(B(H)⊗M)(pv ⊗ 1M).

These are the row and column noncommutative Lp-spaces. Like the classi-
cal Lp-spaces, noncommutative Lp-spaces form an interpolation scale with
respect to the complex interpolation method: for 1 ≤ p0 < p1 ≤ ∞ and
0 < η < 1, we have

(
Lp0(M), Lp1(M)

)
η

= Lp(M) with equal norms,

where 1
p = 1−η

p0
+ η

p1
. Since Lp(M;Hc) and Lp(M;Hr) are 1-complemented

subspaces of Lp(B(H)⊗M), for the same indices, we have
(
Lp0(M;Hc), Lp1(M;Hc)

)
η

= Lp(M;Hc) with equal norms.

0.2. Fourier Analysis

Fourier multipliers will be one of the most important tools of this paper. Let
us give some Fourier multipliers that will be frequently used. They are all
very well known in the classical harmonic theory.

First, we recall the symbols of Littlewood–Paley decomposition on R
d.

Fix a Schwartz function ϕ on R
d satisfying:

⎧
⎪⎨

⎪⎩

suppϕ ⊂ {ξ: 1
2 ≤ |ξ| ≤ 2}.

ϕ > 0 on {ξ: 1
2 < |ξ| < 2},

∑
k∈Z

ϕ(2−kξ) = 1,∀ ξ �= 0.

(0.1)

For each k ∈ N, let ϕk be the function whose Fourier transform is equal
to ϕ(2−k·), and let ϕ0 be the function whose Fourier transform is equal to
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1−∑k>0 ϕ(2−k·). Then {ϕk}k≥0 gives a Littlewood–Paley decomposition on
R

d such that

supp ϕ̂0 ⊂ {ξ ∈ R
d: |ξ| ≤ 2},

supp ϕ̂k ⊂ {ξ ∈ R
d: 2k−1 ≤ |ξ| ≤ 2k+1}, ∀ k ∈ N

(0.2)

and that
∞∑

k=0

ϕ̂k(ξ) = 1 ∀ ξ ∈ R
d. (0.3)

The homogeneous counterpart of the above decomposition is given by
{ϕ̇k}k∈Z. This time, for every k ∈ Z, these functions are given by ̂̇ϕk(ξ) =
ϕ(2−kξ). We have

∑

k∈Z

̂̇ϕk(ξ) = 1 ∀ ξ �= 0. (0.4)

The Bessel potential and the Riesz potential are Jα = (1 − (2π)−2Δ)
α
2

and Iα = (−(2π)−2Δ)
α
2 , respectively. If α = 1, we will abbreviate J1 as J

and I1 as I. We denote also Jα(ξ) = (1 + |ξ|2)α
2 on R

d and Iα(ξ) = |ξ|α on
R

d\{0}. Then Jα(ξ) and Iα(ξ) are the symbols of the Fourier multipliers Jα

and Iα, respectively.
Given a Banach space X, let S(Rd;X) be the space of X-valued rapidly

decreasing functions on R
d with the standard Fréchet topology, and S ′(Rd;X)

be the space of continuous linear maps from S(Rd) to X. All operations on
S(Rd) such as derivations, convolution and Fourier transform transfer to
S ′(Rd;X) in the usual way. On the other hand, Lp(Rd;X) naturally embeds
into S ′(Rd;X) for 1 ≤ p ≤ ∞, where Lp(Rd;X) stands for the space of
strongly p-integrable functions from R

d to X. By this definition, Fourier
multipliers on R

d, in particular the Bessel and Riesz potentials, extend to
vector-valued tempered distributions in a natural way.

We denote by Hσ
2 (Rd) the potential Sobolev space, consisting of all

tempered distributions f such that Jσ(f) ∈ L2(Rd). If σ > d
2 , we have

∥
∥F−1(f)

∥
∥
1

=

∫

|s|≤1

∣
∣F−1(f)(s)

∣
∣ds +

∑

k≥0

∫

2k<|s|≤2k+1

∣
∣F−1(f)(s)

∣
∣ds

≤ C1

⎛

⎝
∫

|s|≤1

∣
∣F−1(f)(s)

∣
∣2ds +

∑

k≥0

22kσ

∫

2k<|s|≤2k+1

∣
∣F−1(f)(s)

∣
∣2ds

⎞

⎠

1
2

≤ C2

∥
∥f
∥
∥

Hσ
2
,

where C1 and C2 are uniform constants. Therefore, if φ̂ ∈ Hσ
2 (Rd), the fol-

lowing Young’s inequality

‖φ ∗ g‖Lp(Rd;X) ≤ ‖φ‖1‖g‖Lp(Rd;X) ≤ C2‖φ̂‖Hσ
2
‖g‖Lp(Rd;X) (0.5)

holds for any g ∈ Lp(Rd;X) with 1 ≤ p ≤ ∞. Here X is an arbitrary Banach
space. Inequality (0.5) indicates that functions in Hσ

2 (Rd) are the symbols of
bounded Fourier multipliers, even in the vector-valued case.
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In the sequel, we will mainly consider the case X = L1(M) + M, i.e.,
consider operator-valued functions or distributions on R

d. We will frequently
use the following Cauchy–Schwarz type inequality for operator-valued square
function,

∣
∣
∣
∣

∫

Rd

φ(s)f(s)ds

∣
∣
∣
∣

2

≤
∫

Rd

|φ(s)|2ds

∫

Rd

|f(s)|2ds, (0.6)

where φ: Rd → C and f : Rd → L1(M)+M are functions such that all integra-
tions in the above inequality make sense. We also require the operator-valued
version of the Plancherel formula. For sufficiently nice functions f : Rd →
L1(M) + M, for example, for f ∈ L2(Rd) ⊗ L2(M), we have

∫

Rd

|f(s)|2ds =
∫

Rd

|f̂(ξ)|2dξ. (0.7)

Throughout, we will use the notation A � B, which is an inequality up
to a constant: A ≤ cB for some constant c > 0. The relevant constants in
all such inequalities may depend on the dimension d, the test function Φ or
p, etc, but never on the function f in consideration. The equivalence A ≈ B
will mean A � B and B � A simultaneously.

The layout of this paper is the following. In the next section, we briefly
introduce the definition of local Hardy spaces, and the main results in [33].
In Sect. 2, we develop several Fourier multiplier theorems: the first one is the
inhomogeneous version of the Fourier multiplier theorem proved in [37], fitted
to local Hardy spaces; the second is a Hilbertian Fourier multiplier theorem,
in order to deal with the Lusin area square functions. In Sect. 3, we give
the definition of Triebel–Lizorkin spaces, and some immediate properties.
Section 4 is devoted to different characterizations of Triebel–Lizorkin spaces.
The proofs in this section are technical and tedious, based on Calderón–
Zygmund theory and Fourier multiplier theorems. In the last section, we
demonstrate the smooth atomic decompositions of Fα,c

p (Rd,M): we begin
with the space F 0,c

p (Rd,M) = hc
p(R

d,M), and then extend the result to
general α by a similar argument.

1. Operator-Valued Local Hardy Spaces

Let us review the operator-valued local Hardy spaces studied in [33], and
collect some of the main results there that will be useful in this paper. We
keep the following notation: (M, τ) is a von Neumann algebra with n.s.f.
trace, and N = L∞(Rd)⊗M is equipped with the tensor trace; letters s, t
are used to denote variables of R

d, while letters x, y are reserved for operators
in noncommutative Lp-spaces.

Let P be the Poisson kernel on R
d:

P(s) = cd
1

(|s|2 + 1)
d+1
2
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with cd the usual normalizing constant and |s| the Euclidean norm of s. Let

Pε(s) =
1
εd

P
(s

ε

)
= cd

ε

(|s|2 + ε2)
d+1
2

.

For any function f on R
d with values in L1(M) + M, its Poisson integral,

whenever it exists, will be denoted by Pε(f):

Pε(f)(s) =
∫

Rd

Pε(s − t)f(t)dt, (s, ε) ∈ R
d+1
+ .

The truncated Lusin area square function of f is given by:

sc(f)(s) =

(∫

Γ̃

∣
∣
∣
∣

∂

∂ε
Pε(f)(s + t)

∣
∣
∣
∣

2
dtdε

εd−1

) 1
2

, s ∈ R
d,

where Γ̃ is the truncated cone {(t, ε) ∈ R
d+1
+ : |t| < ε < 1}. Denote by Rd the

Hilbert space L2(Rd, dt
1+|t|d+1 ). For 1 ≤ p < ∞, define the column local Hardy

space hc
p(R

d,M) to be

hc
p(R

d,M) =
{

f ∈ L1(M; Rc
d) + L∞(M; Rc

d): ‖f‖hc
p

< ∞
}

,

where the hc
p(R

d,M)-norm of f is defined by

‖f‖hc
p(Rd,M) = ‖sc(f)‖Lp(N ) + ‖P ∗ f‖Lp(N ).

The row local Hardy space hr
p(R

d,M) is the space of all f such that f∗ ∈
hc

p(R
d,M), equipped with the norm ‖f‖hr

p
= ‖f∗‖hc

p
. Moreover, define the

mixture space hp(Rd,M) as follows:

hp(Rd,M) = hc
p(R

d,M) + hr
p(R

d,M) for 1 ≤ p ≤ 2

equipped with the sum norm

‖f‖hp(Rd,M)= inf
{

‖g‖hc
p

+ ‖h‖hr
p
: f=g + h, g ∈ hc

p(R
d,M), h ∈ hr

p(R
d,M)

}
,

and

hp(Rd,M) = hc
p(R

d,M) ∩ hr
p(R

d,M) for 2 < p < ∞
equipped with the intersection norm

‖f‖hp
= max

{
‖f‖hc

p
, ‖f‖hr

p

}
.

The local analogue of the Littlewood–Paley g-function of f is defined by

gc(f)(s) =

(∫ 1

0

∣
∣
∣
∣

∂

∂ε
Pε(f)(s)

∣
∣
∣
∣

2

εdε

) 1
2

, s ∈ R
d.

It is proved in [33] that

‖f‖hc
p

≈ ‖gc(f)‖p + ‖P ∗ f‖p

for all 1 ≤ p < ∞.
The dual of hc

1(R
d,M) is characterized as a local version of bmo space,

defined as follows. For any cube Q ⊂ R
d, we denote its volume by |Q|. Let f ∈
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L∞(M; Rc
d). The mean value of f over Q is denoted by fQ := 1

|Q|
∫

Q
f(s)ds.

Set
‖f‖bmoc(Rd,M)

= max

{

sup
|Q|<1

∥
∥
∥
∥
∥

(
1

|Q|
∫

Q

|f − fQ|2dt

) 1
2

∥
∥
∥
∥
∥

M
, sup
|Q|=1

∥
∥
∥
∥
∥

(∫

Q

|f |2dt

) 1
2

∥
∥
∥
∥
∥

M

}

.

(1.1)
The local version of bmo spaces is define as

bmoc(Rd,M) = {f ∈ L∞(M; Rc
d): ‖f‖bmoc < ∞} .

Define bmor(Rd,M) to be the space of all f ∈ L∞(M; Rr
d) such that f∗ ∈

bmoc(Rd,M), with the norm ‖f‖bmor = ‖f∗‖bmoc . And bmo(Rd,M) is de-
fined as the intersection of bmoc(Rd,M) and bmor(Rd,M), equipped with
the intersection norm.

The above Hardy and bmo type spaces are local analogues of the spaces
studied by Mei [18]. They turn out to have similar properties with their non-
local versions, such as duality and interpolation. The following two theorems
are quoted from [33].

Theorem 1.1. We have hc
1(R

d,M)∗ = bmoc(Rd,M) with equivalent norms.
If 1 < p < 2 and q is its conjugate index, then hc

p(R
d,M)∗ = hc

q(R
d,M) with

equivalent norms.

Theorem 1.2. Let 1 < p < ∞. We have
(1)

(
bmoc(Rd,M),hc

1(R
d,M)

)
1
p

= hc
p(R

d,M).

(2)
(
X,Y

)
1
p

= Lp(N ), where X = bmo(Rd,M) or L∞(N ), and Y =

h1(Rd,M) or L1(N ).

1.1. Calderón–Zygmund Theory

The usual Calderón–Zygmund operators which satisfy the Hörmander condi-
tion are not necessarily bounded on local Hardy spaces. In order to guarantee
the boundedness of a Calderón–Zygmund operator on hc

p(R
d,M), an extra

decay at infinity is imposed on the kernel in [33]. Let K ∈ S ′(Rd;L1(M)+M)
coincide on R

d\{0} with a locally integrable L1(M) + M-valued function.
We define the left singular integral operator Kc associated to K by

Kc(f)(s) =
∫

Rd

K(s − t)f(t)dt,

and the right singular integral operator Kr associated to K by

Kr(f)(s) =
∫

Rd

f(t)K(s − t)dt.

Both Kc(f) and Kr(f) are well-defined for sufficiently nice functions f with
values in L1(M) ∩ M, for instance, for f ∈ S ⊗ (L1(M) ∩ M).

Let bmoc
0(R

d,M) denote the subspace of bmoc(Rd,M) consisting of
compactly supported functions. The extra decay of the kernel K given in [33]
is condition (2) in the following lemma.
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Lemma 1.3. Assume that
(1) the Fourier transform of K is bounded: supξ∈Rd ‖K̂(ξ)‖M < ∞;
(2) K satisfies a size estimate: there exist C1 and ρ > 0 such that

‖K(s)‖M ≤ C1

|s|d+ρ
, ∀|s| ≥ 1;

(3) K has the Lipschitz regularity: there exist a constant C2 and γ > 0 such
that

‖K(s − t) − K(s)‖M ≤ C2
|t|γ

|s − t|d+γ
, ∀|s| > 2|t|.

Then Kc is bounded on hc
p(R

d,M) for 1 ≤ p < ∞ and from bmoc
0(R

d,M)
to bmoc(Rd,M).

A similar statement also holds for Kr and the corresponding row spaces.

1.2. Characterizations

Next, we are going to present the characterizations of local Hardy spaces
obtained in [33], which will play an important role when studying the char-
acterizations of Triebel–Lizorkin spaces in this paper.

The main idea of these characterizations is to replace the Poisson kernel
by good enough Schwartz functions. Let Φ be a Schwartz function on R

d of
vanishing mean, and set Φε(s) = ε−dΦ( s

ε ) for positive ε. Φ is said to be
nondegenerate if:

∀ξ ∈ R
d\{0} ∃ ε > 0 s.t. Φ̂(εξ) �= 0. (1.2)

Then there exists a Schwartz function Ψ of vanishing mean such that
∫ ∞

0

Φ̂(εξ)Ψ̂(εξ)
dε

ε
= 1, ∀ξ ∈ R

d\ {0} . (1.3)

Furthermore, we can find two functions φ, ψ such that φ̂, ψ̂ ∈ Hσ
2 (Rd), φ̂(0) >

0, ψ̂(0) > 0 and

φ̂(ξ)ψ̂(ξ) = 1 −
∫ 1

0

Φ̂(εξ)Ψ̂(εξ)
dε

ε
. (1.4)

For any f ∈ L1(M; Rc
d) + L∞(M; Rc

d), we define the local versions of
the conic and radial square functions of f associated to Φ by

sc
Φ(f)(s) =

(∫∫

Γ̃

|Φε ∗ f(s + t)|2 dtdε

εd+1

) 1
2

, s ∈ R
d,

gc
Φ(f)(s) =

(∫ 1

0

|Φε ∗ f(s)|2 dε

ε

) 1
2

, s ∈ R
d.

Fix the four test functions Φ,Ψ, φ, ψ as above. The following theorem
is proved in [33].

Theorem 1.4. Let 1 ≤ p < ∞ and φ, Φ be as above. For any f ∈ L1(M; Rc
d)+

L∞(M; Rc
d), f ∈ hc

p(R
d,M) if and only if sc

Φ(f) ∈ Lp(N ) and φ∗f ∈ Lp(N )
if and only if gc

Φ(f) ∈ Lp(N ) and φ ∗ f ∈ Lp(N ). If this is the case, then
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‖f‖hc
p

≈ ‖sc
Φ(f)‖p + ‖φ ∗ f‖p ≈ ‖gc

Φ(f)‖p + ‖φ ∗ f‖p (1.5)

with the relevant constants depending only on d, Φ and φ.

We have a discrete version of Theorem 1.4. The square functions sc
Φ and

gc
Φ can be discretized as follows:

gc,D
Φ (f)(s) =

⎛

⎝
∑

j≥1

|Φj ∗ f(s)|2
⎞

⎠

1
2

,

sc,D
Φ (f)(s) =

⎛

⎝
∑

j≥1

2dj

∫

B(s,2−j)

|Φj ∗ f(t)|2dt

⎞

⎠

1
2

.

Here Φj is the inverse Fourier transform of Φ(2−j ·). This time, to get a
resolvent of the unit on R

d, we need to assume that Φ satisfies

∀ ξ ∈ R
d\{0} ∃ 0 < 2a ≤ b < ∞ s.t. Φ̂(εξ) �= 0, ∀ ε ∈ (a, b].

Then adapting the proof of [30, p.186], we can find a Schwartz function Ψ of
vanishing mean such that

+∞∑

j=−∞
Φ̂(2−jξ) Ψ̂(2−jξ) = 1, ∀ξ ∈ R

d\{0}. (1.6)

Again, there exist two functions φ and ψ such that ϕ̂, ψ̂ ∈ Hσ
2 (Rd), φ̂(0) >

0, ψ̂(0) > 0 and
∞∑

j=1

Φ̂(2−jξ) Ψ̂(2−jξ) + φ̂(ξ)ψ̂(ξ) = 1, ∀ξ ∈ R
d. (1.7)

Now we fix the pairs (Φ,Ψ) and (φ, ψ) satisfying (1.6) and (1.7).

Theorem 1.5. Let φ and Φ be test functions as in (1.7) and 1 ≤ p < ∞.
Then for any f ∈ L1(M; Rc

d) + L∞(M; Rc
d), f ∈ hc

p(R
d,M) if and only if

sc,D
Φ (f) ∈ Lp(N ) and φ ∗ f ∈ Lp(N ) if and only if gc,D

Φ (f) ∈ Lp(N ) and
φ ∗ f ∈ Lp(N ). Moreover,

‖f‖hc
p

≈ ‖sc,D
Φ (f)‖Lp(N ) + ‖φ ∗ f‖p ≈ ‖gc,D

Φ (f)‖p + ‖φ ∗ f‖p

with the relevant constants depending only on d,Φ and φ.

1.3. Atomic Decomposition

Finally, let us include the atomic decomposition of the local Hardy space
hc

1(R
d,M). Let Q be a cube in R

d with |Q| ≤ 1. If |Q| = 1, an hc
1-atom

associated with Q is a function a ∈ L1(M;Lc
2(R

d)) such that
• supp a ⊂ Q;
• τ
( ∫

Q
|a(s)|2ds

) 1
2 ≤ |Q|− 1

2 .

If |Q| < 1, we assume additionally:
• ∫

Q
a(s)ds = 0.
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Let hc
1,at(R

d,M) be the space of all f admitting a representation of the form

f =
∞∑

j=1

λjaj ,

where the aj ’s are hc
1-atoms and λj ∈ C such that

∑∞
j=1 |λj | < ∞. The above

series converges in the sense of distribution. We equip hc
1,at(R

d,M) with the
following norm:

‖f‖hc
1,at

= inf

⎧
⎨

⎩

∞∑

j=1

|λj |: f =
∞∑

j=1

λjaj ; aj ’s are hc
1 -atoms, λj ∈ C

⎫
⎬

⎭
.

Similarly, we can define the row and mixture versions. The following theorem
is also proved in [33].

Theorem 1.6. We have hc
1,at(R

d,M) = hc
1(R

d,M) with equivalent norms.

Remark 1.7. In the above definition of atoms, we can replace the support of
atoms Q by any bounded multiple of Q.

2. Multiplier Theorems

We are going to develop some Fourier multiplier theorems in this section.
They can be viewed as a special case of Calderón–Zygmund theory and are
closely related to [7,20]. They will be used to investigate various square func-
tions that characterize the Triebel–Lizorkin spaces. Our presentation follows
closely the argument in Section 4.1 of [37].

Recall again that ϕ is a fixed function satisfying (0.1), ϕ0 is the inverse
Fourier transform of 1−∑k>0 ϕ(2−k·), and ϕk is the inverse Fourier transform
of ϕ(2−k·) when k > 0. Moreover, we denote by ϕ(k) the Fourier transform
of ϕk for every k ∈ N0 (N0 being the set of nonnegative integers).

2.1. Global Multipliers

Firstly, let us state the following homogeneous version of [37, Theorem 4.1].

Theorem 2.1. Let σ ∈ R with σ > d
2 . Assume that (φj)j∈Z and (ρj)j∈Z are

two sequences of functions on R
d\{0} such that

suppφjρj ⊂ {ξ: 2j−1 ≤ |ξ| ≤ 2j+1
}

, j ∈ Z

and

sup
j∈Z

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2 (Rd) < ∞.

Let 1 < p < ∞. Then for any f ∈ S ′(Rd;L1(M) + M), we have
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∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j∈Z

22jα|φ̌j ∗ ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� sup
j∈Z

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j∈Z

22jα|ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

,

where the constant depends on p, σ, d and ϕ.

Proof. Without loss of generality, we may take α = 0. It suffices to show that
for any integer K,
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥K

|φ̌j ∗ ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� sup
j∈Z

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥K

|ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

,

(2.1)

with the relevant constant independent of K ∈ Z. To this end, we set

ψj−K = φj(2K ·), ηj−K = ρj(2K ·), and ĝ = f̂(2K ·).
By easy computation, we have

suppψjηj ⊂ {ξ: 2j−1 ≤ |ξ| ≤ 2j+1
}

, ∀ j ≥ 0,

and

φ̌j ∗ ρ̌j ∗ f = 2dK ψ̌j−K ∗ ρ̌j−K ∗ g(2K ·).
This ensures

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥K

|φ̌j ∗ ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

= 2
(p−1)dK

p

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|ψ̌j ∗ η̌j ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

. (2.2)

Similarly,
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥K

|ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

= 2
(p−1)dK

p

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|η̌j ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

. (2.3)

Moreover, since ψj(2j+k·) = φj+K(2j+k+K ·), we have

sup
j≥0

−2≤k≤2

‖ψj(2j+k·)ϕ‖Hσ
2

= sup
j≥K

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2

≤ sup
j∈Z

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2
.

(2.4)

Now applying [37, Theorem 4.1] to ψj , ρj and g defined above, we obtain
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|ψ̌j ∗ η̌j ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� sup
j≥0

−2≤k≤2

‖ψj(2j+k·)ϕ‖Hσ
2 (

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|η̌j ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.
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Putting (2.2), (2.3) and (2.4) into this inequality, we then get (2.1), which
yields Theorem 2.1 by approximation. �

Theorem 2.1 is developed to deal with the multiplier problem of square
functions, and also the multiplier problem of the Hardy spaces Hc

p(R
d,M)

by virtue of their characterizations (see [35]). In order to deal with the cor-
responding problems on the inhomogeneous versions of square functions or
Hardy spaces, we need the following global version of Theorem 2.1. The main
difference is that in the inhomogeneous case, we need a careful analysis of
the convolution kernel near the origin.

Theorem 2.2. Let 1 < p < ∞, α ∈ R and σ > d
2 . Assume that (φj)j≥0 and

(ρj)j≥0 are two sequences of functions on R
d such that

supp (φjρj) ⊂ {ξ ∈ R
d: 2j−1 ≤ |ξ| ≤ 2j+1

}
, j ∈ N,

supp (φ0ρ0) ⊂ {ξ ∈ R
d: |ξ| ≤ 2

}
,

and

sup
j≥1

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2 (Rd) < ∞ and ‖φ0(ϕ(0) + ϕ(1))‖Hσ

2 (Rd) < ∞.

(2.5)
Then for any L1(M) + M-valued distribution f ,

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|φ̌j ∗ ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� max

⎧
⎪⎨

⎪⎩
sup
j≥1

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2
, ‖φ0(ϕ(0) + ϕ(1))‖Hσ

2

⎫
⎪⎬

⎪⎭

·

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

,

where the constant depends only on p, σ, d and ϕ.

Proof. This theorem follows easily from its homogeneous version, i.e., Theo-
rem 2.1. Indeed, we can divide

∥
∥(
∑

j≥0 22jα|φ̌j ∗ ρ̌j ∗ f |2) 1
2
∥
∥

p
into two parts

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|φ̌j ∗ ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

22jα|φ̌j ∗ ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

+ ‖φ̌0 ∗ ρ̌0 ∗ f‖p

and treat them separately. Applying Theorem 2.1 to the sequences (φj)j∈Z,
(ρj)j∈Z with φj = 0 and ρj = 0 for j ≤ 0, we get the estimate of the first
term on the right hand side. The result is
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∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

22jα|φ̌j ∗ ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� sup
j≥1

−2≤k≤2

‖φj(2
j+k·)ϕ‖Hσ

2

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

|ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

The second term ‖φ̌0 ∗ ρ̌0 ∗ f‖p is also easy to handle. By the support as-
sumption on φ0ρ0, we have

φ̌0 ∗ ρ̌0 ∗ f = F−1
(
φ0(ϕ(0) + ϕ(1))

) ∗ ρ̌0 ∗ f.

Hence,
‖φ̌0 ∗ ρ̌0 ∗ f‖p ≤ ‖F−1

(
φ0(ϕ(0) + ϕ(1))

)‖1‖ρ̌0 ∗ f‖p

� ‖φ0(ϕ(0) + ϕ(1))‖Hσ
2
‖ρ̌0 ∗ f‖p. �

2.2. Hilbert-Valued Multipliers

In fact, both theorems above deal with Fourier multipliers acting on Hilbert-
valued noncommutative Lp spaces (the Hilbert space being �2). In this subsec-
tion titled “Hilbert-valued multipliers”, our target is to extend Theorem 2.2 to
the general case where �2 is replaced with more complicated Hilbert spaces.
Assume that we have a sequence of Hilbert spaces Hj for every j ∈ N0,
and denote H = ⊕∞

j=0Hj . Then an element f ∈ Lp(N ;Hc) has the form
f = (fj)j≥0 with fj ∈ Lp(N ;Hc

j ) for every j. In this case, it still makes sense
to consider the action of the Calderón–Zygmund operator k = (φ̌j)j≥0.

Since it will be frequently used in the following, we introduce an ele-
mentary inequality (see [37, Lemma 4.2]):

‖fg‖Hσ
2 (Rd;	2) ≤ ‖f‖Hσ

2 (Rd;	2)

∫

Rd

(1 + |s|2)σ|F−1(g)(s)|ds, (2.6)

where σ > d
2 , and the functions f : Rd → �2 and g: Rd → C satisfy

f ∈ Hσ
2 (Rd; �2) and

∫

Rd

(1 + |s|2)σ|F−1(g)(s)|ds < ∞.

Here Hσ
2 (Rd; �2) is the �2-valued Potential Sobolev space of order σ. Note

also that �2 could be an �2-space on an arbitrary index set, depending on the
problems in consideration.

The following lemma is an analogue of Lemma 4.3 in [37]. The main
difference is that in order to get a Calderón–Zygmund operator which is
bounded on local Hardy or bmo spaces, we need to consider the Littlewood–
Paley decomposition covering the origin.

Lemma 2.3. Let φ = (φj)j≥0 be a sequence of continuous functions on R
d,

viewed as a function from R
d to �2. For σ > d

2 , we assume that

‖φ‖2,σ
def= max

{

sup
k≥1

‖φ(2k·)ϕ‖Hσ
2 (Rd;	2), ‖φϕ(0)‖Hσ

2 (Rd;	2)

}

< ∞. (2.7)

Let k = (kj)j≥0 with kj = F−1(φj). Then k is a Calderón–Zygmund kernel
with values in �2, more precisely,
(1) ‖k̂‖L∞(Rd;	2) � ‖φ‖2,σ;
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(2)
∫

|s|≥ 1
2

‖k(s)‖	2ds � ‖φ‖2,σ;
(3) supt∈Rd

∫
|s|>2|t| ‖k(s − t) − k(s)‖	2ds � ‖φ‖2,σ.

The relevant constants depend only on ϕ, σ and d.

Proof. For any ξ ∈ R
d and k ≥ 1, by the Cauchy–Schwarz inequality, we

have

‖φ(2kξ)ϕ(ξ)‖	2 =
∥
∥
∥
∥

∫

F−1(φ(2k·)ϕ)(s)e−2πis·ξds

∥
∥
∥
∥

	2

≤ ‖φ(2k·)ϕ‖Hσ
2 (Rd;	2)

(∫

(1 + |s|2)−σds

) 1
2

� ‖φ‖2,σ.

In other words, we have ‖φϕ(2−k·)‖L∞(Rd;	2) � ‖φ‖2,σ. Likewise, we also have
‖φϕ(0)‖L∞(Rd;	2) � ‖φ‖2,σ. Thus, by (0.2) and (0.3), we easily deduce that
‖k̂‖L∞(Rd;	2) � ‖φ‖2,σ.

To show the third property of k, we decompose φ into

φ =
∑

k≥0

φϕ(k).

The convergence of the above series can be proved by a limit procedure of its
partial sums, which is quite formal. By (0.2) and (0.3), we write

φϕ(k) = φ(ϕ(k−1) + ϕ(k) + ϕ(k+1))ϕ(k) def= φ(k)ϕ
(k), k ≥ 0.

Here we make the convention that ϕ(k) = 0 if k < 0. Then for s ∈ R
d,

F−1(φϕ(k))(s) = F−1(φ(k)) ∗ F−1(ϕ(k))(s)

= 2kdF−1(φ(k)(2k·)) ∗ F−1(ϕ)(2ks), k ≥ 0.

By (2.6), we have
(∫

Rd

(1 + |2ks|2)σ‖F−1(φϕ(k))(s)‖2
	2ds

) 1
2

� 2
kd
2 ‖φ(k)(2k·)‖Hσ

2 (Rd;	2).

Notice that if k ≥ 1, we have ϕ(k)(2k·) = ϕ. Thus, if k ≥ 2,

‖φ(k)(2k·)‖Hσ
2 (Rd;	2) ≤

1∑

j=−1

‖φ(2k·)ϕ(k−j)(2k·)‖Hσ
2 (Rd;	2)

�
1∑

j=−1

‖φ(2k−j ·)ϕ(k−j)(2k−j ·)‖Hσ
2 (Rd;	2)

=
1∑

j=−1

‖φ(2k−j ·)ϕ‖Hσ
2 (Rd;	2) ≤ 3‖φ‖2,σ.

For k = 0, 1, we treat φ(k)(2k·) in the same way:

‖φ(1)(2·)‖Hσ
2 (Rd;	2) � ‖φϕ(0)‖Hσ

2 (Rd;	2) +
∑

i=1,2

‖φ(2i·)ϕ‖Hσ
2 (Rd;	2) ≤ 3‖φ‖2,σ;

‖φ(0)‖Hσ
2 (Rd;	2) � ‖φϕ(0)‖Hσ

2 (Rd;	2) + ‖φ(2·)ϕ‖Hσ
2 (Rd;	2) ≤ 3‖φ‖2,σ.
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In summary, we obtain
(∫

Rd

(1 + |2ks|2)σ‖F−1(φϕ(k))(s)‖2
	2ds

) 1
2

� 2
kd
2 ‖φ‖2,σ.

Thus, by the Cauchy–Schwarz inequality, for any t ∈ R
d\{0} and k ≥ 0, we

have
∫

|s|>|t|
‖F−1(φϕ(k))(s)‖	2ds � 2

kd
2 ‖φ‖2,σ

(∫

|s|>|t|
(1 + |2ks|2)−σds

) 1
2

� (2k|t|) d
2 −σ‖φ‖2,σ.

(2.8)
Consequently,
∫

|s|>2|t|
‖F−1(φϕ(k))(s) − F−1(φϕ(k))(s − t)‖	2ds � (2k|t|) d

2 −σ‖φ‖2,σ.

We notice that d
2 −σ < 0, so the estimate above is good only when 2k|t| ≥ 1.

Otherwise, we need another estimate

F−1(φϕ(k))(s) − F−1(φϕ(k))(s − t)

= F−1(φ(k)ϕ
(k)(1 − et))(s)

= 2kdF−1(φ(k)(2k·)) ∗ [F−1(ϕ) − F−1(ϕ)(· − 2kt)
]
(2ks),

where et(ξ) = e2πiξ·t. Thus,
(∫

Rd

(1 + |2ks|2)σ‖F−1(φϕ(k))(s) − F−1(φϕ(k))(s − t)‖2
	2ds

) 1
2

� 2
kd
2 ‖φ‖2,σ2k|t|

∫

(1 + |s|2)σ|F−1(ϕ)(s − θ2kt)|ds

� 2
kd
2 ‖φ‖2,σ2k|t|

(∫ ∣
∣
∣Jσ
[
ϕ(s)e2πis·θ2kt

]∣
∣
∣
2

ds

) 1
2

� 2
kd
2 ‖φ‖2,σ2k|t|,

where θ ∈ [0, 1]. Then as before, for 2k|t| < 1, we have
∫

|s|>2|t|
‖F−1(φϕ(k))(s) − F−1(φϕ(k))(s − t)‖	2ds � 2k|t|‖φ‖2,σ.

Combining the previous estimates, we obtain

sup
t∈Rd

∫

|s|>2|t|
‖k(s − t) − k(s)‖	2ds

≤ sup
t∈Rd

∑

k≥0

∫

|s|>2|t|
‖F−1(φϕ(k))(s) − F−1(φϕ(k))(s − t)‖	2ds

� ‖φ‖2,σ sup
t∈Rd

∑

k≥0

min(2k|t|, (2k|t|) d
2 −σ) � ‖φ‖2,σ.
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Finally, the second estimate of k can be deduced from (2.8) by letting
|t| = 1

2 :
∫

|s|≥ 1
2

‖k(s)‖	2ds ≤
∑

k≥0

∫

|s|≥ 1
2

‖F−1(φϕ(k))(s)‖	2ds

≤
∑

k≥0

(2k−1)
d
2 −σ‖φ‖2,σ � ‖φ‖2,σ. �

We keep the notation H = ⊕∞
j=0Hj . By the above lemma, we can apply

the (local) Calderón–Zygmund theory introduced in Sect. 1, to deduce the
following lemma:

Lemma 2.4. Let 1 < p < ∞ and φ = (φj)j≥0 be a sequence of continuous
functions on R

d satisfying (2.7). For any f = (fj)j≥0 ∈ Lp(N ;Hc), we have

‖(φ̌j ∗ fj)j≥0‖Lp(N ;Hc) � ‖φ‖2,σ‖(fj)j≥0‖Lp(N ;Hc),

where the relevant constant depends only on ϕ, σ, p and d.

Proof. Consider k as a diagonal matrix with diagonal entries (kj)j≥0 deter-
mined by k̂j = φj and f = (fj)j≥0 as a column matrix. The associated
Calderón–Zygmund operator is defined on Lp(B(H)⊗N ) by

k(f)(s) =
∫

Rd

k(s − t)f(t)dt.

Now it suffices to show that k is a bounded operator on Lp(N ;Hc).
We claim that k is bounded from L∞(N ;Hc) into bmo(Rd, B(H)⊗M).

Put K(s) = k(s)⊗1M ∈ B(H)⊗M, for any s ∈ R
d. Then we have ‖k(s)‖	2 ≥

‖k(s)‖	∞ = ‖K(s)‖B(H)⊗M and ‖f‖L∞(N ;Hc) = ‖f‖B(H)⊗N . Thus, if we
regard L∞(N ;Hc) as a subspace of B(H)⊗N , the claim is equivalent to
saying that K is bounded from L∞(N ;Hc) into bmo(Rd, B(H)⊗M).

We first show K is bounded from L∞(N ;Hc) into bmoc(Rd, B(H)⊗M).
Let Q be a cube in R

d centered at c. We decompose f as f = g + h with
g = f1Q̃, where Q̃ = 2Q is the cube which has the same center as Q and
twice the side length of Q. Set

a =
∫

Rd\Q̃

K(c − t)f(t)dt.

Then

K(f)(s) − a = K(g)(s) +
∫

[K(s − t) − K(c − t)]h(t)dt.

Thus, for Q such that |Q| < 1, we have

1
|Q|
∫

Q

|K(f) − a|2ds ≤ 2(A + B),
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where
A =

1
|Q|
∫

Q

|K(g)|2ds,

B =
1

|Q|
∫

Q

∣
∣
∣
∣

∫

[K(s − t) − K(c − t)]h(t)dt

∣
∣
∣
∣

2

ds.

The term A is easy to estimate. By Lemma 2.3 and the Plancherel formula
(0.7),

|Q|A ≤
∫

|K̂(ξ)ĝ(ξ)|2dξ =
∫

ĝ(ξ)∗K̂(ξ)∗K̂(ξ)ĝ(ξ)dξ

≤
∫

‖K̂(ξ)‖2
B(H)⊗M|ĝ(ξ)|2dξ

�
∫

‖k̂(ξ)‖2
	2 |ĝ(ξ)|2dξ � ‖φ‖2

2,σ

∫

Q̃

|f(s)|2ds

≤ |Q̃| ‖φ‖2
2,σ‖f‖2

B(H)⊗N = |Q̃| ‖φ‖2
2,σ‖f‖2

L∞(N ;Hc),

whence

‖A‖B(H)⊗M � ‖φ‖2
2,σ‖f‖2

L∞(N ;Hc).

To estimate B, writing h = (hj)j≥0, by Lemma 2.3, we get
∣
∣
∣
∣

∫

[K(s − t) − K(c − t)]h(t)dt

∣
∣
∣
∣

2

�
∫

Rd\Q̃

‖K(s − t) − K(c − t)‖B(H)⊗Mdt

·
∫

Rd\Q̃

‖K(s − t) − K(c − t)‖B(H)⊗M|h(t)|2dt

�
∫

Rd\Q̃

‖k(s − t) − k(c − t)‖	2dt

∫

Rd\Q̃

‖k(s − t) − k(c − t)‖	2 |h(t)|2dt

� ‖φ‖2
2,σ‖f‖2

B(H)⊗N � ‖φ‖2
2,σ‖f‖2

L∞(N ;Hc).

Hence,

‖B‖B(H)⊗M ≤ 1
|Q|
∫

Q

∥
∥
∥
∥

∫

[K(s − t) − K(c − t)]h(t)dt

∥
∥
∥
∥

2

B(H)⊗M
ds

� ‖φ‖2
2,σ‖f‖2

L∞(N ;Hc).

Combining the previous inequalities, we deduce that, for any |Q| < 1
∥
∥
∥
∥
∥

(
1

|Q|
∫

Q

|K(f) − a|2ds

) 1
2

∥
∥
∥
∥
∥

B(H)⊗M
� ‖φ‖2,σ‖f‖L∞(N ;Hc).

Now we consider the case when |Q| = 1. We have
1

|Q|
∫

Q

|K(f)|2ds ≤ 2
1

|Q|
∫

Q

|K(g)|2ds + 2
1

|Q|
∫

Q

|K(h)|2ds.

The first term on the right hand side of the above inequality is equal to
the term A, so it remains to estimate the second term. When t ∈ R

d\Q̃,
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s ∈ Q and |Q| = 1, we have |s − t| ≥ 1
2 . Then by (2) in Lemma 2.3 and the

Cauchy–Schwarz inequality (0.6), we easily deduce that

|K(h)(s)|2 =
∣
∣
∣
∣

∫

|K(s − t)h(t)dt

∣
∣
∣
∣

2

≤
∫

Rd\Q̃

‖K(s − t)‖B(H)⊗Mdt

∫

Rd\Q̃

‖K(s − t)‖B(H)⊗M|h(t)|2dt

� ‖f‖2
L∞(N ;Hc)

(∫

Rd\Q̃

‖k(s − t)‖	2dt

)2

� ‖φ‖2
2,σ‖f‖2

L∞(N ;Hc).

Thus, we have, for any |Q| = 1,
∥
∥
∥
∥
∥

(
1

|Q|
∫

Q

|K(f)|2ds

) 1
2

∥
∥
∥
∥
∥

B(H)⊗M
� ‖φ‖2,σ‖f‖L∞(N ;Hc).

Therefore, K is bounded from L∞(N ;Hc) into bmoc(Rd, B(H)⊗M).
Next we show K is bounded from L∞(N ;Hc) into bmor(Rd, B(H)⊗M).

We still use the same decomposition f = g + h, then we obtain
1

|Q|
∫

Q

|[K(f) − a]∗|2ds ≤ 2(A′ + B′),

where
A′ =

1
|Q|
∫

Q

|K(g)∗|2ds,

B′ =
1

|Q|
∫

Q

∣
∣
∣
∣

∫

[(K(s − t) − K(c − t))h(t)]∗dt

∣
∣
∣
∣

2

ds.

The estimate of B′ can be reduced to that of B. Indeed,

‖B′‖B(H)⊗M ≤ 1
|Q|
∫

Q

∥
∥
∥
∥

∫

[(K(s − t) − K(c − t))h(t)]∗dt

∥
∥
∥
∥

2

B(H)⊗M
ds

=
1

|Q|
∫

Q

∥
∥
∥
∥

∫

[K(s − t) − K(c − t)]h(t)dt

∥
∥
∥
∥

2

B(H)⊗M
ds

� ‖φ‖2
2,σ‖f‖2

L∞(N ;Hc).

However, for A′, we need a different argument. A′ can be viewed as a bounded
operator on H ⊗ L2(M). So

‖A′‖B(	2)⊗M = sup
b

{
1

|Q|
∫

Q

‖k(g)(s) b‖2
H⊗L2(M)ds

}

,

where the supremum runs over all b in the unit ball of H ⊗ L2(M). By the
Plancherel formula (0.7), we have

∫

Q

‖k(g)(s) b‖2
H⊗L2(M)ds =

∫

Q

〈k(g)(s) b, k(g)(s) b〉H⊗L2(M)ds

≤
∫

〈k̂(ξ)ĝ(ξ) b, k̂(ξ)ĝ(ξ) b〉H⊗L2(M)dξ.
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Let diag(fj)j be the diagonal matrix in B(H)⊗N with entries in B(Hj)⊗N .
By the Cauchy–Schwarz inequality, the Plancherel formula (0.7) and
Lemma 2.3, we continue the estimate above as

∫

〈k̂(ξ)ĝ(ξ) b, k̂(ξ)ĝ(ξ) b〉H⊗L2(M)dξ

≤ sup
ξ

‖k̂(ξ)‖2
	2

∫

〈ĝ(ξ) b, ĝ(ξ) b〉H⊗L2(M)dξ

� ‖φ‖2
2,σ

∫

Q̃

‖ diag(fj)j(s) b‖2
H⊗L2(M)ds

� |Q|‖φ‖2
2,σ‖ diag(fj)j‖2

B(H)⊗N ‖b‖2
H⊗L2(M)

≤ |Q|‖φ‖2
2,σ‖f‖2

L∞(N ;Hc),

whence,

‖A′‖B(	2)⊗M � ‖φ‖2
2,σ‖f‖2

L∞(N ;Hc).

Following the estimate of 1
|Q|
∫

Q
|K(f)(s)|2ds, we get, when |Q| = 1,

1
|Q|
∫

Q

|K(f)∗|2ds ≤ 2A′ + 2
1

|Q|
∫

Q

|K(h)∗|2ds

≤ 2A′ + 2
1

|Q|
∫

Q

‖K(h)∗‖2
B(H)⊗Mds

= 2A′ + 2
1

|Q|
∫

Q

‖K(h)‖2
B(H)⊗Mds

� ‖φ‖2
2,σ‖f‖2

L∞(N ;Hc).

Therefore, K is bounded from L∞(N ;Hc) into bmor(Rd, B(H)⊗M).

In summary, we have proved that k is bounded from L∞(N ;Hc) into
bmo(Rd, B(H)⊗M). It is also clear that k is bounded from L2(N ;Hc) into
L2(B(H)⊗N ), then by the interpolation in Theorem 1.2, k is bounded from
Lp(N ;Hc) into Lp(B(H)⊗N ) for any 2 ≤ p < ∞. The case 1 < p < 2 is
obtained by duality. �

Note that when all Hj degenerate to one dimensional Hilbert space,
then H = �2, the above lemma gives a sufficient condition for (φj)j≥0 being
a bounded Fourier multiplier on Lp(N ; �c

2). So we can also use Lemmas 2.3
and 2.4 to prove Theorem 2.2 by an argument similar to the proof of [37,
Theorem 4.1]; details are left to the reader. But here our target is to extend
Theorem 2.2 to a more general setting.
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Theorem 2.5. Let p, α, σ, (φj)j≥0 and (ρj)j≥0 be the same as in Theorem 2.2.
Then, for any f ∈ S ′(Rd;L1(M) + M),

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

2j(2α+d)

∫

B(0,2−j)

|φ̌j ∗ ρ̌j ∗ f(· + t)|2dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� max

⎧
⎪⎨

⎪⎩
sup
j≥1

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2
, ‖φ0(ϕ(0) + ϕ(1))‖Hσ

2

⎫
⎪⎬

⎪⎭

·

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

2j(2α+d)

∫

B(0,2−j)

|ρ̌j ∗ f(· + t)|2dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

,

where the constant depends only on p, σ, d and ϕ.

Proof. Set Hj = L2

(
B(0, 2−j), 2jddt

)
and H = ⊕∞

j=0Hj . So we have
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

2j(2α+d)

∫

B(0,2−j)

|φ̌j ∗ ρ̌j ∗ f(· + t)|2dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

=
∥
∥(2jαφ̌j ∗ ρ̌j ∗ f(· + ·))j

∥
∥

Lp(N ;Hc)
.

Let
ζj = φj(ϕ(j−1) + ϕ(j) + ϕ(j+1)), j ≥ 2,

ζ1 = φ1(ϕ + ϕ(1) + ϕ(2)),

ζ0 = φ0(ϕ(0) + ϕ) and ζj = 0 if j < 0.

By the support assumption on φjρj , we have that φjρj = ζjρj . So for any
f ∈ S ′(Rd;L1(M) + M),

φ̌j ∗ ρ̌j ∗ f = ζ̌j ∗ ρ̌j ∗ f, j ∈ N0.

Now we show that ζ = (ζj)j≥0 satisfies (2.7) with ζ instead of φ. Indeed, by
the support assumption of ϕ, the sequence ζ(2k·)ϕ =

(
ζj(2k·)ϕ)

j≥0
has at

most five nonzero terms of indices j with k − 2 ≤ j ≤ k + 2. Thus for any
k ∈ N0,

‖ζ(2k·)ϕ‖Hσ
2 (Rd;	2) ≤

k+2∑

j=k−2

‖ζj(2k·)ϕ‖Hσ
2
.

Moreover, by (2.6), we have

‖ζj(2k·)ϕ‖Hσ
2

� ‖φj(2k·)ϕ‖Hσ
2
, k − 2 ≤ j ≤ k + 2.

Therefore, the condition (2.5) yields

sup
k≥1

‖ζ(2k·)ϕ‖Hσ
2 (Rd;	2) � sup

j≥1
−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2

+ ‖φ0(ϕ(0) + ϕ(1))‖Hσ
2

< ∞,
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where the relevant constant depends only on σ, ϕ and d. In a similar way, we
have

‖ζϕ(0)‖Hσ
2 (Rd;	2) ≤

∑

0≤j≤2

‖ζjϕ
(0)‖Hσ

2

� sup
j≥1

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2

+ ‖φ0(ϕ(0) + ϕ(1))‖Hσ
2

< ∞.

Now applying Lemma 2.4 to fj = 2jαρ̌j ∗ f(· + ·), and ζj instead of φj , we
conclude the theorem. �

The above theorem will be useful when we consider the conic square
function characterizations of local Hardy spaces and inhomogeneous Triebel–
Lizorkin spaces in Sect. 4.

2.3. Multipliers on hc
p

Note that both Theorems 2.2 and 2.5 do not deal with the case p = 1. So we
include the corresponding Fourier multiplier results for hc

p with 1 ≤ p ≤ 2 in
the following. When the Hilbert space H degenerates to �2, we have

Lemma 2.6. Let 1 ≤ p ≤ 2 and φ = (φj)j≥0 be a sequence of continuous
functions on R

d satisfying (2.7). For f ∈ hc
p(R

d,M),
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|φ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� ‖φ‖2,σ‖f‖hc
p
.

The relevant constant depends only on ϕ, σ and d.

Proof. Now we view k = (kj)j≥0 = (φ̌j)j≥0 as a column matrix and the
associated Calderón–Zygmund operator k is defined on Lp(N ):

k(f)(s) =
∫

Rd

k(s − t)f(t)dt, ∀s ∈ R
d.

Thus k maps function with values in Lp(M) to sequence of functions. Then we
have to show that k is bounded from hc

p(R
d,M) to Lp(N ; �c

2) for 1 ≤ p ≤ 2.
The case p = 2 is trivial, so by interpolation, it suffices to consider the case
p = 1. To prove that k is bounded from hc

1(R
d,M) to L1(N ; �c

2), passing
to the dual spaces, it is equal to proving that the adjoint of k is bounded
from L∞(N ; �c

2) to bmoc(Rd,M). We keep all the notation in the proof of
Lemma 2.4. For any finite sequence f = (fj)j≥0 (viewed as a column matrix),
the adjoint of k is defined by

k∗(f)(s) =
∫

Rd

∑

j

k̃j(s − t)fj(t)dt,

where k̃(s) = k(−s)∗ (so it is a row matrix). Put K̃(s) = k̃(s) ⊗ 1M. In
this case, ‖K̃(f)‖bmoc(Rd,M) = ‖K̃(f)‖bmoc(Rd,B(	2)⊗M). Then we apply the
estimates used in Lemma 2.4 by replacing K with K̃. It follows that k∗

is bounded from L∞(N ; �c
2) into bmoc(Rd,M), so the desired assertion is

proved. �
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The next theorem is a complement of Theorem 2.2 for the case p = 1,
which relies heavily on the characterization of hc

1(R
d,M) given in

Theorem 1.5.

Theorem 2.7. We keep the assumption in Theorem 2.2. Assume additionally
that for any j ≥ 1, ρj = ρ(2−j ·) for some Schwartz function ρ with supp ρ ⊂
{ξ: 2−1 ≤ |ξ| ≤ 2} and ρ(ξ) > 0 for any 2−1 < |ξ| < 2, and that supp ρ0 ⊂
{ξ: |ξ| ≤ 2} and ρ0(ξ) > 0 for any |ξ| < 2. Then for f ∈ S ′(Rd;L1(M)+M),
we have

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|φ̌j ∗ ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

� max

⎧
⎪⎨

⎪⎩
sup
j≥1

−2≤k≤2

∥
∥φj(2j+k·)ϕ∥∥

Hσ
2

,
∥
∥
∥φ0(ϕ(0) + ϕ(1))

∥
∥
∥

Hσ
2

⎫
⎪⎬

⎪⎭

·

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

Proof. By the assumptions of ρ and ρ0, we can select a Schwartz function ρ̃
with the same properties as ρ and a Schwartz function ρ̃0 satisfying the same
conditions as ρ0, such that

∞∑

j=1

ρ(2−jξ)ρ̃(2−jξ) + ρ0(ξ)ρ̃0(ξ) = 1, ∀ξ ∈ R
d.

Let Ψj = (I−αρ)(2−j ·), Ψ̃j = (Iαρ)(2−j ·) for j ≥ 1 and Ψ0 = J−αρ0, Ψ̃0 =
Jαρ0. We have

∞∑

j=1

Ψj(ξ)Ψ̃j(ξ) + Ψ0(ξ)Ψ̃0(ξ) = 1, ∀ ξ ∈ R
d.

Applying Theorem 1.5 (the equivalence ‖gc,D
Φ (f)‖p + ‖φ ∗ f‖p ≈ ‖f‖hc

p
) to

g = Jαf with the text functions in the above identity, we get

‖g‖hc
1

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|Ψ̌j ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

Now let us show the following equivalence:
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|Ψ̌j ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.
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It is easy to see that Ψ̌0 ∗ g = ρ̌0 ∗ f and 2jαρ̌j ∗ f = Ψ̌j ∗ Iαf , so it suffices
to prove

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

|Ψ̌j ∗ Jαf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

|Ψ̌j ∗ Iαf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

. (2.9)

First, let us consider the case α ≥ 0. By [29, Lemma 3.2.2], there exists a
finite measure μα on R

d such that

|ξ|α = μ̂α(ξ)(1 + |ξ|2)α
2 .

Thus, we have

Ψ̌j ∗ Iαf = μα ∗ Ψ̌j ∗ Jαf, ∀ j ≥ 1.

This implies that
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

|Ψ̌j ∗ Iαf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

�

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

|Ψ̌j ∗ Jαf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

Then, we move to the case α < 0. Also by [29, Lemma 3.2.2], there exist two
finite measures να and λα on R

d such that

(1 + |ξ|2)− α
2 = ν̂α(ξ) + |ξ|−αλ̂α(ξ).

Let (ϕ̇k)k∈Z be the homogeneous resolution of the unit defined in (0.4). It
follows that

(1 + |ξ|2)− α
2

|ξ|−α

∑

k≥0

ϕ̇k(ξ) =
ν̂α(ξ)
|ξ|−α

∑

k≥0

ϕ̇k(ξ) + λ̂α(ξ)
∑

k≥0

ϕ̇k(ξ).

Thus, by the support assumption of ρ̂, we have

Ψ̌j ∗ Iαf = ωα ∗ Ψ̌j ∗ Jαf,

with

ωα = να ∗
∑

k≥0

F−1(Iαϕ̇k) + λα ∗ F−1

⎛

⎝
∑

k≥0

ϕ̇k

⎞

⎠ .

Both F−1(
∑

k≥0 ϕ̇k) and
∑

k≥0 F−1(Iαϕ̇k) are finite measures. Since
∑

k≥0ϕ̇k

= 1 −∑k<0 ϕ̇k, and
∑

k<0 ϕ̇k is a Schwartz function, then F−1(
∑

k≥0 ϕ̇k) =
δ0 − F−1(

∑
k<0 ϕ̇k) is a finite measure, where δ0 denotes the Dirac measure

at the origin. Moreover, it is known in [37, Lemma 3.4] that ‖F−1(Iαϕ̇k)‖1 �
2kα. Then we have

∥
∥
∥
∥
∥
∥
F−1

⎛

⎝
∑

k≥0

Iαϕ̇k

⎞

⎠

∥
∥
∥
∥
∥
∥

1

�
∑

k≥0

2kα < ∞.
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Therefore, ωα is a finite measure on R
d. Thus,

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

|Ψ̌j ∗ Iαf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

�

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

|Ψ̌j ∗ Jαf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

Similarly, for α ∈ R, we can prove that
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

|Ψ̌j ∗ Jαf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

�

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

|Ψ̌j ∗ Iαf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

In summary, we have proved (2.9), which yields that

‖g‖hc
1

= ‖Jαf‖hc
1

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

Now define a new sequence ζ = (ζj)j≥0 by setting ζj = 2jαI−αφjρj for
j ≥ 1 and ζ0 = J−αφ0ρ0. Then

ζ̌j ∗ g = 2jαφ̌j ∗ ρ̌j ∗ I−αg and ζ̌0 ∗ g = φ̌0 ∗ ρ̌0 ∗ f.

Repeating the argument for (2.9) with ζ = (ζj)j≥0 instead of Ψ = (Ψj)j≥0,
we get

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|φ̌j ∗ ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|ζ̌j ∗ Iαf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|ζ̌j ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

Then, we apply Lemma 2.6 to g with this new ζ instead of φ to get
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|ζ̌j ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

� ‖ζ‖2,σ‖g‖hc
1

≈ ‖ζ‖2,σ

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ρ̌j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

It suffices to estimate the term ‖ζ‖2,σ. By the definition of ζ = (ζj)j≥, we
have

sup
j≥1

−2≤k≤2

‖ζj(2j+k·)ϕ‖Hσ
2

� sup
j≥1

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2
,

‖ζ0(ϕ(0) + ϕ(1))‖Hσ
2

� ‖φ0(ϕ(0) + ϕ(1))‖Hσ
2
.

So we can use the same argument at the end of the proof of Theorem 2.5, to get

‖ζ‖2,σ � max

⎧
⎪⎨

⎪⎩
sup
j≥1

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2
, ‖φ0

(
ϕ(0) + ϕ(1)

)
‖Hσ

2

⎫
⎪⎬

⎪⎭
.

Combining the above inequalities, we get the desired assertion. �
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When �2 is replaced by H = ⊕∞
j=0Hj with Hj = L2

(
B(0, 2−j), 2jddt

)
,

the counterpart of Lemma 2.6 is the following:

Lemma 2.8. Let φ = (φj)j≥0 be a sequence of continuous functions on R
d

satisfying (2.7). Then for 1 ≤ p ≤ 2 and f ∈ hc
p(R

d,M),
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

2dj

∫

B(0,2−j)

|φ̌j ∗ f(· + t)|2dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� ‖φ‖2,σ‖f‖hc
p
.

The relevant constant depends only on ϕ, σ and d.

Proof. The proof of this lemma is similar to that of Lemma 2.6; let us point
out the necessary change. Consider the H-valued Calderón–Zygmund opera-
tor k defined on Lp(N ) given by

k(f)j(· + t) = φ̌j ∗ f(· + t).

The lemma is then reduced to showing that k is bounded from hc
p(R

d,M)
to Lp(N ;Hc) for 1 ≤ p < 2. Since each Hj is a normalized Hilbert space,
such that the constant function 1 has Hilbert norm one, the kernel estimates
of our k here are the same as the ones in Lemma 2.4. So we can repeat the
proof in Lemmas 2.4 and 2.6. The desired assertion follows. �

Combining the above lemma with Theorem 1.5 (‖sc,D
Φ (f)‖Lp(N ) + ‖φ ∗

f‖p ≈ ‖f‖hc
p
), we can deduce the analogue of Theorem 2.7 in the setting

H = ⊕∞
j=0Hj with Hj = L2

(
B(0, 2−j), 2jddt

)
. Its proof is similar to that of

Theorem 2.7, and is left to the reader.

Theorem 2.9. Keep the assumption in Theorem 2.5 and assume additionally
that for any j ≥ 1, ρj = ρ(2−j ·) for some Schwartz function with supp ρ ⊂
{ξ: 2−1 ≤ |ξ| ≤ 2} and ρ(ξ) > 0 for any 2−1 < |ξ| < 2, and that supp ρ0 ⊂
{ξ: |ξ| ≤ 2} and ρ0(ξ) > 0 for any |ξ| < 2. Then for any f ∈ S ′(Rd;L1(M)+
M),

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

2j(2α+d)

∫

B(0,2−j)

|φ̌j ∗ ρ̌j ∗ f(· + t)|2dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

� max

⎧
⎪⎨

⎪⎩
sup
j≥1

−2≤k≤2

‖φj(2j+k·)ϕ‖Hσ
2
, ‖φ0(ϕ(0) + ϕ(1))‖Hσ

2

⎫
⎪⎬

⎪⎭

·

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

2j(2α+d)

∫

B(0,2−j)

|ρ̌j ∗ f(· + t)|2dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

This theorem fills the gap of p = 1 left by Theorem 2.5. Both of them
will be useful when we consider the conic square functions of inhomogeneous
Triebel–Lizorkin spaces in Sect. 4.
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3. Operator-Valued Triebel–Lizorkin Spaces

In this section, we give the definition of operator-valued Triebel–Lizorkin
spaces, and then prove some basic properties of them. Among the others,
we connect operator-valued Triebel–Lizorkin spaces with local Hardy spaces
introduced in [33] via Bessel potentials. By this connection, we are able to
deduce the duality and the complex interpolation of Triebel–Lizorkin spaces.
We also show that for α > 0 the Fα,c

1 (Rd,M)-norm is the sum of two homo-
geneous norms.

3.1. Definitions and Basic Properties

Recall that ϕ is a Schwartz function satisfying (0.1). For each j ∈ N, ϕj is the
function whose Fourier transform is equal to ϕ(2−j ·), and ϕ0 is the function
whose Fourier transform is equal to 1−∑j≥1 ϕ(2−j ·). Moreover, the Fourier
transform of ϕj is denoted by ϕ(j) for j ∈ N0.

Definition 3.1. Let 1 ≤ p < ∞ and α ∈ R.
(1) The column Triebel–Lizorkin space Fα,c

p (Rd,M) is defined by

Fα,c
p (Rd,M) =

{
f ∈ S ′(Rd;L1(M) + M): ‖f‖F α,c

p
< ∞} ,

where

‖f‖F α,c
p

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

(2) The row space Fα,r
p (Rd,M) consists of all f such that f∗ ∈ Fα,c

p (Rd,M),
equipped with the norm ‖f‖F α,r

p
= ‖f∗‖F α,c

p
.

(3) The mixture space Fα
p (Rd,M) is defined to be

Fα
p (Rd,M) =

{
Fα,c

p (Rd,M) + Fα,r
p (Rd,M) if 1 ≤ p ≤ 2

Fα,c
p (Rd,M) ∩ Fα,r

p (Rd,M) if 2 < p < ∞,

equipped with

‖f‖F α
p

=

{
inf{‖g‖F α,c

p
+ ‖h‖F α,r

p
: f = g + h} if 1 ≤ p ≤ 2

max{‖f‖F α,c
p

, ‖f‖F α,r
p

} if 2 < p < ∞.

In the sequel, we focus on the study of the column Triebel–Lizorkin
spaces. All results obtained in the rest of this paper also admit the row
versions. The following proposition shows that Fα,c

p -norm is independent of
the choice of the function ϕ satisfying (0.1).

Proposition 3.2. Let ψ be another Schwartz function satisfying the same con-
dition (0.1) as ϕ. For each j ∈ N, let ψj be the function whose Fourier trans-
form is equal to ψ(2−j ·), and let ψ0 be the function whose Fourier transform
is equal to 1 −∑j≥1 ψ(2−j ·). Then

‖f‖F α,c
p

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ψj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.



65 Page 28 of 65 R. Xia, X. Xiong IEOT

Proof. For any f ∈ S ′(Rd;L1(M)+M), by the support assumption of ψ and
ϕ, we have, for any j ≥ 0,

ψj ∗ f =
1∑

k=−1

ψj ∗ ϕk+j ∗ f,

with the convention ϕ−1 = 0. Thus by Theorems 2.2 and 2.7,
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ψj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

≤
1∑

k=−1

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ψj ∗ ϕk+j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� max
{

sup
−2≤k≤2

‖ψ(2k·)ϕ‖Hσ
2
, ‖ψ0(ϕ(0) + ϕ(1))‖Hσ

2

}

×

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

�

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

Changing the role of ϕ and ψ, we get the reverse inequality. �

Proposition 3.3. Let 1 ≤ p < ∞ and α ∈ R. Then

(1) Fα,c
p (Rd,M) is a Banach space.

(2) Fα,c
p (Rd,M) ⊂ F β,c

p (Rd,M) if α > β.
(3) F 0,c

p (Rd,M) = hc
p(R

d,M) with equivalent norms.

Proof. (1) Let {fi} be a Cauchy sequence in Fα,c
p (Rd,M). Then, the se-

quence {ai} with ai = (ϕ0 ∗ fi, . . . , 2jαϕj ∗ fi, . . .) is also a Cauchy se-
quence in Lp(N ; �c

2(N0)). Thus, ai converges to a function f = (f0, . . . ,
f j , . . .) in Lp(N ; �c

2(N0)). Formally we take

f =
∑

j≥0

f j . (3.1)

Since for each j ∈ N, supp f̂ j ⊂ {ξ: 2j−1 ≤ |ξ| ≤ 2j+1} and supp f̂0 ⊂
{ξ: |ξ| ≤ 2}, the series (3.1) converges in S ′(Rd;Lp(M)). Let ϕj = 0 if j < 0.
By the support assumption of ϕ, when i → ∞, we get

ϕj ∗ fi =
j+1∑

k=j−1

ϕk ∗ ϕj ∗ fi →
j+1∑

k=j−1

ϕj ∗ fk = ϕj ∗ f,
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which implies that f j = 2jαϕj ∗ f , for any j ≥ 0. Thus, f ∈ Fα,c
p (Rd,M)

and {fi} converges to f in Fα,c
p (Rd,M).

(2) is obvious.
(3) It is easy to see that any ϕ satisfying (0.1) also satisfies (1.6). Then by

the discrete characterization of hc
p(R

d,M) given in Theorem 1.5, we get
the desired assertion. �

Given a ∈ R+, we define Di,a(ξ) = (2πiξi)a for ξ ∈ R
d, and Da

i to
be the Fourier multiplier with symbol Di,a(ξ) on Triebel–Lizorkin spaces
Fα,c

p (Rd,M). We set Da = D1,a1 . . . Dd,ad
and Da = Da1

1 . . . Dad

d for any
a = (a1, . . . , ad) ∈ R

d
+. Note that if a is a positive integer, Da

i = ∂a
i , so there

does not exist any conflict of notation. The operator Da can be viewed as
a fractional extension of partial derivatives. The following is the so-called
lifting (or reduction) property of Triebel–Lizorkin spaces.

Proposition 3.4. Let 1 ≤ p < ∞ and α ∈ R.

(1) For any β ∈ R, Jβ is an isomorphism between Fα,c
p (Rd,M) and Fα−β,c

p

(Rd,M). In particular, Jα is an isomorphism between Fα,c
p (Rd,M) and

hc
p(R

d,M).
(2) Let β > 0. Then f ∈ Fα,c

p (Rd,M) if and only if ϕ0 ∗ f ∈ Lp(N ) and
Dβ

i f ∈ Fα−β,c
p (Rd,M) for all i = 1, . . . , d. Moreover, in this case,

‖f‖F α,c
p

≈ ‖ϕ0 ∗ f‖p +
d∑

i=1

‖Dβ
i f‖F α−β,c

p
.

Proof. (1) Let f ∈ Fα,c
p (Rd,M). Applying Theorems 2.2 and 2.7 with ρ = ϕ,

we obtain

‖Jβf‖F α−β,c
p

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22j(α−β)|ϕj ∗ Jβf |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� max

⎧
⎪⎨

⎪⎩
sup
j≥1

−2≤k≤2

2−jβ‖Jβ(2j+k·)ϕ‖Hσ
2
, ‖Jβ(ϕ(0) + ϕ(1))‖Hσ

2

⎫
⎪⎬

⎪⎭

·

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

(3.2)
It is easy to check that all partial derivatives of 2−jβJβ(2j+k·)ϕ of order less
than or equal to [σ] + 1 are bounded uniformly in j ≥ 1 and −2 ≤ k ≤ 2,
and that Jβ(ϕ(0) + ϕ(1)) ∈ Hσ

2 (Rd). Thus ‖Jβf‖F α−β,c
p

� ‖f‖F α,c
p

. So Jβ is
continuous from Fα,c

p (Rd,M) to Fα−β,c
p (Rd,M), and its inverse J−β is also

continuous from Fα−β,c
p (Rd,M) to Fα,c

p (Rd,M).
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(2) If we take σ ∈ (d
2 , β + d

2 ), then we have ‖Di,βϕ0‖Hσ
2

< ∞ and
‖Di,βϕ‖Hσ

2
< ∞. Replacing Jβ by Dβ

i in (3.2), we obtain that, for any
i = 1, . . . , d,

‖Dβ
i f‖F α−β,c

p
� ‖f‖F α,c

p
,

which implies immediately that

‖ϕ0 ∗ f‖p +
d∑

i=1

‖Dβ
i f‖F α−β,c

p
� ‖f‖F α,c

p
.

To show the reverse inequality, we choose a nonnegative infinitely differen-
tiable function χ on R such that χ(s) = 0 if |s| < 1

2
√

d
and χ(s) = 1 if

|s| ≥ 1√
d
. For i = 1, . . . , d, we define χi on R

d as follows:

χi(ξ) =
1

χ(ξ1)|ξ1|β + · · · + χ(ξd)|ξd|β
χ(ξi)|ξi|β
(2πiξi)β

,

whenever the first denominator is positive, say, when |ξ| ≥ 1. Then for any
j ≥ 1, χiϕj is a well-defined infinitely differentiable function on R

d\{ξ: ξi =
0} and

ϕ(j) =
d∑

i=1

χiDi,βϕ(j).

Then by Theorem 2.1, we have

‖f‖F α,c
p

≤ ‖ϕ0 ∗ f‖p +
d∑

i=1

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

22jα|χ̌i ∗ ϕj ∗ Dβ
i f |2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

�
d∑

i=1

sup
j≥1

−2≤k≤2

2jβ‖χi(2j+k·)ϕ‖Hσ
2

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

22j(α−β)|ϕj ∗ Dβ
i f |2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

+ ‖ϕ0 ∗ f‖p.

However,

2jβ‖χi(2j+k·)ϕ‖Hσ
2 (Rd) = ‖φi(2k·)ϕ‖Hσ

2 (Rd),

where

φi(ξ) =
1

χ(2jξ1)|ξ1|β + · · · + χ(2jξd)|ξd|β
χ(2jξi)|ξi|β

(2πiξi)β
.

Since all partial derivatives of φiϕ(2k·), of order less than a fixed integer,
are bounded uniformly in j, k and i, and the norm of φiϕ(2k·) in Hσ

2 (Rd) is
bounded from above by a constant independent of j, k and i. Then we deduce
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‖f‖F α,c
p

� ‖ϕ0 ∗ f‖p +
d∑

i=1

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

22j(α−β)|ϕj ∗ Dβ
i f |2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

≤ ‖ϕ0 ∗ f‖p +
d∑

i=1

‖Dβ
i f‖F α−β,c

p
. �

Definition 3.5. For α ∈ R, we define Fα,c
∞ (Rd,M) as the space of all f ∈

S ′(Rd;M) such that

‖ϕ0 ∗ f‖N + sup
|Q|<1

∥
∥
∥
∥
∥
∥

1
|Q|
∫

Q

∑

j≥− log2(l(Q))

22jα|ϕj ∗ f(s)|2ds

∥
∥
∥
∥
∥
∥

1
2

M

< ∞.

We endow the space Fα,c
∞ (Rd,M) with the norm:

‖f‖F α,c∞ = ‖ϕ0 ∗ f‖N + sup
|Q|<1

∥
∥
∥
∥
∥
∥

1
|Q|
∫

Q

∑

j≥− log2(l(Q))

22jα|ϕj ∗ f(s)|2ds

∥
∥
∥
∥
∥
∥

1
2

M

.

Proposition 3.6. Let 1 ≤ p < ∞, q be its conjugate index and α ∈ R. Then
the dual space of Fα,c

p (Rd,M) coincides isomorphically with F−α,c
q (Rd,M).

Proof. First, we show that Jα is an isomorphism between Fα,c
∞ (Rd,M) and

bmoc(Rd,M). To this end, we use the discrete Carleson characterization of
bmoc(Rd,M) in [33, Corollary 5.13]:

‖f‖bmoc ≈ ‖φ ∗ f‖N + sup
|Q|<1

∥
∥
∥
∥
∥
∥

1
|Q|
∫

Q

∑

j≥− log2(l(Q))

|Φj ∗ f(s)|2ds

∥
∥
∥
∥
∥
∥

1
2

M

, (3.3)

where Φ ∈ S(Rd) and φ ∈ Hσ
2 (Rd) satisfying (1.7). By taking φ = ϕ0 and

Φ = J−αϕ, we apply (3.3) to Jαf :

‖Jαf‖bmoc

≈ ‖ϕ0 ∗ f‖N + sup
|Q|<1

∥
∥
∥
∥
∥
∥

1
|Q|
∫

Q

∑

j≥− log2(l(Q))

|(J−αϕ)j ∗ (Jαf)(s)|2ds

∥
∥
∥
∥
∥
∥

1
2

M

= ‖ϕ0 ∗ f‖N + sup
|Q|<1

∥
∥
∥
∥
∥
∥

1
|Q|
∫

Q

∑

j≥− log2(l(Q))

22jα|ϕj ∗ f(s)|2ds

∥
∥
∥
∥
∥
∥

1
2

M
= ‖f‖F α,c∞ .

Since Jα is also an isomorphism between Fα,c
p (Rd,M) and hc

p(R
d,M) for any

1 < p < ∞, by the hc
1-bmoc duality and the hc

p-h
c
q duality in Theorem 1.1,

we see that Fα,c
p (Rd,M)∗ = F−α,c

q (Rd,M) with equivalent norms. �
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3.2. Interpolation

Now we indicate a complex interpolation result of Triebel–Lizorkin spaces.
It is deduced from the interpolation of local Hardy and bmo spaces in Theo-
rem 1.2, and the boundedness of complex order Bessel potentials on them.

Proposition 3.7. Let α0, α1 ∈ R and 1 < p < ∞. Then

(
Fα0,c

∞ (Rd,M), Fα1,c
1 (Rd,M)

)
1
p

= Fα,c
p (Rd,M), α =

(

1 − 1
p

)

α0 +
α1

p
.

Proof. Let f ∈ Fα,c
p (Rd,M). By Proposition 3.4, we have Jαf ∈ hc

p(R
d,M).

Therefore, according to Theorem 1.2 (1), there exists a continuous function
on the strip {z ∈ C: 0 ≤ Rez ≤ 1}, analytic in the interior, such that Jαf =
F ( 1

p ) ∈ hc
p(R

d,M) and

sup
t∈R

‖F (it)‖bmoc < ∞ and sup
t∈R

‖F (1 + it)‖hc
1

< ∞.

We consider Bessel potentials of complex order. For z ∈ C, define Jz(ξ) =
(1 + |ξ|2) z

2 , and Jz to be the associated Fourier multiplier. We set

F̃ (z) = e(z− 1
p )2J−(1−z)α0−zα1F (z).

For any t ∈ R,

‖F̃ (it)‖F
α0,c
∞ ≈ e

−t2+ 1
p2 ‖J it(α0−α1)F (it)‖bmoc

and

‖F̃ (1 + it)‖F
α1,c
1

≈ e−t2+(1− 1
p )2‖J it(α0−α1)F (1 + it)‖hc

1
.

We claim that J it is a bounded Fourier multiplier on hc
1(R

d,M), so by duality,
it is bounded on bmoc(Rd,M) too. Therefore, we will have

sup
t∈R

‖F̃ (it)‖F
α0,c
∞ < ∞ and sup

t∈R

‖F̃ (1 + it)‖F
α1,c
1

< ∞.

This will imply that f = F̃ ( 1
p ) ∈ (Fα0,c

∞ (Rd,M), Fα1,c
1 (Rd,M)

)
1
p

. Hence,

Fα,c
p (Rd,M) ⊂ (Fα0,c

∞ (Rd,M), Fα1,c
1 (Rd,M)

)
1
p

.

By duality, we will get the reverse inclusion for the Calderón’s second inter-
polation (·, ·) 1

p . Then by the inclusion (·, ·) 1
p

⊂ (·, ·) 1
p between two kinds of

complex interpolations (see [2, Theorem 4.3.1]), we will obtain the desired
assertion.

Now, we prove the claim. First, we easily check that Jit is d-times dif-
ferentiable on R

d\{0}, and for any m ∈ N
d
0 and |m|1 ≤ d, we have

sup
{|ξ||m|1 |DmJit(ξ)|: ξ �= 0

}
� (1 + |t|)d.

Next, we check that (with Jit(2kξ) = (1 + |2kξ|2) it
2 ),

max
−2≤k≤2

‖Jit(2k·)ϕ‖Hd
2

� (1 + |t|)d and ‖Jit(ϕ(0) + ϕ(1))‖Hd
2

� (1 + |t|)d.



IEOT Operator-Valued Triebel–Lizorkin Spaces Page 33 of 65 65

By (3) in Proposition 3.3, if we take (ϕj)j≥0 to be the Littlewood–Paley
decomposition on R

d satisfying (0.2) and (0.3), we have

‖J itf‖hc
1

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|J̌it ∗ ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

and

‖f‖hc
1

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

Then, we apply Theorem 2.7 with ρj = ϕj , φj(2j ·) = J̌it, and α = 0, σ = d,

‖J itf‖hc
1

� max
{

max
−2≤k≤2

‖Jit(2k·)ϕ‖Hd
2
, ‖Jit(ϕ(0) + ϕ(1))‖Hd

2

}

‖f‖hc
1

� (1 + |t|)d‖f‖hc
1
. �

Remark 3.8. The real interpolation of the couple
(
Fα,c

∞ (Rd,M), Fα,c
1 (Rd,M)

)

follows easily from that of Hardy spaces (see Theorem 1.2) and Proposi-
tion 3.4. But if α1 �= α2, the real interpolation of

(
Fα1,c

∞ (Rd,M), Fα2,c
1

(Rd,M)
)

will give Besov type spaces. We will not consider this problem
in this paper, and refer the reader to [37] for similar results on homogeneous
Triebel–Lizorkin (and Besov) spaces.

3.3. Triebel–Lizorkin Spaces with α > 0
The following result shows that when α > 0, the Fα,c

1 (Rd,M)-norm can be
rewritten as the sum of two homogeneous norms. Recall that for a fixed
Schwartz function ϕ in (0.1), the functions ϕ̇j ’s determined by ̂̇ϕj(ξ) =
ϕ(2−jξ), j ∈ Z give a homogeneous Littlewood–Paley decomposition on R

d

satisfying (0.4).

Proposition 3.9. Let α > 0. If 1 ≤ p < ∞, then

‖f‖F α,c
p

≈ ‖ϕ0 ∗ f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
+∞∑

j=−∞
22jα|ϕ̇j ∗ f |2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

, ∀ f ∈ Fα,c
p (Rd,M).

If 1 ≤ p ≤ 2,

‖f‖F α,c
p

≈ ‖f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
+∞∑

j=−∞
22jα|ϕ̇j ∗ f |2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

, ∀ f ∈ Fα,c
p (Rd,M).

Proof. Firstly, we prove the first equivalence. By the definition of the Fα,c
p -

norm, it is obvious that

‖f‖F α,c
p

� ‖ϕ0 ∗ f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
+∞∑

j=−∞
22jα|ϕ̇j ∗ f |2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.
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To prove the reverse inequality, it suffices to show:
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
0∑

j=−∞
22jα|ϕ̇j ∗ f |2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� ‖ϕ0 ∗ f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
+∞∑

j=1

22jα|ϕ̇j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

By the support assumption of ϕ, we have ϕ(0) = 1 for any |ξ| ≤ 1. Thus,
when j < 0,

ϕ(2j ·) = ϕ(2j ·)ϕ(0).

Then
ϕ̇j ∗ f = ϕ̇j ∗ ϕ0 ∗ f. (3.4)

By the triangle inequality, (3.4) and Xiong et al. [36, Lemma 1.7], we obtain
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
0∑

j=−∞
2jα|ϕ̇j ∗ f |2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

�
−1∑

j=−∞
2jα‖ϕ̇j ∗ ϕ0 ∗ f‖p + ‖ϕ̇0 ∗ f‖p

�
−1∑

j=−∞
2jα‖ϕ̇j‖1‖ϕ0 ∗ f‖p +

∥
∥ϕ(ϕ0 + ϕ1 + ϕ2) ∗ f

∥
∥

p

�
0∑

j=−∞
2jα‖ϕ0 ∗ f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
+∞∑

j=1

22jα|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� ‖ϕ0 ∗ f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
+∞∑

j=1

22jα|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

Therefore, we have proved that ‖ϕ0 ∗ f‖p +
∥
∥(
∑+∞

j=1 22jα|ϕj ∗ f |2) 1
2
∥
∥

p
gives

rise to an equivalent norm on Fα,c
p (Rd,M) when α > 0.

Now let us deal with the second equivalence. For any 1 ≤ p ≤ 2 and α >
0, we have Fα,c

p (Rd,M) ⊂ hc
p(R

d,M) ⊂ Lp(N ). Therefore ‖f‖p � ‖f‖F α,c
p

.
Combined with the equivalence obtained above, we see that

‖f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
+∞∑

j=−∞
22jα|ϕ̇j ∗ f |2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� ‖f‖F α,c
p

.

The reverse inequality can be easily deduced by the fact that ‖ϕ0 ∗ f‖p ≤
‖ϕ0‖1‖f‖p. �

We also have a continuous counterpart of Proposition 3.9. For any ε ≥ 0,
we define ϕ̇ε = F−1(ϕ(ε·)).
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Corollary 3.10. Let 1 ≤ p ≤ 2 and α > 0. Then, for any f ∈ Fα,c
p (Rd,M),

‖f‖F α,c
p

≈ ‖f‖p +

∥
∥
∥
∥
∥

(∫ ∞

0

ε−2α|ϕ̇ε ∗ f |2 dε

ε

) 1
2

∥
∥
∥
∥
∥

p

.

4. Characterizations

In this section we give two kinds of characterizations of the Triebel–Lizorkin
spaces defined previously: one is done by directly replacing the function ϕ
in Definition 3.1 by more general convolution kernels; the other is described
by Lusin square functions. Since the local Hardy spaces are included in the
family of inhomogeneous Triebel–Lizorkin spaces, these two characterizations
can be seen as extensions as well as improvements of those in [33] for local
Hardy spaces, listed in Theorems 1.4 and 1.5. The multiplier theorems in
Sect. 2 will play a crucial role in this section.

4.1. General Characterizations

We have seen in Sect. 3.1 that the definition of Triebel–Lizorkin spaces is
independent of the choice of ϕ satisfying (0.1). In this section, we will show
that this kernel is not even necessarily a Schwartz function.

Let σ > d
2 and Φ(0), Φ be two complex-valued infinitely differentiable

functions defined respectively on R
d and R

d\{0}, which satisfy
{

|Φ(0)(ξ)| > 0 if |ξ| ≤ 2,

supk∈N0
2−kα0‖Φ(0)(2k·)ϕ‖Hσ

2
< ∞,

(4.1)

and ⎧
⎪⎨

⎪⎩

|Φ(ξ)| > 0 if 1
2 ≤ |ξ| ≤ 2,

supk∈N0
2−kα0‖Φ(2k·)ϕ‖Hσ

2
< ∞,

∫
Rd(1 + |s|2)σ|F−1(Φϕ(0)I−α1)(s)|ds < ∞.

(4.2)

Recall that here I−α1(ξ) is the symbol of the Riesz potential I−α1 .
Let Φ(j) = Φ(2−j ·) for j ≥ 1, and Φj be the function whose Fourier

transform is equal to Φ(j) for any j ∈ N0.

Theorem 4.1. Let 1 ≤ p < ∞ and α ∈ R. Assume that α0 < α < α1,
α1 ≥ 0 and Φ(0), Φ satisfy conditions (4.1) and (4.2) respectively. Then for
any f ∈ S ′(Rd;L1(M) + M), we have

‖f‖F α,c
p

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|Φj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

, (4.3)

where the relevant constants are independent of f .

Proof. We follow the pattern of the proof of [37, Theorem 4.17]. Denote the
norm on the right hand side of (4.3) by ‖f‖F α,c

p,Φ
.
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Step 1 Let ϕk = 0 (and so is ϕ(k)) if k < 0. Given a positive integer K,
for any j ∈ N0, we write

Φ(j) =
K−1∑

k=−∞
Φ(j)ϕ(j+k) +

∞∑

k=K

Φ(j)ϕ(j+k).

Then
Φj ∗ f =

∑

k≤K−1

Φj ∗ ϕj+k ∗ f +
∑

k≥K

Φj ∗ ϕj+k ∗ f. (4.4)

Temporarily we take for granted that the second series is convergent not only
in S ′(Rd;L1(M) + M) but also in Fα,c

p (Rd,M), which is to be settled up in
the last step. Then we obtain

‖f‖F α,c
p,Φ

≤ I + II + III,

where

I =
∑

k≤K−1

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

22jα|Φj ∗ ϕj+k ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

,

II =
∑

k≤K−1

‖Φ0 ∗ ϕk ∗ f‖p,

III =
∑

k≥K

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|Φj ∗ ϕj+k ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

The term II is easy to deal with. By (0.5) and (4.1), we obtain
K−1∑

k=0

‖Φ0 ∗ ϕk ∗ f‖p =
K−1∑

k=0

‖Φ0 ∗ (ϕk−1 + ϕk + ϕk+1) ∗ ϕk ∗ f‖p

�
K−1∑

k=0

‖ϕk ∗ f‖p‖Φ0 ∗ (ϕk−1 + ϕk + ϕk+1)‖1

� sup
k∈N0

2−kα0‖Φ(0)(2k·)ϕ‖Hσ
2

K−1∑

k=0

2k(α0−α)‖2kαϕk ∗ f‖p

� CK‖f‖F α,c
p

.

Let us treat the terms I and III separately. By the support assumption
of ϕ(k) and the property that it is equal to 1 when |ξ| ≤ 1, for k ≤ K − 1, we
have

Φ(ξ)ϕ(k)(ξ) =
Φ(ξ)ϕ(0)(2−Kξ)

|ξ|α1
|ξ|α1ϕ(k)(ξ)

= 2kα1η(ξ)ρ(k)(ξ),
(4.5)

where η, ρ are defined by

η(ξ) =
Φ(ξ)ϕ(0)(2−Kξ)

|ξ|α1
and ρ(ξ) = |ξ|α1ϕ(ξ).



IEOT Operator-Valued Triebel–Lizorkin Spaces Page 37 of 65 65

Let η(j) = η(2−j ·), j ∈ Z. For j ≥ 1, define ηj = F−1(η(j)). Then for any
j ≥ 1, we have

Φj ∗ ϕj+k ∗ f = 2kα1ηj ∗ ρj+k ∗ f.

Now we are ready to estimate I. Applying Theorems 2.2 and 2.7 twice, we get

I =
∑

k≤K−1

2k(α1−α)

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

22(j+k)α|ηj ∗ ρj+k ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

=
∑

k≤K−1

2k(α1−α)

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥k+1

22jα|ηj−k ∗ ρj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

�
∑

k≤K−1

2k(α1−α) max
{

‖η(−k)(ϕ(0) + ϕ(1))‖Hσ
2
, max
−2≤	≤2

‖η(−k−	)ϕ‖Hσ
2

}

·

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ρj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

�
∑

k≤K−1

2k(α1−α) max
{

‖η(−k)(ϕ(0) + ϕ(1))‖Hσ
2
, max
−2≤	≤2

‖η(−k−	)ϕ‖Hσ
2

}

· max
{

‖Iα1(ϕ
(0) + ϕ(1))‖Hσ

2
, ‖Iα1ϕ‖Hσ

2

}
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

=
∑

k≤K−1

2k(α1−α) max
{

‖η(−k)(ϕ(0) + ϕ(1))‖Hσ
2
, max
−2≤	≤2

‖η(−k−	)ϕ‖Hσ
2

}

· max
{

‖Iα1(ϕ
(0) + ϕ(1))‖Hσ

2
, ‖Iα1ϕ‖Hσ

2

}
‖f‖F α,c

p
.

(4.6)
Let us deal with all the factors in the last term of the above inequal-

ity. Firstly, when α1 = 0, it is obvious that Iα1ϕ ∈ Hσ
2 (Rd) and Iα1(ϕ

(0) +
ϕ(1)) ∈ Hσ

2 (Rd). Secondly, we treat the case α1 > 0. First, it is easy to
see that ‖Iα1ϕ‖Hσ

2
< ∞. Next, we deal with the term Iα1(ϕ

(0) + ϕ(1)),
which can be reduced to Iα1ϕ

(0) by dilation. Let N be a positive integer
such that α1 > 1

N . If the dimension d is odd, we consider the function
F (z) = e(z− N+2

2N+2 )2 |ξ|α1− 1
2 − 1

N +(1+ 1
N )zϕ(0), which is continuous on the strip

{z ∈ C: 0 ≤ Re(z) ≤ 1}, and analytic in the interior. A direct computation
shows that supt∈R

‖F (it)‖
H

d
2 − 1

2
2

< ∞ and supt∈R
‖F (1 + it)‖

H
d
2 + 1

2
2

< ∞.

Then for θ =
1
N + 1

2
1
N +1

> 1
2 , we have

F (θ) = Iα1ϕ
(0) ∈ Hσ

2 (Rd) =
(
H

d
2 − 1

2
2 (Rd),H

d
2 + 1

2
2 (Rd)

)
θ
,
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for some σ > d
2 . If d is even, set F (z) = e(z− 1

2N )2 |ξ|Nα1z+
α1
2 ϕ(0). We can also

check that supt∈R
‖F (it)‖

H
d
2
2

< ∞, and that supt∈R
‖F (1 + it)‖

H
d
2 +1
2

< ∞.

Then for θ = 1
2N , we have

F (θ) = Iα1ϕ
(0) ∈ H

d
2 + 1

2N
2 (Rd) =

(
H

d
2
2 (Rd),H

d
2 +1
2 (Rd)

)

θ
.

Thus, for any α1 > 0, we can always choose a positive σ > d
2 such that

Iα1ϕ
(0) ∈Hσ

2 (Rd). Finally, we have to estimate ‖η(−k)ϕ‖Hσ
2

and ‖η(−k)ϕ(0)‖Hσ
2

uniformly in k, which will yield the convergence of the last sum in (4.6) by
dilation again. To this end, note that by (4.2), η̌ is integrable on R

d, then we
use the Cauchy–Schwarz inequality in the following way:

∣
∣
∣F−1(η(−k)ϕ)(s)

∣
∣
∣
2

=
∣
∣
∣
∣

∫

Rd

η̌(t)F−1(ϕ)(s − 2kt)dt

∣
∣
∣
∣

2

≤ ‖η̌‖1

∫

Rd

|η̌(t)| · |F−1(ϕ)(s − 2kt)|2dt.

For k ≤ K − 1, we have

‖η(−k)ϕ‖2
Hσ

2
=
∫

Rd

(1 + |s|2)σ|F−1(η(−k)ϕ)(s)|2ds

≤ ‖η̌‖1

∫

Rd

(1 + |s|2)σ

∫

Rd

|η̌(t)| · |F−1(ϕ)(s − 2kt)|2dtds

� ‖η̌‖1

∫

Rd

(1 + |2kt|2)σ|η̌(t)

×
∣
∣
∣
∣

∫

Rd

(1 + |s − 2kt|2)σ|F−1(ϕ)(s − 2kt)
∣
∣
∣
∣

2

dsdt

≤ 2Kσ‖η̌‖1

∫

Rd

(1 + |t|2)σ|η̌(t)|dt

∫

Rd

(1 + |s|2)σ|F−1(ϕ)(s)|2ds

≤ Cϕ0,σ,K

(∫

Rd

(1 + |t|2)σ|η̌(t)|dt

)2

.

(4.7)
The other term ‖η(−k)ϕ(0)‖Hσ

2
is dealt with in the same way.

Going back to the estimate of I, by the previous inequalities, we obtain

I � CΦ,ϕ(0),α1,α,K

∫

Rd

(1 + |t|2)σ|η̌(t)|dt ‖f‖F α,c
p

. (4.8)

In order to return from η back to ϕ0, we write

η = I−α1Φ
[
ϕ(0)(2−K ·) − ϕ(0)

]
+ I−α1Φϕ(0).

Since I−α1Φ(ϕ(0)(2−K ·) − ϕ(0)) is an infinitely differentiable function with
compact support, we have
∫

Rd

(1 + |t|2)σ|F−1(I−α1Φ(ϕ(0)(2−K ·) − ϕ(0)))(t)|dt = C ′
Φ,ϕ(0),α1,α,K < ∞.
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Then (4.2) implies that
∫

Rd

(1 + |t|2)σ|η̌(t)|dt � C ′
Φ,ϕ(0),α1,α,K

+
∫

Rd

(1 + |s|2)σ|F−1(I−α1Φϕ(0))(s)|ds < ∞.

Therefore,

I � ‖f‖F α,c
p

.

Step 2 Now it remains to estimate the third term III. Let H be a
Schwartz function such that

suppH ⊂
{

ξ ∈ R
d:

1
4

≤ |ξ| ≤ 4
}

and H(ξ) = 1 if
1
2

≤ |ξ| ≤ 2. (4.9)

Let H(k) = H(2−k·). For k ≥ K, we have

Φ(ξ)ϕ(k)(ξ) =
Φ(ξ)
|ξ|α0

H(k)(ξ)ϕ(k)(ξ)|ξ|α0 , (4.10)

and

Φ(0)(ξ)ϕ(k)(ξ) =
Φ(0)(ξ)
|ξ|α0

H(k)(ξ)ϕ(k)(ξ)|ξ|α0 . (4.11)

For any j ∈ N0, we keep using the notation Φj = F−1(Φ(j)) and Hj =
F−1(H(j)). Thus, we have

Φj ∗ ϕj+k ∗ f = 2kα0(I−α0Φ)j ∗ Hj+k ∗ (Iα0ϕ)j+k ∗ f.

Therefore,

III =
∑

k≥K

2k(α0−α)

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22(j+k)α|(I−α0Φ)j ∗ Hj+k ∗ (Iα0ϕ)j+k ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

=
∑

k≥K

2k(α0−α)

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥k

22jα|(I−α0Φ)j−k ∗ Hj ∗ (Iα0ϕ)j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

Since both H and ϕ vanish near the origin, by Theorems 2.2 and 2.7, we
obtain

∑

k≥K

2k(α0−α)

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥k

22jα|(I−α0Φ)j−k ∗ Hj ∗ (Iα0ϕ)j ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� sup
k∈N0

max
{

2−kα0 max
−2≤	≤2

‖I−α0Φ(2k+	·)H(2	·)ϕ‖Hσ
2
,

2−kα0‖I−α0Φ
(0)(2k·)H(ϕ(0) + ϕ(1))‖Hσ

2

}
·
∑

k≥K

2k(α0−α)‖f‖F α,c
p

.
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Then by (2.6), (4.1) and (4.2), we have, for any −2 ≤ � ≤ 2,

2−kα0‖I−α0Φ(2k+	·)H(2	·)ϕ‖Hσ
2

≤ 2−kα0‖Φ(2k+	·)ϕ‖Hσ
2

∫

Rd

(1 + |t|2)σ|F−1(I−α0H(2	·))(t)|dt

� 2−kα0‖Φ(2k+	·)ϕ‖Hσ
2

≤ sup
k∈N0

2−kα0‖Φ(2k·)ϕ‖Hσ
2

< ∞,

(4.12)

and

2−kα0‖I−α0Φ
(0)(2k·)H(ϕ(0) + ϕ(1))‖Hσ

2

= 2−kα0‖I−α0Φ
(0)(2k·)H

1∑

	′=−2

ϕ(2−	′ ·)‖Hσ
2

� 2−kα0

1∑

	′=−2

‖I−α0Φ
(0)(2k+	′ ·)H(2	′ ·)ϕ‖Hσ

2

≤ 2−kα0

1∑

	′=−2

‖Φ(0)(2k+	′ ·)ϕ‖Hσ
2

∫

Rd

(1 + |t|2)σ|F−1(I−α0H(2	·))(t)|dt

� sup
k∈N0

2−kα0‖Φ(0)(2k·)ϕ‖Hσ
2

< ∞.

(4.13)
Then we get

III ≤ CΦ,α0,α,K‖f‖F α,c
p

.

Combining this estimate with those of I and II, we finally get

‖f‖F α,c
p,Φ

� ‖f‖F α,c
p

.

Step 3 We turn to the reverse inequality. Note that ϕ(0)(ξ) = 1 when
|ξ| ≤ 1, then by (4.1) and (4.2), for any j ∈ N0, we write

ϕ(j)(ξ) = ϕ(j)(ξ)ϕ(0)(2−j−Mξ) =
ϕ(j)(ξ)
Φ(j)(ξ)

ϕ(0)(2−j−Mξ)Φ(j)(ξ), (4.14)

where M is a positive integer to be chosen later. By Theorems 2.2 and 2.7,

‖f‖F
α,c
p

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|ϕj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� max

{

max
−2≤�≤2

‖Φ−1(2�·)ϕ(2�·)ϕ‖Hσ
2
, ‖(Φ(0))−1ϕ(0)(ϕ(0) + ϕ(1))‖Hσ

2

}

·

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|(ϕ0)j+M ∗ Φj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

�

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|(ϕ0)j+M ∗ Φj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

,
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where (ϕ0)j+M is the Fourier inverse transform of ϕ(0)(2−j−M ·). Let h =
1 − ϕ(0). Write ϕ(0)(2−j−Mξ)Φ(j)(ξ) = Φ(j)(ξ) − h(j+M)(ξ)Φ(j)(ξ). Then, we
have

‖f‖F α,c
p

� ‖f‖F α,c
p,Φ

+

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|hj+M ∗ Φj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

,

where the relevant constant depends only on p, σ, d and ϕ(0). Applying the
arguments in the estimate of III, (4.10) with h(M)Φ in place of Φ and (4.11)
with h(M)Φ(0) in place of Φ(0), we deduce

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα|hj+M ∗ Φj ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

≤ C1 sup
k≥M

2−kα0 max
{

max
−2≤	≤2

‖h(2k−M+	·)Φ(2k+	·)ϕ‖Hσ
2
,

‖h(2k−M ·)Φ(0)(2k·)ϕ‖Hσ
2

}
·
∑

k≥M

2k(α0−α)‖f‖F α,c
p

= sup
k≥M

2−kα0 max
{

max
−2≤	≤2

‖h(2k−M+	·)Φ(2k+	·)ϕ‖Hσ
2
,

‖h(2k−M ·)Φ(0)(2k·)ϕ‖Hσ
2

}
· C1

2M(α0−α)

1 − 2α0−α
‖f‖F α,c

p
,

where C1 is a constant which depends only on p, σ, d, H and α0. Now we
replace h in the above Sobolev norm by 1 − ϕ(0):

‖h(2k−M+	·)Φ(2k+	·)ϕ‖Hσ
2
≤‖Φ(2k+	·)ϕ‖Hσ

2
+‖ϕ(0)(2k−M+	·)Φ(2k+	·)ϕ‖Hσ

2
.

The support assumptions of ϕ(0) and ϕ imply that if k ≥ M , ϕ(0)(2k−M+	·)
ϕ �= 0 if and only if k + � = M or k + � = M + 1. Then by (2.6), we have

‖ϕ(0)(2k−M+	·)Φ(2k+	·)ϕ‖Hσ
2

≤ C2‖Φ(2k+	·)ϕ‖Hσ
2
,

where C2 depends only on ϕ(0), σ and d. Thus,

‖h(2k−M+	·)Φ(2k+	·)ϕ‖Hσ
2

≤ (1 + C2)‖Φ(2k+	·)ϕ‖Hσ
2
.

Similarly, we have

‖h(2k−M ·)Φ(0)(2k·)ϕ‖Hσ
2

≤ (1 + C2)‖Φ(0)(2k·)ϕ‖Hσ
2
.

Putting all the estimates that we have obtained so far together, we get

‖f‖F α,c
p

≤ C3

(
C1(1 + C2)

2M(α0−α)

1 − 2α0−α

sup
k≥M

2−kα0 max
{

‖Φ(2k·)ϕ‖Hσ
2
, ‖Φ(0)(2k·)ϕ‖Hσ

2

}
‖f‖F α,c

p
+‖f‖F α,c

p,Φ

)
,
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where the three constants C1, C2, C3 are independent of M , so we could take
M large enough to make sure the multiple of ‖f‖F α,c

p
above is less than 1

2 ,
so that we have

‖f‖F α,c
p

� ‖f‖F α,c
p,Φ

.

Step 4 We now settle the convergence issue of the second series in (4.4).
For every j ≥ 0, Φj ∗ϕj+k ∗f is an L1(M)+M-valued tempered distribution
on R

d. We now show that the series converges in S ′(Rd;L1(M) + M). By
(4.12) and (4.13), for any L > K, we have

2jα
L∑

k=K

‖Φj ∗ ϕj+k ∗ f‖p

�
∑

k≥K

2k(α0−α) sup
k∈N0

max
{

2−kα0‖Φ(2k·)ϕ‖Hσ
2
, 2−kα0‖Φ(0)(2k·)ϕ‖Hσ

2

}

· ‖Iα0ϕ‖Hσ
2
‖f‖F α,c

p

� ‖f‖F α,c
p

.

Therefore, for any j ≥ 0,
∑

k≥K+1 Φj ∗ ϕj+k ∗ f converges in Lp(N ), so in
S ′(Rd;L1(M) + M) too. In the same way, we can show that the series also
converges in Fα,c

p (Rd,M), which completes the proof. �

The following is the continuous analogue of Theorem 4.1. We use similar
notation for continuous parameters: given ε > 0, Φε denotes the function
whose Fourier transform is Φ(ε) = Φ(ε·).
Theorem 4.2. Keep the assumption of the previous theorem. Then for f ∈
S ′(Rd;L1(M) + M), we have

‖f‖F α,c
p

≈ ‖Φ0 ∗ f‖p +

∥
∥
∥
∥
∥

(∫ 1

0

ε−2α|Φε ∗ f |2 dε

ε

) 1
2
∥
∥
∥
∥
∥

p

. (4.15)

Proof. This proof is very similar to the previous one. We keep the notation
there and only point out the necessary modifications. First, we need to dis-
cretize the integral on the right hand side of (4.15). There exist two constants
C1, C2 such that

C1

∞∑

j=0

22jα

∫ 2−j

2−j−1
|Φε ∗ f |2 dε

ε
≤
∫ 1

0

ε−2α|Φε ∗ f |2 dε

ε

≤ C2

∞∑

j=0

22jα

∫ 2−j

2−j−1
|Φε ∗ f |2 dε

ε
.

By approximation, we can assume that f is good enough so that each integral
over the interval (2−j−1, 2−j) can be approximated uniformly by discrete
sums. Instead of Φ(j)(ξ) = Φ(2−jξ), we have now Φ(ε)(ξ) = Φ(εξ) with
2−j−1 < ε ≤ 2−j . We transfer the split (4.5) into:

Φ(ε)(ξ)ϕj+k(ξ) =
Φ(2−j · 2jεξ)ϕ(0)(2−Kξ)

|2−jξ|α1
|2−jξ|α1ϕj+k(ξ).
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Thus,

Φε ∗ ϕj+k ∗ f = 2kα1ηj ∗ ρj+k ∗ f

with

η(ξ) =
Φ(2jεξ)ϕ(0)(2−Kξ)

|ξ|α1
and ρ(ξ) = |ξ|α1ϕ(ξ).

We proceed as in step 1 of the previous theorem, where we transfer (4.7) to
the present setting:

‖η(−k)ϕ‖Hσ
2

� Cϕ(0),σ,k

∫

Rd

(1 + |t|2)σ|η̌(t)|dt

= Cϕ(0),σ,k

∫

Rd

(1 + |t|2)σ
∣
∣F−1

(
I−α1Φ(δj ·)ϕ(0)(2−K ·))(t)∣∣dt

≤ Cϕ(0),σ,kδα1
j

∫

Rd

(1 + |t|2)σ
∣
∣F−1

(
I−α1Φϕ(0)(δ−1

j 2−K ·))(t)∣∣dt,

where δj = 2jε and 1
2 < δj ≤ 1. The last integral is estimated as follows:

∫

Rd

(1 + |t|2)σ
∣
∣F−1

(
I−α1Φϕ(0)(δ−1

j 2−K ·))(t)∣∣dt

≤
∫

Rd

(1 + |t|2)σ|F−1(I−α1Φϕ(0))(t)|dt

+
∫

Rd

(1 + |t|2)σ
∣
∣F−1

(
I−α1Φ[ϕ(0) − ϕ(0)(δ−1

j 2−K ·)])(t)∣∣dt

≤
∫

Rd

(1 + |t|2)σ|F−1(I−α1Φϕ(0))(t)|dt

+ sup
1
2 <δ≤1

∫

Rd

(1 + |t|2)σ
∣
∣F−1

(
I−α1Φ[ϕ(0) − ϕ(0)(δ−12−K ·)])(t)∣∣dt.

Note that the above supremum is finite since I−α1Φ[ϕ(0) − ϕ(0)(δ−12−K ·)]
is a compactly supported and infinitely differentiable function whose inverse
Fourier transform depends continuously on δ. Then it follows that for 2−j−1 ≤
ε ≤ 2−j ,

∑

k≤K−1

∥
∥
∥
∥
∥

(∫ 1

0

ε−2α|Φε ∗ f |2 dε

ε

) 1
2
∥
∥
∥
∥
∥

p

�
∑

k≤K−1

2k(α1−α)‖f‖F α,c
p

� ‖f‖F α,c
p

.

We make similar modifications in step 2 of the previous theorem and then
establish the third part. Moreover, by the previous theorem, ‖Φ0 ∗ f‖p �
‖f‖F α,c

p
. Thus, we have proved

‖Φ0 ∗ f‖p +

∥
∥
∥
∥
∥

(∫ 1

0

ε−2α|Φε ∗ f |2 dε

ε

) 1
2
∥
∥
∥
∥
∥

p

� ‖f‖F α,c
p

.

For the reverse inequality, we follow the argument in step 3 in the pre-
vious proof. By (4.2), there exists 2 < a ≤ 2

√
2 such that Φ(ξ) > 0 on

{ξ: a−1 ≤ |ξ| ≤ a}. Then for j ≥ 1, Rj = {ε: a−12−j+1 < ε ≤ a2−j−1} are
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disjoint sub intervals on (0, 1], and ϕ(j)

Φ(ε) is well-defined for any ε ∈ Rj . We
slightly modify (4.14) as follows: for any ε ∈ Rj , we have

ϕ(j)(ξ) = ϕ(j)ϕ(0)(2−j−Kξ) =
ϕ(j)(ξ)
Φ(ε)(ξ)

ϕ(0)(2−j−Kξ)Φ(ε)(ξ), j ∈ N0.

Since for any −2 ≤ � ≤ 2,

‖Φ−1(2−jε−12	·)ϕ(2	·)ϕ‖Hσ
2

≤ sup
2a−1≤δ≤ a

2

‖Φ−1(δ2	·)ϕ(2	·)ϕ‖Hσ
2

< ∞

and
‖(Φ(0))−1(2−jε−1·)ϕ(0)(ϕ(0) + ϕ(1))‖Hσ

2

≤ sup
2a−1≤δ≤ a

2

‖(Φ(0))−1(δ·)ϕ(0)(ϕ(0) + ϕ(1))‖Hσ
2

< ∞,

we follow the argument in step 3 in the previous theorem to get

‖f‖F α,c
p

�

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα

∫

Rj

|(ϕ0)j+k ∗ Φε ∗ f |2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

� ‖Φ0 ∗ f‖p +

∥
∥
∥
∥
∥

(∫ 1

0

ε−2α|Φε ∗ f |2 dε

ε

) 1
2
∥
∥
∥
∥
∥

p

+

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥0

22jα

∫

Rj

|hj+k ∗ Φε ∗ f |2 dε

ε

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

The remaining of the proof follows step 3 with necessary modifications. �

We now concretize the general characterization in the previous theorem
to the case of Poisson kernel. Recall that P denotes the Poisson kernel of R

d

and

Pε(f)(s) =
∫

Rd

Pε(s − t)f(t)dt, (s, ε) ∈ R
d+1
+ .

The following theorem improves [32, Section 2.6.4] even in the classical
case: [32, Section 2.6.4] requires k > d + max{α, 0} for the Poisson char-
acterization while we only need k > max{α, 0}. The proof of this theorem
is similar to but easier than that of [37, Theorem 4.20], since we assume
k > 0 here; we omit the details. The key ingredient is the improvement of
the characterization of Hardy spaces in terms of Poisson kernel given in [35,
Theorem 1.5].

Theorem 4.3. Let 1 ≤ p < ∞, α ∈ R, and k ∈ N such that k > max{α, 0}.
Assume that Φ(0) satisfies (4.1). Then for f ∈ S ′(Rd;L1(M) + M), we have

‖f‖F α,c
p

≈ ‖Φ0 ∗ f‖p +

∥
∥
∥
∥
∥
∥

(∫ 1

0

ε2(k−α)

∣
∣
∣
∣

∂k

∂εk
Pε(f)

∣
∣
∣
∣

2
dε

ε

) 1
2

∥
∥
∥
∥
∥
∥

p

.
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4.2. Characterizations Via Lusin Functions

We are going to give some characterizations for Triebel–Lizorkin spaces via
Lusin square functions. As what we did in the previous part of this section,
we still use Fourier multiplier theorems as our main tool. But now we have
to rely on the Hilbertian (instead of �2) versions of the Fourier multiplier
theorems.

The following characterization, via Lusin square functions associated
to ϕ given by the condition (0.1), is a special case of the characterization
in Theorem 1.5. We keep using the notation ϕj being the function whose
Fourier transform is equal to ϕ(2−j ·) for j ∈ N, and ϕ0 being the function
whose Fourier transform is equal to 1 −∑j≥1 ϕ(2−j ·).

Proposition 4.4. For 1 ≤ p < ∞ and f ∈ Fα,c
p (Rd,M), we have

‖f‖F α,c
p

≈ ‖ϕ0 ∗ f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

2j(2α+d)

∫

B(0,2−j)

|ϕj ∗ f(· + t)|2dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

(4.16)

Proof. For any f ∈ Fα,c
p (Rd,M), by the lifting property in Proposition 3.4,

we have Jαf ∈ hc
p(R

d,M). Then, we apply the discrete characterization in
Theorem 1.5 with φ = J−αϕ0 and Φ = I−αϕ to Jαf ,

‖f‖F α,c
p

≈ ‖Jαf‖hc
p

≈ ‖ϕ0 ∗ f‖p + ‖sc,D
I−αϕ(Jαf)‖p.

Following the argument in the proof of (2.9), we can prove
∥
∥sc,D

I−αϕ(Jαf)
∥
∥

p
≈ ∥∥sc,D

I−αϕ(Iαf)
∥
∥

p
.

Moreover, we can easily check that

∥
∥sc,D

I−αϕ(Iαf)
∥
∥

p
=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

2j(2α+d)

∫

B(0,2−j)

|ϕj ∗ f(· + t)|2 dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

.

Therefore, we conclude

‖f‖F α,c
p

≈ ‖ϕ0 ∗ f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

2j(2α+d)

∫

B(0,2−j)

|ϕj ∗ f(· + t)|2dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

. �

From the above Lusin square function by ϕ, we can deduce Lusin type
characterizations with general convolution kernels by the aide of Theorems 2.5
and 2.9.

Theorem 4.5. Let 1 ≤ p < ∞ and α ∈ R. Assume that α0 < α < α1, α1 ≥ 0
and Φ(0), Φ satisfy conditions (4.1), (4.2). Then for any f ∈ S ′(Rd;L1(M)+
M), we have
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‖f‖F α,c
p (Rd,M) ≈ ‖Φ0 ∗f‖p +

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

j≥1

2j(2α+d)

∫

B(0,2−j)

|Φj ∗ f(· + t)|2dt

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

p

,

where the equivalent constant is independent of f .

Proof. This proof is very similar to that of Theorem 4.1. The main target is
to replace the standard test functions ϕ0 and ϕ in Proposition 4.4 with Φ0

and Φ satisfying (4.1) and (4.2). This time we need to use the Lusin type
multiplier theorem i.e. Theorem 2.5, instead of Theorem 2.2. For the special
case p = 1, we apply Theorem 2.9 instead of Theorem 2.7. �

Using a similar argument as in Theorem 4.2, we also have the follow-
ing continuous analogue of the above theorem. This is the general charac-
terization of Triebel–Lizorkin spaces by Lusin square functions. Recall that
Γ̃ = {(t, ε) ∈ R

d+1
+ : |t| < ε < 1}.

Theorem 4.6. Keep the assumption in the previous theorem. Then for any
L1(M) + M-valued tempered distribution f on R

d, we have

‖f‖F α,c
p (Rd,M) ≈ ‖Φ0 ∗ f‖p +

∥
∥
∥
∥
∥

(∫

Γ̃

ε−2α|Φε ∗ f(· + t)|2 dtdε

εd+1

) 1
2

∥
∥
∥
∥
∥

p

.

5. Smooth Atomic Decomposition

This section is devoted to the study of atomic decomposition of Fα,c
1 (Rd,M).

We aim to decompose Fα,c
1 (Rd,M) into atoms which have good enough

size, smooth and moment conditions. To proceed in an orderly way step by
step, we begin with the special case α = 0, i.e., the space hc

1(R
d,M). Even

though the result for hc
1(R

d,M) below does not lead to the one for general
Fα,c

1 (Rd,M) directly, the main ingredients to obtain smooth decomposition
for Fα,c

1 (Rd,M) are already contained in those for hc
1(R

d,M). The main
results in this section will be very useful in our forthcoming paper [34] on
mapping properties of pseudo-differential operators.

5.1. Smooth Atomic Decomposition of hc
1(R

d,M)

In the classical theory, the smooth atoms have been widely studied and
have played a crucial role when studying the mapping properties of pseudo-
differential operators acting on local Hardy spaces, or more generally, on
Triebel–Lizorkin spaces. Details can be found in [3–5,32]. In this subsection,
we will show that in our operator-valued case, the atoms in Theorem 1.6 can
also be refined to be infinitely differentiable.

As in the classical case, the theory of tent spaces will be of great service
in our proof of smooth atomic decomposition theorem. Tent spaces in the
operator-valued setting have been introduced in [18,19] first; see also [35] for
further complement. For our use, we study the local version of tent spaces
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defined in [33]. For any function defined on the strip S = R
d × (0, 1) with

values in L1(M) + M, whenever it exists, we define

Ac(f)(s) =
(∫

Γ̃

|f(t + s, ε)|2 dtdε

εd+1

) 1
2

, s ∈ R
d.

For 1 ≤ p < ∞, we define

T c
p (Rd,M) = {f : Ac(f) ∈ Lp(N )}

equipped with the norm ‖f‖T c
p (Rd,M) = ‖Ac(f)‖p.

First, we introduce a lemma concerning the atomic decomposition of
the tent space T c

1 (Rd,M). A function a ∈ L1

(M;L2(S, dsdε
ε )
)

is called a
T c

1 -atom if
• supp a ⊂ T (Q) for some cube Q in R

d with |Q| ≤ 1;

• τ
( ∫

T (Q)
|a(s, ε)|2 dsdε

ε

) 1
2 ≤ |Q|− 1

2 .

Let T c
1,at(R

d,M) be the space of all f : S → L1(M) admitting a repre-
sentation of the form

f =
∞∑

j=1

λjaj , (5.1)

where the aj ’s are T c
1 -atoms and λj ∈ C such that

∑∞
j=1 |λj | < ∞. We equip

T c
1,at(R

d,M) with the following norm

‖f‖T c
1,at

= inf

⎧
⎨

⎩

∞∑

j=1

|λj |: f =
∞∑

j=1

λjaj ; aj ’s are T c
1 -atoms, λj ∈ C

⎫
⎬

⎭
.

Lemma 5.1. We have T c
1,at(R

d,M) = T c
1 (Rd,M) with equivalent norms.

Proof. In order to prove T c
1,at(R

d,M) ⊂ T c
1 (Rd,M), it is enough to show

that any T c
1 -atom a satisfies ‖a‖T c

1
� 1. By the support assumption of a, we

have

‖a‖T c
1

=
∥
∥Ac(a)

∥
∥

1
= τ

∫

Rd

(∫ 1

0

∫

B(t,ε)

|a(s, ε)|2 dsdε

εd+1

) 1
2

dt

� |Q| 1
2 τ

(∫

Rd

∫ 1

0

∫

B(t,ε)

|a(s, ε)|2 dsdε

εd+1
dt

) 1
2

= c
1
2
d |Q| 1

2 τ

(∫

T (Q)

|a(t, ε)|2 dtdε

ε

) 1
2

� 1.

Then by the duality T c
1 (Rd,M)∗ = T c

∞(Rd,M) (see [33]), we have T c
∞

(Rd,M) ⊂ T c
1,at(R

d,M)∗.
Now let Q be a cube in R

d with |Q| ≤ 1. If f ∈ L1

(M;Lc
2(T (Q), dsdε

ε )
)
,

then

a = |Q|− 1
2 ‖f‖−1

L1(M;Lc
2(T (Q), dsdε

ε ))f
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is a T c
1 -atom supported in T (Q). Hence,

‖f‖T c
1,at

≤ |Q| 1
2 ‖f‖L1(M;Lc

2(T (Q), dsdε
ε )).

Thus, L1

(M;Lc
2(T (Q), dsdε

ε )
) ⊂ T c

1,at(R
d,M) for every cube Q. Therefore,

every continuous functional � on T c
1,at induces a continuous functional on

L1

(M;Lc
2(T (Q), dsdε

ε )
)

with norm smaller than or equal to |Q| 1
2 ‖�‖(T c

1,at)
∗ .

Let Q0 be the cube centered at the origin with side length 1 and Qm = Q0+m
for each m ∈ Z

d. Then R
d = ∪m∈ZdQm. Consequently, we can choose a

sequence of functions (gm)m∈Zd such that

�(a) = τ

∫

T (Qm)

a(s, ε)g∗
m(s, ε)

dsdε

ε
, ∀T c

1 -atom a with supp a ⊂ T (Qm),

and

‖gm‖L∞(M;Lc
2(T (Qm), dsdε

ε )) ≤ ‖�‖(T c
1,at)

∗ .

Let g(s, ε) = gm(s, ε) for (s, ε) ∈ T (Qm). Then, we have

�(a) = τ

∫

S

a(s, ε)g∗(s, ε)
dsdε

ε
, ∀T c

1 -atom a.

It follows that, for any cube Q with |Q| ≤ 1, g|T (Q) ∈ L∞
(M;Lc

2(T (Q), dsdε
ε )
)

and

‖g|T (Q)‖L∞
(
M;Lc

2(T (Qm), dsdε
ε )
) ≤ |Q| 1

2 ‖�‖(T c
1,at)

∗ ,

which implies g ∈ T c
∞(Rd,M). Hence, T c

1,at(R
d,M)∗ ⊂ T c

∞(Rd,M). There-
fore, T c

∞(Rd,M) = T c
1,at(R

d,M)∗ with equivalent norms. Finally, by the
density of T c

1,at(R
d,M) in T c

1 (Rd,M), we get the desired equivalence. �

The following Lemma shows the connection between T c
p (Rd,M) and

hc
p(R

d,M). The proof is modelled on the classical argument of [3, Theorem 6].

Lemma 5.2. Fix a Schwartz function Φ on R
d satisfying:

⎧
⎪⎨

⎪⎩

Φ is supported in the cube with side length 1 and centered at the origin;
∫
Rd Φ(s)ds = 0;

Φ is nondegenerate in the sense of (1.2).
(5.2)

Let πΦ be the map given by

πΦ(f)(s) =
∫ 1

0

∫

Rd

Φε(s − t)f(t, ε)
dtdε

ε
, s ∈ R

d.

Then πΦ is bounded from T c
p (Rd,M) to hc

p(R
d,M) for any 1 ≤ p < ∞.
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Proof. For any 1 < p < ∞, let q be its conjugate index. By Theorem 1.1, it
suffices to estimate τ

∫
πΦ(f)(s)g∗(s)ds, for any g ∈ hc

q(R
d,M). Note that

τ

∫

Rd

πΦ(f)(s)g∗(s)ds = τ

∫

Rd

∫ 1

0

Φε(s − t)f(t, ε)
dtdε

ε
g∗(s)ds

= τ

∫

Rd

∫ 1

0

f(t, ε)(Φ̃ε ∗ g)∗(t)
dεdt

ε
,

where Φ̃(s) = Φ(−s). Then by the Hölder inequality,
∣
∣
∣
∣τ

∫

Rd

πΦ(f)(s)g∗(s)ds

∣
∣
∣
∣ =

1
cd

∣
∣
∣
∣
∣
τ

∫

Rd

∫ 1

0

∫

B(s,ε)

f(t, ε)(Φ̃ε ∗ g)∗(t)
dεdt

εd+1
ds

∣
∣
∣
∣
∣

=
1
cd

∣
∣
∣
∣τ

∫

Rd

∫

Γ̃

f(s + t, ε)(Φ̃ε ∗ g)∗(s + t)
dεdt

εd+1
ds

∣
∣
∣
∣

� ‖Ac(f)‖p‖sc
Φ̃
(g)‖q

� ‖f‖T c
p
‖g‖hc

q
.

Now we deal with the case p = 1. The argument below is based on the
atomic decompositions of hc

1(R
d,M) and T c

1 (Rd,M). By Lemma 5.1, it is
enough to show that πΦ maps a T c

1 -atom to a bounded multiple of an hc
1-

atom. Let a be an atom in T c
1 based on some cube Q with |Q| ≤ 1. Since

Φ is supported in the unit cube, it follows from the definition of πΦ that
πΦ(a) is supported in 2Q. Moreover, it satisfies the moment cancellation that
∫

πΦ(a)(s)ds = 0 since Φ̂(0) = 0. So it remains to check that πΦ(a) satisfies
the size estimate. To this end, we use the Cauchy–Schwarz inequality and the
Plancherel formula (0.7),

‖πΦ(a)‖L1(M;Lc
2(R

d)) = τ

(∫

Rd

|π̂Φ(a)(ξ)|2dξ

) 1
2

= τ

(∫

Rd

|
∫ 1

0

Φ̂(εξ)â(ξ, ε)
dε

ε
|2dξ

) 1
2

≤ τ

(∫

Rd

∫ 1

0

|Φ̂(εξ)|2 dε

ε

∫ 1

0

|â(ξ, ε)|2 dε

ε
dξ

) 1
2

≤ τ

(∫

T (Q)

|a(s, ε)|2 dsdε

ε

) 1
2

≤ |Q|− 1
2 .

(5.3)

Therefore we obtain the boundedness of πΦ from T c
1,at(R

d,M) to hc
1,at

(Rd,M). �

Now we can to refine the smoothness of the atoms given in Theorem 1.6.

Theorem 5.3. For any f ∈ L1(M; Rc
d)+L∞(M; Rc

d), f belongs to hc
1(R

d,M)
if and only if it can be represented as

f =
∞∑

j=1

(μjbj + λjgj), (5.4)
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where

• the bj’s are infinitely differentiable atoms supported in 2Q0,j with
|Q0,j | = 1. For any multiple index γ ∈ N

d
0, there exists a constant Cγ

which depends on γ satisfying

τ

(∫

2Q0,j

|Dγbj(s)|2ds

) 1
2

≤ Cγ ; (5.5)

• the gj’s are infinitely differentiable atoms supported in 2Qj with |Qj | <
1, and such that

τ

(∫

2Qj

|gj(s)|2ds

) 1
2

� |Qj |− 1
2 and

∫

2Qj

gj(s)ds = 0; (5.6)

• the coefficients μj and λj are complex numbers such that

∞∑

j=1

(|μj | + |λj |) < ∞. (5.7)

Moreover, the infimum of (5.7) with respect to all admissible representations
gives rise to an equivalent norm on hc

1(R
d,M).

Proof. Since the bj ’s and gj ’s are atoms in hc
1(R

d,M), it suffices to show that
any f ∈ hc

1(R
d,M) can be represented as in (5.4) and

∞∑

j=1

(|μj | + |λj |) � ‖f‖hc
1
.

To begin with, we construct a smooth resolution of the unit on R
d. Let κ be

a radial, real and infinitely differentiable function on R
d which is supported

in the unit cube centered at the origin. Moreover, we assume that κ̂(0) > 0.
We take Φ̂ = | · |2κ̂, which can be normalized as:

∫ ∞

0

Φ̂(εξ)2
dε

ε
= 1, ξ ∈ R

d\{0}.

And we define

φ̂(ξ) = 1 −
∫ 1

0

Φ̂(εξ)2
dε

ε
, ξ ∈ R

d. (5.8)

By the Paley–Wiener theorem, Φ̂ can be extended to an analytic function
Φ̂(z) of d complex variables z = (z1, . . . , zd), and for any λ > 0, there exists
a constant Cλ such that

|Φ̂(z)| ≤ Cλe( λ
4 +

√
d

2 )|ξ2|(|ξ1|2 + |ξ2|2)
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holds for any z = ξ1 + iξ2. Therefore,
∫ 1

0

|Φ̂(εz)|2 dε

ε
≤ C2

λ

∫ 1

0

eε( λ
2 +

√
d)|ξ2|ε3dε · (|ξ1|2 + |ξ2|2)2

≤ C2
λ

∫ 1

0

ε3dε · e( λ
2 +

√
d)|ξ2|(|ξ1|2 + |ξ2|2)2

≤ C2
λe( λ

2 +
√

d)|ξ2|(1 + |ξ1|2)2(1 + |ξ2|2)2

≤ C2
λe(λ+2

√
d)|ξ2|(1 + |ξ1|)4.

Now applying the Paley–Wiener–Schwartz theorem to distributions, we ob-
tain that φ is a distribution with support in {s ∈ R

d: |s| ≤ 2
√

d}. On the other
hand, if we define its value at the origin as 0, the function

∫ 1

0
Φ̂(ε·)2 dε

ε is an
infinitely differentiable function on R

d, which ensures that φ is a Schwartz
function. Thus, suppφ ⊂ {s ∈ R

d: |s| ≤ 2
√

d}. By (5.8), we arrive at the
following decomposition of f :

f = φ ∗ f +
∫ 1

0

Φε ∗ Φε ∗ f
dε

ε
. (5.9)

We first deal with φ ∗ f . By Theorem 1.6, we obtain an atomic decom-
position of f :

f =
∑

j

μ̃jaj , (5.10)

where the aj ’s are hc
1-atoms and

∑
j |μ̃j | � ‖f‖hc

1
. Thus,

φ ∗ f =
∑

j

μ̃j φ ∗ aj .

We now show that every φ ∗ aj can be decomposed into smooth atoms sup-
ported in cubes with side length two. Let X0 be a nonnegative infinitely
differentiable function on R

d such that suppX0 ⊂ 2Q0 (with Q0 the unit
cube centered at the origin), and

∑
k∈Zd X0(s − k) = 1 for every s ∈ R

d. See
[30, Section VII.2.4] for the existence of such X0. Set Xk = X0(· − k). Then
Xk is supported in the cube 2Qk = k + 2Q0, and all Xk’s form a smooth
resolution of the unit:

1 =
∑

k∈Zd

Xk(s), ∀ s ∈ R
d. (5.11)

Take a to be one of the atoms in (5.10) supported in Q. Since φ has compact
support, i.e. there exists a constant C such that suppφ ⊂ CQ0, then φ ∗ a is
supported in (C + 1)Q0. Thus, we get the decomposition

φ ∗ a =
N∑

k=1

bk with bk = Xk · (φ ∗ a),

where N is a positive integer depending only on the dimension d and C. For
any β, γ ∈ N

d
0, denote β ≤ γ if βj ≤ γj for every 1 ≤ j ≤ d. Then, by the

Cauchy–Schwarz inequality, for any k,
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τ

(∫

Rd

|Dγbk(s)|2ds

) 1
2

�
∑

β≤γ

τ

(∫

2Qk

|Dβφ ∗ a(s) · Dγ−βXk(s)|2ds

) 1
2

�
∑

β≤γ

τ

(∫

2Qk

∣
∣
∣
∣

∫

Rd

Dβφ(s − t)a(t)dt

∣
∣
∣
∣

2

ds

) 1
2

≤
∑

β≤γ

(∫

Q

∫

2Qk

|Dβφ(s − t)|2dsdt

) 1
2

· τ

(∫

Q

|a(t)|2dt

) 1
2

� |Q| 1
2 τ

(∫

Q

|a(t)|2dt

) 1
2

≤ 1,

where the relevant constants depend only on γ, φ and X0. Thus, we have
proved that φ ∗ f can be decomposed as follows:

φ ∗ f =
∑

j

μjbj ,

with bj as desired. Furthermore,
∑

j |μj | � ‖f‖hc
1
.

Now it remains to deal with the second term on the right hand side of
(5.9). It follows from the definition of the tent space and Theorem 1.4 that
Φε ∗ f ∈ T c

1 (Rd,M) and

‖φ ∗ f‖1 + ‖Φε ∗ f‖T c
1

� ‖f‖hc
1
.

By Lemma 5.1, we decompose Φε ∗ f as follows:

Φε ∗ f(s) =
∞∑

j=1

λj ãj(s, ε) with
∞∑

j=1

|λj | � ‖Φε ∗ f‖T c
1
, (5.12)

where the ãj ’s are T c
1 -atoms based on cubes with side length less than or

equal to 1. For each ãj(s, ε) based on Qj in (5.12), we set

gj(s) =
∫ 1

0

Φε ∗ ãj(s, ε)
dε

ε
= πΦãj(s), ∀s ∈ R

d. (5.13)

We observe from the proof of Lemma 5.2 that gj is a bounded multiple of
an hc

1-atom supported in 2Qj with vanishing mean. Moreover, gj is infinitely
differentiable. Thus, gj satisfies (5.6) with relevant constant depending only
on Φ. Combining (5.12) and (5.13), we obtain the decomposition

∫ 1

0

Φε ∗ Φε ∗ f
dε

ε
=

∞∑

j=1

λjgj ,

with
∑∞

j=1 |λj | � ‖f‖hc
1
. �
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5.2. Atomic Decomposition for F α,c
1 (Rd,M)

Now we turn to the general space Fα,c
1 (Rd,M). For every l = (l1, . . . , ld) ∈

Z
d, μ ∈ N0, we define Qμ,l in R

d to be the cubes centered at 2−μl, and with
side length 2−μ. For instance, Q0,0 = [− 1

2 , 1
2 )d is the unit cube centered at

the origin. Let Dd be the collection of all the cubes Qμ,l defined above. We
write (μ, l) ≤ (μ′, l′) if

μ ≥ μ′ and Qμ,l ⊂ 2Qμ′,l′ .

For a ∈ R, let a+ = max{a, 0} and [a] the largest integer less than or equal
to a. Recall that |γ|1 = γ1 + · · · + γd for γ ∈ N

d
0, sβ = sβ1

1 . . . sβd

d for s ∈ R
d,

β ∈ N
d
0 and Jα is the Bessel potential of order α.

Definition 5.4. Let α ∈ R, and let K and L be two integers such that

K ≥ ([α] + 1)+ and L ≥ max {[−α],−1}.

(1) A function b ∈ L1

(M;Lc
2(R

d)
)

is called an (α, 1)-atom if
• supp b ⊂ 2Q0,k;

• τ
( ∫

Rd |Dγb(s)|2ds
) 1

2 ≤ 1, ∀γ ∈ N
d
0, |γ|1 ≤ K.

(2) Let Q = Qμ,l ∈ Dd, a function a ∈ L1

(M;Lc
2(R

d)
)

is called an (α,Q)-
subatom if

• supp a ⊂ 2Q;
• τ
( ∫

Rd |Dγa(s)|2ds
) 1

2 ≤ |Q|α
d − |γ|1

d , ∀γ ∈ N
d
0, |γ|1 ≤ K;

• ∫
Rd sβa(s)ds = 0, ∀β ∈ N

d
0, |β|1 ≤ L.

(3) A function g ∈ L1

(M;Lc
2(R

d)
)

is called an (α,Qk,m)-atom if

τ

(∫

Rd

|Jαg(s)|2ds

) 1
2

� |Qk,m|− 1
2 and g =

∑

(μ,l)≤(k,m)

dμ,laμ,l, (5.14)

for some k ∈ N0 and m ∈ Z
d, where the aμ,l’s are (α,Qμ,l)-subatoms

and the dμ,l’s are complex numbers such that
⎛

⎝
∑

(μ,l)≤(k,m)

|dμ,l|2
⎞

⎠

1
2

≤ |Qk,m|− 1
2 .

Remark 5.5. If L < 0, the third assumption of an (α,Q)-subatom means that
no moment cancellation is required. In the second assumption of an (α, 1)-
atom b and that of an (α,Q)-subatom a, it is tacitly assumed that b and a
have derivatives up to order K. For such a, we can define a norm by

‖a‖∗ = sup
|γ|1≤K

‖Dγa‖
L1

(
M;Lc

2(R
d)
).

Then the convergence in (5.14) is understood in this norm, and we will see
that the atom g in (5.14) belongs to Fα,c

1 (Rd,M).

Remark 5.6. In the classical case, the first size estimate in (5.14) is not
necessary. In other words, if g =

∑
(μ,l)≤(k,m) dμ,laμ,l with the subatoms aμ,l’s

and the complex numbers dμ,l’s such that
(∑

(μ,l)≤(k,m) |dμ,l|2
) 1

2 ≤ |Qk,m|− 1
2 ,
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then g satisfies that estimate in (5.14) automatically. We refer the readers to
[32] for more details. Unfortunately, in the current setting, we are not able
to prove this estimate, so we just add it in (5.14) for safety.

The following is our main result on the atomic decomposition of Fα,c
1

(Rd,M). The idea comes from [32, Theorem 3.2.3], but many techniques used
are different from those of [32, Theorem 3.2.3] due to noncommutativity.

Theorem 5.7. Let α ∈ R and K, L be two integers fixed as in Definition 5.4.
Then any f ∈ Fα,c

1 (Rd,M) can be represented as

f =
∞∑

j=1

(
μjbj + λjgj

)
, (5.15)

where the bj’s are (α, 1)-atoms, the gj’s are (α,Q)-atoms, and μj, λj are
complex numbers with

∞∑

j=1

(|μj | + |λj |) < ∞. (5.16)

Moreover, the infimum of (5.16) with respect to all admissible representations
is an equivalent norm in Fα,c

1 (Rd,M).

Proof. Step 1 First, we show that any f ∈ Fα,c
1 (Rd,M) admits the represen-

tation (5.15) and
∞∑

j=1

(|μj | + |λj |) � ‖f‖F α,c
1

.

The proof of this part is similar to the proof of Theorem 5.3. Let κ be the
Schwartz function defined in the proof of Theorem 5.3. We take Φ̂ = | · |N κ̂,
where N is a positive even integer such that N ≥ max{L,α}, then Φ can be
normalized as follows:

∫ ∞

0

Φ̂(εξ)2
dε

ε
= 1, ∀ ξ ∈ R

d\{0}.

Since −α+N ≥ 0, both
∑∞

j=−∞ (J−αΦ̂)(2−jξ)2 and
∑∞

j=−∞ (J−αΦ̂)(2−jξ)2

are rapidly decreasing and infinitely differentiable functions on R
d\{0}. So

we have
∞∑

j=−∞
(J−αΦ̂)(2−jξ)2 < ∞ (5.17)

and
∞∑

j=−∞
(I−αΦ̂)(2−jξ)2 < ∞. (5.18)

Applying the Paley–Wiener–Schwartz theorem, we get a compactly supported
function Φ0 ∈ S such that

Φ̂0(ξ) = 1 −
∫ 1

0

Φ̂(εξ)2
dε

ε
.
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Denote by Φε the Fourier inverse transform of Φ(ε·). For any f ∈Fα,c
1 (Rd,M),

we have

f = Φ0 ∗ f +
∫ 1

0

Φε ∗ Φε ∗ f
dε

ε
. (5.19)

Let us deal with the two terms on the right hand side of (5.19) separately.
The term Φ0 ∗ f is easy to treat. If α ≥ 0, Proposition 3.3 ensures that

Fα,c
1 (Rd,M) ⊂ hc

1(R
d,M). Then we can repeat the first part of the proof of

Theorem 5.3: for any f ∈ Fα,c
1 (Rd,M), Φ0 ∗ f admits the decomposition

Φ0 ∗ f =
∑

j

μjbj ,

with
∑

j

|μj | � ‖f‖hc
1

� ‖f‖F α,c
1

,

where the bj ’s, together with their derivatives Dγbj ’s, satisfy (5.5) with some
constants Cγ depending on γ. When K is fixed, we can normalize the bj ’s
by max|γ|1≤K |Cγ |, then the new bj ’s are (α, 1)-atoms. If α < 0, by Proposi-
tions 3.3 and 3.4, we have J [α]f ∈ F

α−[α],c
1 ⊂ hc

1. Then J [α]Φ0 ∗ f admits the
decomposition

J [α]Φ0 ∗ f =
∑

j

μjbj ,

with
∑

j |μj | � ‖J [α]f‖hc
1

� ‖f‖F α,c
1

. Then

Φ0 ∗ f =
∑

j

μjJ
−[α]bj .

If −[α] is even, it is obvious that suppJ−[α]bj ⊂ supp bj . Moreover, for any
γ ∈ N

d
0 such that |γ|1 ≤ K, we have

τ

(∫

Rd

|DγJ−[α]bj(s)|2ds

) 1
2

�
∑

|γ′|1≤K−2[α]

τ

(∫

Rd

|Dγ′
bj(s)|2ds

) 1
2

≤ CK .

We normalize J−[α]bj by this constant CK depending on K, then we can
make it an (α, 1)-atom. When −[α] is odd, it suffices to replace [α] in the
above argument by [α] − 1, and then we get the desired decomposition.

Step 2 Now we turn to the second term on the right hand side of (5.19).
It follows from Theorem 4.6 and the definition of the tent space that ε−αΦε ∗
f ∈ T c

1 (Rd,M) and

‖ε−αΦε ∗ f‖T c
1

� ‖f‖F α,c
1

.

By Lemma 5.1, we have

ε−αΦε ∗ f(s) =
∞∑

j=1

λjbj(s, ε), (5.20)
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where the bj ’s are T c
1 -atoms based on the cubes Qj ’s with |Qj | ≤ 1. Then, if

we set aj(s, ε) = εαbj(s, ε), we obtain

Φε ∗ f(s) =
∞∑

j=1

λjaj(s, ε)

and
∞∑

j=1

|λj | � ‖ε−αΦε ∗ f‖T c
1

� ‖f‖F α,c
1

. (5.21)

In particular,

supp aj ⊂ T (Qj) and τ

(∫

T (Qj)

ε−2α|aj(s, ε)|2 dsdε

ε

) 1
2

≤ |Qj |− 1
2 .

(5.22)
For every aj , we set

gj(s) = πΦ(aj)(s) =
∫ 1

0

Φε ∗ aj(s, ε)
dε

ε
. (5.23)

Then supp gj ⊂ 2Qj . We arrive at the decomposition

∫ 1

0

Φε ∗ Φε ∗ f
dε

ε
=

∞∑

j=1

λjgj .

Now we show that every gj is an (α,Qkj ,mj
)-atom. Firstly, for any Qj ,

there exist kj ∈ N0 and s ∈ R
d such that

2−kj−1 ≤ l(Qj) ≤ 2−kj and cQj
= l(Qj)s.

Take mj = [s] ∈ Z
d, where [s] = ([s1], . . . , [sd]). Then, we easily check that

Qj ⊂ 2Qkj ,mj
, Qkj ,mj

∈ Dd. (5.24)

Next, by the argument similar to that in (5.3) and by (5.22), we have

τ

(∫

Rd

|IαπΦ(aj)(s)|2ds

) 1
2

� τ

(∫

T (Qj)

ε−2α|aj(t, ε)|2 dtdε

ε

) 1
2

≤ |Qj |− 1
2 � |Qkj ,mj

|− 1
2 .

If α ≤ 0, it is clear that

τ

(∫

Rd

|JαπΦ(aj)(s)|2ds

) 1
2

≤ τ

(∫

Rd

|IαπΦ(aj)(s)|2ds

) 1
2

� |Qj |− 1
2 � |Qkj ,mj

|− 1
2 .
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If α > 0, we have

τ

(∫

Rd

|JαπΦ(aj)(s)|2ds

) 1
2

� τ

(∫

Rd

|πΦ(aj)(s)|2ds

) 1
2

+ τ

(∫

Rd

|IαπΦ(aj)(s)|2ds

) 1
2

� τ

(∫

T (Qj)

|aj(t, ε)|2 dtdε

ε

) 1
2

+ |Qj |− 1
2

� τ

(∫

T (Qj)

ε−2α|aj(t, ε)|2 dtdε

ε

) 1
2

+ |Qj |− 1
2

≤ 2|Qj |− 1
2 � |Qkj ,mj

|− 1
2 .

Then we get, for any α ∈ R,

τ

(∫

Rd

|Jαgj(s)|2ds

) 1
2

= τ

(∫

Rd

|JαπΦ(aj)(s)|2ds

) 1
2

� |Qkj ,mj
|− 1

2 .

(5.25)

Finally, we decompose the slice T (Qj) ∩ {2−μ−1 ≤ ε ≤ 2−μ} into (d + 1)-
dimensional dyadic cubes whose projections on R

d belong to Dd, and with
side length 2−μ, μ ∈ N0. Let Q̂ be one of those dyadic cubes with side length
2−μ and Q be its projection on R

d. Let

a(s) =
∫

Q̂

Φε(s − t)aj(t, ε)
dtdε

ε
.

By the support assumption of Φ, it follows that

supp a ⊂ 2Q, supp a ⊂ 2Qj ⊂ 4Qkj ,mj
.

Then

â(ξ) =
∫ 2−μ+1

2−μ

Φ̂(εξ)F(aj(·, ε)1Q

)
(ξ)

dε

ε
.

Since DβΦ̂(0) = 0 for any |β|1 ≤ N , we obtain

∫

Rd

(−2πis)βa(s)ds = Dβ â(0) = 0, ∀ |β|1 ≤ L.
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Furthermore, by the Cauchy–Schwarz inequality, we have

τ

(∫

|a(s)|2ds

) 1
2

= τ

⎛

⎝
∫

5Q

∣
∣
∣
∣
∣

∫ 2−μ+1

2−μ

∫

Q

Φε(s − t)aj(t, ε)
dtdε

ε

∣
∣
∣
∣
∣

2

ds

⎞

⎠

1
2

� |Q| 1
2

(∫ 2−μ+1

2−μ

∫

Q

ε−2d dtdε

ε

) 1
2

· τ

(∫ 2−μ+1

2−μ

∫

Q

|aj(t, ε)|2 dtdε

ε

) 1
2

� τ

(∫ 2−μ+1

2−μ

∫

Q

|aj(s, ε)|2 dsdε

ε

) 1
2

� |Q|α
d τ

(∫ 2−μ+1

2−μ

∫

Q

ε−2α|aj(s, ε)|2 dsdε

ε

) 1
2

.

Similarly, we have

τ

(∫

|Dγ

a(s)|2ds

) 1
2

≤ C ′
γ |Q|α

d − |γ|1
d τ

(∫ 2−μ+1

2−μ

∫

Q

ε−2α|aj(s, ε)|2 dsdε

ε

) 1
2

.

The above discussion gives

gj =
∑

(μ,l)≤(kj ,mj)

dj
μ,la

j
μ,l, (5.26)

where each aj
μ,l is an (α,Qμ,l)-subatom. The normalizing factor is given by

dj
μ,l = max

|γ|1≤K
{C ′

γ}τ

(∫ 2−μ+1

2−μ

∫

Qμ,l

ε−2α|aj(s, ε)|2 dsdε

ε

) 1
2

.

By the elementary fact that �2(L1(M)) ⊃ L1(M; �c
2), we get

⎛

⎝
∑

(μ,l)≤(kj ,mj)

|dj
μ,l|2
⎞

⎠

1
2

≤ Cτ

(∫

T (Qj)

ε−2α|aj(s, ε)|2 dsdε

ε

) 1
2

≤ C|Qkj ,mj
|− 1

2 , (5.27)

where C is independent of f . We may assume C = 1, otherwise, we can put
C in (5.20) in the numbers λj , which does not change (5.21). In summary,
(5.24), (5.25), (5.26) and (5.27) ensure that gj is an (α,Qkj ,mj

)-atom.
Step 3 Now we show the reverse assertion: if f is given by (5.15), then

f ∈ Fα,c
1 (Rd,M) and

‖f‖F α,c
1

�
∞∑

j=1

(|μj | + |λj |).
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To this end, we have to show that every (α, 1)-atom b and every (α,Q)-atom
g belong to Fα,c

1 (Rd,M) and

‖b‖F α,c
1

� 1 and ‖g‖F α,c
1

� 1.

Let b be an (α, 1)-atom in Fα,c
1 (Rd,M). We observe that b is also an atom

in hc
1(R

d,M). For α ≤ 0, by Proposition 3.3, hc
1 ⊂ Fα,c

1 . Then, we have
‖b‖F α,c

1
� ‖b‖hc

1
� 1. If α > 0, by Proposition 3.4, we have

‖b‖F α,c
1

≈ ‖ϕ0 ∗ b‖1 +
d∑

i=1

‖DK
i b‖F α−K,c

1
.

Note that for any 1 ≤ i ≤ d, DK
i b is an atom in hc

1(R
d,M). Since α−K < 0,

by Proposition 3.3, we have

‖b‖F α,c
1

� ‖ϕ0 ∗ b‖1 +
d∑

i=1

‖DK
i b‖hc

1
� 1.

On the other hand, let g be an (α,Qk,m)-atom in the sense of Defini-
tion 5.4. We may use the discrete general characterization of Fα,c

1 (Rd,M)
given in Theorem 4.1, i.e.

‖g‖F α,c
1

≈

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∞∑

j=0

22jα|Φj ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

.

We split
∑∞

j=0 into two parts
∑k−1

j=0 and
∑∞

j=k. When j ≥ k, by the support
assumption of Φ, we have supp Φj ∗ g ⊂ 5Qk,m. If α ≥ 0, by (5.18), (5.14)
and the Plancherel formula (0.7), we obtain

τ

⎛

⎝
∫

5Qk,m

∞∑

j=k

22jα|Φj ∗ g(s)|2ds

⎞

⎠

1
2

= τ

⎛

⎝
∫

5Qk,m

∞∑

j=k

|(I−αΦ)j ∗ Iαg(s)|2ds

⎞

⎠

1
2

≤ τ

⎛

⎝
∫

Rd

∞∑

j=k

|(I−αΦ̂)(2−jξ)|2|Iαĝ(ξ)|2dξ

⎞

⎠

1
2

� τ

(∫

Rd

|Iαĝ(ξ)|2dξ

) 1
2

= τ

(∫

Rd

|Iαg(s)|2ds

) 1
2

≤ τ

(∫

Rd

|Jαg(s)|2ds

) 1
2

≤ |Qm,k|− 1
2 .
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If α < 0, by (5.17), (5.14) and the Plancherel formula (0.7) again, we have

τ

⎛

⎝
∫

5Qk,m

∞∑

j=k

22jα|Φj ∗ g(s)|2ds

⎞

⎠

1
2

≤ τ

⎛

⎝
∫

5Qk,m

∞∑

j=k

22jα|J−αΦj ∗ Jαg(s)|2ds

⎞

⎠

1
2

≤ τ

⎛

⎝
∫

Rd

∞∑

j=k

|(J−αΦ̂)(2−jξ)|2|Jαĝ(ξ)|2dξ

⎞

⎠

1
2

� τ

(∫

Rd

|Jαĝ(ξ)|2dξ

) 1
2

= τ

(∫

Rd

|Jαg(s)|2ds

) 1
2

≤ |Qm,k|− 1
2 .

It follows that
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∞∑

j=k

22jα|Φj ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

� 1.

In order to estimate the sum
∑k−1

j=0 , we begin with a technical modification
of g. Let

g̃ = 2k(α−d)g(2−k·).
Then it is easy to see that g̃ is an (α,Q0,m)-atom. Moreover, we have

Φj ∗ g = 2k(d−α)Φj−k ∗ g̃(2k·),
which implies that
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
k−1∑

j=0

22jα|Φj ∗ g|2
⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

≤

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
−1∑

j=−∞
22jα|Φj ∗ g̃|2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

+2−kα‖(Φ0)−k∗g̃‖1,

(5.28)

where (Φ0)−k denotes the inverse Fourier transform of the function Φ(0)(2k·).
In other words, we can assume, by translation, that the atom g is based on a
cube Q with side length 1 and centered at the origin. Then, let us estimate
the right hand side of (5.28) with g instead of g̃.

By the triangle inequality, we have
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
−1∑

j=−∞
22jα|Φj ∗ g|2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

≤
−1∑

j=−∞
2jατ

∫

Rd

|Φj ∗ g(s)|ds

≤
−1∑

j=−∞

∑

(μ,l)≤(0,0)

|dμ,l| 2jατ

∫

Rd

|Φj ∗ aμ,l(s)|ds.
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Now we estimate 2jατ
∫
Rd |Φj ∗ aμ,l(s)|ds for every (μ, l) ≤ (0, 0). Let M =

[−α] + 1. Then M + α > 0 and L ≥ M − 1. By the moment cancellation of
aμ,l, we have

Φj ∗ aμ,l(s)

= 2jd

∫

2Qμ,l

[
Φ(2js − 2jt) − Φ(2js − 2j2−μl)

]
aμ,l(t)dt

= 2j(d+M)
∑

|β|1=M

M + 1
β!

∫

2Qμ,l

(2−μl − t)β

×
∫ 1

0

(1 − θ)MDβΦ
(
2js − 2j(θt + (1 − θ)2−μl)

)
aμ,l(t)dθ dt.

It follows that
|Φj ∗ aμ,l(s)|2

�
∑

|β|1=M

22j(d+M)

∫

2Qμ,l

∫ 1

0

(1 − θ)2M |DβΦ

× (2js − 2j(θt + (1 − θ)2−μl)
) |2dθdt

·
∫

2Qμ,l

|t − 2−μl|2M |aμ,l(t)|2dt.

If Φj ∗ aμ,l(s) �= 0, then we have |2js − 2jt| ≤ 1 for some t ∈ 2Qμ,l. Hence,
Φj ∗ aμ,l(s) = 0 if |s − 2−μl| > 3 · 2−j−1

√
d. Consequently,

−1∑

j=−∞
2jατ

∫

Rd

|Φj ∗ aμ,l(s)|ds

�
−1∑

j=−∞
2j(d+M+α)τ

(∫

2Qμ,l

|t − 2−μl|2M |aμ,l(t)|2dt

) 1
2

·
∑

|β|1=M

∫

|s−2−μl|≤3·2−j−1
√

d

(∫

2Qμ,l

∫ 1

0

(1 − θ)2M |DβΦ

(2js − 2j(θt + (1 − θ)2−μl))|2dθdt
) 1

2 ds

�
−1∑

j=−∞
2j(d+M+α) · 2−μM |Qμ,l| 1

2 τ

×
(∫

2Qμ,l

|aμ,l(t)|2dt

) 1
2 ∫

|s−2−μl|≤3·2−j−1
√

d

ds

�
−1∑

j=−∞
2j(d+M+α) · 2−jd · 2−μ(α+M)|Qμ,l| 1

2

= 2−μ(α+M)
−1∑

j=−∞
2j(M+α)|Qμ,l| 1

2 � 2−μ(α+M)|Qμ,l| 1
2 .
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Similarly, we also have

2−kατ

∫

Rd

|(Φ0)−k ∗ aμ,l(s)|ds � 2−k(M+α)2−μ(α+M)|Qμ,l| 1
2

≤ 2−μ(α+M)|Qμ,l| 1
2 .

Thus, by the Cauchy–Schwarz inequality, we get
∥
∥
∥
∥
∥
∥
∥

⎛

⎝
−1∑

j=−∞
22jα|Φj ∗ g|2

⎞

⎠

1
2

∥
∥
∥
∥
∥
∥
∥

1

≤
−1∑

j=−∞
22jατ

∫

Rd

|Φj ∗ g(s)|ds

�
∞∑

μ=0

2−μ(α+M)

(
∑

l

|dμ,l|2
) 1

2
(
∑

l

|Qμ,l|
) 1

2

�
∞∑

μ=0

2−μ(α+M) < ∞,

and

2−kα‖(Φ0)−k ∗ g‖1 �
∞∑

μ=0

2−μ(α+M) < ∞.

Therefore, ‖g‖F α,c
1

� 1. �

We close this section by a very useful result of pointwise multipliers,
which can be deduced from the above atomic decomposition. Let k ∈ N

and Lk(Rd,M) be the collection of all M-valued functions on R
d such that

Dγh ∈ L∞(N ) for all γ with 0 ≤ |γ|1 ≤ k.

Corollary 5.8. Let α ∈ R and let k ∈ N be sufficiently large and h ∈
Lk(Rd,M). Then the map f �→ hf is bounded on Fα,c

1 (Rd,M)

Proof. First, consider the case α > 0. We apply the atomic decomposition in
Theorem 5.7 with K = k and L = −1. In this case, no moment cancellation of
subatoms is required. We can easily check that, multiplying every (sub)atom
in Definition 5.4 by h, we get another (sub)atom. Moreover,

‖hf‖F α,c
1

≤
∑

|γ|≤k

sup
s∈Rd

‖Dγh(s)‖M · ‖f‖F α,c
1

. (5.29)

The case α ≤ 0 can be deduced by induction. Assume that (5.29) is
true for α > N ∈ Z. Let α > N − 1. Any f ∈ Fα,c

1 can be represented as
f = J2g = (1 − (2π)−2Δ)g with g ∈ Fα+2,c

1 and ‖f‖F α,c
1

≈ ‖g‖F α+2,c
1

. Since

hf = (1 − (2π)−2Δ)(hg) + ((2π)−2Δh)g + (2π)−2∇h · ∇g,
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we deduce

‖hf‖F α,c
1

� ‖(1 − (2π)−2Δ)(hg)‖F α,c
1

+ ‖(Δh)g‖F α,c
1

+
d∑

i=1

‖∂ih · ∂ig‖F α,c
1

� ‖g‖F α+2,c
1

+ ‖(Δh)g‖F α+2,c
1

+
d∑

i=1

‖∂ih · ∂ig‖F α+1,c
1

.

(5.30)
If k ∈ N is sufficiently large, we have

‖(Δh)g‖F α+2,c
1

� ‖g‖F α+2,c
1

, ‖∂ih · ∂ig‖F α+1,c
1

� ‖∂ig‖F α+1,c
1

.

Continuing the estimate in (5.30), we obtain

‖hf‖F α,c
1

� ‖g‖F α+2,c
1

+
∑

i

‖∂ig‖F α+1,c
1

� ‖g‖F α+2,c
1

� ‖f‖F α,c
1

. �
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Summing Maps. Astérisque, vol. 247 (1998)

[23] Pisier, G., Xu, Q.: Non-commutative martingale inequalities. Commun. Math.
Phys. 189, 667–698 (1997)

[24] Pisier, G., Xu, Q.: Noncommutative Lp-spaces. In: Johnson, W.B., Linden-
strauss, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 2, pp.
1459–1517. North-Holland, Amsterdam (2003)

[25] Randrianantoanina, N.: Noncommutative martingale transforms. J. Funct.
Anal. 194, 181–212 (2002)

[26] Randrianantoanina, N.: Conditional square functions for noncommutative mar-
tingales. Ann. Prob. 35, 1039–1070 (2007)

[27] Randrianantoanina, N., Wu, L.: Noncommutative Burkholder/Rosenthal in-
equalities associated with convex functions. Ann. Inst. Henri Poincaré Probab.
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