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Abstract. This paper is devoted to the study of operator-valued Triebel-
Lizorkin spaces. We develop some Fourier multiplier theorems for square
functions as our main tool, and then study the operator-valued Triebel—-
Lizorkin spaces on R?. As in the classical case, we connect these spaces
with operator-valued local Hardy spaces via Bessel potentials. We show
the lifting theorem, and get interpolation results for these spaces. We
obtain Littlewood—Paley type, as well as the Lusin type square function
characterizations in the general way. Finally, we establish smooth atomic
decompositions for the operator-valued Triebel-Lizorkin spaces. These
atomic decompositions play a key role in our recent study of mapping
properties of pseudo-differential operators with operator-valued sym-
bols.
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0. Introduction and Preliminaries

Let ¢ be a Schwartz function on R? such that suppy C {5 < [¢] < 2},
@ >0on {&4 <€ <2}, and Y, ., 0(277¢) = 1 for all € # 0. For each
k € N, let ¢ be the function whose Fourier transform is equal to ¢(27%.), and
let o be the function whose Fourier transform is equal to 1 -3, o(27F).
Then {pg }r>o gives a Littlewood-Paley decomposition on R?. The classical
(inhomogeneous) Triebel-Lizorkin spaces F;fq(]Rd) for0<p<o0,0<qg<
and a € R are defined as

Fo R = {f € S'®Y:||f g, < o0}

with the (quasi-)norm

1Fllme, = {[| D_29le; * f1°
Jj=0
P

We refer the reader to Triebel’s books [31,32] for more concrete definition
and properties of Triebel-Lizorkin spaces on R?. This kind of function spaces
is closely related to some other function spaces, such as Sobolev and Besov
spaces. In particular, Triebel-Lizorkin spaces can be viewed as the general-
izations of Hardy spaces, since the Bessel potential J% is known to be an
isomorphism between F(R?) and h,(R?) (local Hardy spaces introduced
in [6]). All these spaces are basic for many branches of mathematics such as
harmonic analysis, PDE, functional analysis and approximation theory.

This paper is devoted to the study of operator-valued Triebel-Lizorkin
spaces, motivated by the development of noncommutative martingale the-
ory (see for instance [9,10,12-14,17,21,23,25-28]) and the Littlewood—Paley—
Stein theory of quantum Markov semigroups (cf. [11,15,16]). As in the classi-
cal case, it can be viewed as an extension of our recent work [33] on operator-
valued local Hardy spaces. On the other hand, the Triebel-Lizorkin spaces
studied here are Euclidean counterparts of those on usual and quantum tori
studied in [37]. Our main motivation is to build a kind of function spaces
where we can carry out the investigation of pseudo-differential operators with
operator-valued symbols.

Due to noncommutativity, there are several obstacles on our route,
which do not appear in the classical case. First of all, in the noncommutative
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integration, the simple replacement of the usual absolute value by the modu-
lus of operators in the formula H (2550 247%|(p; *f|’1)% Hp does not give a norm
except for ¢ = 2. Even though one could use Pisier’s definition of ¢,-valued
noncommutative L,-spaces by complex interpolation (see [22]), we will not
study that kind of spaces and will focus only on the case ¢ = 2. The reason for
this choice is that, for ¢ = 2, the Triebel-Lizorkin spaces of operator-valued
distributions are isomorphic to the Hardy spaces developed in [33], as men-
tioned above. Another difficulty is the lack of pointwise maximal functions
in the noncommutative case. As is well known, the maximal functions play
a crucial role in the classical theory; but they are no longer at our disposal
in the noncommutative setting. In [37], when studying the Triebel-Lizorkin
spaces on quantum tori, we use Calderén-Zygmund and Fourier multiplier
theory as substitution. In this paper, we will still rely heavily on this theory.
However, we have to consider its local (or inhomogeneous) counterpart, since
the theory used in [37] for quantum tori is the nonlocal (or homogeneous)
one. Besides the local nature, we also develop Hilbert space valued Fourier
multiplier theory, which will be used to deduce general characterizations of
operator-valued Triebel-Lizorkin spaces by the Lusin type square function.

Let M be a von Neumann algebra equipped with a normal semifinite
faithful trace 7. Our definition of (column) operator-valued Triebel-Lizorkin
space for 1 < p < oo is

Fee(®e, M) = {f € §' R Ly (M) + M): | f e < o0}

where

I fllige = || | 3022921, = £12
j>0
P
Here || - ||, is the norm of the semi-commutative L,-space L, (Lo (R?)@M).
Different from the classical case, we have also row and mixture versions; see
Sect. 3 for concrete definitions.

We present here two major results of this paper. The first one gives gen-
eral characterizations of F*“(R?, M) by any reasonable convolution kernels
in place of the Littlewood—Paley decomposition {¢;},;>0. These characteriza-
tions can be realized either by the Littlewood—Paley type g-function or by the
Lusin type integral function, with the help of the Calderén—Zygmund theory
and Fourier multiplier theory mentioned above. The second major result is
the atomic decomposition of Fj"“(R¢, M). When a = 0, the problem is re-
duced to the case of noncommutative Hardy spaces. In this case, the atomic
decompositions of both noncommutative martingale Hardy spaces and Mei’s
operator-valued Hardy spaces are deduced from the hi-bmo duality (see for
instance [1,8,18]). In [33], we use a similar method to get an atomic decom-
position of hy (R?, M), which does not require any smooth condition on each
atom. In this paper, we refine the smoothness of that atomic decomposition
by the Calderén reproducing identity, via tent spaces. Using the same trick,
we extend that refinement to Fy"“(R%, M); but compared with the case of
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local Hardy spaces, subatoms enter in the game. These smooth atomic decom-
positions will play a crucial role in the study of pseudo-differential operators
in the forthcoming paper [34].

In the following, let us recall some notation and background in the
interface between harmonic analysis and operator algebras that we will need
throughout the paper, although they are probably well-known to experts.

0.1. Noncommutative L,-Spaces

We start with a brief introduction of noncommutative L, spaces. Let M
be a von Neumann algebra equipped with a normal semifinite faithful trace
7; for 1 < p < o0, let L,(M) be the noncommutative L,-space associated
to (M, 7). The norm of L,(M) will be often denoted simply by || - ||,- But
if different L,-spaces appear in a same context, we will sometimes precise
the respective Ly-norms in order to avoid possible ambiguity. The reader is
referred to [24,38] for more information on noncommutative L,-spaces. We
will also need Hilbert space-valued noncommutative L,-spaces (see [11] for
more details). Let H be a Hilbert space and v € H with ||v|| = 1. Let p, be
the orthogonal projection onto the one-dimensional subspace generated by v.
Define

Ly(M; H") = (py @ 1pm) Lyp(B(H)@M)
and
Lp(M; H) = Ly(B(H)®M)(py @ 1m).

These are the row and column noncommutative L,-spaces. Like the classi-
cal L,-spaces, noncommutative L,-spaces form an interpolation scale with
respect to the complex interpolation method: for 1 < py < p; < oo and
0 <n <1, we have

(Lpy (M), Ly, (./\/l))77 = L,(M) with equal norms,

where % = 1;—0" + ;L. Since L,(M; H¢) and Ly(M; H") are 1-complemented
subspaces of L,(B(H)®M), for the same indices, we have

(Lpy(M; HY), Ly, (M; Hc))77 = L,(M; H°) with equal norms.

0.2. Fourier Analysis

Fourier multipliers will be one of the most important tools of this paper. Let
us give some Fourier multipliers that will be frequently used. They are all
very well known in the classical harmonic theory.

First, we recall the symbols of Littlewood-Paley decomposition on R?.
Fix a Schwartz function ¢ on R? satisfying:

suppp C {&: 5 < [¢] < 2}.
@ >0on ~{§:%<|§|<2}7 (0.1)
> kez e(27R) =1,V #0.

For each k € N, let ¢, be the function whose Fourier transform is equal
to p(27%.), and let ¢y be the function whose Fourier transform is equal to
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1=>")20®(27%). Then {¢i }r>0 gives a Littlewood-Paley decomposition on
R¢ such that

supp P C {€ € R%:|¢| < 2},

0.2
supp P, C {€ e RT:2F 1 < ¢ <28H1}1 ) VEkeN (0.2)
and that
d G =1 VYEeR™ (0.3)
k=0

The homogeneous counterpart of the above decomposition is given by
{¢k }kez. This time, for every k € Z, these functions are given by &k(f) =
©(27%¢). We have
Do G€) =1 VE£O. (0.4)
keZ

The Bessel potential and the Riesz potential are J* = (1 — (2m)72A)%
and I® = (—(27)"2A) %, respectively. If @ = 1, we will abbreviate J! as J
and I' as I. We denote also J, (&) = (1 + [£]?)% on R? and 1,(£) = |¢]* on
R\ {0}. Then J, (&) and I, (&) are the symbols of the Fourier multipliers J*
and I“, respectively.

Given a Banach space X, let S(R?; X) be the space of X-valued rapidly
decreasing functions on R? with the standard Fréchet topology, and S’ (R%; X)
be the space of continuous linear maps from S(R?) to X. All operations on
S(RY) such as derivations, convolution and Fourier transform transfer to
S'(R% X) in the usual way. On the other hand, L,(R%; X) naturally embeds
into S'(R% X) for 1 < p < oo, where L,(R% X) stands for the space of
strongly p-integrable functions from R? to X. By this definition, Fourier
multipliers on R?, in particular the Bessel and Riesz potentials, extend to
vector-valued tempered distributions in a natural way.

We denote by H$(R?) the potential Sobolev space, consisting of all
tempered distributions f such that J(f) € Lo(R?). If o > £, we have

17l = / F A Eds+ Y / F1 () (s)|ds

|s|<1 >0 Y2k <|s|<2kH1

2

<y (/S<1 |F(f)(s)|*ds + 222’“’/

k>0 2k <|s|<2k+1

\Fl(f)(S)\2d8>

SCQHfHHg’

where C; and Cs are uniform constants. Therefore, if ¢ € HS (R?), the fol-
lowing Young’s inequality
6 9llL,@®ax) < N2l1llglL, @ex) < Colldllag 9], @ex) (0.5)

holds for any g € L,(R%; X) with 1 < p < co. Here X is an arbitrary Banach
space. Inequality (0.5) indicates that functions in H§ (R?) are the symbols of
bounded Fourier multipliers, even in the vector-valued case.
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In the sequel, we will mainly consider the case X = Li(M) + M, i.e.,
consider operator-valued functions or distributions on R?. We will frequently
use the following Cauchy—Schwarz type inequality for operator-valued square
function,

2

S s)as 828 828 .
| oo < [ loepas [ 156)Ps (06)

where ¢: R? — C and f:R? — L;(M)+M are functions such that all integra-
tions in the above inequality make sense. We also require the operator-valued
version of the Plancherel formula. For sufficiently nice functions f:R? —
Ly (M) + M, for example, for f € La(R?) ® Ly(M), we have

/ f(s)[2ds = / (). (0.7)

Throughout, we will use the notation A < B, which is an inequality up
to a constant: A < ¢B for some constant ¢ > 0. The relevant constants in
all such inequalities may depend on the dimension d, the test function ® or
p, etc, but never on the function f in consideration. The equivalence A ~ B
will mean A < B and B < A simultaneously.

The layout of this paper is the following. In the next section, we briefly
introduce the definition of local Hardy spaces, and the main results in [33].
In Sect. 2, we develop several Fourier multiplier theorems: the first one is the
inhomogeneous version of the Fourier multiplier theorem proved in [37], fitted
to local Hardy spaces; the second is a Hilbertian Fourier multiplier theorem,
in order to deal with the Lusin area square functions. In Sect. 3, we give
the definition of Triebel-Lizorkin spaces, and some immediate properties.
Section 4 is devoted to different characterizations of Triebel-Lizorkin spaces.
The proofs in this section are technical and tedious, based on Calderén—
Zygmund theory and Fourier multiplier theorems. In the last section, we
demonstrate the smooth atomic decompositions of F;’C(Rd,./\/l): we begin
with the space F¢(RY, M) = h{(R?, M), and then extend the result to
general a by a similar argument.

1. Operator-Valued Local Hardy Spaces

Let us review the operator-valued local Hardy spaces studied in [33], and
collect some of the main results there that will be useful in this paper. We
keep the following notation: (M, 7) is a von Neumann algebra with n.s.f.
trace, and N' = Lo (R?)®M is equipped with the tensor trace; letters s,t
are used to denote variables of R?, while letters z, y are reserved for operators
in noncommutative L,-spaces.

Let P be the Poisson kernel on R%:

1
(s =Cd o an
2

(Isl*+1)
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with ¢g the usual normalizing constant and |s| the Euclidean norm of s. Let

P.(s) = 1 P (ﬁ) =cy ﬁ

ed” \e |s|2 + €2

For any function f on R? with values in L;(M) + M, its Poisson integral,
whenever it exists, will be denoted by P.(f):

PN = [ Puls=0f @), (5.2) €RE

The truncated Lusin area square function of f is given by:

1
2 2
dtde
5d—1> ,s € RY

S()(s) = ( | |aepens+

where T is the truncated cone {(t,¢) € R%H: |t| < e < 1}. Denote by Ry the
Hilbert space Lo(R?, H\Ctl%) For 1 < p < oo, define the column local Hardy

space h¢(RY, M) to be
he (R, M) = {f € Li(M;RS) + Lo (MiRS): [ fllne < oo},
where the hf(R?, M)-norm of f is defined by
1f e e, vy = I8z vy + 1P fllz, o)

The row local Hardy space hg(Rd7M) is the space of all f such that f* €
he(R?, M), equipped with the norm || f|luy = [|f*|lns. Moreover, define the
mixture space h,(R%, M) as follows:

h, (RY, M) = hS(R% M) + hl (R4 M) for 1 < p <2
equipped with the sum norm
11 g =0t {19l + WAy f=g + h,g € b (R, M), b € b (RE, M)}

and

hy (R, M) = h (R, M) nhy (R M) for 2 < p < o0
equipped with the intersection norm
11, = s {1 g 1.F g } -
The local analogue of the Littlewood—Paley g-function of f is defined by

G(f)(s) = ( / 1

It is proved in [33] that
[ fllng = llg*(Hllp + [P+ fllp

1

P 2 3
5d5> , s € R4,

ZP.(f)(s)

forall 1 <p < 0.
The dual of h$(R¢, M) is characterized as a local version of bmo space,
defined as follows. For any cube @ C R, we denote its volume by |Q|. Let f €
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Loo(M;RE). The mean value of f over Q is denoted by fg := Jo f(s)ds.

[9]]
Set
1 , >§
— — dt .
(g [ 11— 4a H s M}

||f”brnoC(Rd,M)
(/[ 17
v 1= \Ve
(1.1)

= max<{ sup
Q<1
The local version of bmo spaces is define as
bmo®(RY, M) = {f € Loo(M;RG): || f[bmoe < 00}

Define bmo” (R?, M) to be the space of all f € Lo (M;R}) such that f* €
bmo®(R?, M), with the norm || f[[bmor = [|/*[[bmoc. And bmo(R?, M) is de-
fined as the intersection of bmo®(R%, M) and bmo” (R%, M), equipped with
the intersection norm.

The above Hardy and bmo type spaces are local analogues of the spaces
studied by Mei [18]. They turn out to have similar properties with their non-
local versions, such as duality and interpolation. The following two theorems
are quoted from [33].

Theorem 1.1. We have h§(R?, M)* = bmo®(R¢, M) with equivalent norms.
If 1 < p <2 and q is its conjugate index, then hg(Rd,M)* = hZ(Rd,M) with
equivalent norms.

Theorem 1.2. Let 1 < p < oco. We have
(1) (bmo®(R%, M), h§(R% M)), = h&(R%, M).
(2) (X,Y), = Ly(N), wherer = bmo(R4, M) or Loo(N), and Y =
hl(Rd,j\/l) or Li(N).

1.1. Calderén-Zygmund Theory

The usual Calderén—Zygmund operators which satisfy the Hérmander condi-
tion are not necessarily bounded on local Hardy spaces. In order to guarantee
the boundedness of a Calderén—Zygmund operator on h;(Rd,M), an extra
decay at infinity is imposed on the kernel in [33]. Let K € S’(R%; Ly (M)+M)
coincide on R%\ {0} with a locally integrable L;(M) + M-valued function.
We define the left singular integral operator K¢ associated to K by

K(P)(s) = [ K (s = f @yt
and the right singular integral operator K" associated to K by

K"(f)(s) = » F()K (s —t)dt.

Both K¢(f) and K"(f) are well-defined for sufficiently nice functions f with
values in Ly (M) N M, for instance, for f € S ® (L1(M)N M).

Let bmo§(R%, M) denote the subspace of bmo®(R%, M) consisting of
compactly supported functions. The extra decay of the kernel K given in [33]
is condition (2) in the following lemma.
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Lemma 1.3. Assume that

(1) the Fourier transform of K is bounded: supgcga K (€)||m < o0;
(2) K satisfies a size estimate: there exist Ch and p > 0 such that

1K (s) Vsl = 1

G

(3) K has the Lipschitz reqularity: there exist a constant Co and v > 0 such
that

£
[K (s —1) = K(s)|lm < sza v|s| > 2[t].
Then K¢ is bounded on h$(R*, M) for 1 < p < oo and from bmog(R?, M)
to bmo®(R%, M).
A similar statement also holds for K" and the corresponding row spaces.
1.2. Characterizations

Next, we are going to present the characterizations of local Hardy spaces
obtained in [33], which will play an important role when studying the char-
acterizations of Triebel-Lizorkin spaces in this paper.

The main idea of these characterizations is to replace the Poisson kernel
by good enough Schwartz functions. Let ® be a Schwartz function on R of
vanishing mean, and set ®.(s) = e ?®(2) for positive €. ® is said to be
nondegenerate if:

vE € R\{0} Je >0 s.t. B(c£) #0. (1.2)

Then there exists a Schwartz function ¥ of vanishing mean such that
| oo <1, veern o). (13)
0

Furthermore, we can find two functions ¢, ¢ such that & zZ € Hg(RY), (;AS(O) >
0,7(0) > 0 and

&o@@=1—4 BT T (1.4)

For any f € Li(M;R5) + Loo(M;RG), we deﬁne the local versions of
the conic and radial square functions of f associated to ® by

dtde \ *
s):(//f(IDE*f(s—i-t)F;:l:) ,s€RY,
1 3
9= ([ 1eesfPL)  sere

Fix the four test functions ®, V¥, ¢, as above. The following theorem
is proved in [33].

Theorem 1.4. Let 1 < p < oo and ¢, ® be as above. For any f € L1(M;RG)+
Loo(M;RS), f € hg(Rd,M) if and only if s5(f) € L,(N) and ¢+ f € L,(N)
if and only if 95(f) € Lp(N') and ¢ = f € L,(N). If this is the case, then
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I1fllng ~ llsa(Hllp + 6+ fllp = llge (Nllp + 116 fllp (1.5)

with the relevant constants depending only on d,® and ¢.

We have a discrete version of Theorem 1.4. The square functions s§, and
g% can be discretized as follows:

gz (M) = D125 = ()]

Jj=1

[N

N = [S20 [ ey s

i>1 B(s,279)

Here @, is the inverse Fourier transform of ®(277.). This time, to get a
resolvent of the unit on R?, we need to assume that ® satisfies

VEERN{0} 30<2a<b< oo st. D(e)#0, Ve € (a, b].
Then adapting the proof of [30, p.186], we can find a Schwartz function ¥ of

vanishing mean such that
—+oo

Y B2 =1, VEeRN\{0}. (1.6)
j=—00
Again, there exist two functions ¢ and v such that @,(p\ € HY(RY), 5(0) >
0,74(0) > 0 and

S B2 T(296) + dE)d(€) =1, Ve RS (17)

j=1
Now we fix the pairs (&, ¥) and (¢, ) satistying (1.6) and (1.7).
Theorem 1.5. Let ¢ and ® be test functions as in (1.7) and 1 < p < oo.
Then for any f € Li(M;RG) 4+ Loo(M;RG), f € hi(RY, M) if and only if
sSP(f) € Ly(N) and ¢« f € L,(N) if and only if 37 (f) € Ly(N) and
¢* f € L,(N). Moreover,

1F g 2 1155 (DL, + 16 % flls = llgg” ()l + 16 % £l

with the relevant constants depending only on d,® and ¢.

1.3. Atomic Decomposition
Finally, let us include the atomic decomposition of the local Hardy space
h$(R9, M). Let Q be a cube in R? with |Q| < 1. If |Q| = 1, an h§-atom
associated with @ is a function a € Ly (M; L§(R?)) such that

e suppa C Q;

o 7(Jylals |2ds)2 <|Q| z.
If |Q| < 1, we assume additionally:

e [La g als)ds =0.
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Let h{, ot (R%, M) be the space of all f admitting a representation of the form

f= Z Ajag,
=1

where the a;’s are h{-atoms and A; € C such that Z;‘;l |A;] < co. The above

series converges in the sense of distribution. We equip h{ ,, (R4, M) with the
following norm:

I/

o0 oo
ng,, = inf Z [Ajl: f = Z)\jaj; a;’s are h{ -atoms, A\; € C

j=1 j=1

Similarly, we can define the row and mixture versions. The following theorem
is also proved in [33].

Theorem 1.6. We have h§ ,,(R?, M) = h§(R?, M) with equivalent norms.

Remark 1.7. In the above definition of atoms, we can replace the support of
atoms ) by any bounded multiple of Q.

2. Multiplier Theorems

We are going to develop some Fourier multiplier theorems in this section.
They can be viewed as a special case of Calderéon—Zygmund theory and are
closely related to [7,20]. They will be used to investigate various square func-
tions that characterize the Triebel-Lizorkin spaces. Our presentation follows
closely the argument in Section 4.1 of [37].

Recall again that ¢ is a fixed function satisfying (0.1), g is the inverse
Fourier transform of 1", _, ¢(27%-), and ¢, is the inverse Fourier transform

of ¢(27%.) when k > 0. Moreover, we denote by ¢*) the Fourier transform
of ¢y, for every k € Ny (Ny being the set of nonnegative integers).

2.1. Global Multipliers

Firstly, let us state the following homogeneous version of [37, Theorem 4.1].

Theorem 2.1. Let o0 € R with o > 4. Assume that (¢;)jcz and (p;);cz are
two sequences of functions on R4\{0} such that

supp ¢jp; C {&:277 < ¢ <27}, jeZ
and

sup |5 (27 )| g (may < 0.
JEZ
_3<k<2

Let 1 < p < co. Then for any f € S'(R% Li(M) + M), we have
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> 259%g; % py x I
jez
p

S s oy@ Eelng | | 2ol 2] |
J€

J .
_9<k<2 JEL .

where the constant depends on p, o, d and .

Proof. Without loss of generality, we may take o = 0. It suffices to show that
for any integer K,

1

D 16 % p; fI7 S Sup ;27 Y ollmg |[[ D 165 % fI? ;

)
N

izK _5<h<o izK
== P
(2.1)
with the relevant constant independent of K € Z. To this end, we set
Vimk = ¢;(25), nj—x = p;(2%), and g= f(2").
By easy computation, we have
supp;n; C {2771 <[] <27H'}, V>0,
and
G * by x =20, % pjore % g(25).
This ensures
3 3
. . (p—1)dK . .
Z|¢j*ﬁj*f|2 =27 Z|¢j*77j*g|2 - (22)
j>K 720
P P
Similarly,
: :

B (p—1)dK .
> 1 £ =2 Dlipxgl’) | - (23)

j>K j>0
p p

Moreover, since 1;(2715.) = ¢, ¢ (297K TE.) | we have

sup 5 (27 ) plug = sup 6527 gl g
>0 J>K
—2<k<L2 —2<k<L2
=h= =h= 4 (2.4)
< sup [0y 27 )glus.
JEZ
—3<k<2

Now applying [37, Theorem 4.1] to ¢, p; and g defined above, we obtain

1 1

2 2

>l iy gl S sup [ (27 ellag ||| D I+ gl
320 330 i20 ,
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Putting (2.2), (2.3) and (2.4) into this inequality, we then get (2.1), which
yields Theorem 2.1 by approximation. O

Theorem 2.1 is developed to deal with the multiplier problem of square
functions, and also the multiplier problem of the Hardy spaces H;(Rd,/\/l)
by virtue of their characterizations (see [35]). In order to deal with the cor-
responding problems on the inhomogeneous versions of square functions or
Hardy spaces, we need the following global version of Theorem 2.1. The main
difference is that in the inhomogeneous case, we need a careful analysis of
the convolution kernel near the origin.

Theorem 2.2. Let 1 < p < oo, € R and o > %. Assume that (¢;)j>0 and
(pj)i>0 are two sequences of functions on R? such that

supp (¢;p;) C {€ e R:27H < ¢ <277}, jeN,
supp (opo) C {€ € R%:[¢] < 2}

and

:lil? ||¢j(2j+k')80||Hg(Rd) <oo and |¢o(p © +‘P )”H“ (Re) < O0.
—9<k<2
(2.5)
Then for any Li(M) + M-valued distribution f,

2

Z22ja‘¢3j * pj * f|?
>0
p

< max sup 15275l g, 1o (@ + M) |1z
72J§k§2

> 2%9% 5 f? ,
>0
P

where the constant depends only on p, o, d and ¢.

Proof. This theorem follows easily from its homogeneous version, i.e., Theo-
rem 2.1. Indeed, we can divide |[(32 ;50 2%, * p; * f1?)z ||p into two parts

1

: ;
D 2526 % pj x f1? ~ (| Do 27185 % pj + 112 + lldo * po * fllp
=0 j>1

p p
and treat them separately. Applying Theorem 2.1 to the sequences (¢;) ez,
(pj)jez with ¢; = 0 and p; = 0 for j < 0, we get the estimate of the first
term on the right hand side. The result is
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MBS

(Z 2%%¢; * pj *f|2) S sup 165 (2 F* )l 115 (Z'pﬂ *f] )
p

i>1 —zgkgz j>1 )

The second term ||¢g * po * f]|, is also easy to handle. By the support as-
sumption on ¢gpg, we have

G0 * po* [ =F H(do(0 + M) x po = f.
Hence, i
Iéo * po * fllp < IF " (0(' + @) [11llpo * £

S o (@ + e M)llg Nl 50 * £- O

2.2. Hilbert-Valued Multipliers
In fact, both theorems above deal with Fourier multipliers acting on Hilbert-
valued noncommutative L, spaces (the Hilbert space being ¢5). In this subsec-
tion titled “Hilbert-valued multipliers”, our target is to extend Theorem 2.2 to
the general case where /5 is replaced with more complicated Hilbert spaces.
Assume that we have a sequence of Hilbert spaces H; for every j € Ny,
and denote H = ©72H;. Then an element f € L,(N;H¢) has the form
[ =(f)j>0 with f; € L,(N; HY) for every j. In this case, it still makes sense
to consider the action of the Calderén-Zygmund operator k = (¢;);>0.
Since it will be frequently used in the following, we introduce an ele-
mentary inequality (see [37, Lemma 4.2]):

1ol s mesen) < 11F 1l mg Rase) /Rd(l +Is)7IF ) (s)lds,  (2:6)

where o > %, and the functions f:R? — /5 and g: R? — C satisfy
feHERY ) and [ (14 [)71F (g)(0)lds < oc,
R4

Here HS(R% /45) is the fy-valued Potential Sobolev space of order o. Note
also that ¢5 could be an £5-space on an arbitrary index set, depending on the
problems in consideration.

The following lemma is an analogue of Lemma 4.3 in [37]. The main
difference is that in order to get a Calderén—Zygmund operator which is
bounded on local Hardy or bmo spaces, we need to consider the Littlewood—
Paley decomposition covering the origin.

Lemma 2.3. Let ¢ = (¢;);>0 be a sequence of continuous functions on R%,
viewed as a function from R¢ to ly. For o > ¢ 5, we assume that

def
6l masx {sup 1624 Yol ey 169 s e} < 0. (2)

Let k = (k;)j>0 with kj = F~(¢;). Then k is a Calderén—Zygmund kernel
with values in fs, more precisely,

(1) [kl 2o (rese5) S [I0l]2,05
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@) fps g I llrads 5 162,01
(3) supsera f|gsop k(s =) = k(s)lleds S [|]l2,0-
The relevant constants depend only on ¢, o and d.

Proof. For any ¢ € R? and k > 1, by the Cauchy-Schwarz inequality, we
have

1625 0(©)]lrs = H [ 76 e s

Lo

1

2
< ||¢(2k')<ﬁ||Hg(1Rd;e2) (/(1 + |s|2)_"ds) <
In other words, we have H¢80(27k')||LOO(Rd;52) < |l@]l2,0- Likewise, we also have
||¢<p(O)HLOO(]Rd;g2) < |l¢ll2,0- Thus, by (0.2) and (0.3), we easily deduce that

Kl Lo (rs) S €120
To show the third property of k, we decompose ¢ into

o=> oo

k>0

The convergence of the above series can be proved by a limit procedure of its
partial sums, which is quite formal. By (0.2) and (0.3), we write

o) = g(p*D 4 o) 4 D)0 L g o0 > 0,
Here we make the convention that ¢*) = 0 if k < 0. Then for s € RY,
“Hee™)(s) = F o) + FHeM)(s)
= 2MF g (25) « F 1) (2%s), k=0,
By (2.6), we have

kd
2

( [a+ |2ks|2>“||f1<¢«»<’“>><s>||%2ds) T
]Rd

Notice that if & > 1, we have ¢*)(2*.) = . Thus, if k > 2,

llD(x) (Qk')”Hg(Rd;@z)'

1
||¢(k)(2k')||H§(Rd;€2) < Z ||¢(2k')<ﬂ(k7])(2k‘)HH;(Rd;éz)

j:—l

Z 16257 )p* (2579 | g (mae)

j=—1
1
=Y 162" )¢l g @a) < 3ll6l2.0-
j=—1

For k = 0,1, we treat ¢ (2*-) in the same way:

1601y (2)lrrg Rasea) S N9 llirg @asen) + D 16(27)¢ll g aseny

1=1,2

160) lle1g Rasea) S 169tz (raea) + 16(2) ¢l g (ma:e) < 3l 2.0
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In summary, we obtain

( [+ |2ks|2><’||f1<¢¢<k>><s>||%2ds) T
Rd

kd
2

6

2,0

Thus, by the Cauchy-Schwarz inequality, for any ¢ € R¥\{0} and k > 0, we
have

2

[ e G)lluds 2% 612 ( [_a+ 2’fs|2>-“ds>
s[>l |s[>1t]

< @0t E 7 ol

2,0
(2.8)
Consequently,

[ I 000 = 0 ) s = Dl S D el
s[>

We notice that g — 0 < 0, so the estimate above is good only when 2*[t| > 1.
Otherwise, we need another estimate

FH ™) (s) — F 1 (pp®)) (s — 1)
= F Houmye™ (1 — e0))(s)
=2 F N (py (28) * [F ) = F (@) (- — 251)] (2%s),

where e; (&) = e2™¢t, Thus,

1
2

([ 0+ 2Py 1 0o - 7 op)s - 0l as)

<2% ¢

2.0 2" 1 / (14 [s/2)7 |5 (0)(s — 621)ds
9 3
|2702k|t| (/ dS)

kd
<27 |[ll2,02" ],
where 6 € [0,1]. Then as before, for 2¥|t| < 1, we have

<2% ¢

Je [90(5)627ris~92kt:|

/ 1F (o™ (5) = F (™) (s = 1)llends S 2¥[1][| |20
[s]>2[¢]
Combining the previous estimates, we obtain

sup / k(s — £) — k(s)||e,ds
|s|>2]t|

teRd

<sup » /|'>2|t 1F (6™ (5) = FH (™) (5 — 1)|e,ds

teR? 150

|2,U~

. d_
S ¢ll2,0 sup Y min(2¥[¢], (2[¢])277) < |
teRd k>0
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Finally, the second estimate of k can be deduced from (2.8) by letting
[t| = %:

JRCCIED oy N DI

3 k>0
1y d_
< @2 ¢ll2e S 16120 O
k>0
We keep the notation H = @72, H;. By the above lemma, we can apply

the (local) Calderén—Zygmund theory introduced in Sect. 1, to deduce the
following lemma:

Lemma 2.4. Let 1 < p < 00 and ¢ = (¢;)j>0 be a sequence of continuous
functions on R satisfying (2.7). For any f = (f;)j>0 € Lp(N; HC), we have

1B * fi)zo0llL, wimey S Nbll2oll(f5)z0llL, (;e)s
where the relevant constant depends only on ¢, o, p and d.

Proof. Consider k as a diagonal matrix with diagonal entries (k;);>o deter-

mined by kj = ¢; and f = (fj)j>0 as a column matrix. The associated
Calderén-Zygmund operator is defined on L,(B(H)®N) by

()s) = [ ks =Dt

Now it suffices to show that k is a bounded operator on L, (N; H¢).

We claim that k is bounded from L., (N; H®) into bmo(R?, B(H)@M).
Put K(s) =k(s)®@1p € B( Y@M, for any s € R%. Then we have ||k(s)|¢, >
IkSee = 1K) mgamysan and [Flovire = I fllsgysa- Thus, if we
regard Lo (N; HC) as a subspace of B(H)®N, the claim is equivalent to
saying that K is bounded from L., (N; H¢) into bmo(R¢, B(H)@M).

We first show K is bounded from Lo, (NV; H¢) into bmo®(R?, B(H)@M).
Let Q be a cube in R? centered at c. We decompose f as f = g + h with
g = f]lé, where @ = 2@ is the cube which has the same center as @) and
twice the side length of Q). Set

a= _K(c—1t)f(t)dt.
RNQ
Then
K(f)(s) —a= K(g)(s) + /[K(S —1) = K(c = t)]h(t)dt.

Thus, for @ such that |Q] < 1, we have

@ﬂ /Q K(f) — a*ds < 2(A+ B),
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where

— 1 2
A= ‘Q|/ K () s,
2

~ QI / ’/ K(c—t)]h(t)dt| ds.

The term A is easy to estimate. By Lemma 2.3 and the Plancherel formula

(0.7),

Q< [IR©3OPE = [ 307K Reaee
fg/nK@m%wﬁmﬂm@F@
S/W@ﬁﬁ@ﬁ%ﬁwﬁﬁéwbwﬁ

= QIS o I F1I7 . vt

whence

Al sm@m SIS LNANT e

To estimate B, writing h = (h;);>0, by Lemma 2.3, we get
2

‘ / [K(s — ) — K(c— O)]h(t)dt
S [ NG =0 - K= llpumpud
RINQ
G =) = Kle= Dll )P
RI\Q

S [ ka0 e =Dl [l 1) = e Ol ) Pl

5 H¢||g,cer||QB HYQN S H¢||§,0'Hf||%m(./\/’,H°)
(H)
”e]lce

1Bl smsm < |Q‘/ H/ K(c—t)]h(t)dt

SN2 N7 virre)-

Combining the previous inequalities, we deduce that, for any |Q] < 1

| :
K() - as)

Now we consider the case when |Q| = 1. We have

e 2 - K(h)|?d
|@Am“”“ﬂm/m d“ﬂ@/'(”&

The first term on the right hand side of the above inequality is equal to
the term A, so it remains to estimate the second term. When ¢ € R\Q,

2
ds

B(H)®@M

S 0ll2olFllLwov:me)-
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s € @ and |Q| = 1, we have |s — t| > 1. Then by (2) in Lemma 2.3 and the
Cauchy—Schwarz inequality (0.6), we easily deduce that

= /|K(s—t)h(t)dt :

< [ UK = Ollsansadt [ K = Ol P
RANQ RANQ

2
S I v ( RS t)||z2dt>
2 2

Thus, we have, for any |Q| = 1,

1 3
€L |K<f>|2ds)

Therefore, K is bounded from L., (N; H®) into bmo®(R¢, B(H)@M).
Next we show K is bounded from L, (N; H¢) into bmo” (R?, B(H)@M).
We still use the same decomposition f = g + h, then we obtain

|Q|/| al*?ds < 2(A' + B),

1
Alzi K *Qd
|Q|/| (9)" [2ds,

|Q|// (s —t) = K(c —t)h(®)]"dt

The estimate of B’ can be reduced to that of B. Indeed,

1B 5(mysm < |Q|/ H/ K(c—1t))h(t)]*dt

|Q|/ H/ K(c—1t)]h(t)dt i

However, for A’, we need a different argument. A’ can be viewed as a bounded
operator on H @ Ly(M). So

e W AL L e

where the supremum runs over all b in the unit ball of H ® Ly(M). By the
Plancherel formula (0.7), we have

MO Plrsscands = [ ((0)(5)b ko)) onards

oo (NH<)-

where

2
ds.

2

ds
B(H)®M

ds
B(H)®&M

< / (KOFE) b.RETE) b) 1o .
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Let diag(f;); be the diagonal matrix in B(H)®N with entries in B(H;)QN.
By the Cauchy—Schwarz inequality, the Plancherel formula (0.7) and
Lemma 2.3, we continue the estimate above as

/ (KOFE) b KEOFTE) B o rairn
< sup (O I, / (G(E) b, 3(E) D) sroraayde

<16l2. /Q | diag(f;);(5) bll2re L ny 5

S |Q|||¢Hg,0” diag(fj)j||%3(H)®N||b”%[®L2(M)
<1QUISIZ M FIE o A

whence,

1A Beymm S NI LM ANT L avirre-

Following the estimate of ﬁ fQ |K(f)(s)|?ds, we get, when |Q| = 1,

1 *12 !/ 1 *|2
- A L9~
|Q|/Q|K(f) 2ds < 2 +2|Q‘/|K(h) 2ds

<2A’+2|Q/ I K (h ||B(H)®M

S H(b”g,a”fHLoo(/\/;HC)'

Therefore, K is bounded from L, (N; H®) into bmo” (R, B(H)@M).

In summary, we have proved that k is bounded from L. (N; H€) into
bmo(R?, B(H)®&M). It is also clear that k is bounded from Lo(N; H¢) into
Lo (B(H)®N), then by the interpolation in Theorem 1.2, k is bounded from
L,(N;H®) into L,(B(H)®N) for any 2 < p < oo. The case 1 < p < 2 is
obtained by duality. O

Note that when all H; degenerate to one dimensional Hilbert space,
then H = {5, the above lemma gives a sufficient condition for (¢;);>¢ being
a bounded Fourier multiplier on L,(N;¢5). So we can also use Lemmas 2.3
and 2.4 to prove Theorem 2.2 by an argument similar to the proof of [37,
Theorem 4.1]; details are left to the reader. But here our target is to extend
Theorem 2.2 to a more general setting.
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Theorem 2.5. Let p, v, 0, (¢;);>0 and (p;j)j>0 be the same as in Theorem 2.2.
Then, for any f € S'(R%; Li(M) + M),

S )2ﬂ2a+d>/f Gy FC )Pt
>0 B(0,2-9)
P

< max sup 15 (275l g, 1o (@ + ™M) g
72]§k§2

Nl

St [ e pernpar) |
>0 B(0,2-9)
p

where the constant depends only on p, o, d and ¢.

Proof. Set Hj = Ly(B(0,277),27%dt) and H = ®32,H;. So we have

2

S jzﬂ2a+d>J/ Gy F( 4 1)t
=0 B(0,279)
P

= H(2jaqgj * [)j * f( + .))jHLP(N;HC) .

Let ‘ ‘ ‘

G =85V + o) + o0t > 2,

G =d1(p+ e +?),

Go=0(¢” +¢) and ¢ =0if j <0.
By the support assumption on ¢;p;, we have that ¢;p; = (jp;. So for any
feS'RELi(M) + M),

Gjx pjx f=Cj*pj*f, j€No.

Now we show that ¢ = ((;);>0 satisfies (2.7) with ( instead of ¢. Indeed, by
the support assumption of ¢, the sequence ((2F-)p = ((j (2k~)<p)j>0 has at

most five nonzero terms of indices j with k — 2 < j < k 4 2. Thus for any
k € Ny,

k+2
1625 ellirg masey < D 16525 )l -

j=k—2
Moreover, by (2.6), we have
162 )ellzg < 165 (2% )ellmg, k—2<j<k+2.
Therefore, the condition (2.5) yields

sup 1C2* )l g asen) S sup 6527l g + lgo (0 + W) mg < oo,
= J=
—3<k<2
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where the relevant constant depends only on o, ¢ and d. In a similar way, we
have

||<<P(O)HH§(W;42) < Z 160 | g
0<j<2
S osw 165275 ) ol g + |0 (9 + M)l g < oo.
—2]§k§2
Now applying Lemma 2.4 to f; = 2j°‘ﬁj * f(- +-), and (; instead of ¢;, we
conclude the theorem. g

The above theorem will be useful when we consider the conic square
function characterizations of local Hardy spaces and inhomogeneous Triebel—-
Lizorkin spaces in Sect. 4.

2.3. Multipliers on h;

Note that both Theorems 2.2 and 2.5 do not deal with the case p = 1. So we
include the corresponding Fourier multiplier results for hy with 1 <p <2in
the following. When the Hilbert space H degenerates to {5, we have

Lemma 2.6. Let 1 < p < 2 and ¢ = (¢;);>0 be a sequence of continuous
functions on RY satisfying (2.7). For f € hg(Rd,M),

2

> 1y f1? < |19ll2,0

Jj=0

[ FlIng -

P
The relevant constant depends only on ¢, o and d.

Proof. Now we view k = (kj)j>0 = (¢;);>0 as a column matrix and the
associated Calderén—Zygmund operator k is defined on L, (N):

k(f)(s) = /R k(s —t)f(t)dt, VsecR%

Thus k maps function with values in L, (M) to sequence of functions. Then we
have to show that k is bounded from h (R, M) to L,(N;£5) for 1 < p < 2.
The case p = 2 is trivial, so by interpolation, it suffices to consider the case
p = 1. To prove that k is bounded from h§(R% M) to Ly (N;¢5), passing
to the dual spaces, it is equal to proving that the adjoint of k is bounded
from L. (N;€5) to bmo®(R% M). We keep all the notation in the proof of
Lemma 2.4. For any finite sequence f = (f;);>0 (viewed as a column matrix),
the adjoint of k is defined by

(6 = [ SRt 0f0d

where k(s) = k(—s)* (so it is a row matrix). Put K(s) = k(s) ® 1. In
this case, [ K(f)llbmoc @t a1) = K (F)llbmos e, 5(2,)@a1)- Then we apply the
estimates used in Lemma 2.4 by replacing K with K. It follows that k*
is bounded from L., (N;/5) into bmo®(R?, M), so the desired assertion is
proved. O
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The next theorem is a complement of Theorem 2.2 for the case p = 1,
which relies heavily on the characterization of h§(R¢ M) given in
Theorem 1.5.

Theorem 2.7. We keep the assumption in Theorem 2.2. Assume additionally
that for any j > 1, p; = p(279-) for some Schwartz function p with supp p C
{&:271 < €] <2} and p(€) > 0 for any 271 < |€] < 2, and that supp pg C
{&:1¢] <2} and po(€) > 0 for any |€| < 2. Then for f € S8'(RY; Li(M)+ M),
we have

> 22w py x f)?
j=0
1

do(” + @(1))’

< max sup H¢ 27tk ('OHH"’ HY
72<k<2

[N

ZQQja|ﬁj % f|2
Jj=0
1
Proof. By the assumptions of p and pg, we can select a Schwartz function p
with the same properties as p and a Schwartz function py satisfying the same
conditions as pg, such that

Zp F27E) + po(€)po(6) =1, VE R

Let ¥; = (I_op)(2774), \T/j = (Inp)(277-) for j > 1 and Wy = J_opo, Vo =
Japo. We have

Z )+ Uo(E) (&) =1, VEeRL

Applying Theorem 1.5 (the equivalence HgfI;D(f)Hp + ¢ fllp = [Ifllng) to
g = Jf with the text functions in the above identity, we get

2

lglng = || | D 1¥; #gl?

720
1

Now let us show the following equivalence:

2
> jxgl® > 25+ fI?

720 720
1 1

Nl

%
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It is easy to see that Wg * g = o * f and 2095 % f = \ilj x I f, so it suffices
to prove

PR A i DD [ T fP? . (2.9)
j>1 j>1
1 1

First, let us consider the case o > 0. By [29, Lemma 3.2.2], there exists a
finite measure p, on R? such that

€1" = Aa () (1 + €)%
Thus, we have
Uy e IOF = o Uy JF, V5> 1.

This implies that

DL ZEP ik SIS 1, w2 P2
jz1 j=>1
1 1

M
[N

Then, we move to the case o < 0. Also by [29, Lemma 3.2.2], there exist two
finite measures v, and )\, on R? such that

(14 1€)7F =D () + €] Aa(E).

Let (¢r)rez be the homogeneous resolution of the unit defined in (0.4). Tt
follows that

a

(1+)¢)% B
e 2 (e |5|a

k>0

Zsﬂk +2a(€) Y k(©)

k>0 k>0
Thus, by the support assumption of p, we have
Uk I9f = wy x W % JOf,

with

wa =Vax Y F  Ta@r) + Aax F 1 Y 0

k>0 k>0

Both 713,50 ¢k) and >, o F (1o k) are finite measures. Since >, < ¢k
=1-> 1o &, and > k<0 ¢, is a Schwartz function, then F X0 90;) =
dg — .7-"1(Zk<0 ¥k ) is a finite measure, where dy denotes the Dirac measure
at the origin. Moreover, it is known in [37, Lemma 3.4] that | F~1(I,¢p)|1 <
2k Then we have

S Logi ||| £ 2% < o0
k>0 . k=0
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Therefore, w, is a finite measure on R%. Thus,

2

L ZEP ik SIS 1« o P2
j=1 i>1
1 1

Similarly, for @ € R, we can prove that

Nl

2

PR S ST ZEYS
j=1 i>1
1 1

In summary, we have proved (2.9), which yields that

N

lgllng = 1177 Fllng = || { D 22155 * f1?
>0
1

Now define a new sequence ¢ = ((;);>0 by setting ¢; = 29%I_,¢;p; for
j > 1 and CO = J—a¢0p0- Then
(rg =20 % pjxI"%g and (oxg = do* po* [
Repeating the argument for (2.9) with ¢ = ({;);>0 instead of ¥ = (¥;),>0,
we get

1
2 2
D 2%, 5 pj  f)? = [ DoIG =151
j=0 j=0
1 1
2
~ ZM;‘ *g|?
j=0
1

Then, we apply Lemma 2.6 to g with this new ( instead of ¢ to get

1

2 2

> [G # gl S ¢ll2.ollglng ~ I¢20 ||| 22155 * £17
j=0 i>0
1 1

It suffices to estimate the term ||(||2,». By the definition of { = (¢;),>, we
have - -

sup (|27 )ollmg S sup l6;(277F)ellug,

j>1 i>1

—2<k<2 —2<k<2

160 @ + M) lrg S leo(@@ + ©™M)]lug-
So we can use the same argument at the end of the proof of Theorem 2.5, to get

[Cllr S max 3 sup- (10527 lag o (¢ + ) llmg
—2j§k§2

Combining the above inequalities, we get the desired assertion. 0
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When £, is replaced by H = @52H; with H; = Ly(B(0,277),2/%dt),
the counterpart of Lemma 2.6 is the following:

Lemma 2.8. Let ¢ = (¢;)j>0 be a sequence of continuous functions on R¢
satisfying (2.7). Then for 1 <p <2 and f € hg(Rd,M),

St [ a4 0Par] | S lolalflhy

>0 B(0,2-4)
p

The relevant constant depends only on ¢, o and d.

Proof. The proof of this lemma is similar to that of Lemma 2.6; let us point

out the necessary change. Consider the H-valued Calderéon—Zygmund opera-
tor k defined on L, (N) given by

k(£)i(-+1) = ¢+ (- +1).

The lemma is then reduced to showing that k is bounded from hg(Rd,M)
to L,(N;H¢) for 1 < p < 2. Since each H; is a normalized Hilbert space,
such that the constant function 1 has Hilbert norm one, the kernel estimates
of our k here are the same as the ones in Lemma 2.4. So we can repeat the
proof in Lemmas 2.4 and 2.6. The desired assertion follows. g

Combining the above lemma with Theorem 1.5 (||sg” (f)l|z, ) + [|¢ *
fllp = [ fllng), we can deduce the analogue of Theorem 2.7 in the setting
H = &2 H; with Hj = Lo (B(0,277),294dt). Its proof is similar to that of
Theorem 2.7, and is left to the reader.

Theorem 2.9. Keep the assumption in Theorem 2.5 and assume additionally
that for any j > 1, p; = p(277) for some Schwartz function with supp p C
{&:271 < €] < 2} and p(&) > 0 for any 271 < €] < 2, and that supp py C
{€:1€] <2} and po(&) > 0 for any |€| < 2. Then for any f € S'(R% Ly(M) +
M);

N

S [y g+ 0P

§>0 B(0,279)

Smax§ o sup 16, (27 )l g, @0 (0! + M)l 1g
—2j§k§2

S [ s oPar
>0 B(0,2-79)
1
This theorem fills the gap of p = 1 left by Theorem 2.5. Both of them
will be useful when we consider the conic square functions of inhomogeneous
Triebel-Lizorkin spaces in Sect. 4.
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3. Operator-Valued Triebel-Lizorkin Spaces

In this section, we give the definition of operator-valued Triebel-Lizorkin
spaces, and then prove some basic properties of them. Among the others,
we connect operator-valued Triebel-Lizorkin spaces with local Hardy spaces
introduced in [33] via Bessel potentials. By this connection, we are able to
deduce the duality and the complex interpolation of Triebel-Lizorkin spaces.
We also show that for a > 0 the F{"¢(R% M)-norm is the sum of two homo-
geneous norms.

3.1. Definitions and Basic Properties

Recall that ¢ is a Schwartz function satisfying (0.1). For each j € N, ¢; is the
function whose Fourier transform is equal to ¢(277+), and ¢y is the function
whose Fourier transform is equal to 1 -3+, ©(279+). Moreover, the Fourier

transform of ¢; is denoted by ) for j € No.
Definition 3.1. Let 1 < p < oo and a € R.
(1) The column Triebel-Lizorkin space F&¢(R%, M) is defined by

FeREM) = {f € S'RY Li(M) + M): || fllpge < o0},

where

£ llpee = ||| D27 ; * fI
>0
p

(2) The row space F;”(Rd, M) consists of all f such that f* F;"C(Rd, M),
equipped with the norm || f[| por = || f*[| peoe.
(3) The mixture space F}! (R4, M) is defined to be

Foc(RY For(RY if 1<p<2
F;(Rd,M):{ Z;C< d7M)+ I;T( daM> 1 SpP>

Fe(RE, M) N ERT (RE, M) if 2<p<oo,
equipped with

Ifll o = inf{||gllpee + |hllper: f=g+h} i 1<p<2
o (madlf e Il if 2<p<oo.

In the sequel, we focus on the study of the column Triebel-Lizorkin
spaces. All results obtained in the rest of this paper also admit the row
versions. The following proposition shows that F*“-norm is independent of
the choice of the function ¢ satisfying (0.1).

Proposition 3.2. Let 1) be another Schwartz function satisfying the same con-
dition (0.1) as . For each j € N, let ¢; be the function whose Fourier trans-
form is equal to 1(277+), and let 1y be the function whose Fourier transform
is equal to 1 —3 .+, ¥(277.). Then

[ Fllpee m ||| D27y + f1
>0
p
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Proof. For any f € S'(R%; L1(M)+ M), by the support assumption of 1) and
v, we have, for any j > 0,

1
Gix = bjxprps*f,

k=—1
with the convention ¢_1 = 0. Thus by Theorems 2.2 and 2.7,

2

> 2%y, « fI?
7>0
P

1 2

< D25y * oy fI

k=—1|| \j>0
p

Smax{ sup ||w<2’“->so||Hg,||wo<so<0>+«><l>>|Hg}
_2<k<2

2

< (St e s

Jj=0
P
3
S 290, = £1?
j=0
P
Changing the role of ¢ and 1, we get the reverse inequality. 0

Proposition 3.3. Let 1 <p < oo and o € R. Then
(1) Eyc(R* M) is a Banach space.
(2) Fe(RY, M) C FPE(RYM) if a > 6.
(3) F¢(R*, M) = h$(R?%, M) with equivalent norms.

Proof. (1) Let {f;} be a Cauchy sequence in F¢(R? M). Then, the se-
quence {a;} with a; = (o * fi,...,27%p; * f;,...) is also a Cauchy se-
quence in L,(N;¢5(Np)). Thus, a; converges to a function f = (fY,...,
f7,...) in Ly(WNV;45(Np)). Formally we take

F=Y_r. (3.1)
>0
Since for each j € N, supp}:} C {&2971 < |¢] < 2771} and supp ?6 C
{€:1€| < 2}, the series (3.1) converges in S'(R%; L, (M)). Let p; = 0 if j < 0.
By the support assumption of ¢, when i — oo, we get
1 1
pixfi= Y enxpixfim Y @ixfF=pxf

k=j—1 k=j—1
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which implies that f7 = 2/%; « f, for any j > 0. Thus, f € F&¢(R4, M)
and {fi} converges to f in F¢(R* M).

(2) is obvious.

(3) Tt is easy to see that any ¢ satisfying (0.1) also satisfies (1.6). Then by

the discrete characterization of hy (R, M) given in Theorem 1.5, we get
the desired assertion. 0

Given a € Ry, we define D; (&) = (2mi&)* for ¢ € R?, and D¢ to
be the Fourier multiplier with symbol D; ,(§) on Triebel-Lizorkin spaces
F;"C(Rd,./\/l). We set D, = Diq, ...Dgq4, and D* = Di* ... Dy for any
a=(ai,...,aq) € RL. Note that if a is a positive integer, D¢ = 9%, so there
does not exist any conflict of notation. The operator D® can be viewed as
a fractional extension of partial derivatives. The following is the so-called
lifting (or reduction) property of Triebel-Lizorkin spaces.

Proposition 3.4. Let 1 < p < oo and a € R.

(1) For any B € R, JP is an isomorphism between F2c(RY, M) and Fpo"ﬁ’C
(R4, M). In particular, J® is an isomorphism between F;’C(Rd, M) and
he(RY, M).

(2) Let 8 > 0. Then f € F;‘*C(Rd,/\/l) if and only if o * [ € Ly(N) and
Diﬂf € Fp“_ﬁ’c(]Rd,./\/l) foralli=1,...,d. Moreover, in this case,

d
1F g = o * fllp + D 1DF Fll e

i=1

Proof. (1) Let f € F;"’C(Rd, M). Applying Theorems 2.2 and 2.7 with p = ¢,
we obtain

172 Fll e = || [ 32 227, 5 17 412
j=0
P
Smax sup 297102 )pllg, (e + D)l

J>
—3<k<2

Nl

> 25y % £

720
P

3.2
It is easy to check that all partial derivatives of 2777.J5(27%.) of order( 1682
than or equal to [o] + 1 are bounded uniformly in j > 1 and =2 < k < 2,
and that Jg(p@ + o) € HZ(R?). Thus ||Jﬁf||F;,ﬁ,u S llgge. So JP is
continuous from F¢(R%, M) to F;‘fﬁ’c(Rd, M), and its inverse J 7 is also
continuous from F¢~7¢(R%, M) to F5e(R4, M).
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(2) If we take o0 € (4,8 + £), then we have ||D; go|lmg < oo and

| D; gellmg < oo. Replacing J? by D? in (3.2), we obtain that, for any
i=1,....d,

1D} fll po-s.e S 11fllpgoe,

which implies immediately that

d
oo * fllp + Y ID7 fllgg-s.e S UF e

i=1

To show the reverse inequality, we choose a nonnegative infinitely differen-

tiable function y on R such that x(s) = 0 if |s| < ﬁ and x(s) = 1 if
|s| > ﬁ. Fori=1,...,d, we define y; on R¢ as follows:
1 x(&)l&l°
xi(€)

T XEDE F -+ x(Ea)lEal? (2mig)P

whenever the first denominator is positive, say, when || > 1. Then for any
J > 1, xip; is a well-defined infinitely differentiable function on R\ {¢:¢; =
0} and

d
W) =" xiDipp!.
=1

Then by Theorem 2.1, we have

1

2

d
£ llmge < oo * Fllp + Y| | D22 Ixi = ;= D fI?

i=1 || \j>1
p
1
d 2
< Z sup 2jﬁ||Xi(2j+k')<PHHg 222j(a7ﬁ)|% % Diﬂf|2
=1 —2ngk1§2 gzl ,
+ lleo * fllp-
However,
2811x: (27 )l g (may = 1164(2° )¢l g (ra)
where
1 X(276)&[°

#i(§)

T X))+ -+ X(PE)ElP  (2mi,)P

Since all partial derivatives of ¢;p(2"-), of order less than a fixed integer,
are bounded uniformly in j, k and i, and the norm of ¢;¢(2%-) in Hg(RY) is
bounded from above by a constant independent of j, k and i. Then we deduce
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N

d
Il mge < llpo s Fllp + > ||| D22 ; « DY £

i=1 j>1
P
d
< ||900*f||p+ZHDzﬁf”Fg—Bc O
=1

Definition 3.5. For a € R, we define F¢(R% M) as the space of all f €
S'(R%; M) such that

©o * flla + sup / 221% p % f(s)|?ds < 00.

lel< ]> log, (1(Q))

We endow the space F.%¢(R?, M) with the norm:
1
2

Ifllrze = oo v+ swp | o [ 30 9%l p(o)fds

Q<1 Q j>—log, (I(Q))

Proposition 3.6. Let 1 < p < o0, q be its conjugate index and o € R. Then
the dual space of F;"C(Rd,/\/l) coincides isomorphically with Fq_o‘vc(Rd,M).

Proof. First, we show that J< is an isomorphism between F¢(R?, M) and
bmo®(R¢, M). To this end, we use the discrete Carleson characterization of
bmo®(R?, M) in [33, Corollary 5.13]:

%

o =6+ Flv+ s oo [ 57 (e fias) 33

|| Q j>—10g,(1(Q))

where ® € S(RY) and ¢ € HY(R?) satisfying (1.7). By taking ¢ = o and
b = J Y, we apply (3.3) to Jf:

||JOtbemoC
~ ligo+ Fl + sup | 2 / 3 I(J’”‘so)j*(J“f)(s)Ist
lQI<1 Q j>_log,(I(Q M
— llgo * flla + sup / 2290, + f(s)|ds
o Fl+ swp |12 3 ;% ()]

lQl< j> log, (1(Q))

= ”fHF:o’C‘

Since J® is also an isomorphism between F¢(R?, M) and h(R?, M) for any
1 < p < oo, by the h§-bmo® duality and the hy-hg duality in Theorem 1.1,
we see that F;’C(Rd,./\/l)* = Fq_o‘vc(]Rd,M) with equivalent norms. O
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3.2. Interpolation

Now we indicate a complex interpolation result of Triebel-Lizorkin spaces.
It is deduced from the interpolation of local Hardy and bmo spaces in Theo-
rem 1.2, and the boundedness of complex order Bessel potentials on them.

Proposition 3.7. Let ag,a1 € R and 1 < p < co. Then

=F°(RYM), a= (1 — 1) ap+ 2.

p p
Proof. Let f € F;"C(Rd,/\/l). By Proposition 3.4, we have J¢f € hg(Rd,M).
Therefore, according to Theorem 1.2 (1), there exists a continuous function
on the strip {z € C:0 < Rez < 1}, analytic in the interior, such that J*f =
F(3) € hy(R, M) and

(Fsee(RY, M), F A (RY, M)

=

sup || F(it)[[bmos < 00 and  sup || F(1 4+ it)[[ne < co.
teR teR

We consider Bessel potentials of complex order. For z € C, define J,(§) =
(14 [£]?)2, and J* to be the associated Fourier multiplier. We set

F(z) = e 3)" J-(U-mao—zan ).
For any t € R,

|F ()| e m €™ o [ U0 F(it) i
and

|F (1458 e e ™" FAT 0= P(1 4 i8) .

We claim that J is a bounded Fourier multiplier on h§(R?, M), so by duality,
it is bounded on bmo®(R%, M) too. Therefore, we will have

sup ||13(it)||F;0>c <oo and supl|/F(1+ it)[| peree < 0o
teR teR

This will imply that f = F(1) € (F2o°(R%, M), F{* (R4, M)) , . Hence,

=

EC(RE, M) C (FEo¢(RY M), FY4(RY,M))

b
By duality, we will get the reverse inclusion for the Calderén’s second inter-
polation (-, )% Then by the inclusion (-,-): C (-, )% between two kinds of
complex interpolations (see [2, Theorem 4.%.1]), we will obtain the desired
assertion.

Now, we prove the claim. First, we easily check that Ji; is d-times dif-
ferentiable on R?\{0}, and for any m € N¢ and |m/|; < d, we have

sup {[¢]"1 D™ e (€)]: € # 0} < (1+ ).
Next, we check that (with Ji;(2¥¢) = (1 + |2k£‘2)%)

e A2 )ellmg S QI and (6@ + D)y S 0L+ 1)
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By (3) in Proposition 3.3, if we take (p;);>0 to be the Littlewood-Paley
decomposition on R? satisfying (0.2) and (0.3), we have

2

1T fllng

Q

> ik g% fI?

j20
1

and

1F s =~ || { D Ly * f1

Jj=0

1
Then, we apply Theorem 2.7 with p; = ¢;, ¢;(27-) = Jy,and a =0, 0 = d,

177 fllng < max {526}322 (25l g | Toe (01 + 80(1))||Hg} I1f lIng

S @+ s

h§- U

Remark 3.8. The real interpolation of the couple (F%¢(R?, M), Fi"“(R%, M))
follows easily from that of Hardy spaces (see Theorem 1.2) and Proposi-
tion 3.4. But if a; # ag, the real interpolation of (FZ¢(RY, M), F[*°
(Rd,/\/l)) will give Besov type spaces. We will not consider this problem
in this paper, and refer the reader to [37] for similar results on homogeneous
Triebel-Lizorkin (and Besov) spaces.

3.3. Triebel-Lizorkin Spaces with a > 0

The following result shows that when a > 0, the F}"(R? M)-norm can be
rewritten as the sum of two homogeneous norms. Recall that for a fixed
Schwartz function ¢ in (0.1), the functions ¢;’s determined by aj(f) =
©(279€), j € Z give a homogeneous Littlewood-Paley decomposition on RY
satisfying (0.4).

Proposition 3.9. Let a > 0. If 1 < p < o0, then

[N

—+o0

I £llmge = oo Fllp + ||| D] 271, = £1? , VfeFXR,M).
7w P
If1<p<2,
o !
fllmge = M fllp+ ||| D 2%%1e; * fI? , VfeFRLM).
i

P
Proof. Firstly, we prove the first equivalence. By the definition of the F;"¢-
norm, it is obvious that

1
2

+oo
roe Slleox flp+ ||| DD 2%9%@ # 17

j=—o00

/]

P
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To prove the reverse inequality, it suffices to show:

2

N

0
> 29y £

J=—00

+oo
S lleo# fllp +{[ | D 271e; % f17
j=1
p p

By the support assumption of ¢, we have p(®) = 1 for any |¢| < 1. Thus,
when j < 0,

p(27) = (27 ).
Then

@jxf=jxpoxf. (3.4)
By the triangle inequality, (3.4) and Xiong et al. [36, Lemma 1.7], we obtain

2

0
> 2% f)?

j=—o0
p
—1

S Z 2125 % o * fllp + oo * fllp

j=—o0

-1
S D 2%gslllleo * fllp + [leleo + o1+ @2) * fll,
j=—00

2

0 +oo
S Y 2o fllp+ ||| D020y £
j=—00 j=1
p

2

“+oo
Slivo s fllp+ ||| D22 les + £17
j=1
p
Therefore, we have proved that [|¢g * f||, + ||( ;—:; 220%| (0 * f\Q)%Hp gives
rise to an equivalent norm on F¢(R%, M) when a > 0.
Now let us deal with the second equivalence. For any 1 < p < 2 and a >
0, we have F¢(R%, M) C h&(R?, M) C Ly(N). Therefore || f|l, < || f]lmee.
Combined with the equivalence obtained above, we see that

2

+o0
£l + || D] 227215 * fI? S fll e
j=—00
P

The reverse inequality can be easily deduced by the fact that ||¢o * fl, <
lleoll1]l.flp-

We also have a continuous counterpart of Proposition 3.9. For any € > 0,
we define p. = F~1(p(e")).
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Corollary 3.10. Let 1 <p <2 and a > 0. Then, for any f € F5¢(R% M),

Oo—za « o de
([Teteenn 6)

1l e = [1fllp +

p

4. Characterizations

In this section we give two kinds of characterizations of the Triebel-Lizorkin
spaces defined previously: one is done by directly replacing the function ¢
in Definition 3.1 by more general convolution kernels; the other is described
by Lusin square functions. Since the local Hardy spaces are included in the
family of inhomogeneous Triebel-Lizorkin spaces, these two characterizations
can be seen as extensions as well as improvements of those in [33] for local
Hardy spaces, listed in Theorems 1.4 and 1.5. The multiplier theorems in
Sect. 2 will play a crucial role in this section.

4.1. General Characterizations

We have seen in Sect. 3.1 that the definition of Triebel-Lizorkin spaces is
independent of the choice of ¢ satisfying (0.1). In this section, we will show
that this kernel is not even necessarily a Schwartz function.

Let 0 > % and @) ® be two complex-valued infinitely differentiable
functions defined respectively on R% and R%\ {0}, which satisfy

{ BO© >0 if ¢ <2, 1)
Supgery, 27012 (2% )¢l ng < oo,
and

@) >0 if 3 <[¢[<2,

SUDjeN, 2_m”||‘I’(2]€')<PHH5 < 00, (4.2)

Joa(L+|s2)7|F 1 (@O I_4,)(s)|ds < 0.

Recall that here I_,, () is the symbol of the Riesz potential I~%1.
Let ®U) = ®(277.) for j > 1, and ®; be the function whose Fourier
transform is equal to ®U) for any j € Ny.

Theorem 4.1. Let 1 < p < oo and a € R. Assume that oy < a < aq,
a1 > 0 and ®O), & satisfy conditions (4.1) and (4.2) respectively. Then for
any f € 8'(R%; Ly(M) + M), we have

1f e ||| D222, = £ : (4.3)

Jj=0
P

where the relevant constants are independent of f.

Proof. We follow the pattern of the proof of [37, Theorem 4.17]. Denote the
norm on the right hand side of (4.3) by Hf”F;f
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Step 1 Let ¢, = 0 (and so is p(®)) if k < 0. Given a positive integer K,
for any j € Ny, we write

K-1 00
o) = Z W) pli+k) 4 Z ) pth),

k=—o0 k=K
Then
(pj*f: Z (I)j*(pj+k*f+zq>j*(pj+k*f. (44)
k<K—1 k> K

Temporarily we take for granted that the second series is convergent not only
in §'(R%; Ly (M) 4+ M) but also in F¢(R%, M), which is to be settled up in
the last step. Then we obtain

£l < T+ T4 111,

where

I= Z Z223a‘q>J*@J+k*f|2 s
k<K-1 j>1
p

M= 3 @0+ @t flps

k<K—1
1
2
m= 3 |20, gy £
k>K || \j>0

P
The term IT is easy to deal with. By (0.5) and (4.1), we obtain

K—-1 K-1
D @0 # ok fllp = D [P0 * (9r-1 + @k + Prs1) * x * flp
k=0 k=0
K-1
SO llew * Fllpli®o * (r—1 + x + vrs1) 1
k=0
K-1
S sup 2_ka0”@(0)(2k')§0”]{§ Z Qk(ao_a)HQkaSDk % pr
keNp k=0
S Ck |l fllegee-

Let us treat the terms I and III separately. By the support assumption
of ¢*) and the property that it is equal to 1 when |¢] < 1, for k < K — 1, we
have

D& (2-K

B(Ep(e) = T L) s
= 2"p(€)pM(€),

where 1, p are defined by

(&) (27K¢)

n(€) = €

and  p(£) = [€["* @(£).
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Let nU) = n(277.), j € Z. For j > 1, define n; = F~'(n\9)). Then for any
7 > 1, we have

(I)] * @j—i—k * f = 2k:a177j X Pj+k * f

Now we are ready to estimate I. Applying Theorems 2.2 and 2.7 twice, we get

1
2

T= Y 2o [N 0200 s pjyy o f?

k<K—1 i>1
P
3
= Y 2Tl Y 0¥ kg PP
E<K—1 J>kt1
P
< k(aa—a) =B (o) 1 Y[ k=0 -
S 3 2 max {In O + o) g, s Il |
k<K—1
2
D 2% p;x f?
>0
p
< k(a1 —a) =R (o) 4 Y[ (k=) -
ng(:_l? maX{lln (¢ +¢")llng, max |In wIIHz}

2

e { ||, (¢ + 00 g 1anpllag § || | D 2925 + 112

j=0
P
— k(o —a) (—k)(, ~(0) (1) - (—k—20) .
= > 2 maX{lln (@ + ¢ ), max n @IIHQ}
k<K—1 ==
mnax { o (0 + D)z ITas ollmg J 115 e
(4.6)

Let us deal with all the factors in the last term of the above inequal-
ity. Firstly, when a; = 0, it is obvious that I, ¢ € H§(R?) and I, (¢ +
o) € HZ(R?Y). Secondly, we treat the case oy > 0. First, it is easy to
see that ||In,¢|lmg < oo. Next, we deal with the term I, (¢ + o),
which can be reduced to Ialcp(o) by dilation. Let N be a positive integer
such that «; > <. If the dimension d is odd, we consider the function
F(z) = ez ans) ]2 =n (143250 which is continuous on the strip
{#z € C:0 < Re(z) < 1}, and analytic in the interior. A direct computation

el

shows that sup,cp ||F(it)||H2d,% < oo and sup,cp ||F(1—|—it)||H2%+% < 00.
- 141 1
Then for § = %ﬁ > 3, we have

d_
2

1 4,1
F(0) = I, 0% € HS(RY) = (Hy *(RY), H " (RY),,
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for some o > 4. If d is even, set F(2) = ezmaw)* g Nerz=+3 o(0) We can also
check that sup;cp [|[F'(it)|| 4 < oo, and that sup,cg [|[F'(1+it)|| 4, < oo.
H2 H2

Then for 0§ = ﬁ, we have

F(O) = Lo € HE T ) = (1 (00, ]V (RY)
Thus, for any a; > 0, we can always choose a positive ¢ > 2 such that
I, ¢\ € Hg (RY). Finally, we have to estimate ||n=") || gg and ||n(=F) )| ¢
uniformly in &, which will yield the convergence of the last sum in (4.6) by
dilation again. To this end, note that by (4.2), 7 is integrable on R, then we
use the Cauchy—Schwarz inequality in the following way:

Jf‘l(n“’”so)(s)\2 = /R A(6F (@) (s — 25)dt

d
<l [ 0] 177 0)s ~ 2P
For k < K — 1, we have
I lls = [ 0+ 1P D)) Ps
<l [ 417 [ 0] 177 o) s - 250 Pt

< Jlitlh / (1+ 127 ()
Rd
2

X dsdt

/ (L+]s — 22)° | F L ()(s — 2°0)
Rd

<2y [ PO [ 0+ 15271 ) ) P

< Conorc [ [+ 1PV ION)

(4.7)
The other term [|n(=F || o is dealt with in the same way.
Going back to the estimate of I, by the previous inequalities, we obtain

1S Copoanac [ (+ )0 (18)
In order to return from 7 back to yg, we write
n=Ta,®[p0@ ) = O] 4 1,000,

Since I_,, ®(¢®(27K.) — () is an infinitely differentiable function with
compact support, we have

/Rd(l + 1?71 F T I @00 275) — 0O (Ddt = Cg o) a0 < -
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Then (4.2) implies that
LA+ RO S Cy 0y
[ Qs 200 () < .
Rd

Therefore,

LS ([ fllmgee-

Step 2 Now it remains to estimate the third term III. Let H be a
Schwartz function such that

supp H C {g crel 7 < €| < 4} and H(¢) =1 if % <¢ <2 (4.9)

Let H®) = H(27%.). For k > K, we have

()P (€) = E(ESHW) ) (©)]¢ ], (4.10)
and
0 k CI)(O)(g) k k
(&)™ (¢) = KTOH( N(©p™ (©)l¢]™. (4.11)

For any j € Np, we keep using the notation ®; = FH(@W) and H; =
F~Y(HU)). Thus, we have

®; ¢ pjk x f = 2500 (1o @) % Hjr * (Tag®) j4p, * -
Therefore,

[N

I = Z 2k(ao—a) Z22(j+k)a|<lfaoq))j * Hj+k * (Iom(p)j-&-k * f‘2
k> K §>0
p

N

= Y 2Meom e [N T9F (1o @),y Hj * (Lage); * fI

k> K >k

p

Since both H and ¢ vanish near the origin, by Theorems 2.2 and 2.7, we
obtain

> okeom ) || N9 (1 @), Hy % (Tagp), * f1

k> K i>k
p

< 2~ hao I, @2 H (2% .
< sup max {2740 g 170, 8 H oy

27RO Ly @O (25 H(® + o)l | - 37 2500~ 1] e
k>K
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Then by (2.6), (4.1) and (4.2), we have, for any —2 < ¢ < 2,
2R Lo, (2" H (2%l g
<2 gy [ (1 ) o O (419)

S 2,]@040”(1)(2k+€.)90”Hg S kSng Q*kOtoH(I)(Qk.)(pHHg < 00,
0

and
9—kao |‘]7a0@(0)(2k.)H( ©) 4 (p(l))HHU
=9koo| 1, 3O (2kyp Z Neg
r=—2
1
$275%0 N7 10y @O @) HE el g
r=—2
1
<27k 37 100 ol [ 0+ 7 o, HE D 0
=2 '
< sup 274020 (2" )y < oo,
keNg
(4.13)
Then we get

I < Co g0, | fllrgee-
Combining this estimate with those of I and II, we finally get
[fllree S Wfllmgee-

Step 3 We turn to the reverse inequality. Note that ¢(®)(¢) = 1 when
|€] < 1, then by (4.1) and (4.2), for any j € Ny, we write

. , , () A .
PD(£) = oD (£) pO (27T M¢) = g(j)g@w)(wMg)qw)(g), (4.14)

where M is a positive integer to be chosen later. By Theorems 2.2 and 2.7,

1flmge = (Zfﬁ”lw * f|2>

j=20
P
1,00

S max{ e 197202 I0) 6 (6 + )l |

1
2
<§ 22ja|($00)j+M * Dok f2)

Jj=0

A

(Z 22ja|(900)j+M * P ox f|2) s

i=0
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where (po);4as is the Fourier inverse transform of ¢(®)(277=M.). Let h =
1 — O Write (0 (277=M&)®0) (&) = ®U) (£) — hUTM) (£)®W) (€). Then, we

have

e SR SUITSYER ¥ ;
W llege S e + | S0 22 g # @5 5 P
j=0

P

where the relevant constant depends only on p, o, d and ¢(©). Applying the
arguments in the estimate of ITI, (4.10) with A ® in place of ® and (4.11)
with A &) in place of &), we deduce

2

D 2% hyar + 0 % f?
Jj=0
P

< () sup 27 ko max{ max ||h(2k*MH-)<I>(2k+£~)<p||Hg,
k>M —2<0<2

IO (2 Yz - D 250 f] e
k>M

= 2—/6040 h 2]€—M+Z_ P 2k+€. .
s ma"{_g;agz ( JBR ) g,

M(ao )

(252 (24l g |+ Cr e I e

2()/0 «

where C is a constant which depends only on p, o, d, H and «y. Now we
replace h in the above Sobolev norm by 1 — ¢(®):

1R+ D(2M ) o g <[ @2 )l g+l 2V MHE) (25 ) o g

The support assumptions of p(©) and ¢ imply that if k > M, @) (2k—M+L.)
p#0if and only if k+£¢ =M or k+ ¢ = M + 1. Then by (2.6), we have

lp©@ (2P M) @2 Yol g < Coll @2 )l g,
where Cy depends only on ¢(©), ¢ and d. Thus,
Ih(25 M) (25 )l mg < (1+ Ca) @25 )l g
Similarly, we have
A2 M) (28 )| g < (14 C2) | (2% )|l g -

Putting all the estimates that we have obtained so far together, we get

2M(a07a)
1fllrge < Cs(Cr(1 + C)

1 — 200«

sup 2750 max {[|@(2" )¢l g, 1€ (2@l ug | 1 rge+1 s )

k>M
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where the three constants C, Cs, C5 are independent of M, so we could take
M large enough to make sure the multiple of || f||po.c above is less than 1
so that we have

[l mge S I fITmee-

Step 4 We now settle the convergence issue of the second series in (4.4).
For every j > 0, ®;x @ 1+ f is an L1 (M) + M-valued tempered distribution
on R?. We now show that the series converges in S’(R%; Li(M) + M). By
(4.12) and (4.13), for any L > K, we have

L
2% 1@ % ik * flp

k=K

< 37 2400 sup mase {2700 [@(24 )l g 2750 [0 (24 |
E>K keNy
Mool g [1f 1| 7o

S Al Egee-

Therefore, for any j > 0, 37, .1 ®j % @k * f converges in Ly(N), so in
S'(R%; Ly (M) + M) too. In the same way, we can show that the series also
converges in F]?’C(IRd7 M), which completes the proof. O

The following is the continuous analogue of Theorem 4.1. We use similar
notation for continuous parameters: given ¢ > 0, ®. denotes the function
whose Fourier transform is ®() = ®(e-).

Theorem 4.2. Keep the assumption of the previous theorem. Then for f €
S'(R% Ly (M) + M), we have
1
1 3
% de
([ e 1)
0 €
P

Proof. This proof is very similar to the previous one. We keep the notation
there and only point out the necessary modifications. First, we need to dis-
cretize the integral on the right hand side of (4.15). There exist two constants
C4, Cy such that

[flrgoe = ([ ®o * fllp + (4.15)

0 27

Cl Z 22]'(1 /

de v de
|<I)5*f\2 S/ € 2a‘q)6*f|2
jZO 2—_7’—1 g 0 g

27

d
|®. *f|2 -
1

- .

—J

< 02 Z 22ja /
=0 2

By approximation, we can assume that f is good enough so that each integral
over the interval (27771 277) can be approximated uniformly by discrete
sums. Instead of ®U) (&) = ®(277¢), we have now ®E) (&) = d(ef) with
27771 < e <277, We transfer the split (4.5) into:

(27 - 272)p0) (2 K¢)
g

D) (&)pj4k(€) = 1277€|* 04k (€).
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Thus,
<I>E * <pj+k: * f = 2k(x177j k p]+k * f
with

J (0)(9—K
o)~ 22 6£)|<§a1(2 3

We proceed as in step 1 of the previous theorem, where we transfer (4.7) to
the present setting:

I elg S Coo i [ (1 1) e

and  p(£) = [¢[" @(£).

= Co) o /Rd(l + 27 F (10, @550 (275)) (1) |dt
< Cpon a7 (o 20627 0
where 0; = 27¢ and % < 0; < 1. The last integral is estimated as follows:
j£d0,+|tP)”Lf“4(I_alég%m(aglz—Kln(tﬂdt
< [P e ) 0l
[ AR (@1 — O 2 O
< [ QI @ ) 0l
+ sup /Rdu + [t |F (10, @[ — O (571275 )]) (¢)] dt.

3<0<1

Note that the above supremum is finite since I_,, ®[p(®) — (@) (§7127K.)]
is a compactly supported and infinitely differentiable function whose inverse
Fourier transform depends continuously on 6. Then it follows that for 2771 <

e <277,
. 1
—2a 2d€ 2 < k(oqfa) <
3 200, fP < Y 2 1FllEgoe S 1 llmgee
k<K—1]| N0 p kK-l

We make similar modifications in step 2 of the previous theorem and then
establish the third part. Moreover, by the previous theorem, [|[®g * f|, <
[ fllpge. Thus, we have proved

1 z
([
0 3
p

For the reverse inequality, we follow the argument in step 3 in the pre-
vious proof. By (4.2), there exists 2 < a < 2v/2 such that ®(§) > 0 on
{€&a™! < |¢] <a}. Then for j > 1, R; = {e:a™ 127711 < ¢ < 27771} are

1o fllp + S I lEgpe-




65 Page 44 of 65 R. Xia, X. Xiong IEOT

disjoint sub intervals on (0, 1], and % is well-defined for any ¢ € R;. We
slightly modify (4.14) as follows: for any € € R;, we have

e9I(E) (o)

p(€) = ¢V (2777 Fg) = (2777 2(g), jeNo.

RGN
Since for any —2 < ¢ < 2,
le~t (277 e™2%)p(2" )ollmg < W 127 (62%) (2 )¢l mg < o0

and ‘
1(@@) (2771 )p@ (@ + M) g

< swp (@) @) (@ + W) g < oo,

C2¢-1<6< e
we follow the argument in step 3 in the previous theorem to get

2

1l < Zz%a/ ()4 % Do % f?

3>0 R,

1
1 2
—2a de
(/ g2 |q)€*f|2)
0 €

+ sz/R‘hH’“*‘I’ *f|2

7>0

P

S @0 fllp +

[N

P
The remaining of the proof follows step 3 with necessary modifications. [J

We now concretize the general characterization in the previous theorem
to the case of Poisson kernel. Recall that P denotes the Poisson kernel of R?
and

PR = [ Pels =00 (5.2) € R

The following theorem improves [32, Section 2.6.4] even in the classical
case: [32, Section 2.6.4] requires k > d + max{«,0} for the Poisson char-
acterization while we only need k& > max{«,0}. The proof of this theorem
is similar to but easier than that of [37, Theorem 4.20], since we assume
k > 0 here; we omit the details. The key ingredient is the improvement of
the characterization of Hardy spaces in terms of Poisson kernel given in [35,
Theorem 1.5].

Theorem 4.3. Let 1 < p < oo, a € R, and k € N such that k > max{«,0}.
Assume that ®©) satisfies (4.1). Then for f € S'(R% Li(M)+ M), we have
1 k 2 %
0 de

~ 2(k—«
7l = 0 = Sl + (/ e | T () )

p
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4.2. Characterizations Via Lusin Functions

We are going to give some characterizations for Triebel-Lizorkin spaces via
Lusin square functions. As what we did in the previous part of this section,
we still use Fourier multiplier theorems as our main tool. But now we have
to rely on the Hilbertian (instead of ¢3) versions of the Fourier multiplier
theorems.

The following characterization, via Lusin square functions associated
to ¢ given by the condition (0.1), is a special case of the characterization
in Theorem 1.5. We keep using the notation ¢; being the function whose
Fourier transform is equal to p(277.) for j € N, and ¢ being the function
whose Fourier transform is equal to 1 — 3.+, p(2794).

Proposition 4.4. For 1 <p < oo and f € F;*C(Rd,/\/l), we have

g = Do Fl o+ | | 2200 [ gy e+ )
i>1 B(0,277)
P
(4.16)
Proof. For any f € F5¢(R% M), by the lifting property in Proposition 3.4,
we have J*f € hj (R9, M). Then, we apply the discrete characterization in
Theorem 1.5 with ¢ = J %pg and & = I~%p to J*f,

el ¢,D a
[fllzge 2 (1T fling = lleo * fllp + 750, (T4 F)lp-

Following the argument in the proof of (2.9), we can prove

Is52 P, = [|s2 1 ] -

p

Moreover, we can easily check that

[N

i 2l = |2 [ e s ar

=1 B(0,2-7)
P
Therefore, we conclude
3
g~ oo s S+ || | 2200 [ g peropa) | o
i>1 B(0,277)
P

From the above Lusin square function by ¢, we can deduce Lusin type
characterizations with general convolution kernels by the aide of Theorems 2.5
and 2.9.

Theorem 4.5. Let 1 < p < oo and a € R. Assume that ag < a < a1, a; >0
and ®©) | & satisfy conditions (4.1), (4.2). Then for any f € S'(R%; Li(M)+
M), we have
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1

11| e e, my = 1o * fllp+ 22“2‘”‘1)/ @y f( A )Pt :
=1 B(0,2-4)

M

p

where the equivalent constant is independent of f.

Proof. This proof is very similar to that of Theorem 4.1. The main target is
to replace the standard test functions ¢y and ¢ in Proposition 4.4 with ®q
and @ satisfying (4.1) and (4.2). This time we need to use the Lusin type
multiplier theorem i.e. Theorem 2.5, instead of Theorem 2.2. For the special
case p = 1, we apply Theorem 2.9 instead of Theorem 2.7. 0

Using a similar argument as in Theorem 4.2, we also have the follow-
ing continuous analogue of the above theorem. This is the general charac-
terization of Triebel-Lizorkin spaces by Lusin square functions. Recall that
T ={(t,e) e RE: |t < e < 1}.

Theorem 4.6. Keep the assumption in the previous theorem. Then for any
L1 (M) + M-valued tempered distribution f on RY, we have

1
dtde \ 2
—2a 2
(oo e+ o)

£l e e amy = [P0 * fllp +

p

5. Smooth Atomic Decomposition

This section is devoted to the study of atomic decomposition of F{"“(R¢, M).
We aim to decompose F["°(R% M) into atoms which have good enough
size, smooth and moment conditions. To proceed in an orderly way step by
step, we begin with the special case o = 0, i.e., the space h{(R? M). Even
though the result for h§(R? M) below does not lead to the one for general
F¢(R4, M) directly, the main ingredients to obtain smooth decomposition
for F["°(R%, M) are already contained in those for h§(R?, M). The main
results in this section will be very useful in our forthcoming paper [34] on
mapping properties of pseudo-differential operators.

5.1. Smooth Atomic Decomposition of h(R¢, M)

In the classical theory, the smooth atoms have been widely studied and
have played a crucial role when studying the mapping properties of pseudo-
differential operators acting on local Hardy spaces, or more generally, on
Triebel-Lizorkin spaces. Details can be found in [3-5,32]. In this subsection,
we will show that in our operator-valued case, the atoms in Theorem 1.6 can
also be refined to be infinitely differentiable.

As in the classical case, the theory of tent spaces will be of great service
in our proof of smooth atomic decomposition theorem. Tent spaces in the
operator-valued setting have been introduced in [18,19] first; see also [35] for
further complement. For our use, we study the local version of tent spaces
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defined in [33]. For any function defined on the strip S = R¢ x (0,1) with
values in Ly (M) + M, whenever it exists, we define

</|f \2‘1 E) ,s € RY

For 1 < p < oo, we define
Ty (R, M) = {f: A°(f) € Ly(N)}

equipped with the norm ||f||T£(Rd7M) = |lA°(f)llp-
First, we introduce a lemma concerning the atomic decomposition of
the tent space T{(R?, M). A function a € Ly (M; Ly(S, 49)) is called a
Tf-atom if
e supp a C T(Q) for some cube @ in RY with |Q| < 1;

e (fro) \a(s,a>|2f“d€) < Q5.
Let T ,,(R%, M) be the space of all f:S — L;(M) admitting a repre-

sentation of the form
= Ny, (5.1)
j=1

where the a;’s are T{-atoms and A; € C such that Z;‘;l |Aj] < co. We equip
T ot (R, M) with the following norm

oo oo
I fllre,, = inf Z IXjl: f = Z)\jaj; a;’s are Ti-atoms, \; € C

j=1 j=1
Lemma 5.1. We have Tf ,,(R%, M) = T{(R%, M) with equivalent norms.

Proof. In order to prove Tf ,,(R%, M) C Tf(R% M), it is enough to show
that any Tf-atom a satisfies ||a||ze < 1. By the support assumption of a, we

have
dsds \ °
2
(L e M) "
1
Qe ([ [ ] JatserSta
R4 B(t,e)
1
1, dtde \ *
—cialir ([ et ) s
T(Q) €

Then by the duality TF(RY, M)* = TS (RY M) (see [33]), we have TS
(R, M) C Tf 4y (R, M)".

Now let @ be a cube in R? with |Q| < 1. If f € Ly (M; L§(T(Q), 44=)),
then

lallzs = [[4°(@)]],

A

1Ot
@ = 1QI A1) s (i)
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is a Tf-atom supported in T(Q). Hence,
1
1 zg e S TQIENFN L, (agi5(r(@), 2202 )

Thus, Ly (M; L§(T(Q), 42)) C Tf .+ (R%, M) for every cube Q. Therefore,
every continuous functional ¢ on TY ,, induces a continuous functional on
Ly (M; L§(T(Q), %42)) with norm smaller than or equal to |Q|%||€||(Tlcat)*.
Let Qg be the cube centered at the origin with side length 1 and @,,, = Q(;+m
for each m € Z?. Then R? = U,,cz4Q,,. Consequently, we can choose a
sequence of functions (g, )meze such that

dsd
L(a) = ’7'/ a(s,e)gn, (s, €) 86 E, vV T7-atom a with suppa C T(Qn),
T(an)

and

HgmHLOC(M;Lg(T(Qm),%)) < ”E”(Tﬁm)*'
Let g(s,e) = gm(s,¢) for (s,&) € T(Qn,). Then, we have

l(a) = 7'/ a(s,e)g* (s, e) dsgds7 vV Tf-atom a.
S

It follows that, for any cube Q with |Q| < 1, g|7 (@) € Loo (M; L§(T(Q), 92%))
and

1
||g|T(Q)||Loo (M§L§(T(Qm),%)) < |Q| 2 HKH(Tf,at)*v

which implies g € TS (R?, M). Hence, Tf ,,(R?, M)* C TS (R?, M). There-
fore, TS (R4, M) = Tf ., (R, M)* with equivalent norms. Finally, by the
density of T} ,,(R?, M) in T{(R%, M), we get the desired equivalence. [

The following Lemma shows the connection between T¢5(R?, M) and
hy (R4, M). The proof is modelled on the classical argument of [3, Theorem 6.

Lemma 5.2. Fiz a Schwartz function ® on R? satisfying:

D is supported in the cube with side length 1 and centered at the origin;
fRd D(s)ds = 0;
® is nondegenerate in the sense of (1.2).

(5.2)
Let wg be the map given by

me6) = [ [ o-0sea™E ser,

Then mg is bounded from TS5(R*, M) to h§(R?, M) for any 1 < p < oo.
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Proof. For any 1 < p < oo, let g be its conjugate index. By Theorem 1.1, it
suffices to estimate 7 [ 74 (f)(s)g*(s)ds, for any g € h¢(R?, M). Note that

P [ s =r [ [ o050 % g s

:T//ﬂt?s)(%e*g)*(t)@,
Rd JO €

where &)(s) = ®(—s). Then by the Holder inequality,

dedt
T f(te) <I> % g ds
UL, @ 0f

~ dedt
— 7'/ / fls+1t,e)(Pexg)*(s+ t)dﬂds‘
R JT €
S AN lsg(9)lq
S llrellgllng -

Now we deal with the case p = 1. The argument below is based on the
atomic decompositions of h§(R?, M) and TF(R?, M). By Lemma 5.1, it is
enough to show that m¢ maps a Ty-atom to a bounded multiple of an h§-
atom. Let a be an atom in 77 based on some cube @ with |@Q] < 1. Since
® is supported in the unit cube, it follows from the definition of 7w¢ that
o (a ) is supported in QQ Moreover, it satisfies the moment cancellation that
[ mo(a)(s)ds = 0 since <I>(0) = 0. So it remains to check that m¢(a) satisfies
the size estlmate. To this end, we use the Cauchy—Schwarz inequality and the
Plancherel formula (0.7),

e @l cannsuoy =7 ( [ Ft@@ae)
(1] 1@@5)5@,5)@2@);
< ([ [aeort [ a(s,a>|26fjd§)é
< (/T(Q) |a<s,e>|2d‘j’5>% <ot

Therefore we obtain the boundedness of 7 from TY ., (R*, M) to hS
(R, M). O

T/]Rd mo(f)(s)g" (s

N

(5.3)

Now we can to refine the smoothness of the atoms given in Theorem 1.6.

Theorem 5.3. For any f € L1(M;RS) + Loo (M;RS), f belongs to h§(RY, M)
if and only if it can be represented as

= Z 1ibi + Aj95), (5.4)
j=1
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where

o the b;’s are infinitely differentiable atoms supported in 2Qq; with
|Qo,;| = 1. For any multiple index v € N, there exists a constant C,
which depends on 7y satisfying

T</ |D7bj(s)2ds) <o, (5.5)
2Qo,;

o the g;’s are infinitely differentiable atoms supported in 2Q; with |Q;| <
1, and such that

(L

o the coefficients pu; and \; are complex numbers such that

|9j(8)|2d8> <1Q;17%  and /2 g;(s)ds = 0; (5.6)

J J

> (sl + 0] < oo (57)

Moreover, the infimum of (5.7) with respect to all admissible representations
gives rise to an equivalent norm on h§ (R, M).

Proof. Since the b;’s and g;’s are atoms in h§(R%, M), it suffices to show that
any f € h$(R%, M) can be represented as in (5.4) and

D (gl + A1) S 1l
j=1

To begin with, we construct a smooth resolution of the unit on R?. Let & be
a radial, real and infinitely differentiable function on R? which is supported
in the unit cube centered at the origin. Moreover, we assume that £(0) > 0.
We take ® = |- [2%, which can be normalized as:

| aeerE =1 cerio.
0 €

And we define

~

o6 =1~ [ BeerT, cemt (9

By the Paley—Wiener theorem, ® can be extended to an analytic function
®(z) of d complex variables z = (z1,...,24), and for any A > 0, there exists
a constant C') such that

(3+%)|&|

|@(2)] < CreTH2IN(I 2 + &)
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holds for any z = &; + i&,. Therefore,

1 1
~ d
BT <0} [ GRS (G + )
0 0

1
<0 [ e DG 4 ey
0

< C2eGHYDIERN(1 416 12)2(1 + |6]?)?
< Q2O r2VAlEl (] 4 g )2,

Now applying the Paley—Wiener—Schwartz theorem to distributions, we ob-
tain that ¢ is a distribution with support in {s € R%: |s| < 2v/d}. On the other
hand, if we define its value at the origin as 0, the function fol @(5')2% is an
infinitely differentiable function on R?, which ensures that ¢ is a Schwartz
function. Thus, supp¢ C {s € R%[s| < 2v/d}. By (5.8), we arrive at the

following decomposition of f:

1
d
f:¢*f+/0 @5*@5*]0?5. (5.9)

We first deal with ¢ % f. By Theorem 1.6, we obtain an atomic decom-
position of f:

F=S i, (5.10)
J
where the a;’s are hi-atoms and >, [i;] < || f[lng. Thus,
Gxf =Y [ijp*aj.
J

We now show that every ¢ * a; can be decomposed into smooth atoms sup-
ported in cubes with side length two. Let Xy be a nonnegative infinitely
differentiable function on R? such that supp Xy C 2Qq (with Qo the unit
cube centered at the origin), and >, .54 Xo(s — k) = 1 for every s € R?%. See
[30, Section VII.2.4] for the existence of such Xp. Set X = Xy(- — k). Then
X, is supported in the cube 2Q; = k + 2Q), and all X}’s form a smooth
resolution of the unit:

1= X(s), VseR™ (5.11)
kezd
Take a to be one of the atoms in (5.10) supported in Q. Since ¢ has compact

support, i.e. there exists a constant C' such that supp ¢ C CQy, then ¢ *a is
supported in (C' + 1)Qp. Thus, we get the decomposition

N

¢pra=> by with by =X (¢*a),
k=1

where NN is a positive integer depending only on the dimension d and C. For
any (3,7 € N¢, denote 3 < v if 3; < ; for every 1 < j < d. Then, by the
Cauchy—Schwarz inequality, for any k,
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T (/Rd |D”?k(8)|2d=9)é ST (/sz D¢ % a(s) 'DVﬁXk(s)Fds)

B<y
< [; </ D%(s - zf)a(t)dt1 ds>
< [; (/ / |DP (s t)|2d5dt>

T</Q|a(t)|2dt)2
<lQlsr (/Q |a<t>|2dt)é <1,

where the relevant constants depend only on «, ¢ and Ay. Thus, we have
proved that ¢ * f can be decomposed as follows:

¢xf = b,
i

with b; as desired. Furthermore, > 1| < || f|lng-

Now it remains to deal with the second term on the right hand side of
(5.9). It follows from the definition of the tent space and Theorem 1.4 that
. x f € TH(RY, M) and

¢ * flly + 1P * fllze S I1f lng-

By Lemma 5.1, we decompose P, * f as follows:

D, f(s Z)\ aj(s,e) with YN S [P £y, (5.12)

j=1

where the a@;’s are T-atoms based on cubes with side length less than or
equal to 1. For each @;(s,¢) based on @; in (5.12), we set

1
g;(s) = / D, *6j(8,8)% = mpa;(s), VseR™ (5.13)
0

We observe from the proof of Lemma 5.2 that g; is a bounded multiple of
an h{-atom supported in 2¢); with vanishing mean. Moreover, g; is infinitely
differentiable. Thus, g; satisfies (5.6) with relevant constant depending only
on ®. Combining (5.12) and (5.13), we obtain the decomposition

! de =
; (I)E*(I)E*f? :;)\jgj,

with 377 1 [N ] S 1 f - -
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5.2. Atomic Decomposition for F;°(R%, M)

Now we turn to the general space Fy"‘(R% M). For every | = (Iy,...,l4) €
74, 1 € Ny, we define Qu, in R? to be the cubes centered at 27#, and with
11

side length 27#. For instance, Qo0 = [~ 3, E)d is the unit cube centered at

the origin. Let Dy be the collection of all the cubes @), ; defined above. We
write (u,l) < (', U') if

1% > /~L/ and Q,u,l C 2@#’,l’~
For a € R, let ay = max{a,0} and [a] the largest integer less than or equal

to a. Recall that |y|; =71 + -+ + g for v € Nd, % = sf‘ ...sgd for s € R?,
B € N¢ and J« is the Bessel potential of order a.

Definition 5.4. Let o € R, and let K and L be two integers such that
K> ()4 1)y and L > max{[—«],—1}.
(1) A function b € Ly (M; L§(R?)) is called an (c, 1)-atom if
® suppb C 2Qo.k;
1
° T(fRd |D“’b(s)|2ds) 2<1,VyeNd, |y < K.
(2) Let Q = Q. € Dg, a function a € Ly (M; L§(R?)) is called an (a, Q)-
subatom if
e suppa C 2Q);
o 7(Jes |D7a(s)Pds)* < [QUFTE, Wy € NGyl < K
. fRd Sﬁa(s)ds =0, Ve Ngv 1Bl < L.
(3) A function g € Ly (M; L§(RY)) is called an (o, Q,yy, )-atom if

7'(/ Jo‘g(s)|2ds> §|Qk7m|7% and g¢g= Z dygay, (5.14)
Rd

(1,1) < (k,m)

for some k € Ny and m € Z¢, where the a,,’s are (o, @, )-subatoms
and the d,;’s are complex numbers such that

2

Z dual? | < |Quml 2.

(1)< (k,m)

Remark 5.5. If L < 0, the third assumption of an («, Q)-subatom means that
no moment cancellation is required. In the second assumption of an (a, 1)-
atom b and that of an («, @)-subatom q, it is tacitly assumed that b and a
have derivatives up to order K. For such a, we can define a norm by

lall. = sup |[D7al|,

Il <K H(Mazs (D)

Then the convergence in (5.14) is understood in this norm, and we will see

that the atom g in (5.14) belongs to F{°(R4, M).

Remark 5.6. In the classical case, the first size estimate in (5.14) is not
necessary. In other words, if g = Z(# D)< (k,m) Qu,1@p With the subatoms a,,;’s

1
and the complex numbers d,, ;’s such that (Z(u 1< (ko) dyua?)? < |Qk7m|*%,
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then g satisfies that estimate in (5.14) automatically. We refer the readers to
[32] for more details. Unfortunately, in the current setting, we are not able
to prove this estimate, so we just add it in (5.14) for safety.

The following is our main result on the atomic decomposition of F}"¢
(R, M). The idea comes from [32, Theorem 3.2.3], but many techniques used
are different from those of [32, Theorem 3.2.3] due to noncommutativity.

Theorem 5.7. Let a« € R and K, L be two integers fixed as in Definition 5.4.
Then any f € F{"°(RY, M) can be represented as

[= Z 15b; +)‘]g] (5.15)
Jj=1

where the b;’s are (a,1)-atoms, the g;’s are (o, Q)-atoms, and pj;, A\; are
complex numbers with

Z il +1A50) < (5.16)

Moreover, the infimum of (5.16) with respect to all admissible representations
is an equivalent norm in F{"°(RY, M).

Proof. Step 1 First, we show that any f € F/"°(R% M) admits the represen-
tation (5.15) and

e 9]

D (gl + 125D S 1 e

7j=1
The proof of this part is similar to the proof of Theorem 5.3. Let x be the
Schwartz function defined in the proof of Theorem 5.3. We take ® = | - |V&,
where N is a positive even integer such that N > max{L, a}, then ® can be
normalized as follows:

/oo &»(55)2% =1, V¢eRN{0}.
0

Since —a+N >0, both 32 (J_o®)(277¢)? and 3202 (J_a®)(277€)?
are rapidly decreasing and infinitely differentiable functions on R%\{0}. So

we have
oo

D ()27’ <o (5.17)
and
D a®)(@7¢* <o (5.18)

Applying the Paley—Wiener—Schwartz theorem, we get a compactly supported
function ®y € S such that

1
Bo€) =1 /0 B L.
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Denote by ®. the Fourier inverse transform of ®(e-). For any f € F{"“(R%, M),

we have
1

f:(I)O*f—l—/O q)a*q)g*f%. (5.19)

Let us deal with the two terms on the right hand side of (5.19) separately.
The term ®g * f is easy to treat. If & > 0, Proposition 3.3 ensures that

F (R4, M) C h§(R?, M). Then we can repeat the first part of the proof of

Theorem 5.3: for any f € F/"°(R%, M), ®; * f admits the decomposition

Pox f= Zﬂjbja
J

with
S lasl S 11l 1L
J

where the b;’s, together with their derivatives D7b;’s, satisfy (5.5) with some
constants C, depending on . When K is fixed, we can normalize the b;’s
by max|,|, <k |C|, then the new b;’s are (a, 1)-atoms. If a < 0, by Proposi-

tions 3.3 and 3.4, we have Jl°l f € Fla_[a]’c C h§. Then J¥®q « f admits the
decomposition

Ty« f = sy,
J

with 37, |l S 171 fllng < [1 1l e Then

Do f = by
J

If —[a] is even, it is obvious that supp J —[e] bj C suppb;. Moreover, for any
v € N¢ such that |y|; < K, we have

7’(/ DU—Mbj(s)Pds) DY T(/ |D"’,bj(s)|2ds> < Ck.
Rd Rd

[v'[1 <K —2[a]

We normalize J _["]bj by this constant Cx depending on K, then we can
make it an («, 1)-atom. When —[a] is odd, it suffices to replace [ in the
above argument by [a] — 1, and then we get the desired decomposition.

Step 2 Now we turn to the second term on the right hand side of (5.19).
It follows from Theorem 4.6 and the definition of the tent space that e~ ®,
f € T¢(R4, M) and

le™ @+ fllze S 1 fllpeoe-

By Lemma 5.1, we have

e x f(s) = D Ajbi(s,2), (5.20)
j=1
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where the b;’s are T{-atoms based on the cubes @);’s with |@Q;| < 1. Then, if
we set a;(s,e) = e“b;(s,¢e), we obtain

. x f(s) = i Ajaj(s,€)
j=1

and
SIS Nle®e x Fllrg SN fllpee (5.21)
j=1

In particular,

1

dsde \ °
suppa; C T(Q;) and 7 / 5*2a|aj(s,5)|2 5de < |Qj|*%.
T(Qj) €
(5.22)
For every a;, we set
! de
g;(s) = ma(a;)(s) = D, aj(s75)?. (5.23)
0

Then supp g; C 2Q;. We arrive at the decomposition
! de =
P, xD.x f— = Z)\jgj.
0 St
Now we show that every g; is an («, Q; m,)-atom. Firstly, for any Q;,
there exist k; € Ny and s € R¢ such that
2R < (@) <27F  and cq, =1(Q))s.
Take m; = [s] € Z%, where [s] = ([s1], ..., [sa]). Then, we easily check that
QJ C 2Qk?j,7ﬂj7 Qk}j,’lﬂj e Dd (524‘)

Next, by the argument similar to that in (5.3) and by (5.22), we have

o[ rma)eras) s ([ ot
Re T(Q;) c

1

_1 _1
< ‘QJ' 2 5 |Qk7j7mj| 2.

If @ <0, it is clear that

1

T </Rd |Ja%(aj)(5)|2d5)é =7 </Rd |Ia7f<1>(aj)(5)|2d5> §

1 1
S1Q5177 S 1Rk m, 172
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If @ > 0, we have

(/. |Ja%(aj><s)|2d5)5
<o ([, |7rq><aj><s>2ds)% ([ |zam<aj><s>2ds)%
ST (/T(Qj) |aj<t,s>|“l’f€>2 QI

1
Con dtde '\ ” 1
<7 / 2oy (1) PHE ) 4 g
T(Qj) €

1 1
< 2|Q]| 2 5 |ij,mj| 2.
Then we get, for any a € R,

r([rmasoras) = ([ 1remaa)ePis) S 100l

(5.25)

Finally, we decompose the slice T(Q;) N {27#~! < e < 27#} into (d + 1)-
dimensional dyadic cubes whose projections on R% belong to Dy, and with
side length 27#, 1 € Ny. Let @ be one of those dyadic cubes with side length
27" and @ be its projection on R, Let

dtd
a(s) = / D (s — t)aj(t,s)—g.
o €
By the support assumption of @, it follows that
suppa C 2Q, suppa C 2Q; C 4Qk; m,-

Then

—pt1
2 de

ae) = / B(e6) Flas(-e)10) (6) 2

—u €

Since D55(0) =0 for any |5]1 < N, we obtain

/ (—2mis)Pa(s)ds = D’a(0) =0, V|G| < L.
Rd
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Furthermore, by the Cauchy—Schwarz inequality, we have

([ pas)’
(L
s ([

( e
<lQlir ( [

Similarly, we have

ds

/ 0t |2dtds>
J

2
dtd
/@E(s—t)aj(t,s)—g
Q 3
% 2~ p+1
/ E_Qddtak) . (/
Q €
%
dsde
[ lasts. o )
Q 3
2 dsde ) *
| e st ) .
Q (3
1 9—n+1
dsd
</|D af st) <clQi—tr / /5*2a\aj(s,s)|2 o
2- Q €
The above discussion gives

gj = Z &, al, (5.26)

(1) <(kjmy)

N

where each ai , is an («, Q,,1)-subatom. The normalizing factor is given by

dsde ?
d = max {C!}r / / 72 a, S, € 2
wl = o <K{ o) ( . y |a;(s,€)] -

By the elementary fact that ¢5(L1(M)) D Ly (M;(5), we get

o—nt1

1
2

. o dsde \’
S @r] <cor / 2 ay(s,¢)?
T(Qj) €

(1,0 <(kj,my)

where C' is independent of f. We may assume C = 1, otherwise, we can put
C in (5.20) in the numbers A;, which does not change (5.21). In summary,
(5.24), (5.25), (5.26) and (5.27) ensure that g; is an (o, Q; m;)-atom.

Step 3 Now we show the reverse assertion: if f is given by (5.15), then
f € F(RE M) and

(oo}
1 e S D gl + 120)-
j=1
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To this end, we have to show that every (a, 1)-atom b and every («, Q)-atom
g belong to F"“(R?, M) and

[olpee ST and |lgllpee S 1.

Let b be an (a, 1)-atom in F{"°(RY, M). We observe that b is also an atom
in h§(RY, M). For a < 0, by Proposition 3.3, h§ C F{"°. Then, we have
[0l pee S [[0llng < 1. If @ > 0, by Proposition 3.4, we have

d
[0 e = [0 * bl1 + Z D0l

=1

a—K,c.
Fl

Note that for any 1 < i < d, DXb is an atom in h§(R%, M). Since a — K < 0,
by Proposition 3.3, we have

d
loll e S Hlewo * bl + > 1 DFbllng S 1.

i=1

On the other hand, let g be an (a, Q,m)-atom in the sense of Defini-
tion 5.4. We may use the discrete general characterization of Fy"“(R?, M)
given in Theorem 4.1, i.e.

oo

lgllree || | D227 ®; * oI
3=0
1
We split Z _ into two parts Zf;é and Zjoik When j > k, by the support
assumption of ®, we have supp ®; * g C 5Qx m. If @ > 0, by (5.18), (5.14)
and the Plancherel formula (0.7), we obtain

N

/ Zz21a|c1> % g(s)|ds

5Qk,m j—

o Formrers)
( o

(/. |Iaa<s>|2ds)§ ~r ( / Irgte)Pas)
<o ([ 1rgtras)” <@t
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If a <0, by (5.17), (5.14) and the Plancherel formula (0.7) again, we have

T / ZQQja\fbj x g(s)|%ds

2
5Qk,7n ]Zk

N

<T / Z22ja\<]_"q>j * J%g(s)|*ds
5Qk,m =k

N

- BN0—T V(2] T SN2
<7 / dgu_a«b)@ 21 ad(O)Pde

< ([, |Ja§<s>|2ds)% ([, J@g(swds)%

< |Qm,k’|7%-
It follows that

00 2
> 2%, x g <1
j=k

1
k—1

In order to estimate the sum > j—0» We begin with a technical modification

of g. Let
g=2M"Dg(27k).
Then it is easy to see that g is an (a, Qo )-atom. Moreover, we have
;% g =2M1"D0; 4+ g(2"),
which implies that

NI
[N

k-1 —1
Do2@sgl® | < || DD 2@ gl ||| 27 (@0) g,
7=0 J=—o0

1 1

(5.28)

where (®g)_ denotes the inverse Fourier transform of the function ®(® (2*.).
In other words, we can assume, by translation, that the atom g is based on a
cube @ with side length 1 and centered at the origin. Then, let us estimate
the right hand side of (5.28) with g instead of g.

By the triangle inequality, we have

1

-1
< Z Z |d”’l|2jaT/d |D; *ay,(s)|ds.

j=—00 (1,1)<(0,0) R
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Now we estimate 277 [o, [®; % a,(s)|ds for every (u,1) < (0,0). Let M =
[-a] + 1. Then M + a > 0 and L > M — 1. By the moment cancellation of
a1, we have

D;xa,(s)

- 2jd/ [®(27s — 27t) — ®(2s — 27271) a1 (t)dt
Qul

— 9d(d+M) Z M_:_l/ (271 —t)°
g Ot Sau

X /1(1 —0)MDP®(27s — 270t + (1 — 0)27"1))a,(t)do dt.
0

It follows that
| * ay(s)]?

< 22J(d+M) / / 2M|Dﬁq)
\m 2Qu.t

X (2Js —27(0t + (1 — 0)2771)) |*dodt
: / it — 27112 M|a, ()2 dt.
2Qu 1

If ®; % a,,(s) # 0, then we have |2/s — 27¢| < 1 for some ¢ € 2@Q),,;. Hence,
D, a#,l(s) =0 if [s — 27#1| > 3-27771/d. Consequently,

2l / [P+ ay,(s)|ds

]_—OO

—1
< 5w ]

j=—00

1
2

t- 2-~1|2M|au,z<t>|2dt>

psl

¥ [, [
6= |s—2-#1|<3-2-i-1V/d \J2Q,.

(275 — 27 (0t + (1 — 0)27"1))[>dOdt) % s

-1
S D NI Mg, i

j=—o00

1
2
X / . (t)|*dt / ds
2Q,.1 |s—2—krl|<3-2-i-1/d

—1
< Z 2j(d+M+a) . 27jd . Q*M(QJFM)‘Q# llé
j=—00
-1
— 9—n(at+M) Z 2j(M+C¥)|QH z|% < qu(a+M)|Q# l|%.

j=—00
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Similarly, we also have

2%&7'/(1 [(®o) -k * aui(s)|ds S 27k(M+a)27”(a+M)\Qu,z|%
R
< 2*#(&+M)|QM z|%~

Thus, by the Cauchy—Schwarz inequality, we get

-1 2 -1

22]’04@4 2 < 22ja / P d
Z D * g = Z T Rd| i *g(s)|ds

j=—o00 Jj=—00
1

1 1
o0 2 2
S 3 puasn (z w) (z w)
n=0 l l
< ZQ*N(O“FM) < 00,
n=0

and

oo
2R (Bo) g % glh S D 27 < o0,
n=0

Therefore, [|g[|pe-e S 1. O

We close this section by a very useful result of pointwise multipliers,
which can be deduced from the above atomic decomposition. Let & € N
and L*(R9, M) be the collection of all M-valued functions on R? such that
D7h € Loo(N) for all v with 0 < |v]; < k.

Corollary 5.8. Let « € R and let k € N be sufficiently large and h €
LE(RE, M). Then the map f +— hf is bounded on Fy"‘(R%, M)

Proof. First, consider the case o > 0. We apply the atomic decomposition in
Theorem 5.7 with K = k and L = —1. In this case, no moment cancellation of
subatoms is required. We can easily check that, multiplying every (sub)atom
in Definition 5.4 by h, we get another (sub)atom. Moreover,

B fllpee <> sup [[DVR(s)||ac - || fll e (5.29)
ly|<k SER?

The case @ < 0 can be deduced by induction. Assume that (5.29) is
true for « > N € Z. Let « > N — 1. Any f € F}"° can be represented as
f=J% = (1-(2m)"2A)g with g € F{"" and || f|| e = ||g]| pc+2.c. Since

hf = (1 - (2m)?A)(hg) + ((2m)*Ah)g + (2m)>Vh - Vg,
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we deduce

d
Infllpee S 11— @m)"2A) (hg) e + (ARl e + S 9k - Digll e
i=1
d
< gl sz + (ARGl posze + 3 1950 - Digll posace-
i=1
(5.30)
If k£ € N is sufficiently large, we have

[(AR)g[| potz.c S Mgl potze,  10ih - Digll porre S N|0igll pos.e.

Continuing the estimate in (5.30), we obtain

1 f e S Ngllpmsze + 3 10l g S lgllpmrne S Wflee. O
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