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Abstract. Given two orthogonal projections P and Q, we are interested
in all unitary operators U such that UP = QU and UQ = PU . Such
unitaries U have previously been constructed by Wang, Du, and Dou
and also by one of the authors. One purpose of this note is to compare
these constructions. Very recently, Dou, Shi, Cui, and Du described
all unitaries U with the required property. Their proof is via the two
projections theorem by Halmos. We here give a proof based on the
supersymmetric approach by Avron, Seiler, and one of the authors.
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1. Introduction

Let A be an algebra with unit I and let P,Q ∈ A be two idempotents, that
is, elements satisfying P 2 = P and Q2 = Q. We are interested in invertible
elements V ∈ A such that V P = QV , or equivalently,

Q = V PV −1. (1)

A stronger question is to find an invertible V ∈ A such that V P = QV and
V Q = PV , which may also be written as

Q = V PV −1, P = V QV −1. (2)

The strongest version of the problem is to look for a V satisfying (1) and
the equality V 2 = I, in which case (2) is automatically valid. If A is an
algebra with an involution and P,Q are selfadjoint, which means that P =
P ∗ and Q = Q∗, it is natural to ask for unitary elements V , i.e., elements
satisfying V −1 = V ∗, which ensure (1) or (2). Finally, in case elements V
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with the required properties exist, we want to describe all of them. As we
were polishing our paper, we learned that [6] had addressed the same problem
with some but certainly not complete overlap as we will explain below.

We begin with a simple observation.

Observation 1. Let V0 be an invertible element of A such that Q = V0PV −1
0

and P = V0QV −1
0 . Then an invertible element V ∈ A satisfies the equal-

ities (2) if and only if V = CV0 with an invertible element C ∈ A that
commutes with both P and Q.

Proof. If C commutes with P,Q, then CV0P = CQV0 = QCV0 and CV0Q =
CPV0 = PCV0, which proves the “if” part. Conversely, if (2) holds for V =
CV0, then CV0P = QCV0 and since also CV0P = CQV0, we conclude that
QCV0 = CQV0, which implies that QC = CQ. Analogously one obtains that
PC = CP . �

Given two idempotents P and Q, we put, following [3], A = P − Q and
B = I − P − Q. Obviously, an element in A commutes with both P and Q if
and only if it commutes with both A and B. We have

BP = (I − P − Q)P = −QP = Q(I − P − Q) = QB,

BQ = (I − P − Q)Q = −PQ = P (I − P − Q) = PB,

that is, the two intertwining relations are in force, and if B would be invert-
ible, we would get (2) with V = B. As observed in [3], we also have

A2 + B2 = I, AB + BA = 0, (3)

and hence B is invertible if and only if I − A2 is invertible. If A is a Banach
algebra, the invertibility of I − A2 is guaranteed by the inequality ‖A‖ < 1.
Thus, we can give some quick answers in this case.

Proposition 2. Let A be a Banach algebra and P,Q be idempotents such that
‖P − Q‖ < 1. Then V = I − P − Q is invertible and satisfies (2). Moreover,
there exists an invertible square root (I − (P − Q)2)1/2 in A, and

V = (I − (P − Q)2)−1/2(I − P − Q)

satisfies (2) along with the equality V 2 = I. If A is even a C∗-algebra and
P,Q are selfadjoint, then the V just constructed is selfadjoint and unitary.

Proof. Since ‖A‖ < 1, the power series for (1 − λ)−1/2 (|λ| < 1) gives us an
invertible element C = (I −A2)−1/2 by a power series in A2. The operator C
commutes with A. Since A2 commutes with B, so also does C. We know that
the invertibility of I −A2 implies the invertibility of B, so that (2) is satisfied
with V = B. Observation 1 now shows that V = CB also satisfies (2). In
addition, V 2 = C2B2 = (I−A2)−1B2 = I. Finally, if P and Q are selfadjoint,
then A,B,C, V are also selfadjoint and V is unitary. �

This proof is essentially Kato’s [11,12]. However, Kato used

V = PQ + (I − P )(I − Q), ˜V = QP + (I − Q)(I − P )
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along with the identity V ˜V = ˜V V = I −A2 to get V P = QV and ˜V Q = P ˜V ,
which gives (1). After multiplying these V and ˜V by (I−A2)−1/2, he obtained
new V and ˜V , which satisfy the same intertwining relations and also the
equalities V ˜V = ˜V V = I. Our choice V = I − P − Q results in (2), not
just (1).

This note is about what can be said if ‖A‖ = ‖P −Q‖ ≥ 1. At this point
we remark that the requirement ‖A‖ < 1 may be replaced by first requiring
that 1 is not in the spectrum σ(A2) of A2 and by secondly requiring that
there is a cut of the complex plane from the origin to infinity that does
not meet 1 − σ(A2). In that case there is an analytic branch of the function
λ �→ (1−λ)1/2 in an open neighborhood of σ(A2) and hence the usual formula

(I − A2)1/2 =
1

2πi

∫

Γ

(1 − λ)1/2(λ − A2)−1dλ

gives an invertible operator (I − A2)1/2 that commutes with A. The rest
of the arguments of the above proof then shows that V = (I − A2)−1/2B
satisfies (2) and that, in addition, V 2 = (I − A2)−1B2 = I. Notice that the
cut mentioned exists in particular if A = P − Q is compact. In that case B
is Fredholm of index zero and hence invertibility is equivalent to injectivity.

The note is organized as follows. After a short section concerning two
skew projections P and Q, we consider the case of two orthogonal projections.
In Sect. 3, we cite existing results and constructions and compare them. A
new proof for the description of all unitaries satisfying (2) is given in Sect. 4,
and in Sect. 5 we quote the result of [6]. In the final Sect. 6 we embark
on the questions whether the intertwining unitaries belong to the W ∗- and
C∗-algebras generated by P and Q.

2. Skew Projections

Let A be a complex Banach algebra with unit I and let P,Q be two idempo-
tents in A. We denote by alg(P,Q) the smallest closed subalgebra of A that
contains I, P,Q. The following result reveals that the search for an element
V satisfying (1) must go beyond alg(P,Q) if B = I −P −Q is not invertible.

Proposition 3. The following are equivalent:
(i) there exists an element V ∈ alg(P,Q) that is invertible in A and

satisfies V PV −1 = Q,
(ii) B = I − P − Q is invertible in A,
(iii) 1 is not in the spectrum of A2 = (P − Q)2,
(iv) P + 2Q − I and P + 2Q − 2I are invertible in A.

If (ii) holds, then BPB−1 = Q and BQB−1 = P .

Proof. The equivalence (ii) ⇔ (iii) follows from the equality A2 +B2 = I. We
also know that (ii) implies BPB−1 = Q and BQB−1 = P and thus (i). All
other implications can be shown by employing the two projections theorem of
Gohberg and Krupnik [8,9] and Roch and Silbermann [15]; see also [4,5,14].
Example 6.4 of [5] contains the equivalence (ii) ⇔ (iv). We are therefore left
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with the implication (i) ⇒ (iv). So suppose (i) holds. If P + 2Q − I is not
invertible in A, then the theorem by Gohberg, Krupnik, Roch, and Silber-
mann tells us that there exists an algebra homomorphism G1 : alg(P,Q) → C

such that G1(V ) 	= 0, G1(P ) = 1, and G1(Q) = 0. Thus, if V P = QV , then
G1(V ) · 1 = 0 · G1(V ), which is impossible. The same theorem shows that if
P + 2Q − 2I is not invertible in A, then there is an algebra homomorphism
of alg(P,Q) into C satisfying G2(V ) 	= 0, G2(P ) = 0, and G2(Q) = 1, which
gives G2(V ) · 0 = 1 · G2(V ), being again a contradiction. This proves the
implication (i) ⇒ (iv). �

We now turn to the Hilbert space case. Let H be a complex Hilbert
space and denote by B(H) the C∗-algebra of all bounded linear operators
on the space H. Let P,Q ∈ B(H) be two projections, P 2 = P and Q2 = Q.
Clearly, if there is an invertible V ∈ B(H) such that (1) holds, then the ranges
RanP and RanQ as well as the kernels Ker P and KerQ must have the same
dimension. This is even sufficient for the existence of an invertible operator
V satisfying V P = QV . Indeed, in that case we may choose orthonormal
bases {ej}j∈J and {ek}k∈K in Ran Q and KerQ and {fj}j∈J and {fk}k∈K

in Ran P and KerP , and the operator V ∈ B(H) which maps ei to fi is
invertible and satisfies V P = QV .

In general, we cannot achieve (1) with a unitary operator V and it is
also not possible to ensure (2) with an invertible operator V . To see this,
consider the two-dimensional case and take

P =
(

0 −1
0 1

)

, Q =
(

1 2
0 0

)

.

These two idempotent matrices have both the rank one and, in addition,
satisfy

dim(Ran P ∩ Ker Q) = dim(Ran Q ∩ Ker P ) = {0},

a condition that will make its debut later. It is easily seen that 2×2 matrices
V and ˜V obey V P = QV and ˜V Q = P ˜V if and only if

V =
(−2c b

c c

)

, ˜V =
(−c b

c 2c

)

.

But such matrices are never unitary, and the equality V = ˜V holds if and
only if c = 0, and in that case the matrices are not invertible.

For complementary projections, in which case B = I − P − Q is the
zero operator and thus as far away from invertibility as possible, the equality
V P = QV implies V Q = PV . Thus, for complementary projections with
equal range dimensions we may guarantee (2) with an invertible V.

3. Orthogonal Projections

In the case where P,Q ∈ B(H) are orthogonal projections, P 2 = P = P ∗

and Q2 = Q = Q∗, much is known. It was already in 1947, when Sz.-Nagy
addressed the question of finding a unitary U such UP = QU . We mentioned
above that in the early 1950s, Kato found such a U under the condition that
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‖P −Q‖ < 1. An alternative derivation of the formula for U suggested by Sz.-
Nagy and Kato was given by Mityagin [13]. In the paper [3], Avron, Seiler,
and one of the authors observed that if the inequality ‖P − Q‖ < 1 holds,
then one can even find a unitary U such that UP = QU and UQ = PU , that
is, such that

Q = UPU∗, P = UQU∗, (4)

and it was shown that U = sgn(I − P − Q) is as desired and that Kato’s
unitary is just equal to U(I − 2Q) = (I − 2P )U with this U . We refer to
Section 5 of [18] for more on the early history of the topic and for precise
references.

Wang et al. [20] finally proved that a unitary U satisfying (4) exists if
and only if

dim(Ran P ∩ Ker Q) = dim(Ran Q ∩ Ker P ). (5)

The “if” part of their proof uses Halmos’ two projections theorem, the “only
if” part is through expressing things in a basis. A proof of this result based
on the identities (3) is in [17]. Since AB + BA = 0 is the signature of super-
symmetry, we will call this the supersymmetric approach. Very recently, Dou
et al. [6] gave a description of all unitaries U with the property (4). Their
proof is entirely via Halmos’ two projections theorem. The purpose of what
follows is twofold: we will first uncover the connection between [3,17] and
[20], and we will secondly state the result of [6] in slightly modified form and
derive it on the basis of the supersymmetric approach evoked by (3).

We finally remark that the problem of replacing the original equation
Q = UPU∗ with the stronger requirement (4) is not a purely academic mat-
ter. This problem actually came from trying to understand some relations
between pairs of projections that appeared in the analysis of the quantum
Hall effect [1,2].

The two projections theorem of Halmos [10] (see also [5,14] and ref-
erences therein) is as follows. Let P and Q be two orthogonal projections
acting on the Hilbert space H, let L and N denote the ranges of P and Q,
respectively, and put

M01 = L ∩ N ⊥, M10 = N ∩ L⊥. (6)

Clearly, M01 = Ran P ∩ Ker Q and M10 = Ran Q ∩ Ker P , and hence (5) is
the same as the equality

dim M01 = dim M10. (7)

In addition to (6), let

M00 = L ∩ N , M11 = L⊥ ∩ N ⊥

and

M = L � (M00 ⊕ M01), M′ = L⊥ � (M10 ⊕ M11).

One can show that M and M′ have the same dimension. Let W : M → M′

be any unitary operator and put W = diag[IM,W ]. Let finally H be the
restriction of PQP to M. By construction, H is a Hermitian operator with
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its spectrum in [0, 1] and 0, 1 not being its eigenvalues. The operators P and
Q can now be represented as

P = IM00 ⊕ IM01 ⊕ 0M10 ⊕ 0M11 ⊕ W∗
[

IM 0
0 0M′

]

W, (8)

Q = IM00 ⊕ 0M01 ⊕ IM10 ⊕ 0M11 ⊕ W∗
[

H
√

H(I − H)
√

H(I − H) I − H

]

W.

(9)

Armed with this representation we can compare the results of [3,17]
and [20]. First of all, we see that if ‖P − Q‖ < 1, then we necessarily have
M01 = M10 = {0}. Wang et al. [20] assumed (7) and showed (in a slightly
different notation) that if S : M10 → M01 is an arbitrary unitary operator,
then

U = IM00 ⊕
[

0 S
S∗ 0

]

⊕ IM11 ⊕ W∗
[ √

H
√

I − H√
I − H −√

H

]

W, (10)

is unitary and satisfies (4). Papers [3,17] consider the generic case, that is, the
case where Mij = {0} for i, j = 0, 1. The intertwining operator was chosen
as sgn(I −P −Q). Note that in the absence of the first four direct summands
in (8) and (9) we have

P = W∗
[

I 0
0 0

]

W, Q = W∗
[

H
√

H(I − H)
√

H(I − H) I − H

]

W, (11)

and so

B = I − P − Q = W∗
[ −H −√

H(I − H)
−√

H(I − H) H

]

W,

B∗B = B2 = W∗
[

H 0
0 H

]

W, |B| :=
√

B2 = W∗
[√

H 0
0

√
H

]

W.

The equality B = |B| sgn(B) now implies that

sgn (I − P − Q) = sgn (B) = W∗
[ −√

H −√
I − H

−√
I − H

√
H

]

W.

Up to the sign, this is the same as the last direct summand in (10). Also
notice that in the case of selfadjoint projections the V = (I − A2)−1/2B in
Proposition 2 is nothing but (B2)−1/2B = (B∗B)−1/2B = sgn(B).

4. Orthogonal Projections: The Supersymmetric Approach

From the previous section we know that

U := IM00 ⊕
[

0 S
S∗ 0

]

⊕ IM11 ⊕ sgn(B) (12)

is unitary and satisfies UP = QU and UQ = PU. Moreover, condition (7)
ensures that the selfadjoint operators A and B are injective. Using the de-
composition of the Hilbert space H into the positive and negative spectral
subspaces of A we obtain that
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A = N
[

a1 0
0 −a2

]

N∗

with a unitary operator N and with positive definite a1, a2. Let

B = N
[

b1 b
b∗ b2

]

N∗

be the respective block matrix representation of B.

Lemma 4. The block representations just introduced are actually of the form

A = M
[

a 0
0 −a

]

M∗, B = M
[

0
√

I − a2√
I − a2 0

]

M∗ (13)

where M is a unitary operator and a is a positive definite operator which has
its spectrum in [0, 1] and does not have 1 as an eigenvalue.

Proof. The anticommutativity condition AB + BA = 0 implies in particular
that a1b1+b1a1 = 0. Thus, the operator a1b1 has zero Hermitian part, and so
it is of the form a1b1 = iT with a selfadjoint operator T . It follows that the
spectrum of a1b1 is purely imaginary. Since σ(XY )∪{0} = σ(Y X)∪{0}, the
spectrum of a

1/2
1 b1a

1/2
1 also is purely imaginary. On the other hand, the latter

operator is selfadjoint, and hence its spectrum is real. Combining the two
statements we see that the selfadjoint operator a

1/2
1 b1a

1/2
1 has zero spectrum

and thus itself is zero. From the injectivity of a1 we conclude that b1 = 0. It
can be shown similarly that b2 = 0, and so B simplifies to

N
[

0 b
b∗ 0

]

N∗.

Since B is injective, b also is injective and its range is dense. It therefore
admits a polar representation b = u|b| with a unitary factor u. With M =
Ndiag[u, I], we may therefore write

A = M
[

c1 0
0 −c2

]

M∗, B = M
[

0 |b|
|b| 0

]

M∗.

In particular, the positive and negative spectral subspaces of A have the same
dimension. Using now the equality A2+B2 = I we conclude that c2

1+ |b|2 = I
and c2

2 + |b|2 = I, which implies that c2
1 = c2

2, and since c1 and c2 are positive
definite, it follows that c1 = c2 =: a. Finally, again because A2 + B2 = I, we
obtain that a2 + |b|2 = I, that is, |b| =

√
I − a2. �

Theorem 5. Let P,Q ∈ B(H) be orthogonal projections and suppose (7) holds.
Then all unitary operators U satisfying (4) are given by

U = U0 ⊕
[

0 U10

U01 0

]

⊕ U1 ⊕ M
[

0 v
v 0

]

M∗. (14)

Here Uj, Uij are arbitrary unitary operators acting on Mjj and from Mji

onto Mij, respectively, v is an arbitrary unitary operator commuting with a,
and M is the unitary operator from Lemma 4.
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Proof. Let U be a unitary operator satisfying (4). We may write U = ZU
with a unitary operator Z and U being the operator (12) and may represent
Z in the form

Z =

⎛

⎝

⊕

i,j=0,1

Zij

⎞

⎠ ⊕ MV M∗

with V =
[

v11 v12

v21 v22

]

. From Observation 1 we infer that MV M∗ must com-

mute with P,Q, hence with A,B, and thus also with sgn(A), sgn(B). Lemma 4
shows that

sgn(A) = M
[

I 0
0 −I

]

M∗, sgn(B) = M
[

0 I
I 0

]

M∗, (15)

and so every operator commuting with sgn(A), sgn(B) has the form

M
[

v 0
0 v

]

M∗. (16)

For MV M∗ to commute with A,B themselves, v has to commute with a.
Thus,

Z =

⎛

⎝

⊕

i,j=0,1

Zij

⎞

⎠ ⊕ M
[

v 0
0 v

]

M∗.

This operator is unitary if and only if so are Zij and v. Taking into account
that

M
[

v 0
0 v

]

M∗ sgn(B) = M
[

v 0
0 v

]

M∗M
[

0 I
I 0

]

M∗ = M
[

0 v
v 0

]

M∗,

we see that U = ZU has the form (14). Conversely, as (16) commutes with
A,B and thus with P,Q, Observation 1 implies that an operator U as in the
theorem satisfies (4). �

We remark that if A (equivalently, a) has simple spectrum, then v must
be a function of a; see, for instance, page 308 of [16]. In this case A can be
realized as the operator Mx of multiplication by the independent variable
on L2(R, dμ) with some measure μ; see page 303 of [16]. Then a is nothing
but the multiplication operator by x on L2(R+, dμ), and v is the operator of
multiplication by an arbitrary unimodular function on L2(R+, dμ).

5. Orthogonal Projections: The Result of Dou, Shi, Cui, and
Du

In slightly modified notation, the result of [6] is as follows. For convenience,
we include a proof.
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Theorem 6. (Dou, Shi, Cui, Du) Let P,Q have the representations (8) and (9)
and satisfy (7). Then all unitary operators U satisfying (4) are given by the
formula

U = U0 ⊕
[

0 U10

U01 0

]

⊕ U1 ⊕ W∗
[

V 0
0 V

] [ √
H

√
I − H√

I − H −√
H

]

W.

(17)

Here Uj, Uij are arbitrary unitary operators acting on Mjj and from Mji

onto Mij, respectively, and V is an arbitrary unitary operator acting on M
and commuting with H.

Proof. Let U be the unitary operator (10) and let U be a unitary operator
satisfying (4). We may write U = ZU with a unitary operator Z. If (4) holds,
then Z commutes with both P and Q. We may represent Z in the form

Z =

⎛

⎝

⊕

i,j=0,1

Zij

⎞

⎠ ⊕ W∗
[

V11 V12

V21 V22

]

W.

From (8) and the equality ZP = PZ we obtain V12 = V21 = 0. Representa-
tion (9) and the relation ZQ = QZ imply that V11 and V22 commute with H

and that
√

H(I − H)V11 = V22

√

H(I − H). Since V22 commutes with H, it
follows that

√

H(I − H)(V11 − V22) = 0 and thus H(I − H)(V11 − V22) = 0.
As both H and I − H are injective, we conclude that V11 = V22 =: V . Thus,

Z =

⎛

⎝

⊕

i,j=0,1

Zij

⎞

⎠ ⊕ W∗
[

V 0
0 V

]

W.

This operator is unitary if and only if so are Zij and V . This shows that
U = ZU has the form (17). Conversely, using (8) and (9) it can be readily
verified that an operator U as in the theorem satisfies (4). �

6. Additional Remarks

Recall ( [7], see also [19] and [5, Theorem 7.1]) that the von Neumann algebra
A(P,Q) generated by the pair P,Q consists of all the operators of the form

⎛

⎝

⊕

i,j=0,1

aijIMij

⎞

⎠ ⊕ W∗
[

φ00(H) φ01(H)
φ10(H) φ11(H)

]

W, (18)

where aij ∈ C and φij functions on [0, 1] that are Borel-measurable and
essentially bounded with respect to the spectral measure of H. From (17)
and (18) we immediately obtain the following.

Corollary 7. Let P,Q be orthogonal projections onto L and N , respectively.
There exist unitary U ∈ A(P,Q) satisfying (4) if and only if

M01 = L ∩ N ⊥ = {0}, M10 = N ∩ L⊥ = {0}. (19)
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If these two equalities hold, then all such U are given by the formula

U = a0IM00 ⊕ a1IM11 ⊕ W∗
[

φ(H) 0
0 φ(H)

] [ √
H

√
I − H√

I − H −√
H

]

W,

(20)

where |a0| = |a1| = 1 and φ is a Borel measurable unimodular function on
[0, 1].

We pass now to the C∗-algebra B(P,Q) generated by P and Q. Its
elements are characterized among all those from A(P,Q) by functions φij in
(18) that are continuous, not just measurable, on the spectrum Δ of H and
satisfy the following additional conditions:

if 0 ∈ Δ then φ01(0) = φ10(0) = 0,
if 0 ∈ Δ and M00 	= {0} then φ11(0) = a00,
if 0 ∈ Δ and M11 	= {0} then φ00(0) = a11,
if 1 ∈ Δ then φ01(1) = φ10(1) = 0,
if 1 ∈ Δ and M01 	= {0} then φ11(1) = a01,
if 1 ∈ Δ and M10 	= {0} then φ00(1) = a10;

see [5, Section 4] and references therein keeping in mind a slight notational
deviation caused by the fact that the operator H in [5] is our I − H.

Corollary 8. Let P,Q be orthogonal projections onto L and N , respectively.
There exist unitary U ∈ B(P,Q) satisfying (4) if and only if the operator
P + Q − I is invertible. If this is the case, then all such U are given by
formula (20) in which |a0| = |a1| = 1 and φ is a continuous unimodular
function on [0, 1].

Proof. By (8) and (9), the invertibility of P +Q−I is equivalent to condition
(19) combined with the invertibility of H. The former condition is necessary
due to Corollary 7. To prove the necessity of the latter, observe that in the
notation of (18) for the operators (20) we have φ01(t) = φ10(t) = φ(t)

√
1 − t.

Since φ is unimodular, φ(0) cannot be zero. It follows that φ01(0) 	= 0 and
φ10(0) 	= 0. Thus, by the first of the six additional conditions listed above, 0
is not in Δ.

Conversely, let (19) be valid and 0 /∈ Δ. Suppose U is given by (20) with
|a0| = |a1| = 1 and a continuous unimodular function φ on [0, 1]. Passing to
notation (18), we have again φ01(t) = φ10(t) = φ(t)

√
1 − t, implying that

φ01(1) = φ10(1) = 0. Thus, we need not take care of the first three of the six
additional requirements listed above, and the last three of them are automat-
ically satisfied. It results that all operators of the form (20) with continuous
(and not just measurable) unimodular φ belong to B(P,Q). �

Finally, recall that if H is a selfadjoint operator with a simple spec-
trum, then the only operators commuting with H are functions of H; see,
e.g., Lemma 5.4.9 of [16]. Combining Theorem 6 for generically positioned
projections with Corollary 7 we therefore obtain the following.
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Corollary 9. Let P,Q be a pair of generically positioned orthogonal projec-
tions such that the spectrum of PQP is simple. Then all unitary operators U
satisfying (4) lie in A(P,Q).

Indeed, by Theorem 2 all such U have the form (17). The unitary opera-
tor V there, commuting with H, has to be a function of the latter. Thus, U is
actually of the form of the last direct summand of (20). The other two sum-
mands are not present, since P,Q are generically positioned. So, U ∈ A(P,Q)
due to Corollary 7.
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