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Abstract. If µ is a positive Borel measure on the interval [0, 1) we let
Hµ be the Hankel matrix Hµ = (µn,k)n,k≥0 with entries µn,k = µn+k,
where, for n = 0, 1, 2, . . . , µn denotes the moment of order n of µ. This
matrix induces formally the operator

Hµ(f)(z) =
∞∑

n=0

( ∞∑

k=0

µn,kak

)
zn

on the space of all analytic functions f(z) =
∑∞

k=0 akz
k, in the unit

disc D. This is a natural generalization of the classical Hilbert operator.
In this paper we improve the results obtained in some recent papers
concerning the action of the operators Hµ on Hardy spaces and on
Möbius invariant spaces.
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1. Introduction and Main Results

We denote by D the unit disc in the complex plane C, and by Hol(D) the
space of all analytic functions in D. We also let Hp (0 < p ≤ ∞) be the
classical Hardy spaces. We refer to [19] for the notation and results regarding
Hardy spaces.

If μ is a finite positive Borel measure on [0, 1) and n = 0, 1, 2, . . . , we
let μn denote the moment of order n of μ, that is, μn =

∫
[0,1)

tn dμ(t), and
we define Hμ to be the Hankel matrix (μn,k)n,k≥0 with entries μn,k = μn+k.
The matrix Hμ can be viewed as an operator on spaces of analytic functions
in the following way: if f(z) =

∑∞
k=0 akzk ∈ Hol(D) we define
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Hμ(f)(z) =
∞∑

n=0

( ∞∑

k=0

μn,kak

)
zn,

whenever the right hand side makes sense and defines an analytic function
in D.

If μ is the Lebesgue measure on [0, 1) the matrix Hμ reduces to the
classical Hilbert matrix H =

(
(n + k + 1)−1

)
n,k≥0

, which induces the clas-
sical Hilbert operator H which has extensively studied recently (see [1,13,14,
17,27,28]). Other related generalizations of the Hilbert operator have been
considered in [20] and [32].

The question of describing the measures μ for which the operator Hμ is
well defined and bounded on distinct spaces of analytic functions has been
studied in a good number of papers (see [8,12,21,23,30,34,38]). Carleson
measures play a basic role in these works.

If I ⊂ ∂D is an interval, |I| will denote the length of I. The Carleson
square S(I) is defined as S(I) = {reit : eit ∈ I, 1 − |I|

2π ≤ r < 1}.
If s > 0 and μ is a positive Borel measure on D, we shall say that μ is

an s-Carleson measure if there exists a positive constant C such that

μ (S(I)) ≤ C|I|s, for any interval I ⊂ ∂D.

A 1-Carleson measure will be simply called a Carleson measure.
We recall that Carleson [11] proved that Hp ⊂ Lp(dμ) (0 < p < ∞), if

and only if μ is a Carleson measure. This result was extended by Duren
[18] (see also [19, Theorem 9. 4]) who proved that for 0 < p ≤ q < ∞,
Hp ⊂ Lq(dμ) if and only if μ is a q/p-Carleson measure.

If X is a subspace of Hol(D), 0 < q < ∞, and μ is a positive Borel
measure in D, μ is said to be a “q-Carleson measure for the space X” or
an “(X, q)-Carleson measure” if X ⊂ Lq(dμ). The q-Carleson measures for
the spaces Hp, 0 < p, q < ∞ are completely characterized. The mentioned
results of Carleson and Duren can be stated saying that if 0 < p ≤ q < ∞
then a positive Borel measure μ in D is a q-Carleson measure for Hp if and
only if μ is a q/p-Carleson measure. Luecking [29] and Videnskii [37] solved
the remaining case 0 < q < p. We mention [9] for a complete information on
Carleson measures for Hardy spaces.

Following [40], if μ is a positive Borel measure on D, 0 ≤ α < ∞, and
0 < s < ∞ we say that μ is an α-logarithmic s-Carleson measure if there
exists a positive constant C such that

μ (S(I))
(
log 2π

|I|
)α

|I|s ≤ C, for any interval I ⊂ ∂D.

A positive Borel measure μ on [0, 1) can be seen as a Borel measure on
D by identifying it with the measure μ̃ defined by

μ̃(A) = μ (A ∩ [0, 1)) , for any Borel subset A of D.

In this way a positive Borel measure μ on [0, 1) is an s-Carleson measure if
and only if there exists a positive constant C such that

μ ([t, 1)) ≤ C(1 − t)s, 0 ≤ t < 1.
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We have a similar statement for α-logarithmic s-Carleson measures.
Widom [38, Theorem 3. 1] (see also [34, Theorem 3] and [33, p. 42, The-

orem 7. 2]) proved that Hμ is a bounded operator from H2 into itself if and
only μ is a Carleson measure. Galanopoulos and Peláez [21] studied the op-
erators Hμ acting on H1 and Chatzifountas, Girela and Peláez [12] studied
the action of Hμ on Hp, 0 < p < ∞.

A key ingredient in [21] and [12] is obtaining an integral representation
of Hμ. If μ is as above, we shall write throughout the paper

Iμ(f)(z) =
∫

[0,1)

f(t)
1 − tz

dμ(t),

whenever the right hand side makes sense and defines an analytic function
in D. It turns out that the operators Hμ and Iμ are closely related. Indeed,
some of the results obtained in [21] and [12] are the following ones:

Theorem A ([21]). Let μ be a positive Borel measure on [0, 1). Then:
(i) The operator Iμ is well defined on H1 if and only if μ is a Carleson

measure.
(ii) If μ is a Carleson measure, then the operator Hμ is also well defined on

H1 and, furthermore,

Hμ(f) = Iμ(f), for every f ∈ H1.

(iii) The operator Iμ is a bounded operator from H1 into itself if and only if
μ is a 1-logarithmic 1-Carleson measure.

Theorem B ([12]). Suppose that 1 < p < ∞ and let μ be a positive Borel
measure on [0, 1). Then:

(i) The operator Iμ is well defined on Hp if and only if μ is a 1-Carleson
measure for Hp.

(ii) If μ is a 1-Carleson measure for Hp, then the operator Hμ is also well
defined on Hp and, furthermore,

Hμ(f) = Iμ(f), for every f ∈ Hp.

(iii) The operator Iμ is a bounded operator from Hp into itself if and only if
μ is a Carleson measure.

Theorem A and Theorem B immediately yield the following.

Theorem C. Let μ be a positive Borel measure on [0, 1).
(i) If μ is a Carleson measure, then the operator Hμ is a bounded opera-

tor from H1 into itself if and only if μ is a 1-logarithmic 1-Carleson
measure.

(ii) If 1 < p < ∞ and μ is a 1-Carleson measure for Hp, then the opera-
tor Hμ is a bounded operator from Hp into itself if and only if μ is a
Carleson measure.

Theorem C does not close completely the question of characterizing the
measures μ for which Hμ is a bounded operator from Hp into itself. Indeed, in
Theorem C we only consider 1-Carleson measures for Hp. In principle, there
could exist a measure μ which is not a 1-Carleson measures for Hp but so
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that the operator Hμ is well defined and bounded on Hp. Our first result in
this paper asserts that this is not the case.

Theorem 1.1. Let μ be a positive Borel measure on [0, 1).
(i) The operator Hμ is a bounded operator from H1 into itself if and only

if μ is a 1-logarithmic 1-Carleson measure.
(ii) If 1 < p < ∞ then the operator Hμ is a bounded operator from Hp into

itself if and only if μ is a Carleson measure.

We have the following result for p = ∞, a case which was not considered
in [12].

Theorem 1.2. Let μ be a positive Borel measure on [0, 1). Then the following
conditions are equivalent.

(i)
∫
[0,1)

dμ(t)
1−t < ∞.

(ii)
∑∞

n=0 μn < ∞.
(iii) The operator Iμ is a bounded operator from H∞ into itself.
(iv) The operator Hμ is a bounded operator from H∞ into itself.

In the paper [23] the authors have studied the operators Hμ acting on
certain conformally invariant spaces such as the Bloch space, BMOA, the
analytic Besov spaces Bp (1 < p < ∞), and the Qs spaces. Let us introduce
quickly these spaces.

It is well known that the set of all disc automorphisms (i.e., of all one-
to-one analytic maps f of D onto itself), denoted Aut(D), coincides with the
set of all Möbius transformations of D onto itself: Aut(D) = {λϕa : |a| <
1, |λ| = 1} , where ϕa(z) = (a − z)/(1 − az).

A space X of analytic functions in D, defined via a semi-norm ρ, is said
to be conformally invariant or Möbius invariant if whenever f ∈ X, then
also f ◦ϕ ∈ X for any ϕ ∈ Aut(D) and, moreover, ρ(f ◦ϕ) ≤ Cρ(f) for some
positive constant C and all f ∈ X. We mention [3,15,42] as references for
Möbius invariant spaces.

The Bloch space B consists of all analytic functions f in D with bounded
invariant derivative:

f ∈ B ⇔ ρB(f) def= sup
z∈D

(1 − |z|2) |f ′(z)| < ∞ .

A classical reference for the Bloch space is [2]; see also [42]. Rubel and Timo-
ney [35] proved that B is the biggest “natural” conformally invariant space.

The space BMOA consists of those functions f in H1 whose bound-
ary values have bounded mean oscillation on the unit circle. Alternatively,
BMOA can be characterized in the following way:

If f is an analytic function in D, then f ∈ BMOA if and only if

‖f‖�
def= sup

a∈D

‖f ◦ ϕa − f(a)‖H2 < ∞.

The seminorm ‖ · ‖� is conformally invariant. We mention [22] as a general
reference for the space BMOA. Let us recall that

H∞
� BMOA �

⋂

0<p<∞
Hp and BMOA � B.
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If 0 ≤ s < ∞, we say that f ∈ Qs if f is analytic in D and

ρQs
(f) def=

(
sup
a∈D

∫

D

|f ′(z)|2g(z, a)s dA(z)
)1/2

< ∞.

Here, g(z, a) is the Green’s function in D, given by g(z, a) = log
∣∣∣ 1−az

z−a

∣∣∣,
while dA(z) = dx dy

π is the normalized area measure on D. All Qs spaces
(0 ≤ s < ∞) are conformally invariant with respect to the semi-norm ρQs

(see e.g., [39, p. 1] or [15, p. 47]).
These spaces were introduced by Aulaskari and Lappan in [5] while

looking for new characterizations of Bloch functions. They proved that for
s > 1, Qs is the Bloch space. Using one of the many characterizations of
the space BMOA (see [22, Theorem 6. 2]) we have that Q1 = BMOA. In
the limit case s = 0, Qs is the classical Dirichlet space D of those analytic
functions f in D satisfying

∫
D

|f ′(z)|2 dA(z) < ∞.
Aulaskari, Xiao and Zhao proved in [7] that

D � Qs1 � Qs2 � BMOA, 0 < s1 < s2 < 1.

We mention [39] as an excellent reference for the theory of Qs-spaces.
For 1 < p < ∞, the analytic Besov space Bp is defined as the set of all

functions f analytic in D such that

ρp(f) =
(∫

D

(1 − |z|2)p−2|f ′(z)|p dA(z)
)1/p

< ∞.

All Bp spaces (1 < p < ∞) are conformally invariant with respect to the
semi-norm ρp (see [3, p. 112] or [15, p. 46]). We have that D = B2. A lot of
information on Besov spaces can be found in [3,15,16,25,41,42]. Let us recall
that

Bp
� Bq

� BMOA, 1 < p < q < ∞.

Among others, the following results have been proved in [23].

Theorem D. Let μ be a positive Borel measure on [0, 1).
(i) For any given s > 0, the operator Iμ is well defined in Qs if and only if

∫

[0,1)

log
2

1 − t
dμ(t) < ∞.

(ii) For any given s > 0, the operator Iμ is a bounded operator from Qs into
BMOA if and only if μ is a 1-logarithmic 1-Carleson measure.

(iii) If μ is a 1-logarithmic 1-Carleson measure then Hμ(f) = Iμ(f), for all
f ∈ B.

(iv) If μ is a 1-logarithmic 1-Carleson measure then Hμ is a bounded operator
from Qs into BMOA for any s > 0.

It is natural to look for a characterization of those μ for which Iμ and/or
Hμ is a bounded operator from B into itself or, more generally, from Qs into
itself for any s > 0. We have the following result.

Theorem 1.3. Let μ be a positive Borel measure on [0, 1). Then the following
conditions are equivalent.
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(i) The operator Iμ is bounded from Qs into itself for some s > 0.
(ii) The operator Iμ is bounded from Qs into itself for all s > 0.
(iii) The operator Hμ is bounded from Qs into itself for some s > 0.
(iv) The operator Hμ is bounded from Qs into itself for all s > 0.
(v) The measure μ is a 1-logarithmic 1-Carleson measure.

In [23] we also studied the operators Hμ acting on Besov spaces. The-
orem 3. 8 of [23] asserts that μ being a γ-logarithmic 1-Carleson measure for
some γ > 1 is a sufficient condition for the boundedness of Hμ from Bp into
itself, for any p > 1. On the other hand, Theorem 3. 7 of [23] asserts that if
1 < p < ∞ and the operator Hμ is bounded from Bp to itself then μ is a
γ-logarithmic 1-Carleson measure for any γ < 1 − 1

p . We can improve this
result as follows.

Theorem 1.4. Suppose that 1 < p < ∞ and let μ be a positive Borel measure
on [0, 1) such that the operator Hμ is bounded from Bp into itself. Then μ is

a
(
1 − 1

p

)
-logarithmic 1-Carleson measure.

The paper is organized as follows. The results concerning Hardy spaces
will be proved in Sect. 2; Section 3 will be devoted to prove Theorem 1.3 and
Theorem 1.4. We close this section noticing that, as usual, we shall be us-
ing the convention that C = C(p, α, q, β, . . . ) will denote a positive constant
which depends only upon the displayed parameters p, α, q, β . . . (which some-
times will be omitted) but not necessarily the same at different occurrences.
Moreover, for two real-valued functions E1, E2 we write E1 � E2, or E1 � E2,
if there exists a positive constant C independent of the arguments such that
E1 ≤ CE2, respectively E1 ≥ CE2. If we have E1 � E2 and E1 � E2 simul-
taneously then we say that E1 and E2 are equivalent and we write E1 � E2.

2. The Operator Hµ Acting on Hardy Spaces

This section is devoted to prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1 (i). Suppose that Hμ is a bounded operator from H1

into itself. For 0 < b < 1, set
fb(z) =

1 − b2

(1 − bz)2
, z ∈ D.

We have that fb ∈ H1 and ‖fb‖H1 = 1. Since Hμ is bounded on H1, this
implies that

1 � ‖Hμ(fb)‖H1 . (2.1)

We also have,

fb(z) =
∞∑

k=0

ak,bz
k, with ak,b = (1 − b2)(k + 1)bk.

Since the ak,b’s are positive, it is clear that the sequence {∑∞
k=0 μn+kak,b}∞

n=0

of the Taylor coefficients of Hμ(fb) is a decreasing sequence of non-negative
real numbers. Using this, Theorem 1. 1 of [31], (2.1), and the definition of the
ak,b’s, we obtain



Vol. 89 (2017) A Hankel Matrix Acting on Spaces 587

1 � ‖Hμ(fb)‖H1 �
∞∑

n=1

1
n

( ∞∑

k=0

μn+kak,b

)

=
∞∑

n=1

1
n

( ∞∑

k=0

ak,b

∫

[0,1)

tn+k dμ(t)

)

� (1 − b2)
∞∑

n=1

1
n

( ∞∑

k=1

kbk

∫

[b,1)

tn+k dμ(t)

)

� (1 − b2)
∞∑

n=1

1
n

( ∞∑

k=1

kbn+2k μ ([b, 1))

)

= (1 − b2)μ ([b, 1))
∞∑

n=1

bn

n

( ∞∑

k=1

kb2k

)

= (1 − b2)μ ([b, 1))
(

log
1

1 − b

)
b

(1 − b2)2
.

Then it follows that

μ ([b, 1)) = O

(
1 − b

log 1
1−b

)
, as b → 1.

Hence, μ is a 1-logarithmic 1-Carleson measure.
The converse follows from Theorem C (i). �

Proof of Theorem 1.1 (ii). Suppose that 1 < p < ∞ and that μ is a positive
Borel measure on [0, 1) such that the operator Hμ is a bounded operator from
Hp into itself.

For 0 < b < 1, set

fb(z) =
(

1 − b2

(1 − bz)2

)1/p

, z ∈ D.

We have that fb ∈ Hp and ‖fb‖Hp = 1. Since Hμ is bounded on Hp, this
implies that

1 � ‖Hμ(fb)‖Hp . (2.2)
We also have,

fb(z) =
∞∑

k=0

ak,bz
k, with ak,b ≈ (1 − b2)1/pk

2
p−1bk.

Since the ak,b’s are positive, it is clear that the sequence {∑∞
k=0 μn+kak,b}∞

n=0

of the Taylor coefficients of Hμ(fb) is a decreasing sequence of non-negative
real numbers. Using this, Theorem A of [31], (2.1), and the definition of the
ak,b’s, we obtain

1 � ‖Hμ(fb)‖p
Hp �

∞∑

n=1

np−2

( ∞∑

k=0

μn+kak,b

)p

=
∞∑

n=1

np−2

( ∞∑

k=0

ak,b

∫

[0,1)

tn+k dμ(t)

)p
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� (1 − b2)
∞∑

n=1

np−2

( ∞∑

k=1

k
2
p−1bk

∫

[b,1)

tn+k dμ(t)

)p

� (1 − b2)
∞∑

n=1

np−2

( ∞∑

k=1

k
2
p−1bn+2kμ ([b, 1))

)p

= (1 − b2)μ ([b, 1))p
∞∑

n=1

np−2bnp

( ∞∑

k=1

k
2
p−1b2k

)p

� (1 − b2)μ ([b, 1))p 1
(1 − b)2

∞∑

n=1

np−2bnp

� μ ([b, 1))p 1
(1 − b)p

, as b → 1.

Then it follows that

μ ([b, 1)) = O (1 − b) , as b → 1,

and, hence, μ is a Carleson measure.
The other implication follows from TheoremC (ii). �

Proof of Theorem 1.2. The equivalence (i) ⇔ (ii) is clear because
∫

[0,1)

dμ(t)
1 − t

=
∫

[0,1)

( ∞∑

n=0

tn

)
dμ(t) =

∞∑

n=0

∫

[0,1)

tndμ(t) =
∞∑

n=0

μn.

The implication (i)⇒ (iii) is obvious.
(iii) ⇒ (i): Suppose (iii). Let f be the constant function f(z) = 1, for all

z. Then (iii) implies that there exists a positive constant C such that
∣∣∣∣∣

∫

[0,1)

dμ(t)
1 − tz

∣∣∣∣∣ ≤ C, z ∈ D.

Taking z = 0 in this inequality, (i) follows.
(iii) ⇒ (iv): Suppose (iii). We have seen that then (i) holds, and it is

easy to see that (i) implies that μ is a Carleson measure. Using part (ii) of
Theorem A, it follows that Hμ is well defined in H∞ and that Hμ(f) = Iμ(f)
for all f in H∞. Then (iii) gives that Hμ is bounded from H∞ into itself.

(iv) ⇒ (iii): Suppose that (iv) is true and, as above, let f be the constant
function f(z) = 1, for all z. Then Hμ(f) ∈ H∞. But Hμ(f)(z) =

∑∞
n=0 μnzn

and then it is clear that

Hμ(f) ∈ H∞ ⇔
∞∑

n=0

μn < ∞.

Thus we have seen that (iv) ⇒ (ii). As (ii) ⇔ (iii), this finishes the proof. �

3. The Operator Hµ Acting on Möbius Invariant Spaces

A basic ingredient in the proof of Theorem1.3 will be to have a characteriza-
tion of the functions f(z) =

∑∞
n=0 anzn whose sequence of Taylor coefficients
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{an}∞
n=0 is a decreasing sequence of nonnegative numbers which lie in the

Qs-spaces. This is quite simple for s > 1 (recall that Qs = B if s > 1).
Hwang and Lappan proved in [26, Theorem 1] that if {an} is a decreasing

sequence of nonnegative numbers then f(z) =
∑∞

n=0 anzn is a Bloch function
if and only if an = O

(
1
n

)
.

Fefferman gave a characterization of the analytic functions having non-
negative Taylor coefficients which belong to BMOA, proofs of this criterium
can be found in [10,22,24,36]. Characterizations of the analytic functions
having nonnegative Taylor coefficients which belong to Qs (0 < s < 1) were
obtained in [6, Theorem 1. 2] and [4, Theorem 2. 3]. Using the mentioned result
in [6, Theorem 1. 2], Xiao proved in [39, Corollary 3. 3. 1, p. 29] the following
result.

Theorem E. Let s ∈ (0,∞) and let f(z) =
∑∞

n=0 anzn with {an} being a
decreasing sequence of nonnegative numbers. Then f ∈ Qs if and only if
an = O

(
1
n

)
.

Being based on Theorem 1. 2 of [6], Xiao’s proof of this result is compli-
cated. We shall give next an alternative simpler proof. It will simply use the
validity of the result for the Bloch space and the simple fact that the mean
Lipschitz space Λ2

1/2 is contained in all the Qs spaces (0 < s < ∞) (see [4,
Remark 4, p. 427] or [39, Theorem 4. 2. 1.]).

We recall [19, Chapter 5] that a function f ∈ Hol(D) belongs to the
mean Lipschitz space Λ2

1/2 if and only if

M2(r, f ′) = O
(

1
(1 − r)1/2

)
.

We have the following simple result for the space Λ2
1/2.

Lemma 3.1. If {an}∞
n=0 is a decreasing sequence of nonnegative numbers and

f(z) =
∑∞

n=0 anzn (z ∈ D), then f ∈ Λ2
1/2 if and only if an = O

(
1
n

)
.

Proof. If an = O
(
1
n

)
, then

M2(r, f ′)2 =
∞∑

n=1

n2|an|2r2n−2 �
∞∑

n=1

r2n−2 � 1
1 − r

,

and, hence, f ∈ Λ2
1/2.

Suppose now that {an}∞
n=0 is a decreasing sequence of nonnegative num-

bers and f ∈ Λ2
1/2. Then, for all n

n∑

k=1

k2a2
kr2k−2 ≤

∞∑

k=1

k2a2
kr2k−2 = M2(r, f ′)2 � 1

1 − r
. (3.1)

Taking r = 1 − 1
n in (3.1), we obtain

n∑

k=1

k2a2
k � n. (3.2)
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Since {an} is decreasing, using (3.2) we have

a2
n

n∑

k=1

k2 �
n∑

k=1

k2a2
k � n

and then it follows that an = O
(
1
n

)
. �

Now Theorem E follows using the result of Hwang and Lappan for the
Bloch space, Lemma 3.1, and the fact that

Λ2
1/2 ⊂ Qs ⊂ B, for all s. (3.3)

Using (3.3), it is clear that Theorem 1.3 follows from the following result.

Theorem 3.1. Let μ be a positive Borel measure on [0, 1) and let X be a
Banach space of analytic functions in D with Λ2

1/2 ⊂ X ⊂ B. Then the
following conditions are equivalent.

(i) The operator Iμ is well defined in X and, furthermore, it is a bounded
operator from X into Λ2

1/2.
(ii) The operator Hμ is well defined in X and, furthermore, it is a bounded

operator from X into Λ2
1/2.

(iii) The measure μ is a 1-logarithmic 1-Carleson measure.
(iv)

∫
[0,1)

tn log 1
1−tdμ(t) = O

(
1
n

)
.

Proof. According to Proposition 2. 5 of [23], μ is a 1-logarithmic 1-Carleson
measure if and only if the measure ν defined by dν(t) = log 1

1−tdμ(t) is a
Carleson measure and, using Proposition 1 of [12], this is equivalent to (iv).
Hence, we have shown that (iii) ⇔ (iv).

Set F (z) = log 1
1−z (z ∈ D). We have that F ∈ X.

(i) ⇒ (iv): Suppose (i). Then

Iμ(F )(z) =
∫

[0,1)

log 1
1−t

1 − tz
dμ(t)

is well defined for all z ∈ D. Taking z = 0, we see that
∫
[0,1)

log 1
1−tdμ(t) < ∞.

Since F ∈ X we have also that Iμ(F ) ∈ Λ2
1/2, but

Iμ(F )(z) =
∫

[0,1)

log 1
1−t

1 − tz
dμ(t) =

∞∑

n=0

(∫

[0,1)

tn log
1

1 − t
dμ(t)

)
zn.

Since the sequence
{∫

[0,1)
tn log 1

1−tdμ(t)
}∞

n=0
is a decreasing sequence of

nonnegative numbers, using Lemma 3.1 we see that (iv) holds.
(iv) ⇒ (i): Suppose (iv) and take f ∈ X. Since X ⊂ B, it is well known

that |f(z)| � log 2
1−|z| , see [2, p. 13]. This and (iv) give

∫

[0,1)

tn|f(t)|dμ(t) = O
(

1
n

)
. (3.4)

Then it follows easily that Iμ(f) is well defined and that

Iμ(f)(z) =
∞∑

n=0

(∫

[0,1)

tnf(t)dμ(t)

)
zn.
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Now (3.4) implies that
∫
[0,1)

tnf(t)dμ(t) = O
(
1
n

)
and then it follows that

Iμ(f) ∈ Λ2
1/2.

The implication (iv)⇒ (ii) follows using Theorem 2. 3 of [23] and the
already proved equivalences (i)⇔ (iii) ⇔ (iv).

It remains to prove (ii)⇒ (iv). Suppose (ii), then Hμ(F ) ∈ Λ2
1/2. Now

Hμ(F )(z) =
∞∑

n=0

( ∞∑

k=1

μn+k

k

)
zn.

Notice that the sequence {∑∞
k=1

μn+k

k }∞
n=0 is a decreasing sequence of non-

negative numbers. Then, using Lemma3.1 and the fact that Hμ(F ) ∈ Λ2
1/2,

we deduce that
∞∑

k=1

μn+k

k
= O

(
1
n

)
. (3.5)

Now
∞∑

k=1

μn+k

k
=

∫

[0,1)

∞∑

k=1

tn+k

k
dμ(t) =

∫

[0,1)

tn log
1

1 − t
dμ(t).

Then (iv) follows using (3.5). �

Remark 3.1. It is clear that Theorem 3.1 actually implies the following result.

Theorem 3.2. Let μ be a positive Borel measure on [0, 1) and let 0 < s1, s2 <
∞. Then following conditions are equivalent.

(i) The operator Iμ is well defined in Qs1 and, furthermore, it is a bounded
operator from Qs1 into Qs2 .

(ii) The operator Hμ is well defined in Qs1 and, furthermore, it is a bounded
operator from Qs1 into Qs2 .

(iii) The measure μ is a 1-logarithmic 1-Carleson measure.

Proof of Theorem 1.4. Suppose that 1 < p < ∞ and let μ be a positive Borel
measure on [0, 1) such that the operator Hμ is bounded from Bp into itself.
For 1

2 < b < 1, set

gb(z) =
(

log
1

1 − b2

)−1/p

log
1

1 − bz
, z ∈ D.

We have,

g′
b(z) =

(
log

1
1 − b2

)−1/p
b

1 − bz
, z ∈ D

and then, using Lemma 3. 10 of [42] with t = p − 2 and c = 0, we have
∫

D

(1 − |z|2)p−2|g′
b(z)|p dA(z) �

(
log

1
1 − b2

)−1 ∫

D

(1 − |z|2)p−2

|1 − bz|p dA(z) � 1.

In other words, we have that

gb ∈ Bp and ‖gb‖Bp � 1.
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Since Hμ is a bounded operator from Bp into itself, this implies that

1 � ‖Hμ(gb)‖p
Bp . (3.6)

We have

gb(z) =
∞∑

k=0

ak,bz
k, with ak,b =

(
log

1
1 − b2

)−1/p
bk

k
.

Since the ak,b’s are positive it follows that the sequence {∑∞
k=0 μn+kak,b}∞

n=0

of the Taylor coefficients of Hμ(gb) is a decreasing sequence of non-negative
real numbers. Using this, [23, Theorem 3. 10], and (3.6) we see that

1 � ‖Hμ(gb)‖p
Bp �

∞∑

n=1

np−1

( ∞∑

k=1

μn+kak,b

)p

=
(

log
1

1 − b2

)−1 ∞∑

n=1

np−1

( ∞∑

k=1

bk

k

∫

[0,1)

tn+kdμ(t)

)p

≥
(

log
1

1 − b2

)−1 ∞∑

n=1

np−1

( ∞∑

k=1

bk

k

∫

[b,1)

tn+kdμ(t)

)p

≥
(

log
1

1 − b2

)−1 ∞∑

n=1

np−1

( ∞∑

k=1

bn+2k

k

)p

μ ([b, 1))p

=
(

log
1

1 − b2

)−1 ∞∑

n=1

np−1bnp

( ∞∑

k=1

b2k

k

)p

μ ([b, 1))p

=
(

log
1

1 − b2

)p−1 1
(1 − bp)p

μ ([b, 1))p

�
(

log
1

1 − b2

)p−1 1
(1 − b)p

μ ([b, 1))p
.

Then it follows that μ ([b, 1)) � 1−b

(log 1
1−b )

1− 1
p
. �
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