
Integr. Equ. Oper. Theory 89 (2017), 89–110
DOI 10.1007/s00020-017-2390-x
Published onlineAugust 3, 2017
c© Springer International Publishing AG 2017

Integral Equations
and Operator Theory

Inner Derivations and Weak-2-Local
Derivations on the C∗-Algebra C0(L,A)
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Abstract. Let L be a locally compact Hausdorff space. Suppose A is a
C∗-algebra with the property that every weak-2-local derivation on A
is a (linear) derivation. We prove that every weak-2-local derivation on
C0(L,A) is a (linear) derivation. Among the consequences we establish
that if B is an atomic von Neumann algebra or a compact C∗-algebra,
then every weak-2-local derivation on C0(L,B) is a linear derivation.
We further show that, for a general von Neumann algebra M , every 2-
local derivation on C0(L,M) is a linear derivation. We also prove several
results representing derivations on C0(L,B(H)) and on C0(L,K(H)) as
inner derivations determined by multipliers.
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1. Introduction

Inspired by the Kowalski–S�lodkowski theorem (see [22]), P. Šemrl introduced
in [32] the notions of 2-local derivations and automorphisms. This notion
and subsequent generalizations have been intensively explored in recent pa-
pers (see, for example, [9,10,25,26] and [19]). More recent contributions deal
with the following general notion: Let S be a subset of the space L(X,Y ),
of all linear maps between Banach spaces X and Y , a (non-necessarily linear
nor continuous) mapping Δ : X → Y is said to be a weak-2-local S map
(respectively, a 2-local S-map) if for every x, y ∈ X and φ ∈ Y ∗ (respec-
tively, for every x, y ∈ X), there exists Tx,y,φ ∈ S, depending on x, y and φ
(respectively, Tx,y ∈ S, depending on x and y), satisfying
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φΔ(x) = φTx,y,φ(x), and φΔ(y) = φTx,y,φ(y)

(respectively, Δ(x) = Tx,y(x), and Δ(y) = Tx,y(y)).
The real advantage of this definition is that we can unify several notions

under the same perspective. That is, if S is the set Der(A), of all derivations
on a Banach algebra A (respectively, the set ∗-Der(A) of all ∗-derivations
on a C∗-algebra A, or, more generally, the set of all symmetric maps from
A into another C∗-algebra B), (weak-)2-local S-maps are called (weak-)2-
local derivations (respectively, (weak-)2-local ∗-derivations or (weak-)2-local
symmetric maps). We recall that a mapping Δ from a C∗-algebra A into a
C∗-algebra B is called symmetric if Δ(a∗) = Δ(a)∗, for every a ∈ A.

The linearity of a 2-local S-map is not always guaranteed. For exam-
ple, as noted in [19], for S = K(X,Y ) the space of compact linear mappings
from X to Y , every 1-homogeneous map Δ : X → Y , i.e. Δ(αx) = αΔ(x)
for each α ∈ C, is a 2-local S-map. However, many interesting subsets en-
joy good stability properties for (weak-)2-local perturbations. For example,
let H be an infinite-dimensional separable Hilbert space. P. Šemrl proved in
[32] that every 2-local automorphism (respectively, every 2-local derivation)
on the von Neumann algebra B(H), of all bounded linear operators on H,
is an automorphism (respectively, a derivation). Sh. Ayupov and K. Kuday-
bergenov extended Šemrl’s theorem by showing that every 2-local derivation
on a von Neumann algebra M is a derivation (see [7]). The problem whether
the same conclusion remains true for general C∗-algebras is being intensively
studied. Exploring new types of C∗-algebras, Sh. Ayupov and F.N. Arzikulov
prove that for every compact Hausdorff space Ω and for every Hilbert space
H, each 2-local derivation on C(Ω, B(H)) is a derivation (see [6]).

Recent studies show that, even under weaker hypothesis, similar conclu-
sions remain true for other clases of weak-2-local S-maps. M. Niazi and the
second author of this note prove in [25,26] that every weak-2-local derivation
on a finite dimensional C∗-algebra is a linear derivation, and every weak-2-
local ∗-derivation on B(H) is a linear ∗-derivation. A generalization of this
theorem is established in collaboration with J.C. Cabello, by showing that ev-
ery weak-2-local symmetric map between general C∗-algebras is a linear map
[9, Theorem 2.5]. Consequently, every weak-2-local ∗-derivation on a general
C∗-algebra is a (linear) ∗-derivation, and every 2-local ∗-homomorphism be-
tween C∗-algebras is a (linear) ∗-homomorphism (see [9, Corollary 2.6]). In
a more recent contribution, due to the same authors, it is established that
every weak-2-local derivation on B(H) or on K(H) is a linear derivation,
where H is an arbitrary complex Hilbert space and K(H) stands for the C∗-
algebra of all compact operators on H. Actually, every weak-2-local derivation
on an atomic von Neumann algebra or on a compact C∗-algebra is a linear
derivation [10]. We recently enlarged the class of C∗-algebras A satisfying
that each weak-2-local derivation on A is a linear derivation by showing that
every C∗-algebra of the form C(Ω, B(H)) or C(Ω,K(H)) lies in this class.
Throughout this note, given a C∗-algebra A and a compact Hausdorff space
Ω (respectively, a locally compact Hausdorff space L), the symbol C(Ω, A)
(respectively, C0(L,A)) will stand for the C∗-algebra of continuous A-valued
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functions on Ω (respectively, of continuous A-valued functions on L vanishing
at infinity) with the supreme norm and pointwise operations.

The purpose of the first part of this work is to continue with the study
of weak-2-local derivations on general C∗-algebras. Unlike von Neumann al-
gebras, a general C∗-algebra need not be unital. A prototype is a C∗-algebra
of the form C0(L,A), where L is a locally compact Hausdorff space and A is
any C∗-algebra. The main results in Sect. 2 prove that if every (weak-)2-local
derivation on A is a linear derivation, then every (weak-)2-local derivation
on C0(L,A) is a linear derivation (see Theorems 2.6 and 2.8). Among the
consequences we shall show that if B is an atomic von Neumann algebra
or a compact C∗-algebra, then every weak-2-local derivation on C0(L,B) is
a linear derivation (see Theorem 2.7). Furthermore, for a general von Neu-
mann algebra M , every 2-local derivation on C0(L,M) is a linear derivation
(compare Corollary 2.9).

Previous studies on weak-2-local derivations rely on the precise repre-
sentation of derivations on certain C∗-algebras as inner derivations. We recall
that a derivation on a Banach algebra A is a linear mapping D : A → A sat-
isfying D(ab) = D(a)b + aD(b) for every a, b ∈ A. For each z ∈ A, the
mapping

adz : A → A, x �→ adz(x) = [z, x] = zx − xz,

is a derivation on A. Derivations of the form adz are called inner deriva-
tions. A celebrated result due to S. Sakai proves that every derivation on
a von Neumann algebra is inner (see [30, Theorem 4.1.6]). The existence of
C∗-algebras admitting derivations which are not inner is a well known fact
(see [30, Example 1.4.8]). The question whether every derivation on a con-
crete C∗-algebra is inner or not gains importance after these results. For a
von Neumann algebra M , C.A. Akemann and B.E. Johnson prove that every
derivation of the C∗-tensor product C(Ω)⊗M ∼= C(Ω,M) is inner. In certain
cases, there exist derivations which are not inner however they are very sim-
ilar to inner derivations. For example, by Proposition 2.10 in [19], for each
compact Hausdorff space Ω with a topology τ , each complex Hilbert space H,
and each derivation D : C(Ω,K(H)) → C(Ω,K(H)), there exists a τ -weak∗-
continuous, bounded mapping Z0 : Ω → B(H) satisfying D(X) = [Z0,X],
for every X ∈ C(Ω,K(H)). Remark 2.11 in [19] shows that the mapping Z0

need not be, in general, τ -norm continuous.
In the second part of this paper we study when a derivation on a C∗-

algebra of the form C0(L,A) can be represented by an inner derivation on
its multiplier algebra. In a first result we obtain a “local” representation
theorem for derivations on C0(L,M), where M is an arbitrary von Neu-
mann algebra and L is a locally compact Hausdorff space. Concretely, let
D : C0(L,M) → C0(L,M) be a derivation. Given ε > 0, and a com-
pact subset K ⊂ L, then there exists a continuous and bounded function
ZK : K → M such that ‖ZK‖ ≤ (1 + 2ε)‖D‖ and D(X)(t) = [ZK ,X](t), for
every X ∈ C0(L,M) and every t ∈ K (see Theorem 3.5). Theorem 3.1 proves
that under the additional hypothesis of L being paracompact, then for each
ε > 0 there exists a continuous and bounded function Z0 : L → M such
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that ‖Z0‖ ≤ (1 + 2ε)‖D‖ and D(X) = [Z0,X], for every X ∈ C0(L,M). An
appropriate version for derivations on C0(L,K(H)) is presented in Theorem
3.6 and Corollary 3.10.

Finally, after proving that for every von Neumann algebra M , every
derivation on C0(L,M) is point-weak∗ continuous (see Proposition 3.7), we
establish a global representation theorem for derivations on C0(L,B(H)).
We show that for each derivation D on C0(L,B(H)) there exists a bounded
function Z0 : L → B(H) which is τ -to-norm continuous, ‖Z0‖ ≤ 2‖D‖ and
D(X) = [Z0,X], for every X ∈ C0(L,B(H)) (compare Theorems 3.8 and
3.9). These results are directly connected with the studies on derivations of
C0(L,B(H)) conducted by E.C. Lance [23], and C.A. Akemann et al. [1].

2. Weak-2-Local Derivations on C∗-Algebras of Continuous
Functions

In this section we begin by exploring the properties of weak-2-local maps.
We shall illustrate this note with an example which shows that, in general, 2-
local S-maps and weak-2-local S-maps are strictly different classes of maps.
We begin with weak-local and local maps. Let S be a subset of L(X,Y ),
where X and Y are Banach spaces. Following [13,14], we say that a linear
mapping T : X → Y is a weak-local S map (respectively, a local S map)
if for each x ∈ X and φ ∈ Y ∗ (respectively, for each x ∈ X) there exists
Sx,φ ∈ S, depending on x and φ (respectively, Sx ∈ S, depending on x), such
that φT (x) = φSx,φ(x) (respectively, T (x) = Sx(x)).

Proposition 2.1. Let X and Y be Banach spaces with Y infinite dimensional.
Suppose F is a proper norm-dense subspace of Y . Let S be the set of all finite
rank operators S in L(X,Y ) such that S(X) ⊂ F . Then the local S maps are
the linear maps from X to Y whose image is contained in F , while the set of
weak-local S maps is the whole L(X,Y ).

Proof. To prove the first statement, let T : X → Y be a linear local S
map. For each x ∈ X, there exists Sx ∈ S such that T (x) = Sx(x) ∈ F ,
which proves that T (X) ⊂ F . Suppose now that T : X → Y is a linear
map such that T (X) ⊂ F . For each x ∈ X, T (x) ∈ F . We take, via Hahn-
Banach theorem, a functional ϕx ∈ X∗ satisfying ϕx(x) = 1. The linear map
Sx = T (x) ⊗ ϕx lies in S and T (x) = Sx(x). We have therefore shown that
T is a local S map.

For the second statement, let T : X → Y be a linear map, and let us
fix x ∈ X and φ ∈ Y ∗. If φ = 0, then φT (x) = φS(x) = 0, for every S ∈ S.
We may therefore assume that φ �= 0. The density of F in Y , implies that
φ(F ) �= 0 and hence φ(F ) = C. Let us pick u ∈ F such that φ(T (x)) = φ(u).
As before, take a functional ϕx ∈ X∗ satisfying ϕx(x) = 1. The operator
Sx = u ⊗ ϕx belongs to S and φT (x) = φ(u) = φSx(x), which shows that T
is a weak-local S map. �

Remark 2.2. Let S = Der(A) be the set of all derivations on a C∗-algebra
A. Theorem 3.4 in [13] (see also [14]) proves that every weak-local Der(A)
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map on A lies in Der(A). This phenomenon also holds for other sets S, for
example when S is the set of all triple derivations on a JB∗-triple (see [8]).
To provide an example in the setting of general Banach spaces, let X and Y
be Banach spaces with Y infinite dimensional, and let F be a closed proper
subspace of Y . We set

S := {S ∈ L(X,Y ) : S has finite rank and S(X) ⊂ F}.

We claim that, under these hypothesis, every weak-local S map is a local
S map. Arguing by contradiction, we suppose that T : X → Y is a weak-
local S map which is not a local S map. Then there exists x ∈ X such that
T (x) �= S(x), for every S ∈ S. We observe that F = {S(x) : S ∈ S}, and
hence T (x) /∈ F . Since F is a closed subspace, we can find, via Hahn-Banach
theorem, a functional φ ∈ Y ∗ satisfying φT (x) = 1 and φS(x) = 0, for every
S ∈ S, which contradicts that T is a weak-local S map. In the latter case,
the (weak-)local S maps are precisely the linear maps T ∈ L(X,Y ) such that
T (X) ⊂ F .

We can also prove the existence of weak-2-local S maps which are not
2-local S maps.

Proposition 2.3. Let X and Y be Banach spaces with Y infinite dimensional.
Suppose F is a proper norm-dense subspace of Y . Let S be the set of all finite
rank operators S in L(X,Y ) such that S(X) ⊂ F . Then the 2-local S maps
are the 1-homogeneous maps from X to Y whose image is contained in F ,
while the set of weak-2-local S maps is the set of all 1-homogeneous maps
from X to Y .

Proof. As claimed in the introduction of [19], it is not hard to see that every
1-homogeneous map Δ : X → Y with Δ(X) ⊂ F is a 2-local S map. Clearly,
every 2-local S map Δ : X → Y is 1-homogeneous (cf. [10, Lemma 2.1]) and
satisfies Δ(X) ⊂ F .

Suppose now that Δ : X → Y is a 1-homogeneous map. Pick x, y ∈ X
and φ ∈ Y ∗. We can assume φ �= 0, otherwise φΔ(x) = φS(x) = 0 = φΔ(y) =
φS(y), for every S ∈ S. We deduce, from the norm-density of the subspace
F in Y and the continuity of φ �= 0, that φ(F ) = C. We assume first that
y = αx for certain α ∈ C. Since Δ is 1-homogeneous, we have Δ(y) = αΔ(x).
Take ϕx ∈ X∗ satisfying ϕx(x) = 1. Since φ(F ) = C, we can pick m ∈ F such
that φ(m) = φΔ(x). The linear operator S = m ⊗ ϕx lies in S and satisfies

φS(x) = φ(m) = φΔ(x), and φS(y) = αφS(x) = αφΔ(x) = φΔ(y).

We assume now that x are linearly independent. Let us choose ϕx, ϕy ∈
X∗ satisfying ϕx(x) = 1, ϕx(y) = 0, ϕy(y) = 1 and ϕy(x) = 0. Since φ(F ) =
C, we can choose m,n ∈ F such that φ(m) = φΔ(x) and φ(n) = φΔ(y). The
linear mapping S = m⊗ϕx +n⊗ϕy belongs to S and clearly φΔ(x) = φS(x)
and φΔ(y) = φS(y), which finishes the proof. �

In what follows we shall revisit some properties which are essentially
inherent to derivations and weak-2-local derivations on C∗-algebras of con-
tinuous functions. We begin with the case a of a derivation on C(Ω, A), where
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Ω is a compact Hausdorff space and A is a C∗-algebra. This case is probably
part of the folklore in the theory of derivations, we include here an sketch of
the arguments for completeness.

Following the notation in [19], given t ∈ Ω, δt : C(Ω, A) → A will
denote the ∗-homomorphism defined by δt(X) = X(t). We observe that the
space C(Ω, A) also is a Banach A-bimodule with products (aX)(t) = aX(t)
and (Xa)(t) = X(t)a, for every a ∈ A, X ∈ C(Ω, A), and the mapping
δt : C(Ω, A) → A is an A-module homomorphism.

Henceforth, for each element a in A, the symbol Γ(a) = 1 ⊗ a = â
will denote the constant function with value a from Ω into A. The mapping
Γ : A → C(Ω, A) = C(Ω) ⊗ A, a �→ Γ(a), is an A-module homomorphism.

We begin with a new technical lemma.

Lemma 2.4. Let D : A → A be a derivation on a C∗-algebra. Suppose ϕ is a
positive functional on A and a is an element in A such that ϕ(aa∗+a∗a) = 0.
Then ϕD(a) = 0. Consequently, if Δ : A → A is a weak-2-local derivation
we have ϕΔ(a) = 0 for every a and ϕ as above.

Proof. Under the hypothesis of the Lemma, it follows from the Cauchy–
Schwarz inequality that |ϕ(az)|2 ≤ ϕ(aa∗)ϕ(z∗z) = 0, and hence ϕ(az) = 0,
for every z ∈ A. Similarly, we get ϕ(a∗z) = 0, for every z ∈ A. So, if p(λ, μ)
is a complex polynomial in two variables with zero constant term, we have
ϕ(p(a, a∗)z) = 0, for every z ∈ A. Let B denote the C∗-subalgebra of A
generated by a (we observe that B need not be commutative). The continuity
of ϕ and the previous arguments show that ϕ(bz) = 0, for every b ∈ B, z ∈ A.
Similar ideas are valid to prove that ϕ(zb) = 0, for every b ∈ B, z ∈ A.

Since B is a C∗-algebra, and hence it contains an approximate unit, we
deduce from the Cohen factorization theorem (cf. [18, Theorem VIII.32.22])
the existence of b, c ∈ B such that a = bc. The statement proved in the above
paragraph shows that

ϕD(a) = ϕ(D(b)c + bD(c)) = 0,

as we wanted. The rest is clear. �
Let L denote a locally compact Hausdorff space, and let A be a C∗-

algebra. According to the terminology introduced above, given t ∈ L, δt :
C0(L,A) → A will denote the ∗-homomorphism defined by δt(X) = X(t). The
space C0(L,A) also is a Banach A-bimodule with products (aX)(t) = aX(t)
and (Xa)(t) = X(t)a, for every a ∈ A, X ∈ C0(L,A), and the mapping
δt : C0(L,A) → A is an A-module homomorphism.

Let K and O be subsets of L with K ⊆ O �= L, K compact, and O
open. Pick, via Urysohn’s lemma, a continuous function fK,O ∈ C0(L) with
0 ≤ fK,O ≤ 1, fK,O|K ≡ 1 and fK,O|L\O ≡ 0. For each a in A, the symbol
ΓfK,O

(a) = fK,O ⊗a will denote the continuous function on L mapping each t
to fK,O(t)a. The mapping ΓfK,O

: A → C0(L,A) = C0(L)⊗A, a �→ ΓfK,O
(a),

is an A-module homomorphism.
Suppose Δ : C0(L,A) → C0(L,A) is a weak-2-local derivation. Let Y

be an element in C0(L,A) satisfying Y (t0) = 0 for some t0 ∈ L. Let us fix
a positive functional ϕ ∈ A∗ and consider the positive functional ϕ ⊗ δt0
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on C0(L,A) defined by (ϕ ⊗ δt0)(X) = ϕ(X(t0)) (X ∈ C0(L,A)). Clearly
(ϕ ⊗ δt0)(Y

∗Y + Y Y ∗) = 0. Lemma 2.4 affirms that (ϕ ⊗ δt0)Δ(Y ) = 0,
and since ϕ was arbitrarily chosen, we have Δ(Y )(t0) = 0. We gather this
information in the next lemma.

Lemma 2.5. Let Δ : C0(L,A) → C0(L,A) be a weak-2-local derivation. Sup-
pose Y is an element in C0(L,A) satisfying Y (t0) = 0 for some t0 ∈ L. Then
Δ(Y )(t0) = 0. In particular, if K and O are subsets of L with K ⊆ O �= L,
K compact, and O open, and fK,O ∈ C0(L) with 0 ≤ fK,O ≤ 1, fK,O|K ≡ 1
and fK,O|L\O ≡ 0, we have

Δ(X)(t) = δtΔΓfK,O
δt(X),

for every t ∈ K, and every X ∈ C0(L,A).

Proof. The first statement has been proved in the comments preceding the
lemma. Fix an arbitrary functional ϕ ∈ A∗, X, fK,O ∈ C0(L) and t as in
the hypothesis. By assumptions, there exists a derivation D on C0(L,A),
depending on (ϕ ⊗ δt), X and ΓfK,O

(X(t)), such that

ϕ(Δ(X)(t)) = (ϕ ⊗ δt)Δ(X) = (ϕ ⊗ δt)D(X) = ϕ(D(X)(t)),

and

ϕ(Δ(ΓfK,O
(X(t)))(t)) = ϕ(D(ΓfK,O

(X(t)))(t)).

By the first statement, which is of course valid for derivations, we have

D(X)(t) = D(ΓfK,O
(X(t)))(t),

and hence ϕ(Δ(X)(t) − Δ(ΓfK,O
(X(t)))(t)) = 0. Finally, the Hahn-Banach

theorem gives the desired statement. �
When Ω is a compact Hausdorff space. We can always replace in Lemma

2.5 the function ΓfK,O
with Γ to prove that for every weak-2-local derivation

Δ on C(Ω, A) we have

Δ(X)(t) = δtΔΓδt(X),

for every t ∈ Ω, X ∈ C0(L,A). As a consequence, hypothesis (b) in [19,
Theorem 2.13] can be relaxed. We can state now a generalization of the
just quoted theorem for continuous functions on a locally compact Hausdorff
space.

Theorem 2.6. Let L be a locally compact Hausdorff space. Suppose A is a C∗-
algebra such that every weak-2-local derivation on A is a (linear) derivation.
Then every weak-2-local derivation on C0(L,A) is a (linear) derivation.

Proof. Let Δ : C0(L,A) → C0(L,A) be a weak-2-local derivation. Having in
mind Theorem 3.4 in [13] (see also [14]) we deduce that it is enough to prove
that Δ is linear. We shall show that δtΔ is linear for every t ∈ L.

Let us pick t0 ∈ L. Let K and O be arbitrary subsets of L with K ⊆ O �=
L, K compact, t0 ∈ K, and O open, and let fK,O ∈ C0(L) be an arbitrary
function with 0 ≤ fK,O ≤ 1, fK,O|K ≡ 1 and fK,O|L\O ≡ 0. Lemma 2.5
assures that

Δ(X)(t) = Δ(ΓfK,O
(X(t)))(t),
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for every t ∈ K, X ∈ C0(L,A). Fix K, O and fK,O satisfying the above
properties.

The mapping δt0 : C0(L,A) → A is a continuous A-module homomor-
phism. Unfortunately, the operator ΓfK,O

: A → C0(L,A) need not be a
homomorphism, however, it satisfies ΓfK,O

(a)A = aA and AΓfK,O
(a) = Aa,

for every a ∈ A, and every A ∈ C0(L,A). We cannot apply Lemma 2.3(c)
in [19] to prove that δt0ΔΓfK,O

: A → A is a weak-2-local derivation. In this
case, a more elaborated argument is needed. We shall show next that

δt0ΔΓfK,O
: A → A (2.1)

is a weak-2-local derivation. For this purpose, we pick a derivation D on
C0(L,A) and we shall show that δt0DΓfK,O

is a derivation. To simplify no-

tation let gK,O = f
1
2
K,O ∈ C0(L). Given a, b ∈ A, Lemma 2.5 implies that

δt0DΓfK,O
(ab) = δt0D(fK,O ⊗ (ab)) = δt0D((gK,O ⊗ a)(gK,O ⊗ b))

= δt0(D((gK,O ⊗ a))(gK,O ⊗ b))
+ δt0((gK,O ⊗ a)D((gK,O ⊗ b)))

= δt0(D((gK,O ⊗ a))) b + a δt0(D((gK,O ⊗ b)))
= δt0(D((fK,O ⊗ a))) b + a δt0(D((fK,O ⊗ b)))
= (δt0DΓfK,O

)(a) b + a (δt0DΓfK,O
)(b),

which proves what we desired.
To prove (2.1) we observe that given a, b ∈ A, and a functional ϕ ∈ A∗,

by the hypothesis on Δ there exists a derivation D on C0(L,A), depending
on ΓfK,O

(a), ΓfK,O
(b), and the functional ϕ ⊗ δt0 ∈ C0(L,A)∗, such that

ϕ(δt0ΔΓfK,O
)(a) = (ϕ ⊗ δt0)ΔΓfK,O

(a)
= (ϕ ⊗ δt0)DΓfK,O

(a) = ϕ(δt0DΓfK,O
)(a)

and

ϕ(δt0ΔΓfK,O
)(b) = (ϕ ⊗ δt0)ΔΓfK,O

(b)
= (ϕ ⊗ δt0)DΓfK,O

(b) = ϕ(δt0DΓfK,O
)(b),

witnessing the desired conclusion because δt0DΓfK,O
is a derivation on A.

By the hypothesis on A and (2.1), δt0ΔΓfK,O
is a linear derivation, and

thus

δt0ΔΓfK,O
(X(t0) + Y (t0)) = δt0ΔΓfK,O

(X(t0)) + δt0ΔΓfK,O
(Y (t0)),

for every X,Y in C0(L,A). Lemma 2.5 implies that

δt0Δ(X + Y ) = δt0ΔΓfK,O
(X(t0) + Y (t0))

= δt0ΔΓfK,O
(X(t0)) + δt0ΔΓfK,O

(Y (t0))
= δt0Δ(X) + δt0Δ(Y ),

for every X,Y ∈ C0(L,A). It follows from the arbitrariness of t0 that Δ is
linear. �
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Corollaries 3.5 and 3.6 in [10] assert that every weak-2-local deriva-
tion on a dual von Neumann algebra or on a compact C∗-algebra is a linear
derivation. Combining these results with Theorem 2.6 we deduce our main
conclusion on weak-2-local derivations on C0(L,B(H)).

Theorem 2.7. Let M be an atomic von Neumann algebra or a compact C∗-
algebra, and let L be a locally compact Hausdorff space. Then every weak-2-
local derivation on C0(L,M) is a linear derivation. In particular, for every
complex Hilbert space H, every weak-2-local derivation on C0(L,B(H)) or on
C0(L,K(H)) is a linear derivation. �

The proofs of Theorem 2.6 above remains valid to obtain the following
result.

Theorem 2.8. Let L be a locally compact Hausdorff space. Suppose A is a
C∗-algebra such that every 2-local derivation on A is a (linear) derivation.
Then every 2-local derivation on C0(L,A) is a (linear) derivation. �

Corollary 2.9. Let M be a von Neumann algebra, and let L be a locally com-
pact Hausdorff space. Then every 2-local derivation on C0(L,M) is a linear
derivation. �

After proving that every weak-2-local derivation on C0(L,B(H)) (re-
spectively, on C0(L,K(H))) is a linear derivation, it becomes more interest-
ing to find concrete representations for derivations on these spaces without
requiring elements in their second duals. This will be done in the next sec-
tions.

Before ending this section we recall a well known, and standard, ar-
gument linking derivations and ∗-derivations. Let A and B be C∗-algebras.
For each mapping Ψ : A → B, we define a mapping Ψ� : A → B given by
Ψ�(a) = Ψ(a∗)∗ (a ∈ A). Clearly, Ψ is linear if and only if Ψ� is. A mapping
satisfying Ψ� = Ψ is called symmetric. It is proved in [9] that every weak-2-
local ∗-derivation on a C∗-algebra and a derivation. Every mapping Δ on a
C∗-algebra A can be written as a linear combination Δ = Δ1 + iΔ2 of two
symmetric maps Δ1 = 1

2 (Δ + Δ�) and Δ2 = 1
2i (Δ − Δ�). Notice that if Ψ

is symmetric and a weak-2-local derivation we do not know a priori that Ψ
it is a weak-2-local ∗-derivation. Hence, it is an open problem whether every
weak-2-local derivation which is also a symmetric mapping is linear or not
(compare [9,25,26] and [10, Problem 1.4]).

Throughout this note, the centre of a C∗-algebra A will be denoted by
Z(A). Let a, b be elements in a C∗-algebra A.

3. Inner Derivations Determined by Elements in the
Multiplier Algebra

It is well known that elements a and b in a C∗-algebra A define the same
inner derivation on A (i.e. ada = adb) if and only if a − b ∈ Z(A). A simple
application of the triangular inequality shows that the norm of the inner
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derivation ada is bounded by the double of the distance from a to Z(A),
that is,

‖ada‖ = ‖[a, . ]‖ ≤ 2 dist(a, Z(A)). (3.1)

The question whether the inequality in (3.1) is in fact an equality has been
the goal of study of many researchers (compare [4,12,15,20,33,34,36,38], and
[5], among many others). In [20, Example 6.2] the authors exhibit a unital
C∗-algebra U containing a sequence of unitary elements (un) ⊂ U such that
‖adun

‖ = ‖[un, . ]‖ n→∞−→ 0, and dist(un, Z(U)) = 1, for every n. In other
words, the inequality in (3.1) can be strict. To deal with a more detailed
study, R.J. Archbold introduce in [4] the following constants. Given a C∗-
algebra A, K(A) (respectively, Ks(A)) will denote be the smallest number K
in [0,+∞] such that

dist(a, Z(A)) ≤ K‖ada‖, for all a ∈ A

(respectively, for all a = a∗ in A). It is known that 1
2K(A) ≤ Ks(A) ≤

K(A). Despite the wide number of papers studying these constants, we shall
highlight the results exhibited next. We have already commented an example
due to R.V. Kadison, E.C. Lance and J.R. Ringrose of a unital C∗-algebra
A satisfying K(A) = ∞ (cf. [20, Example 6.2]), another example can be
found in [21]. It is proved in [20, Theorem 3.1] that Ks(A) ≤ 1

2 when A is
a von Neumann algebra, and in the general setting, K(A) < ∞ if and only
if the space of all inner derivations on A is closed in the Banach space of
all derivations on A. Clearly K(A) = 0 when A is commutative. It is known
that K(A) ≤ 1

2 whenever A is unital and primitive [36], or just prime [34,
Corollary 2.9], or a von Neumann algebra [38], or an AW∗-algebra [12]. For
an arbitrary unital, non-commutative C∗-algebra A either K(A) = 1

2 , or
K(A) = 1√

3
, or K(A) ≥ 1, depending on the topological properties of the

primitive and primal ideals of A (see [34]).
Let M be a von Neumann algebra, and let B ∼= C(Ω) be a unital

abelian C∗-algebra. In [2, Theorem 2.3], C.A. Akemann and B.E. Johnson
establish that every derivation of the C∗-tensor product B ⊗ M ∼= C(Ω,M)
is inner, that is, for each derivation D : C(Ω,M) → C(Ω,M), there exists
Z0 ∈ C(Ω,M) satisfying D(X) = [Z0,X], for every X ∈ C(Ω,M). We shall
revisit the original proof of Akemann and Johnson by combining it with
results due to Kadison et al. [20], to strengthen the conclusion.

Let us recall that for every C∗-algebra, A, the multiplier algebra of A,
M(A), is the set of all elements x ∈ A∗∗ such that Ax, xA ⊆ A. We notice that
M(A) is a C∗-algebra and contains the unit element of A∗∗. Clearly, M(A) =
A whenever A is unital, otherwise M(A) is an extension of A contained in
A∗∗. For a locally compact Hausdorff space L, the multiplier algebra of C0(L)
is isomorphic to the algebra Cb(L) of all bounded continuous functions on L;
hence its spectrum is homeomorphic to the Stone-Čech compactification of
L (see [37, Theorem III.6.30]).

We have already recalled that Sakai’s theorem affirms that every deriva-
tion on a von Neumann algebra is inner. Another contribution due to Sakai
shows that every derivation of a simple C∗-algebra with unit is inner (see



Vol. 89 (2017) Inner Derivations and Weak-2-Local Derivations 99

[30, Theorem 4.1.11]). In order to deal with a simple C∗-algebra A without
unit, Sakai introduced in [31] the multiplier algebra M(A) (originally called
the “derived C∗-algebra” of A by Sakai). It is further established in the same
paper that every derivation on A extends to a unique derivation on M(A),
and that every derivation of M(A) is inner. In particular, for each derivation
D on a simple C∗ algebra A there exists m ∈ M(A) such that D(a) = [m,a].

For separable C∗-algebras, C.A. Akemann, G.E. Elliott, G.K. Pedersen
and J. Tokiyama [1] and [11] characterized those separable C∗-algebras A
satisfying that every derivation on A is inner in M(A). These are precisely
the C∗-algebras which are the C∗-algebra direct sum of a family of simple C∗-
algebras and a full C∗-algebra (that is, a C∗-algebra with only trivial central
sequences).

Additional extensions of a C∗-algebra A, like the local multiplier algebra
Mloc(A), have been introduced with the aim of proving that every derivation
on A extends to an inner derivation on the corresponding extension. G.K.
Pedersen proved that for a separable C∗-algebra A every derivation on A
extends to an inner derivation of Mloc(A) (see [27]). There are some recent
extensions of these results due to D.W.B. Somerset [35] and I. Gogić [16,17].
But much less seems to be known about proper extensions of Sakai’s theorem,
i.e. examples of algebras where the derivations are inner in M(A). Let us note
that M(A) = A when A is unital. So, being inner in M(A) seems to be a
natural extension for derivations in the setting of non unital C∗-algebras

Given a C∗ algebra A and a locally compact Hausdorff space L, the mul-
tiplier algebra M(C0(L,A)) = M(C0(L) ⊗ A) coincides with the C∗-algebra
Cb(L, (M(A), τs)) of all bounded and continuous functions from L into the
space (M(A), τs), where τs stands for the strict topology on M(A) [3, Corol-
lary 3.4]. If the C∗-algebra A has a unit then M(A) = A and the strict topol-
ogy coincides with the norm topology. If A = K(H) then the strict topology of
M(A) = B(H) is the strong∗ topology of B(H) (denoted by s∗(B(H), B(H)∗)
or simply by s∗). We refer to [30, Definition 1.8.7] for the concrete definition of
the strong∗ topology. Thus M(C0(L,K(H))) = Cb(L, (B(H), s∗)) ([3, Corol-
lary 3.4]). Once we have this identification, our purpose is to show that if L is
locally compact and paracompact then every derivation D on C0(L,M) is in-
ner in its multipler algebra, and for a general locally compact Hausdorff space
L the same happens for derivations on C0(L,K(H)) and on C0(L,B(H)). We
also get bounds of the norms of the elements in the multiplier algebras rep-
resenting the derivations.

3.1. Derivations on C0(L,A) with L paracompact

In most of the positive results representing a derivation D on a C∗-algebra A
as an inner derivation of the form adz, with z ∈ A or z ∈ M(A), there exists
a link between ‖D‖ and ‖z‖. This link does not appear in [2, Theorem 2.3],
where C.A. Akemann and B.E. Johnson establish that, if Ω is a Hausdorff
compact space, then every derivation of the C∗-tensor product C(Ω) ⊗ M ∼=
C(Ω,M) is inner, that is, for each derivation D : C(Ω,M) → C(Ω,M), there
exists Z0 ∈ C(Ω,M) satisfying D(X) = [Z0,X], for every X ∈ C(Ω,M). We
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shall revisit the original proof of Akemann and Johnson by combining it with
results due to Kadison et al. [20], to extend the result to the non unital case.

Theorem 3.1. Let M be a von Neumann algebra, let L be a locally compact
Hausdorff space which in addition is paracompact. Let ε be a positive element.
Then for each ∗-derivation D : C0(L,M) → C0(L,M), there exists Z0 ∈
Cb(L,M) such that D(X) = [Z0,X], for every X ∈ C0(L,M), Z∗

0 = −Z0,
and

‖Z0‖ ≤ (Ks(M) + ε)‖D‖ ≤ 1 + 2ε

2
‖D‖.

Consequently, for each derivation D : C0(L,M) → C0(L,M), there exists
Z0 ∈ Cb(L,M) such that D(X) = [Z0,X], for every X ∈ C0(L,M) and
‖Z0‖ ≤ (1 + 2ε)‖D‖.
Proof. The proof of the statement will follow by an adaptation of the original
arguments in [2, Theorem 2.3] with a slight modification motivated by the
conclusions in [20, Theorem 3.1].

Let D : C0(L,M) → C0(L,M) be a ∗-derivation. Henceforth, τ will
stand for the topology of L. According to the terminology employed in this
note, let t ∈ L and let t ∈ K � O � L, with K compact and O open. Let us
write Γ = ΓfK,O

. It follows from Lemma 2.5 that, for each t ∈ L, the mapping
δtDΓ : M → M is a ∗-derivation on M (we further know that the definition
does not depend on K and O). Fix t0 ∈ L and a compact neighbourhood
K of t0. It also holds that the mapping ΥK : K → Der(M), t �→ Υ(t) =
δtDΓ is a τ -to-(point-norm) continuous mapping (here Γ = ΓfK,O

is fixed).
Therefore ΥK(K) is a point-norm compact subset in Der(M). Theorem 2.1 in
[2] assures that ΥK(K) is norm compact, and hence the point-norm and the
norm topologies coincide on ΥK(K). Thus ΥK is τ -to-point norm continuous.
Define now a mapping Υ : L → Der(M) given by ΥK(t) if t ∈ K. Υ is well
defined by Lemma 2.5 and it is τ -to norm continuous by the local compactness
of L and the continuity of each ΥK .

By Sakai’s theorem (see [29]), every derivation on M is inner and the
mapping θ : iMsa/Z(Msa) → ∗-Der(M), a + Z(A) �→ ada is an isomorphism
of Banach spaces. Therefore, the mapping θ−1Υ : Ω → iMsa/Z(Msa) is
continuous. Let 2iMsa denote the family of non-empty subsets of iMsa. We
define a carrier, G : Ω → 2iMsa , given by

G(t) = (θ−1Υ)(t) ∩ BM (0, (Ks(M) + ε)‖D‖),

where BM (0, (Ks(M) + ε)‖D‖) denotes the open unit ball in M with center
zero and radius (Ks(M) + ε)‖D‖), that is G(t) is the set of all elements
c ∈ iMsa belonging to the class (θ−1Υ)(t) ⊂ iMsa/Z(Msa) with norm ‖c‖ <
(Ks(M)+ε)‖D‖. By definition, G(t) is convex and non-empty for every t ∈ L.
It is not hard to check that G is lower semi-continuous (compare [24, examples
in page 362]). It follows from [24, Proposition 2.3] that t �→ G(t) is lower semi-
continuous; and clearly G(t) is non-empty, closed and convex. Therefore, by
Michael’s selection principle (see [24, Theorem 3.2]) G admits a continuous
selection, that is, there exists a continuous function Z0 : L → iMsa satisfying
Z0(t) ∈ G(t) for every t ∈ L, and ‖Z0‖ ≤ (Ks(M) + ε)‖D‖. Z0 is obviously a
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bounded function, and a glance to Lemma 2.5 is enough to convince ourself
that D = [Z0, .], as we desired.

By [20, Theorem 3.1] we know that Ks(M) ≤ 1
2 . The final statement

follows from the fact that every derivation can be written as a linear combi-
nation of two ∗-derivations. �

Since each compact space also is paracompact, as an immediate corollary
of the above theorem we get an straightened version of [2, Theorem 2.3]. The
first part of the conclusion was already obtained by C.A. Akemann and B.E.
Johnson [2, Theorem 2.3], the estimations of the norm of the derivation and
the function which represents the derivation are derived from Theorem 3.1.

Theorem 3.2. [2, Theorem 2.3] Let M be a von Neumann algebra, and let
C(Ω) be a unital abelian C∗-algebra. Let ε be a positive element. Then for
each ∗-derivation D : C(Ω,M) → C(Ω,M), there exists Z0 ∈ C(Ω,M) such
that D(X) = [Z0,X], for every X ∈ C(Ω,M), Z∗

0 = −Z0, and

‖Z0‖ ≤ (Ks(M) + ε)‖D‖ ≤ 1 + 2ε

2
‖D‖.

Consequently, for each derivation D : C(Ω,M) → C(Ω,M), there exists
Z0 ∈ C(Ω,M) such that D(X) = [Z0,X], for every X ∈ C(Ω,M) and ‖Z0‖ ≤
(1 + 2ε)‖D‖. �

3.2. Derivations on C0(L,A)

Let A be a C∗-algebra regarded as a C∗-subalgebra of some B(H). Henceforth
Mn(A) will denote the Banach space of n by n matrices with entries in A

and norm ‖x‖n given by the action of the matrix x = (xij) on
n

⊕

i=1

H. We

shall write Mn for Mn(C) (see [37, §IV.3] for additional details).
Let Ω be a compact Hausdorff space. We observe that Mn(C(Ω)) =

C(Ω,Mn) = C(Ω) ⊗ Mn, and consequently, every derivation on Mn(C(Ω))
is inner (see [2, Theorem 2.3]). Our next result is an appropriate non-unital
version of this fact.

Lemma 3.3. Let A be a C∗-algebra. Then every derivation D on Mn(A) writes
in the form D(X) = [Z,X], where Z = (zi,j) satisfies zij ∈ M(A) ⊆ A∗∗

for every i �= j. When A = C0(L) is a commutative C∗-algebra, we can
also assume that zii ∈ M(A) = Cb(L), for every i, or equivalently, Z ∈
Mn(M(A)) = Mn(Cb(L)).

Proof. Suppose D : Mn(A) → Mn(A) is a derivation. We can, obviously,
identify Mn(A)∗∗ with Mn(A∗∗) in a canonical way. Since D∗∗ : Mn(A)∗∗ →
Mn(A)∗∗ is a derivation on a von Neumann algebra, by Sakai’s theorem,
there exists Z = (zij) ∈ Mn(A∗∗) satisfying D∗∗(X) = [Z,X] for every
X ∈ Mn(A∗∗). We further know that D(X) = [Z,X] ∈ Mn(A) for every
X ∈ Mn(A).
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Fix i, j ∈ {1, . . . , n} and a ∈ A. Since

Mn(A) � D(a ⊗ eij) = [Z, a ⊗ eij ] = Z(a ⊗ eij) − (a ⊗ eij)Z
= (ziia − azjj) ⊗ eij

+
n

∑

k=1,k �=i

(zkia) ⊗ ekj −
n

∑

k=1,k �=j

(azjk) ⊗ eik,

we deduce that (ziia − azjj), zkia, and azjk all lie in A, for every a ∈ A,
k �= i, j and every i, j ∈ {1, . . . , n}. Therefore, zki, zjk ∈ M(A) for every
k �= i, j and every i, j ∈ {1, . . . , n}. This proves the first statement.

Suppose now, that A = C0(L) is a commutative C∗-algebra. It follows
from the above identities that zii−zjj ∈ M(A), for every i, j ∈ {1, . . . , n}. Let
D : Mn(A) → Mn(A) be a derivation, and let Z be an element in Mn(A∗∗)
satisfying D∗∗(X) = [Z,X] for every X ∈ Mn(A∗∗). In this case the element
znn ⊗ In ∈ Z(Mn(A∗∗)), the center of Mn(A∗∗) = A∗∗ ⊗ Mn, and hence

D∗∗(X) = [Z,X] = [Z − znnIn,X],

for every X ∈ Mn(A)∗∗. Replacing Z ∈ Mn(A)∗∗ with W = Z − znnIn ∈
Mn(A)∗∗ we can assume that znn = 0. Applying the first statement to W =
Z−znnIn we deduce that wij ∈ M(A) for every i, j ∈ {1, . . . , n} and D(X) =
[W,X], for every X ∈ Mn(A), which finishes the proof. �

We shall improve the result in Lemma 3.3 with an appropriate control
on the norm of the function Z0 appearing in the statement in terms of the
norm of the represented derivation D. We are led to the following extension
of [19, Proposition 2.8].

Lemma 3.4. Let L be a locally compact Hausdorff space. Then for each ∗-
derivation D : C0(L,Mn) → C0(L,Mn) there exists a continuous and bounded
function Z0 : L → Mn satisfying ‖Z0‖∞ ≤ ‖D‖, Z∗

0 (t) = −Z0(t), for every
t ∈ L, and D(X) = [Z0,X], for every X ∈ C0(L,Mn).

Proof. Find, via Lemma 3.3, a bounded continuous function Z1 : L → Mn

satisfying Z∗
1 (t) = −Z1(t), for every t ∈ L, and D(X) = [Z1,X], for every

X ∈ C0(L,Mn). Since Z1 is bounded, we have ‖Z1‖∞ < ∞. Pick t ∈ L
and an open set O � L such that t ∈ O, and keep in mind the notation
employed before. The mapping δtDΓf{t},O

: Mn → Mn is a ∗-derivation.
Clearly ‖δtDΓf{t},O

‖ ≤ ‖D‖ and δtDΓf{t},O
(a) = [Z1(t), a] for every a ∈ Mn.

Since, by [36, Corollary 1] ‖[Z1(t), .]‖ = diam(σ(Z1(t))) (let us observe that
Z1(t)∗ = −Z1(t)), we deduce that diam(σ(Z1(t))) ≤ ‖D‖, for every t ∈ L. It
is also obvious that σ(Z1(t)) is a finite subset of iR.

The arguments in the proof of [19, Proposition 2.8] show that the func-
tion σmin : L → C, σmin(t) := λ ∈ σ(Z1(t)), where λ is the unique el-
ement in σ(Z1(t)) ⊆ iR satisfying |λ| = min{|μ| : μ ∈ σ(Z1(t))}, is con-
tinuous (and bounded under our assumptions). The mapping σmin ⊗ In :
L → Mn is center valued, bounded and continuous. We further know that
0 ∈ σ((Z1 − σmin ⊗ In)(t)) = σmin(t) + σ(Z1(t)) ⊆ iR+

0 , and

‖D‖ ≥ diam(σ(Z1(t))) = diam(σ((Z1 − σmin ⊗ In)(t))),
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for every t ∈ L. The proof concludes by taking Z0 = Z1 − σmin ⊗ In. �

The next natural step is to consider a more general version of Lemma
3.3 by replacing Mn with a more general von Neumann algebra.

We can state now a first “local” representation theorem for derivations
on C0(L,M), where M is an arbitrary von Neumann algebra and L is a
locally compact Hausdorff space.

Theorem 3.5. Let M be a von Neumann algebra, let L be a locally compact
Hausdorff space, and let D : C0(L,M) → C0(L,M) be a ∗-derivation. Given
ε > 0, and a compact subset K ⊂ L, then there exists a continuous (and
bounded) function ZK : K → M such that ‖ZK‖ ≤ 1+2ε

2 ‖D‖, Z∗
K = −ZK ,

and

D(X)(t) = [ZK ,X](t),

for every X ∈ C0(L,M) and every t ∈ K. If D is a general derivation
on C0(L,M), then for each ε > 0, and each compact subset K ⊂ L, there
exists a continuous (and bounded) function ZK : K → M such that ‖ZK‖ ≤
(1 + 2ε)‖D‖ and D(X)(t) = [ZK ,X](t), for every X ∈ C0(L,M) and every
t ∈ K.

Proof. We shall only prove the first statement, the second one is a straight
consequence of it. For this purpose, let D be a ∗-derivation on C0(L,M).
When L is compact the conclusion follows from Theorem 3.2. We can thus
assume that L is non-compact. Let K be a compact subset of L. Let us
fix an open susbset O such that K ⊂ O � L. We also fix an arbitrary
function fK,O ∈ C0(L) with 0 ≤ fK,O ≤ 1, fK,O|K ≡ 1 and fK,O|L\O ≡ 0.
Following the arguments in the proof of Theorem 3.2, and by applying Lemma
2.5 and (2.1) in the proof of the latter, we deduce that, for each t ∈ K,
the mapping δtDΓfK,O

: M → M defines a ∗-derivation on M , and the
mapping ΥfK,O

: K → ∗-Der(M), t �→ ΥfK,O
(t) = δtDΓfK,O

is a τ -to-(point-
norm) continuous mapping, where τ stands for the topology of L and for its
restriction to K. Consequently, ΥfK,O

(K) is a point-norm compact subset in
Der(M). Theorem 2.1 in [2] assures that ΥfK,O

(K) is norm compact, and
hence the point-norm and the norm topologies coincide on ΥfK,O

(Ω).
Sakai’s theorem (cf. [30, Theorem 4.1.6]) assures that every derivation

on M is inner and the mapping θ : iMsa/Z(Msa) → ∗-Der(M), a+Z(Msa) �→
ada is an isomorphism of Banach spaces. Thus, the mapping θ−1ΥfK,O

: K →
iMsa/Z(Msa) is continuous.

Let us define a mapping Υ : L → iMsa/Z(Msa) given by the following
rules: For each t in L let K ⊂ O � L with O open and K compact and
t ∈ K, let fK,O be a function in C0(L) with 0 ≤ fK,O ≤ 1, fK,O|K ≡ 1 and
fK,O|L\O ≡ 0. We set Υ(t) := θ−1ΥfK,O

(t). We claim that Υ is well-defined.
Indeed, suppose Ki ⊂ Oi � L with Oi open and Ki compact, t ∈ Ki,
fKi,Oi

∈ C0(L) with 0 ≤ fKi,Oi
≤ 1, fKi,Oi

|Ki
≡ 1 and fKi,Oi

|L\Oi
≡ 0, for

i = 1, 2. By Lemma 2.5 we have

ΥfKi,Oi
(s)(X(s)) = δsDΓfKi,Oi

(X(s)) = δsD(X),
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for every s ∈ Ki, every i = 1, 2, and every X ∈ C0(L,M). Therefore,
ΥfK1,O1

(s) = ΥfK2,O2
(s) for every s ∈ K1 ∩ K2, which proves the claim.

Unfortunately, a locally compact Hausdorff space need not be paracom-
pact, so Michael’s selection principle cannot be applied to our mapping Υ as
we did in the proof of Theorem 3.2. However, for each compact subset K ⊂ L,
applying the same arguments we gave in the final paragraph of the proof of
Theorem 3.2 to Υ|K , we can find, via Michael’s selection principle (see [24,
Theorem 3.2]) and Lemma 2.5, a continuous function ZK : K → iMsa satis-
fying ZK ∈ θ−1Υ(t) for every t ∈ K, ‖ZK‖ ≤ 1+2ε

2 ‖D‖, and

D(X)(t) = [ZK ,X](t), (3.2)

for every X ∈ C0(L,M) and every t ∈ K. �

The previous Theorem 3.5 only produces local representations for deriva-
tions on C0(L,M), where M is a von Neumann algebra and L is a locally
compact Hausdorff space. If we replace M with B(H) (or with K(H)), we can
obtain a more global representation at the cost of loosing certain continuity
on the mapping Z0 : L → B(H) that represents our derivation. When dealing
with K(H) we also find the obstacle that, Akeman-Johnson’s theorem, as-
serting that on Der(M) point-norm compactness and norm compactness are
equivalent notions [2, Theorem 2.1], is only valid for von Neumann algebras.

E.C. Lance considers in [23, §2] the following related problem. Let Ω
be a separable compact Hausdorff space and let H be a (separable) infinite
dimensional Hilbert space. Then every derivation on C(Ω) ⊗ B(H) is inner
(see [23, Theorem 2.4]). In [23, Lemma 2.1] it is implicitly proved a result
which was later materialized in [1, Theorem 3.4] in the following terms: Let
Γ be a separated locally compact Hausdorff space, then every derivation
on C0(Γ,K(H)) is inner in M(C0(Γ,K(H))), that is, every derivation on
C0(Γ,K(H)) is determined by a multiplier. In Theorem 3.6 and Corollary
3.10 we show that this multiplier can be chosen bounded by a multiple of
the norm of the derivation. In Theorems 3.8 and 3.9 a similar conclusion is
proved for derivations on C0(L,B(H)). Thus, our main conclusions connect
the results in this paper with those previously obtained by Akemann, Elliott,
Lance, Pedersen and Tomiyama, which have been commented above.

Following the usual notation, the set of all finite dimensional subspaces
of a complex Hilbert space H will be denoted by F(H). We consider in F(H)
the natural order given by inclusion. For each F ∈ F(H), p

F
will denote the

orthogonal projection of H onto F .

Theorem 3.6. Let H be a complex Hilbert space, let L be a locally compact
Hausdorff space whose topology is denoted by τ , and let D be a ∗-derivation
on C0(L,K(H)). Then there exists a (bounded) mapping Z0 : L → B(H)
which is τ -to-σ(B(H), B(H)∗) continuous, ‖Z0‖ ≤ ‖D‖, Z∗

0 (t) = −Z0(t),
for every t ∈ L, and

D(X) = [Z0,X],

for every X ∈ C0(L,K(H)). If D is a general derivation on C0(L,K(H)),
then there exists a bounded, τ -to-σ(B(H), B(H)∗) continuous function Z0 :
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L → B(H) such that ‖Z0‖ ≤ 2‖D‖ and D(X) = [Z0,X], for every X ∈
C0(L,K(H)).

Proof. We shall only prove the first statement. For each F ∈ F(H), we de-
note by p̂

F
= 1 ⊗ p

F
the constant function mapping each t in L to p

F
. To

simplify the notation we write C for the C∗-algebra C0(L,K(H)). The map-
ping p̂

F
Dp̂

F
|p̂

F
Cp̂

F
: p̂

F
Cp̂

F
→ p̂

F
Cp̂

F
, x → p̂

F
D(p̂

F
xp̂

F
)p̂

F
is a ∗-derivation

on p̂
F
Cp̂

F
(compare [25, Proposition 2.7]). Since p̂

F
Cp̂

F
∼= C0(L,Mn), by

Lemma 3.4, there exists Z
F

∈ Cb(L, p
F
B(H)p

F
) with ‖Z

F
‖ ≤ ‖D‖, Z∗

F
=

−Z
F

and
p̂

F
D(p̂

F
Xp̂

F
)p̂

F
= [ZF , p̂

F
Xp̂

F
], (3.3)

for every X ∈ C0(L,B(H)).
For each t ∈ L, the net (Z

F
(t))

F∈F(H) ⊂ B(H) is bounded, and hence we
can find a subnet (Z

F
(t))

F∈Λ converging to some Z0(t) = −Z∗
0 (t) ∈ B(H) in

the weak∗ topology of B(H) with ‖Z0(t)‖ ≤ ‖D‖. We observe that the chosen
subnet depends on the point t. In any case, the net (p

F
)
F∈Λ converges to the

unit of B(H) in the strong∗ topology of the latter von Neumann algebra. We
define this way a bounded map Z0 : L → B(H). We fix a point t0 ∈ L. By
(3.3) and Lemma 2.5 we have

p
F
D(f{t0},O ⊗ (p

F
X(t0)pF

))(t0)pF
= p

F
D(p̂

F
Xp̂

F
)(t0)pF

= [ZF (t0), pF
X(t0)pF

], (3.4)

for every X ∈ C0(L,K(H)), where f{t0},O satisfies the obvious conditions.
Now we fix an arbitrary X ∈ C0(L,K(H)). Let (Z

F
(t0))F∈Λ be the

corresponding subnet converging to Z0(t0) in the weak∗ topology of B(H).
The net (p

F
)
F∈Λ is an approximate unit in K(H). Therefore, the net (p

F
X(t0)

p
F
)
F∈Λ converges in the norm topology of K(H) to X(t0). It is not hard to see

that (f{t0},O⊗(p
F
X(t0)pF

))
F∈Λ converges in norm to f{t0},O⊗X(t0), and the

continuity of D implies that (D(f{t0},O ⊗ (p
F
X(t0)pF

)))
F∈Λ → D(f{t0},O ⊗

X(t0)) in norm. Similar arguments show that

(p
F
D(f{t0},O ⊗ (p

F
X(t0)pF

))(t0)pF
)
F∈Λ

→ D(f{t0},O ⊗ X(t0))(t0) = D(X)(t0)

in norm, where in the last equality we apply Lemma 2.5. That is an appro-
priate subnet of the left-hand side of (3.4) tends to D(X)(t0) in norm.

Concerning the right-hand side of (3.4), we observe that (Z
F
(t0))F∈Λ →

Z0(t0) in the weak∗ topology of B(H), and as before (p
F
X(t0)pF

)
F∈Λ →

X(t0) in norm. It is known that in these circumstances,

([ZF (t0), pF
X(t0)pF

])
F∈Λ → [Z0(t0),X(t0)]

in the weak∗ topology of B(H) (compare [19, Lemma 2.7]). Thus, we deduce
from (3.4) that the identity

D(X)(t0) = [Z0(t0),X(t0)], (3.5)

holds for every X ∈ C0(L,K(H)) and every t0 ∈ L.
The τ -to-σ(B(H), B(H)∗) continuity of Z0 can be deduced as in the

final paragraph of [19, Proposition 2.10]. �



106 E. Jordá, A. M. Peralta IEOT

Let us note that Remark 2.11 in [19] shows that the mapping Z0 : L →
B(H) given by Theorem 3.6 need not be, in general, τ -to-norm continuous.

We have already commented that Sakai’s theorem assures that every
derivation on a C∗-algebra is continuous [29]. J.R. Ringrose proved in [28] that
actually every derivation from a C∗-algebra A into a Banach A-bimodule is
continuous. Let us revisit other additional properties of derivations. Another
result due to S. Sakai implies that every derivation on a von Neumann algebra
M is inner [30, Theorem 4.1.6]. It is also due to the same author that the
product of a von Neumann algebra is separately weak∗-continuous (see [30,
Theorem 1.7.8]). It follows from the last results that every derivation on a
von Neumann algebra is weak∗-continuos.

In general, given a von Neumann algebra M and a locally compact Haus-
dorff space L, the C∗-algebra C0(L,M) is not a dual Banach space, however
we have some other topologies which are weaker than the norm topology.
We shall consider here the“point-norm” and the “point-weak∗” topologies on
C0(L,M). We recall that a net (Xλ) in C0(L,M) converges to an element
X ∈ C0(L,M) in the point-weak∗ topology (respectively, in the point-norm
topology) if for each t ∈ L, the net (Xλ(t)) converges to X(t) in the weak∗

topology (respectively, in the norm topology) of M . We prevent the reader
that the term “point-norm” has been used with another meaning in the set-
ting of operators, however we consider that the dual use does not produce
any contradiction in this note.

The local representation given in Theorem 3.5 will be applied to prove
the following:

Proposition 3.7. Let M be a von Neumann algebra, and let L be a locally
compact Hausdorff space. Then every derivation on C0(L,M) is point-weak∗

continuous.

Proof. Let (Xλ)λ be a net in C0(L,M) converging to some X ∈ C0(L,M)
in the point-weak∗ topology. Let t0 be a point in L. Let us fix a compact set
K ⊂ L with t0 ∈ K. By Theorem 3.5 there exists a continuous and bounded
function ZK : K → M such that ‖ZK‖ ≤ 2‖D‖, and

D(X)(t) = [ZK ,X](t), (3.6)

for every X ∈ C0(L,M) and every t ∈ K. It follows from the assumptions on
(Xλ)λ that (Xλ(t0))λ → X(t0) in the weak∗ topology of M . We know from
(3.6) that (D(Xλ)(t0)))λ = ([ZK(t0),Xλ(t0)]) , for all λ. The separate weak∗

continuity of the product of M implies that

(D(Xλ)(t0)))λ = ([ZK(t0),Xλ(t0)])λ → [ZK(t0),X(t0)] = D(X)(t0)

in the weak∗ continuity of M , which concludes the proof. �

We are now in position to establish a global representation theorem for
derivations on C0(L,B(H)).

Theorem 3.8. Let H be a complex Hilbert space, and let L be a locally compact
Hausdorff space whose topology is denoted by τ . Suppose D is a ∗-derivation
on C0(L,B(H)). Then there exists a (bounded) mapping Z0 : L → B(H)
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which is τ -to-σ(B(H), B(H)∗) continuous, ‖Z0‖ ≤ ‖D‖, Z∗
0 (t) = −Z0(t),

for every t ∈ L, and

D(X) = [Z0,X],

for every X ∈ C0(L,B(H)). If D is a general derivation on C0(L,B(H)),
then there exists a bounded, τ -to-σ(B(H), B(H)∗) continuous function Z0 :
L → B(H) such that ‖Z0‖ ≤ 2‖D‖ and D(X) = [Z0,X], for every X ∈
C0(L,B(H)).

Proof. Let D be a ∗-derivation on C0(L,B(H)). The subalgebra C0(L,K(H))
is a norm closed (two-sided) ideal of C0(L,B(H)). Lemma 3.4 in [26] guar-
antees that D(C0(L,K(H))) ⊂ C0(L,K(H)) and

D|C0(L,K(H)) : C0(L,K(H)) → C0(L,K(H))

is a ∗-derivation (This can be also deduced from Theorem 3.5 above). By
Theorem 3.6 there exists a bounded mapping Z0 : L → B(H) which is τ -to-
σ(B(H), B(H)∗) continuous, ‖Z0‖ ≤ ‖D‖, Z∗

0 (t) = −Z0(t), for every t ∈ L,
and

D(X) = [Z0,X], (3.7)

for every X ∈ C0(L,K(H)).
We shall show that the identity D(X) = [Z0,X] also holds for every

X ∈ C0(L,B(H)). It is enough to prove that D(X)(t) = [Z0(t),X(t)] for all
X ∈ C0(L,B(H)) and all t ∈ L. Fix Y ∈ C0(L,B(H)) and t0 in L. We also
pick a compact subset K with t0 in K, an open subset O � L containing K,
and a continuous function fK,O ∈ C0(L) with 0 ≤ fK,O ≤ 1, fK,O|K ≡ 1 and
fK,O|L\O ≡ 0. By Lemma 2.5 we know that D(Y )(t0) = D(fK,O ⊗Y (t0))(t0).

The element Y (t0) ∈ B(H) can be approximated in the weak∗ topol-
ogy of B(H) by a net (kλ)λ ⊂ K(H). Clearly, the net (fK,O ⊗ kλ)λ lies in
C0(L,K(H)) and converges to fK,O ⊗ Y (t0) in the point-weak∗ topology.
Proposition 3.7 implies that

(D(fK,O ⊗ kλ))λ → D(fK,O ⊗ Y (t0))

in the point-weak∗ topology. Applying (3.7) we get

(D(fK,O ⊗ kλ))λ = ([Z0, fK,O ⊗ kλ])λ → [Z0, fK,O ⊗ Y (t0)],

in the point-weak∗ topology, which proves that

D(fK,O ⊗ Y (t0)) = [Z0, fK,O ⊗ Y (t0)],

and thus

[Z0, Y ](t0) = [Z0, fK,O ⊗ Y (t0)](t0) = D(fK,O ⊗ Y (t0))(t0) = D(Y )(t0). �

We shall finally show that in Theorem 3.8 the conclusion concerning the
continuity of the mapping Z0 can be improved.
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Theorem 3.9. Let H be a complex Hilbert space, let L be a locally compact
Hausdorff space whose topology is denoted by τ , and let D be a derivation on
C0(L,B(H)). Then there exists a bounded function Z0 : L → B(H) which
is τ -to-norm continuous (that is Z0 ∈ M(C0(L,B(H)))), ‖Z0‖ ≤ 2‖D‖ and
D(X) = [Z0,X], for every X ∈ C0(L,B(H)).

Proof. Everything except the τ -to-norm continuity of Z0 has been proved
in Theorem 3.8. We shall show that Z0 is τ -to-norm continuous. Let us fix
t0 ∈ L and a compact neighborhood K of t0. By Theorem 3.5 there exists
ZK ∈ C(K,B(H)) such that [ZK ,X](t) = [Z0,X](t) for all t ∈ K, X ∈
C0(L,B(H)). This implies that Z0(t) − ZK(t) = α(t)I for all t ∈ K, where
α is a mapping from K to C and I is the identity operator on H (this can
be easily checked by evaluating constant functions on K). The τ -to-weak∗

continuity of Z0 combined with the τ -to-norm continuity of ZK show that
α : K → C is τ -to-norm continuous at t0. Z0|K = ZK + α(.)I is τ -to-norm
continuous at t0. Since K is a compact neighborhood of t0, we conclude that
Z0 is continuous at t0. �

Corollary 3.10. Under the assumptions in Theorem 3.6, for each derivation D
on C0(L,K(H)), there exists a bounded function Z0 : L → B(H) which is τ -
to-s∗(B(H), B(H)∗) continuous (i.e. Z0 ∈ M(C0(L,K(H)))), ‖Z0‖ ≤ 2‖D‖
and D(X) = [Z0,X], for every X ∈ C0(L,K(H)).

Proof. Let D be a derivation on C0(L,K(H)) and let Z0 be the mapping given
by Theorem 3.6. By Sakai’s theorem (see [31]) D extends to a derivation ˜D on
M(C0(L,K(H))) = Cb(L, (B(H), s∗)). Corollary 3.5 in [1] affirms that ˜D is
inner. That is, there exists a bounded function Z2 : L → B(H) which is τ -to-
s∗(B(H), B(H)∗) continuous (i.e. Z2 ∈ M(C0(L,K(H)))), ˜D(X) = [Z2,X],
for every X ∈ M(C0(L,K(H))).

Therefore, [Z0 − Z2,X] = 0, for every X ∈ C0(L,K(H)), and hence
(Z0 −Z2)(t) = α(t)I, for a suitable mapping α : L → C. We deduce from the
τ -to-weak∗ continuity of Z0 and the τ -to-s∗(B(H), B(H)∗) continuity of Z2

that α is τ -to-norm continuous. Finally, the identity Z0 = Z2 + α(.)I proves
that Z0 is τ -to-s∗(B(H), B(H)∗) continuous. �
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