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Abstract. We give an example of a scalar second order differential oper-
ator in the plane with double periodic coefficients and describe its mod-
ification, which causes an additional spectral band in the essential spec-
trum. The modified operator is obtained by applying to the coefficients a
mirror reflection with respect to a vertical or horizontal line. This change
gives rise to Rayleigh type waves localized near the line. The results are
proven using asymptotic analysis, and they are based on high contrast
of the coefficient functions.
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1. Introduction

1.1. Motivation

A satisfactory theory for spectral elliptic boundary-value problems in dou-
ble periodic media containing open waveguides does not exist yet, and the
topic contains a lot of unanswered questions. An open waveguide consists of
a semi-infinite foreign inclusion, cf. Fig. 1, and being a non-compact domain
perturbation, it can in general change the essential spectrum of the problem,
when compared to the corresponding problem on an intact domain without
perturbation. This topic was studied for example in the recent paper [1],
which contains a complete description of the essential spectrum σess(T ) for
a large class of elliptic second order systems with Neumann boundary condi-
tions, satisfying a Korn inequality. The following question1 has arisen in the
course of the investigation: is the formula

σess(T ) = σ−
ess ∪ σ+

ess (1.1)

1The question has been asked by a referee of the paper [1], among others.
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(a) (b)

Figure 1. Semi-infinite (a) and angular (b) open wave-
guides in double-periodic planar domains

valid for an elliptic problem in the union of two subdomains of the plane,
which are contained in the lower and upper half-planes; here, σ−

ess (respec-
tively, σ+

ess) denotes the essential spectrum of the corresponding problem in
the lower (resp. upper) half-plane, and it is assumed that these two prob-
lems are periodic along the abscissa axis, but independently of each other?
Obviously, the interesting aspect in this problem is to find a possible compo-
nent of σess(T ) which is not contained in the spectra of the problems in the
subdomains.

As additional motivation of the problem we recall the case of the one-
dimensional Schrödinger equation

− ∂2
xw(x) + V (x)w(x) = λw(x), x ∈ R = (−∞,+∞) (1.2)

with the composite potential

V (x) = V ±(x) for ± x > � > 0, (1.3)

where ∂x = ∂/∂x and V ± are 1-periodic positive smooth functions; smooth-
ness is assumed here for the sake of simplicity. The essential spectrum σess

of the problem (1.2) is just the union of the spectra σ±
ess of the differential

operators −∂2
x + V ± with periodic coefficients in the whole axis R. This fact

is evident because the equation can be reformulated as s system of ordinary
differential equations

− ∂2
xw±(x) + V (x)w±(x) = λw±(x), x ∈ R± = {x ∈ R : ±x > 0}, (1.4)

with transmission conditions

w+(+0) = w−(−0), ∂xw+(+0) = ∂xw−(−0). (1.5)

Indeed, according to (1.3), the essential spectrum of (1.4) with Dirichlet con-
ditions w±(0) = 0 is nothing but σ±

ess, while the system (1.4), (1.5) differs
from the couple of the Dirichlet problems in R± by a localized perturbation
(it can be interpreted as a compact perturbation).

Coming back to the problem (1.1), the above described argument based
on a compact perturbation works no longer, since the interface ∂R2

±, where
R

2
± = {(x1, x2) ∈ R

2 : ±x1 ≥ 0}, is infinite. However, there is no easy, satis-
factory counterexample to the relationship (1.1), if the natural requirements
like smoothness of the coefficient are to be satisfied; this prevents answering
the question directly by using classical Rayleigh waves [2,3] in elasticity and
their generalizations, see [4].

In the present paper we give examples of elliptic scalar equations with
smooth double periodic coefficients, which have the following property: if the
plane is divided along dotted lines in Fig. 2a and the left or upper half-plane
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Figure 2. Double-periodic planar domain (a) and compos-
ite domains (b–d) created by mirror reflections

is doubled by using mirror reflection, Fig. 2b or c, the new elliptic problem
gains essential spectrum σess(T ) with at least one additional spectral band
in comparison with the original spectrum σess(T 0) of the double periodic
problem. This main result of our paper is formulated in Theorem 3.2 in
Sect. 3. We also mention that the result of [1] is proven in two steps: the first
consists of finding a singular Weyl sequence at any point λ ∈ σess(T ) for the
problem operator T and the second of the construction of a (right) parametrix
for the problem with any λ /∈ σess(T ). It has been asked, if it is possible to
avoid the quite technical and cumbersome construction of the parametrix, like
it has been done in the case of the one-dimensional Schrödinger equation. The
present paper also demonstrates the complications in this respect.

To fulfill the task, we employ an elegant formulation of [5], see also [6–8],
on the detection of spectral gaps in scalar problems, where the coefficients
of the differential operator have high contrast. However, we were not able
to apply these results directly, and modifications are presented in Sect. 3
in order to satisfy all natural assumptions. In particular, we find a way to
keep the infinite smoothness of the coefficients; note that in [5–8] the coef-
ficients have to be piecewise constant. In particular, as is drafted in Fig. 2a,
the massive hard parts of the double periodic medium are separated by thin,
soft “mortar” like in hand-made masonry (similar structure appears also in
natural quarzites). Compared with the citations, especially [8] where a simi-
lar geometric structure was employed for a different purpose, we use quite a
different scheme of asymptotic analysis, which also leads to new asymptotic
results about the purely periodic case in Sect. 2 (Theorem 2.1). In order to
clarify the proof of our main result we will accept some simplifying assump-
tions. Possible generalizations will be discussed in Sect. 4.

1.2. Purely Periodic Medium

We now describe the double periodic elliptic second order partial differential
equation which will be investigated in Sect. 2. The main example of the failure
of the equality (1.1) for the composite medium R

2
+ ∪ R

2
− will be constructed

in Sect. 3.



376 F. L. Bakharev et al. IEOT

We define the period cell as the rectangle Q = (−�1, �1) × (−�2, �2)
with �1 ≥ �2 > 0. For ε ∈ (0, �2) we introduce a smaller rectangle Qε =
(−�1 + ε, �1 − ε) × (−�2 + ε, �2 − ε). Let us also define a family of translated
domains

Qε(α) = {x = (x1, x2) : (x1 − 2�1α1, x2 − 2�2α2) ∈ Qε}
where α = (α1, α2) ∈ Z

2 and Z = {0,±1,±2, . . .}.
We consider the spectral problem

− div(aε(x)∇xuε(x)) = λεuε(x), x ∈ R
2, (1.6)

where ∇x is the gradient in the variable x and λε is a spectral parameter.
The function aε is smooth and 2�j-periodic in xj such that

aε(x) = 1, x ∈ Q2ε, aε(x) = ε2γ , x ∈ Q \ Qε, (1.7)

and aε(x) ∈ (ε2γ , 1] if x ∈ Qε \ Q2ε, where γ ∈ (1/2, 1) is a fixed parameter.
The variational formulation of the problem (1.6) reads as

(aε∇xuε,∇xv)R2 = λε(uε, v)R2 , v ∈ H1(R2) (1.8)

where (f, g)Ω stands for the usual (complex valued) inner product in L2(Ω)
for a domain Ω ⊂ R

2. We denote the standard Sobolev space by H1(Ω).
The sesquilinear form on the left of (1.8) is positive and closed in H1(R2)
and consequently (see [9, Ch. 10], [10, Thm. VIII.5]) our problem can be
rewritten as an abstract operator equation T 0(ε)uε = λεuε, where T 0(ε)
is an unbounded positive self-adjoint operator in Hilbert space L2(R2) with
domain D(T 0(ε)) = H2(R2), and thus the spectrum σ(T 0(ε)) is a subset
of the semi-axis R+ = [0,+∞). The embedding H1(R2) ⊂ L2(R2) is not
compact, hence the essential spectrum σess(T 0(ε)) is not empty.

2. Asymptotic Analysis of the Spectrum of the Purely
Periodic Problem

2.1. FBG-Transform and Model Problem in the Period Cell

The Floquet–Bloch–Gelfand-(FBG-)transform, see [11] and also [12–15], con-
verts the differential equation (1.6) into the following problem with quasiperi-
odic boundary conditions in the period cell Q,

− div(aε(x)∇xUε(x; η)) = Λε(η)Uε(x; η), x ∈ Q, (2.1)

Uε(x; η)|xj=�j
= eiηj Uε(x; η)|xj=−�j

, |x3−j | < �3−j , (2.2)

∂jU
ε(x; η)|xj=�j

= eiηj ∂jU
ε(x; η)|xj=−�j

, |x3−j | < �3−j , (2.3)

where j = 1, 2, ∂j = ∂/∂xj and η = (η1, η2) is the Floquet parameter in
the closed rectangle R = [0, π�−1

1 ] × [0, π�−1
2 ]. In the sequel we do not always

display the dependence on η explicitly. The problem has the variational for-
mulation

(aε∇xUε,∇xV )Q = Λε(η)(Uε, V )Q ∀V ∈ H1
η (Q), (2.4)

where H1
η (Q) is the Sobolev space of functions satisfying the conditions (2.2).

The bilinear form on the left of (2.4) is positive and closed in H1(Q). Hence,
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since the embedding H1(Q) ⊂ L2(Q) is compact, the spectrum of the prob-
lem (2.4) or (2.1)–(2.3) is discrete and turns into the monotone unbounded
sequence

0 ≤ Λε
1(η) ≤ Λε

2(η) ≤ · · · ≤ Λε
k(η) ≤ · · · → +∞, (2.5)

and the corresponding eigenfunctions Uε
1 (·; η), Uε

2 (·; η), . . . can be subject to
the normalization and orthogonality conditions

(Uε
j , Uε

k)Q = δj,k, j, k ∈ N, (2.6)

where δj,k is the Kronecker symbol.
The functions R � η �→ Λε

k(η) are continuous and π�−1
j -periodic in

the variable ηj , cf. [17, Ch.VII]. As was verified for example in [13–15], the
spectrum of the problem (1.6) or (1.8) has band-gap structure,

σ(T 0(ε)) =
⋃

k∈N

βε
k, βε

k = {Λε
k(η)|η ∈ R} , (2.7)

where the sets βε
k are closed finite intervals. Our actual objective is to describe

the sets in (2.7) asymptotically as ε → +0.

2.2. Limit Model Problem and Theorem on Asymptotics

We will next study the relation of the eigenvalues (2.5) and the spectrum of
the so-called limit problem

− Δxw(x) = μw(x), x ∈ Q, (2.8)
∂nw(x) = 0, x ∈ ∂Q, (2.9)

where Δx is the Laplace operator in the variables x and ∂n is the outward nor-
mal derivative. The problem (2.8), (2.9) can be solved explicitly. Its spectrum
consists of the eigenvalue sequence {μn}n∈N =

{
π2

4 (j2�−2
1 + k2�−2

2 )
}

j,k∈N∪{0}
,

which is indexed taking into account multiplicities such that

0 = μ1 < μ2 ≤ μ3 ≤ · · · ≤ μn ≤ · · · → +∞. (2.10)

To simplify forthcoming calculations we assume that �21�
−2
2 is not rational.

This guarantees that all eigenvalues in (2.10) are simple. The corresponding
eigenfunctions

wn(x) = cjk cos(π(2�1)−1j(x1 + �1)) cos(π(2�2)−1(x2 + �2)), (2.11)

with c2
jk = (1 + δj,0)(1 + δk,0)(�1�2)−1 satisfy the normalization and orthog-

onality conditions (wn, wm)Q = δn,m, n,m ∈ N.
We note that the problem (2.8)–(2.9) has the variational form

(∇xw,∇xv)Q = μ(w, v)Q ∀v ∈ H1(Q). (2.12)

The main result in Sect. 2 is the following assertion, the proof of which
will be completed in Sect. 2.4.

Theorem 2.1. For every n ∈ N, there exist positive εn and cn such that the
eigenvalues (2.5) and (2.10) are related by

|Λε
n(η) − μn| ≤ cnεγ−1/2 for ε ∈ (0, εn]. (2.13)
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2.3. Convergence Theorem and Identification of Spectral Gaps

Let us denote by μD
n the nth eigenvalue [ordered as in (2.10)] for the Dirichlet

problem in Q, consisting of the differential equation (2.8) and the boundary
condition w = 0 on ∂Q instead of (2.9). By the max-min principle, see e.g.,
[9, Thm. 10.2.2], [16, Thm. XIII 1,2] we readily conclude that Λε

n(η) ≤ μD
n .

Then, for the eigenfunction Uε
n of the problem (2.1)–(2.3), we have

‖∇xUε
n;L2(Q2ε)‖2 + ‖

√
aε∇xUε

n;L2(Qε \ Q2ε)‖2

+ ε2γ‖∇xUε
n;L2(Q \ Qε)‖2 ≤ μD

n . (2.14)

Denoting the coordinate dilation by Aεx = ((1 − 2ε�−1
1 )x1, (1 − 2ε�−1

2 )x2),
the H1(Q)-norm of the function

Uε
n(x; η) = Uε

n(Aεx; η) (2.15)

is uniformly bounded with respect to ε ∈ (0, 1] and η ∈ R. Hence, for some
positive sequence {εp}p∈N converging to 0, we have

Λεp
n (η) → Λ0

n(η), Uεp
n ⇁ U0

n as p → ∞, (2.16)

where the latter convergence happens weakly in H1(Q) and strongly in L2(Q).
Let v0 be an arbitrary smooth function in Q and set

vε(x) = Xε(x)v0(A−1
ε x), (2.17)

where Xε : Q → [0, 1] is a smooth cut-off function such that

Xε = 1 in Qε, Xε = 0 in Q \ Qε/2, and |∇xXε| ≤ CXε−1 in Q. (2.18)

Since Xε = 0 near ∂Q, the function (2.17) satisfies the quasiperiodicity con-
ditions (2.2) and therefore can be inserted into the integral identity (2.4):

(aε∇xUε
n,∇xvε)Q = Λε

n(η)(Uε
n, vε)Q. (2.19)

Here we have

Λε
n(η)(Uε

n, vε)Q → Λ0
n(η)(U0

n, v0)Q as ε → 0, (2.20)

because, first,

(Uε
n, vε)Q2ε

=
∫

Q2ε

Uε
n(A−1

ε x)v0(A−1
ε x)dx

= (1 − 2ε�−1
1 )(1 − 2ε�−1

2 )(Uε
n, v0)Q → (U0

n, v0)Q (2.21)

and, second,
∣∣(Uε

n, vε)Q\Q2ε

∣∣ ≤ c(v0)‖Uε
n;L2(Q)‖ |Q \ Q2ε|1/2 ≤ cn(v0)

√
ε,

where we take into account the normalization condition (2.6), the bound-
edness of the function v0 and the area |Q \ Q2ε| = O(ε) of the integration
domain Q \ Q2ε. A transformation similar to (2.21) shows that

(aε∇xUε
n,∇xvε)Q2ε

→ (∇xU0
n,∇xv0)Q (2.22)

because aε = 1 on Q2ε. Moreover,

(aε∇xUε
n,∇xvε)Qε\Q2ε

= (aε∇xUε
n,∇x(v0 ◦ A−1

ε ))Qε\Q2ε

≤ ‖
√

aε∇xUε
n;L2(Qε \ Q2ε)‖ ‖

√
aε∇x(v0 ◦ A−1

ε );L2(Qε \ Q2ε)‖ (2.23)

≤ μD
n cn(v)ε1/2.
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Q2ε

(a) (b) (c)

Figure 3. The division of the thin frame

Finally,

(aε∇xUε
n,∇xvε)Q\Qε

≤ ε2γ‖∇xUε
n;L2(Q)‖ ‖∇xvε;L2(Q \ Qε)‖

≤
√

μD
n εγCXε−1cvε1/2 ≤ Cn(v)εγ−1/2. (2.24)

Here, we have used (2.14) to estimate the norm of ∇xUε
n and (2.17), (2.18)

for ∇xvε. Since γ > 1/2, formulas (2.22)–(2.24) imply

(aε∇xUε
n,∇xvε)Q → (∇xU0

n,∇xv0)Q as ε → 0. (2.25)

We formulate the following result of our calculations.

Proposition 2.2. For every n ∈ N, the limit λ0
n(η) in (2.16) is an eigenvalue

of the Neumann problem (2.8), (2.9), and U0
n in (2.16) is the corresponding

eigenfunction with normalization ‖U0
n;L2(Q)‖ = 1.

Proof. The fact that (λ0
n(η),U0

n) is the claimed eigenpair follows from the
variational formulation (2.12), the arbitrariness of the choice of v0, the density
of smooth functions in the Sobolev space, the property (2.19), and the proven
convergence in (2.20), (2.25).

It suffices to verify the normalization of U0
n. To this end, we use the

inequality

‖Uε
n;L2(Q \ Q2ε)‖2 ≤ c(ε2‖∇xUε

n;L2(Q \ Q2ε)‖2 + ε‖Uε
n;L2(∂Q2ε)‖2)

(2.26)

which can be derived by covering the thin frame Q \ Q2ε with sets of diam-
eter O(ε), see Fig. 3a, b, stretching local coordinate systems by a factor of
magnitude ε−1 and applying standard trace inequalities in two kinds of sets,
see Fig. 3c. For the right hand side of (2.26) we use the inequalities

‖Uε
n;L2(∂Q2ε)‖2 ≤ C(‖∇xUε

n;L2(Q2ε)‖2 + ‖Uε
n;L2(Q2ε)‖2)

≤ C(Λε
n(η) + 1)‖Uε

n;L2(Q)‖2 ≤ Cn,

‖∇xUε
n;L2(Q \ Q2ε)‖2 ≤ ε−2γ‖

√
aε∇xUε

n;L2(Q)‖2 ≤ Cnε−2γ ,

which are based on the estimate (2.14) and the definition of aε. As a conse-
quence of (2.6), (2.26) and γ < 1 we get the desired normalization

1 = ‖Uε
n;L2(Q)‖2 = ‖Uε

n;L2(Q2ε)‖2 + O(ε2(1−γ) + ε) → ‖U0
n;L2(Q)‖2. �
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Formula (2.15) passes the strong convergence in L2(Q), see (2.16), from
Uε

n to the eigenfunction Uε
n itself.

Since the limits of the eigenvalues in (2.5) belong to the set {μn}n∈N of
isolated points, one finds any prescribed number of open gaps in the spec-
trum (2.7) by assuming the parameter ε to be sufficiently small (a similar
conclusion on the number of spectral bands is made in [7] for the problem
introduced in [5], and the same conclusion can be made in [8], too).

2.4. Asymptotics and Estimates for Spectral Bands

In the Hilbert space Hε = H1
η (Q) we introduce the scalar product

〈u, v〉ε = (aε∇xu,∇xv)Q + (u, v)Q (2.27)

and the positive, symmetric, continuous (consequently, self-adjoint) operator
Kε,

〈Kεu, v〉ε = (u, v)Q ∀u, v ∈ Hε. (2.28)
Comparing (2.27), (2.28) with (2.4), we see that the variational formulation
of the problem (2.1)–(2.3) is equivalent to the abstract equation

Kεuε = κεuε in Hε

with the new spectral parameter

κε = (1 + Λε)−1. (2.29)

The well-known formula

dist(kε, σ(Kε)) = ‖(Kε − kε)−1;Hε → Hε‖−1, (2.30)

follows from the spectral decomposition of the resolvent (Kε − kε)−1, e.g, [9,
Ch 6, §3], [18, Thm. 12.23]. To estimate the operator norm of the resolvent at
the “interesting” point kε = (1 + μn)−1, we set Wε = ‖wε;Hε‖−1wε, where
wε(x) = Xε(x)wn(A−1

ε x), μn is an eigenvalue of the problem (2.8), (2.9), and
the corresponding eigenfunction wn is extended to the exterior of Q by its
formula (2.11). We have

‖KεWε − kεWε;Hε‖ = sup |〈KεWε − kεWε, v〉ε|
= (1 + μn)−1‖wε;Hε‖−1 sup |(aε∇xwε,∇xv)Q − μn(wε, v)Q| , (2.31)

where the supremum is computed over the unit ball in Hε. The expression
inside the modulus signs in (2.31) equals the sum of the following terms:

Iε
1 = (∇x(wn ◦ A−1

ε ),∇xv)Q2ε
− μn(wn ◦ A−1

ε , v)Q2ε
,

Iε
2 = (

√
aε∇x(wε

n ◦ A−1
ε ),

√
aε∇xv)Qε\Q2ε

−μn(wε
n ◦ A−1

ε , v)Qε\Q2ε
, (2.32)

Iε
3 = ε2γ(∇x(Xεwn ◦ A−1

ε ),∇xv)Q\Qε
− μn(Xεwn ◦ A−1

ε , v)Q\Qε
.

Stretching variables and taking (2.12) into account yield

|Iε
1 | =

∣∣2ε�−1
2 (∂x1w

ε
n, ∂x1(v ◦ Aε))Q + 2ε�−1

1 (∂x2w
ε
n, ∂x2(v ◦ Aε))Q

∣∣ ≤ cnε.

Since wn is a smooth function, we have

|Iε
2 | ≤ cn|Qε \ Q2ε| ‖v;Hε‖ ≤ cnε1/2.
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In the same way, taking into account the bound for ∇xXε in (2.18), we obtain

|Iε
3 | ≤ Cn(εγε−1ε1/2‖εγ∇xv;L2(Q \ Qε)‖ + ε1/2‖v;L2(Q)‖) ≤ cnεγ−1/2.

These estimates for the terms in (2.32) and (2.31) show that the norm
of the resolvent (Kε − kε)−1 exceeds cnε−(γ−1/2) for some constant cn > 0.
Thus, in view of the relation (2.30), the interval

[kε − cnεγ−1/2, kε + cnεγ−1/2]

contains an eigenvalue of Kε. Furthermore, the identity (2.29) shows that
at least one eigenvalue in (2.5) falls into the short segment Υn = [μn −
Cnεγ−1/2, μn + Cnεγ−1/2] with some Cn > 0 (recall that γ > 1/2). To con-
clude that this eigenvalue is unique and coincides with Λε

n(η), we use Propo-
sition 2.2. If one of the segments Υ1,Υ2, . . . ,Υn includes two eigenvalues,
then Λε

n+1(η) does not exceed μn + Cnεγ−1/2 and, therefore, converges to
Λ0

n+1(η) ≤ μn, while the limit U0
n+1 of the corresponding eigenfunction is

orthogonal to w1, w2, . . . , wn in L2(Q). Of course this is impossible because
the eigenvalues μ1, μ2,. . . , μn are simple, due to our assumption on irra-
tionality of �21�

−2
2 . This completes the proof of Theorem 2.1.

3. Asymptotic Analysis of the Spectrum for Composite
Medium

3.1. Problem with Periodic Coefficients in Half-Planes

Let us define the new coefficient function

aε(x) =
{

aε(x1 − h, x2), x1 > 0,
aε(x1 + h, x2), x1 < 0,

(3.1)

where h ∈ (0, �1) and the numbers �j are rescaled as �2 = 1/2 and �1 > 1/2.
Here, we realize the reflection on Fig. 2b. The geometric setting is simple
enough so that the function (3.1) can be made smooth by a proper choice of
the old one (1.7) inside the thin frame Q2ε\Qε (for example, aε is independent
of x1 ∈ (−�1+3ε, �1+3ε)). The difference between (1.6) and the new equation

− div(aε(x)∇xuε(x)) = λεuε(x), x ∈ R
2, (3.2)

is the loss of the periodicity in the x1-direction due to the coefficient (3.1):
as indicated in Fig. 2b, the two half-planes, which are paved with identical
rectangles of size 2�1 × 2�2, are now separated by a column of rectangles of
size 2(�1 + h) × 2�2.

Let us denote by T (ε) the self-adjoint operator of the problem (3.2),
defined in the same way as in Sect. 1.2.

3.2. Partial FBG-Transform and Model Problem in the Unit Strip

Let us examine the spectrum of the problem (3.2). To this end, we apply the
partial FBG-transform

uε(x) �→ Uε(x; ζ) =
1√
2π

∑

k∈Z

e−iζkuε(x1, x2 + k), ζ ∈ [0, 2π]
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and arrive at the model problem in the horizontal unit strip Π = R ×
(−1/2, 1/2)

− div(aε(x)∇xUε(x; ζ)) = ΛεUε(x, ζ), x ∈ Π,

Uε

(
x1,

1
2
; ζ

)
= eiζUε

(
x1,−

1
2
; ζ

)
, x1 ∈ R,

∂x2U
ε

(
x1,

1
2
; ζ

)
= eiζ∂x2U

ε

(
x1,−

1
2
; ζ

)
, x1 ∈ R. (3.3)

It is known, see [19, Thm. 5], that for any fixed ζ the essential spectrum
of the problem (3.3) is the union of the spectral bands

Bε
k(ζ) = {Λε

k(η1, ζ) : η1 ∈ [−π, π]}, k ∈ N.

Moreover, there holds the relations Bε
k(ζ) ⊂ βε

k, k ∈ N.
The variational formulation of the problem (3.3) is

(aε∇xUε,∇xV)Π = Λε(ζ)(Uε,V)Π ∀V ∈ H1
ζ(Π),

where H1
ζ(Π) is the space of functions in H1(Π) satisfying the first quasiperi-

odicity condition in (3.3).

3.3. Asymptotics of Eigenvalues and Trapped Modes in the Strip

The appearance of the longer rectangle Q = Q1 = (−�1 − h, �1 + h) ×
(−1/2, 1/2) in the paving of Π leads to the new limit problem

− Δxw(x) = μw(x) in Q , ∂νw(x) = 0 in ∂Q. (3.4)

The first positive eigenvalue of this problem is μ2 = π2

4 (�1 + h)−2, corre-
sponding to the eigenfunction w2(x) = (�1 + h)−1/2 sin(π(�1 + h)−1x1/2).
Notice that (2.10) implies

μ2 ∈ (μ1, μ2). (3.5)

Theorem 3.1. For any ζ ∈ [−π, π] there exist positive ε2 and c2 such that the
problem (3.3) has an eigenvalue Λε

2(ζ) satisfying the inequality

|Λε
2(ζ) − μ2| ≤ c2ε

γ−1/2 ∀ ε ∈ (0, ε2). (3.6)

Proof. We set W(x) = Xε(x)w(A−1
ε x), where Xε is a smooth cut-off func-

tion such that

Xε = 1 in Qε, Xε = 0 in Q \ Qε/2, |∇xXε| ≤ CXε−1 in Q,

and Aεx = ((1 − 2ε(�1 + h)−1)x1, (1 − 2ε�−1
2 )x2). It is enough to estimate

sup |(aε∇xw,∇xv)Π − μ(W,v)Π| = sup |(aε∇xW,∇xv)Q − μ(W,v)Q|
where the supremum is computed over the unit ball of the Hilbert space
H1

ζ(Π) with the scalar product

〈u,v〉Π,ε = (aε∇xu,∇xv)Π + (u,v)Π.

This can be done repeating word by word our arguments in the second part
of the proof of Theorem 2.1 in Sect. 2.4. �
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Comparing formulas (3.6), (3.5) and (2.13), we see that if ε is small
enough, the spectrum σ(T (ε)) of the problem (3.2) contains, in addition to
the spectral bands βε

k of the spectrum σ(T 0(ε)), at least one spectral band

Bε
2 = {Λε

2(ζ) : ζ ∈ [−π, π]} (3.7)

which does not intersect the set σ(T 0(ε)). This observation gives a negative
answer to the question (1.1) in Sect. 1.1.

Theorem 3.2. There exists positive ε0 such that, for any ε ∈ (0, ε0), the
spectrum σess(T (ε)) of the problem (3.2) contains the spectral band (3.7)
which does not intersect the spectrum σess(T 0(ε)) of the problem (1.6).

It is quite obvious that using the techniques presented above one could
prove more comprehensive results than Theorem 3.1. Indeed, many of the
open spectral gaps between bands βε

k apparently contain eigenvalues of the
limit problem (3.4). Each of these isolated eigenvalues gives rise again for a
small ε to an eigenvalue of the problem (3.3) and thus also to an additional
spectral band of the problem (3.2). However, for the sake of the shortness of
the paper we refrain from going into the detailed proofs, although we are con-
vinced that a more complete asymptotic description of the eigenvalues of the
problem (3.3) would not require new ideas in addition to those given above.

4. Concluding Remarks

The existence of Rayleigh waves [2] travelling along interfaces in piecewise
homogeneous elastic solids is well-known, cf. [3,4] and others. Such waves do
not exist in the case of scalar differential equations, the piecewise constant
coefficients of which have jumps at a straight line of the plane. However, the
example constructed above shows that scalar second order equations with
periodic coefficients may have propagating waves localized near infinite rows
and columns of foreign inclusions. This was already predicted in [1].

Of course, changing the roles of coordinate axis as indicated in Fig. 2c
provides a row of bigger rectangles Q2 and also new spectral bands in the
same way as in Sect. 3. Moreover, according to [1], these bands are preserved
in the spectra, if the open waveguides containing a full row or column of
rectangles are replaced by the corresponding semi-infinite open waveguides.
Combining both of these constructions, we can create X-, T- and Y-shaped
waveguides, which support propagating localized waves, cf. [1]. We also men-
tion the papers [20–22] with other examples of localized propagating waves.

Let us consider the X-shaped open waveguide in Fig. 2d, which contains
the rectangle Q12 = {x : |x1| < �1 + h1, |x2| < �2 + h2}. The numbers
hj ∈ (0, �j) can be chosen such that the smallest positive eigenvalues of the
Neumann problems (3.4) in Qj , j = 1, 2, and that of the problem (2.8), (2.9)
in Q can be ordered as follows:

0 <
π2

(�1 + h1)2
<

π2

(�2 + h2)2
<

π2

�21
. (4.1)
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In addition, if �1 <
√

3(�2 + h2), then hj can still be adjusted to obtain

π2

(�2 + h2)2
< μ1,2 =

π2

(�1 + h1)2
+

π2

(�2 + h2)2
<

π2

�21
, (4.2)

where μ1,2 is the Neumann eigenvalue for −Δ in Q12 corresponding to the
eigenfunction

sin
(

πx1

�1 + h1

)
sin

(
πx2

�2 + h2

)
.

Now consider the spectral problem (3.2), where the coefficient aε is related
to the X-shaped open waveguide of Fig. 2d. According to [1] and the con-
clusions in Sects. 2 and 3, the first four spectral bands of this problem lie in
the cεγ−1/2-neighbourhood of the points (4.1), although μ1,2 is not contained
in these bands. Thus, our previous asymptotic constructions, estimates and
arguments prove that there exists an isolated eigenvalue in the vicinity of the
point μ1,2.

Proposition 4.1. Let �j and hj, j = 1, 2, be fixed to fulfil the relations (4.1)
and (4.2). There exists εd > 0 such that, for any ε ∈ (0, εd), the discrete
spectrum of the problem corresponding to the X-shaped open waveguide in
Fig. 2d, contains at least one eigenvalue λd(ε) = μ1,2 + O(εγ−1/2).

Recall that if ε is small, we have shown the existence of many open
spectral gaps, cf. for example the end of Sect. 2.3. It might be possible to
find also other eigenvalues (of the problem related to Fig. 2d) inside these
gaps, just by using the above scheme to locate them near suitable Neumann
eigenvalues of the problem in Q12. However, the first couple of the positive
eigenvalues μj = π2(�j + hj)−2, j = 1, 2, coincides with the numbers in
(4.1) and therefore we do not know if they are included in the corresponding
spectral bands or not. In other words, to prove or disprove the existence of
isolated eigenvalues near μj one would need to construct higher order terms
in the asymptotic expansions.

An example of an eigenvalue embedded into the continuous spectrum
of an open waveguide in a double periodic medium does not yet exist in the
literature. We conjecture that this could be done using the concept of enforced
stability of embedded eigenvalues, [23,24], although it would require a much
more delicate asymptotic analysis.
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