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Abstract. We show an interesting relation between ultracontractivity
and Weyl asymptotics. Then both properties are studied for their beha-
viour with respect to perturbation. The results are used to establish
Weyl’s law for the Dirichlet-to-Neumann operator associated with −Δ+
V , where V is a measurable bounded potential. In particular, we show
that its eigenvalues determine the surface area of the domain.
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1. Introduction

Consider an unbounded self-adjoint operator A with compact resolvent which
is bounded below on a space L2(Ω). Let λ1 ≤ λ2 ≤ . . . be the eigenvalues,
repeated with multiplicity. For all λ ∈ R let

N(λ) = #{n ∈ N : λn ≤ λ}
be the counting function. We say that A admits Weyl asymptotics if the
limit limλ→∞

N(λ)
λκ exists in (0,∞) for some κ > 0. The prototype is the

Laplace operator with Dirichlet boundary conditions on a bounded domain
Ω in Rd and Weyl’s famous result says that for κ = d

2 the limit exists and
is proportional to the volume of Ω (cf. [4]). In this paper we show that Weyl
asymptotics are strongly related to ultracontractivity. Recall that the semi-
group S generated by −A on L2(Ω) is called ultracontractive if

‖St‖2→∞ ≤ c t−κ/2

for all t ∈ (0, 1] and some c, κ > 0. Using duality it follows that ‖St‖1→∞ ≤
2κ c2 t−κ for all t ∈ (0, 1], which is equivalent to saying that for all t ∈ (0, 1]
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the operator St is a kernel operator whose kernel Kt(·, ·) on Ω×Ω is bounded
by 2κ c2 t−κ. Ultracontractivity has been studied intensively (see [3,10,25]
and references therein). We show in Theorem 2.7 that ultracontractivity is
equivalent to an upper Weyl bound and a growth condition on the eigenvalues.

Our main example is the Dirichlet-to-Neumann operator DV on L2(Γ),
where Γ is the boundary of a Lipschitz domain Ω and V ∈ L∞(Ω) is real
valued. Its graph consists of those pairs (ϕ,ψ) ∈ L2(Γ) × L2(Γ) such that
there exists a u ∈ H1(Ω) satisfying

⎡
⎢⎣

Tr u = ϕ,

−Δu + V u = 0 weakly on Ω,

∂νu = ψ.

(1)

Here ∂ν is a weakly defined version of the normal derivative, see Sect. 6. It
is a lower-bounded self-adjoint operator with compact resolvent and indeed,
our perturbation results allow us to prove Weyl’s law

lim
λ→∞

N(λ)
λd−1

= cd σ(Γ) (2)

for this operator, where cd > 0 is a universal constant and σ(Γ) is the surface
area of Γ. We show this if Ω has a C∞-boundary, but in our perturbation
and regularity studies we merely assume Ω to be Lipschitz, since these results
have independent value. The eigenvalues of DV can be described by a sort of
Steklov problem (see the remark at the end of the last section). The first one
to consider such a Steklov problem was Sandgren [27] in 1955, who proved
Weyl’s law (2) for V = 0. Later such Steklov problems and also the asymp-
totic behaviour of the eigenvalues have been studied intensively by Koz̆enikov.
We mention in particular his article [20] which contains Weyl’s law for DV

with V a C∞-function and which heavily uses pseudo-differential calculus.
Our perturbation results in connection with ultracontractivity give a very new
transparent proof. It is based on elementary form methods. Deliberately we
choose the Laplacian with a bounded potential to avoid technical arguments.

There is a wealth of results on Weyl’s formula for the Laplace opera-
tor and many other operators as well as many sophisticated properties on
the counting function are known. As an example of such results we men-
tion Netrusov–Safarov [23] and [8] for a general survey on Weyl’s formula in
physics and mathematics.

The outline of this paper is as follows. By a theorem of Karamata the
asymptotics of the counting function is equivalent to a limit of the trace of the
semigroup generated by −DV . In Sect. 2 we study the relation between var-
ious trace estimates and the connection with the notion of ultracontractivity
of a semigroup. In Sect. 3 we prove a perturbation result for ultracontractivity
and in Sect. 4 for traces of semigroups. If Ω has a C∞-boundary and V = 0,
then the Dirichlet-to-Neumann operator D0 is a pseudo-differential opera-
tor of order one and it is equal to the square root of the Laplace–Beltrami
operator on Γ, up to a pseudo-differential operator of order zero. In Sect. 5
we use Weyl’s law for the Laplace–Beltrami operator on Γ together with the
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perturbation result of Sect. 4 to prove a Weyl asymptotics for D0. In Sect. 6
we add the potential V and prove Weyl’s law for DV .

2. Weyl Asymptotics and Ultracontractivity

Let Ω ⊂ Rd be a bounded open non-empty set. Then L2(Ω) has an orthonor-
mal basis {en : n ∈ N} consisting of eigenfunctions of the Dirichlet Lapla-
cian. So if n ∈ N, then en ∈ H1

0 (Ω) and there exists a λD
n ∈ R such that

−Δen = λD
n en. We may assume that 0 < λD

1 ≤ λD
2 ≤ . . .. Note that

limn→∞ λD
n = ∞. Weyl’s law tells that

lim
λ→∞

N(λ)
λd/2

=
ωd

(2π)d
|Ω|,

where N : R → N0 is the counting function given by

N(λ) = #{n ∈ N : λn ≤ λ},

the volume of the unit ball in Rd is denoted by ωd and |Ω| is the volume of Ω.
Weyl’s law holds for arbitrary bounded open non-empty sets (see for example
[4] Section 6 for a proof). One possible proof uses Karamata’s Tauberian
theorem.

Proposition 2.1. (Karamata) Let (λn)n∈N be a lower bounded sequence of real
numbers such that the series

∑
e−λnt converges for all t > 0. Let κ > 0 and

a ∈ R. Then the following are equivalent.

(a) lim
t↓0

tκ
∞∑

n=1

e−λnt = a.

(b) lim
λ→∞

λ−κ N(λ) =
a

Γ(κ + 1)
, where N(λ) = #{n ∈ N : λn ≤ λ}.

(c) lim
n→∞

λn

n1/κ
=

(
Γ(κ + 1)

a

)1/κ

.

Proof. For the equivalence of (a) and (b) see Karamata [19] Satz A. The
proof of the equivalence of (b) and (c) is elementary. �

Note that
∑∞

n=1 e−tλD
n = Tr etΔD

, the trace of the operator etΔD

, for
all t > 0, where (etΔD

)t>0 is the semigroup generated by ΔD on L2(Ω).
Thus Karamata’s theorem establishes an equivalence between the asymp-

totic behaviour of the eigenvalues in the sense of Weyl and the asymptotic
behaviour of the trace as t ↓ 0. Next we introduce the notion of Weyl limit
and Weyl bounds.

Definition 2.2. Let −A be the generator of a C0-semigroup in a separable
Hilbert space H.
(a) We say that A has a Weyl limit if there exist a, κ > 0 such that e−tA

is a trace class operator for all t > 0 and limt↓0 tκ Tr e−tA = a.
(b) We say that A has an upper Weyl bound if there exist a, κ > 0 such

that e−tA is a trace class operator for all t > 0 and tκ Tr e−tA ≤ a for
all t ∈ (0, 1].
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(c) We say that A has a lower Weyl bound if there exist a, κ > 0 such
that e−tA is a trace class operator for all t > 0 and a ≤ tκ Tr e−tA for
all t ∈ (0, 1].

(d) We say that A has is Weyl bounded if A has an upper Weyl bound
and a lower Weyl bound.

The purpose of this section is to establish a relation between the exis-
tence of an upper Weyl bound and ultracontractivity of the semigroup.

Let (X,A, μ) be a measure space. For simplicity we write Lp = Lp(X) in
this section for all p ∈ [1,∞]. If p1, p2, q1, q2 ∈ [1,∞] and both Q1 : Lp1 → Lq1

and Q2 : Lp2 → Lq2 are bounded, then we say that Q1 and Q2 are consistent
if Q1u = Q2u almost everywhere for all u ∈ Lp1 ∩ Lp2 . Let Q : L2 → L2 be a
bounded operator. Let p, q ∈ [1,∞]. Then we set

‖Q‖p→q = sup{‖Qu‖q : u ∈ L2 ∩ Lp, ‖u‖p ≤ 1} ∈ [0,∞].

If ‖Q‖p→q < ∞ and p < ∞, then Q|L2∩Lp
extends consistently to a bounded

operator from Lp into Lq.
Let κ > 0. Let S be a C0-semigroup on L2. We say that S is κ-

ultracontractive if there exists a c > 0 such that

‖St‖2→∞ ≤ c t−κ/2 (3)

for all t ∈ (0, 1]. In the literature ultracontractive semigroups, that are semi-
groups which are κ-ultracontractive for some κ > 0, are well studied, starting
with Davies–Simon [10].

If ‖St‖p→p ≤ M for all t ∈ (0, 1] and p ∈ [1,∞], then ‖St‖p→p ≤ M eωt

for all t ∈ (0,∞), where ω = log M . In that case we may extend St to Lp for
all p ∈ [1,∞], and if p ∈ (1,∞) then we obtain a C0-semigroup whose gener-
ator we denote by −Ap. It is an open problem whether S then also extends
to a C0-semigroup on L1 (see [30], [5] Lemma 2.1 and [12] Theorem 2.5).
Under this assumption of uniform bounds on ‖St‖p→p there are many char-
acterisations of κ-ultracontractivity, see [3] Subsection 7.3.2, [25] Section 6.1
and references therein. In the next theorem we list six of the characteristic
properties that we need here.

Theorem 2.3. Let (X,A, μ) be a measure space and κ > 0. Let S be a C0-
semigroup on L2. Suppose there exists an M > 0 such that ‖St‖p→p ≤ M for
all t ∈ (0, 1] and p ∈ [1,∞].

(a) The following are equivalent.
(i) The semigroup S is κ-ultracontractive.
(ii) There exists a c > 0 such that

‖St‖p→q ≤ c t−κ( 1
p − 1

q ) (4)

for all t ∈ (0, 1] and p, q ∈ [1,∞] with p ≤ q.
(iii) There exist c > 0 and p, q ∈ [1,∞] with p < q such that

‖St‖p→q ≤ c t−κ( 1
p − 1

q )

for all t ∈ (0, 1].
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(b) Suppose in addition that S is a holomorphic semigroup. Then (i) is
equivalent to the following statements.
(iv) For all p, q ∈ [1,∞) and ω > log M with p < q there exists a

c > 0 such that

‖u‖1+κ( 1
p − 1

q )
q ≤ c ‖u‖p ‖(ωI + Aq)u‖κ( 1

p − 1
q )

q

for all u ∈ Lp ∩ dom(Aq), where −Aq is the generator of the
extension of the semigroup on Lq.

(v) There exist p, q ∈ [1,∞), ω > log M and c > 0 with p < q such
that

‖u‖1+κ( 1
p − 1

q )
q ≤ c ‖u‖p ‖(ωI + Aq)u‖κ( 1

p − 1
q )

q

for all u ∈ Lp ∩ dom(Aq), where −Aq is the generator of the
extension of the semigroup on Lq.

(c) Suppose in addition that κ > 1 and the operator A is m-sectorial,
where −A is the generator of S. Let V be the form domain of the
associated m-sectorial form. Then (i) is equivalent to the following
statement.
(vi) V ⊂ L 2κ

κ−1
.

Proof. This is well-known (cf. [3] Subsection 7.3.2). �
Ultracontractivity is a condition on the kernels of the semigroup because

of the following well-known Dunford–Pettis criterion.

Theorem 2.4. Let Q ∈ L(L2) and p ∈ [1,∞]. Then the following are equiva-
lent.
(a) ‖Q‖p→∞ < ∞.
(b) There exists a measurable function k : X × X → C such that

ess sup
x∈X

∫

X

|k(x, y)|q dy < ∞

and for all f ∈ Lp one has (Qf)(x) =
∫

X
k(x, y) f(y) dy for a.e.

x ∈ X, where q is the dual exponent of p.
If the statements are valid, then

‖Q‖p→∞ =
(

ess sup
x∈X

∫

X

|k(x, y)|q dy
)1/q

,

with obvious modifications if q = ∞.

If (X,A, μ) is a finite measure space and S is an ultracontractive C0-
semigroup on L2, then St is a Hilbert–Schmidt operator for all t > 0. Hence
S2t = St ◦ St is trace class for all t > 0. If in addition S∗ is also ultracon-
tractive, then the next lemma gives a useful more precise estimate of the
trace.

Lemma 2.5. Let (X,A, μ) be a finite measure space. Let E1 : L1 → L2 and
E2 : L2 → L∞ be two bounded maps. Set E = E2 E1. Then E is trace class
and

|Tr E| ≤ μ(X) ‖E1‖1→2 ‖E2‖2→∞.
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Proof. The Dunford–Pettis theorem implies that the operator E2 has a mea-
surable kernel K : X × X → C and

‖E2‖2→∞ = ess sup
x∈X

(∫
|K(x, y)|2 dy

)1/2

.

Then
∫

X

∫

X

|K(x, y)|2 dy dx ≤ μ(X)

(
ess sup

x∈X

(∫
|K(x, y)|2 dy

)1/2
)2

= μ(X) ‖E2‖2
2→∞.

So E2 is a Hilbert–Schmidt operator and ‖E2‖HS ≤ μ(X)1/2 ‖E2‖2→∞.
Similarly E∗

1 is a Hilbert–Schmidt operator and

‖E1‖HS = ‖E∗
1‖HS ≤ μ(X)1/2 ‖E∗

1‖2→∞ = μ(X)1/2 ‖E1‖1→2.

Then E = E2 E1 is a composition of two Hilbert–Schmidt operators. There-
fore it is trace class and |Tr E| ≤ ‖E1‖HS ‖E2‖HS ≤ μ(X) ‖E1‖1→2 ‖E2‖2→∞
as required. �

As a consequence we show that ultracontractivity implies an upper Weyl
bound.

Proposition 2.6. Suppose μ(X) < ∞. Let κ > 0. Let S be a C0-semigroup on
L2. Suppose both the semigroups S and S∗ are κ-ultracontractive. Then there
exists a constant b > 0 such that tκ Tr St ≤ b for all t ∈ (0, 1].

Proof. There exists a c > 0 such that ‖St‖2→∞ ∨ ‖S∗
t ‖2→∞ ≤ c t−κ/2 for all

t ∈ (0, 1]. Let t ∈ (0, 1]. Then Lemma 2.5 gives

Tr S2t ≤ |Tr (St St)| ≤ μ(X) ‖St‖1→2‖St‖2→∞ ≤ c2 μ(X) t−κ

and the proposition follows. �

If a semigroup S consists of Hilbert–Schmidt operators, then the genera-
tor of S has a compact resolvent. If the semigroup S is in addition self-adjoint,
then we can find an orthonormal basis for L2(X) consisting of eigenfunctions
for the generator.

Next we consider self-adjoint compact semigroups. It turns out that in
this case ultracontractivity can be characterized by an upper Weyl bound
and a growth condition on the eigenfunctions.

Theorem 2.7. Let (X,A, μ) be a finite measure space with dim L2(X) = ∞.
Let S be a self-adjoint C0-semigroup on L2(X). Suppose the generator −A
of S has compact resolvent. Let {ϕn : n ∈ N} be an orthonormal basis for
L2(X) consisting of eigenfunctions of A. For all n ∈ N let λn ∈ R be such
that Aϕn = λn ϕn. Then the following are equivalent.
(i) The semigroup S is ultracontractive.
(ii) The semigroup S is trace class and there exist c, κ > 0 such that

(a) supt∈(0,1] t
κ Tr St < ∞ and

(b) ‖ϕn‖∞ ≤ c λ
κ/2
n for all n ∈ N with λn > 0.
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If the two statements are valid, then for all t > 0 the operator St has a kernel
Kt and

Kt(x, y) =
∞∑

n=1

e−λntϕn(x)ϕn(y)

for a.e. (x, y) ∈ X × X and the convergence is in L∞(X × X).

Proof. ‘(i)⇒(ii)’. Let κ > 0 be such that S is κ-ultracontractive. Part (a)
follows from Proposition 2.6. It remains to show (b). Note that the operator
A is unbounded since it has compact resolvent. Hence limn→∞ λn = ∞. Let
c > 0 be as in (3). Then

e−λnt‖ϕn‖∞ = ‖Stϕn‖∞ ≤ c t−κ/2 ‖ϕn‖2 = c t−κ/2

for all t ∈ (0, 1]. Now choose t = λ−1
n if λn ≥ 1.

‘(ii)⇒(i)’. Without loss of generality we may assume that A ≥ I. There
exist c1, c2 ∈ (0,∞) such that tκ Tr St ≤ c1 for all t ∈ (0, 1] and hκ e−h/2 ≤ c2

for all h ∈ [0,∞). Let ϕ ∈ L2(X). Then

Stϕ =
∞∑

n=1

(ϕ,ϕn)L2(X) Stϕn =
∞∑

n=1

(ϕ,ϕn)L2(X) e−λnt ϕn

and hence

‖Stϕ‖∞ ≤
∞∑

n=1

‖ϕ‖2 e−λnt ‖ϕn‖∞

≤ ‖ϕ‖2

∞∑
n=1

e−λnt c λκ/2
n

≤ c
√

c2 ‖ϕ‖2

∞∑
n=1

e−λnt/2 t−κ/2

= c
√

c2 ‖ϕ‖2 t−κ/2 Tr St/2 ≤ 2κc c1

√
c2 ‖ϕ‖2 t−3κ/2

for all t ∈ (0, 1]. So S is ultracontractive.
Finally, suppose that the two statements are valid. For all n ∈ N define

the element K(n) ∈ L∞(X × X) by K(n)(x, y) = ϕn(x)ϕn(y). Let t ∈ (0, 1].
Then with the above notation one obtains

∞∑
n=1

e−λnt ‖K(n)‖∞ ≤
∞∑

n=1

e−λnt c2 λκ
n

≤ c2 c2

∞∑
n=1

t−κ e−λnt/2 ≤ 2κ c1 c2 c2 t−2κ.

So the series
∑

e−λnt K(n) is convergent in L∞(X × X). Define

Kt =
∞∑

n=1

e−λnt K(n).

Then ‖Kt‖∞ ≤ 2κ c1 c2 c2 t−2κ. Let Tt : L2 → L2 be the Hilbert–Schmidt
operator with kernel Kt. If m ∈ N, then Stϕm = e−λmt ϕm = Ttϕm. So
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St = Tt and hence for all u ∈ L2(X) one deduces that (Stu)(x) = (Ttu)(x) =∫
X

Kt(x, y)u(y) dy for a.e. x ∈ X. �

3. Perturbation of Ultracontractivity

In this section we investigate which perturbations preserve ultracontractivity.

Proposition 3.1. Let (X,A, μ) be a measure space and κ > 0. Let S and T be
two C0-semigroups on L2. Suppose that

sup
t∈(0,1]

‖St‖p→p < ∞ and sup
t∈(0,1]

‖Tt‖p→p < ∞

for all p ∈ [1,∞]. For all q ∈ (1,∞) let −Aq and −Bq be the generator of the
extension of S and T on Lq, respectively. Let κ > 0.

(a) Assume there exist q ∈ (1,∞) and a bounded operator Q on Lq such
that Aq = Bq + Q. Then S is κ-ultracontractive if and only if T is
κ-ultracontractive.

(b) Assume that both semigroups S and T are holomorphic. Suppose there
exists a q ∈ (1,∞) such that dom(Aq) = dom(Bq). Then S is κ-
ultracontractive if and only if T is κ-ultracontractive.

Proof. ‘(a)’. There exists a p ∈ [1, q) such that κ( 1
p − 1

q ) < 1. Suppose that
the semigroup S is κ-ultracontractive. Then Theorem 2.3(i)⇒(ii) implies that
there exists a c > 0 such that

‖Stu‖q ≤ c t−κ( 1
p − 1

q ) ‖u‖p

for all t ∈ (0, 1] and u ∈ L2 ∩ Lp. Let M ≥ 1 be such that ‖Tt‖q→q ≤ M for
all t ∈ (0, 1]. Then

‖(Tt − St)u‖q ≤
∫ t

0

‖Tt−s Q Ssu‖q ds ≤ M ‖Q‖q→q

∫ t

0

‖Ssu‖q ds

≤ c M ‖Q‖q→q

∫ t

0

s−κ( 1
p − 1

q ) ‖u‖p

=
c M ‖Q‖q→q

1 − κ( 1
p − 1

q )
t1−κ( 1

p − 1
q ) ‖u‖p

for all t ∈ (0, 1] and u ∈ L2 ∩ Lp. So

‖Ttu‖q ≤
(
c +

c M ‖Q‖q→q

1 − κ( 1
p − 1

q )

)
t−κ( 1

p − 1
q ) ‖u‖p

for all t ∈ (0, 1] and u ∈ L2 ∩ Lp and the semigroup T is κ-ultracontractive
by Theorem 2.3(iii)⇒(i).

‘(b)’. This follows from the equivalence of (ii), (iv) and (v) in Theo-
rem 2.3. �
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4. Perturbation for Weyl Limits

Now we can show how Weyl limits are preserved under perturbations.

Theorem 4.1. Let (X,A, μ) be a finite measure space. Let S and T be two
C0-semigroups in L2 with generators −A and −B, respectively. Suppose that

sup
t∈(0,1]

‖St‖p→p < ∞ and sup
t∈(0,1]

‖Tt‖p→p < ∞

for all p ∈ [1,∞]. Suppose there exist bounded consistent operators Qp ∈
L(Lp) for all p ∈ (1,∞) such that A = B + Q2. Let κ > 0. Assume S is
κ-ultracontractive and limt↓0 tκTr St exists. Then

lim
t↓0

tκTr Tt = lim
t↓0

tκTr St.

Proof. It follows from Proposition 3.1(a) that T is also κ-ultracontractive.
Hence by Theorem 2.3 there exists a c > 0 such that

‖St‖p→q ∨ ‖Tt‖p→q ≤ c t−κ( 1
p − 1

q )

for all t ∈ (0, 1] and p, q ∈ [1,∞] with p ≤ q.
Let t ∈ (0, 1]. Then

‖St − Tt‖2→∞ = ‖
∫ t

0

Ss Q2 Tt−s ds‖2→∞

≤
( ∫ t/2

0

+
∫ t

t/2

)
‖Ss Q2 Tt−s‖2→∞ ds.

Now if p ∈ (2,∞) is such that κ
p < 1, then

∫ t/2

0

‖Ss Q2 Tt−s‖2→∞ ds ≤
∫ t/2

0

‖Ss‖p→∞ ‖Qp‖p→p ‖Tt−s‖2→p ds

≤
∫ t/2

0

c2 ‖Qp‖p→p s− κ
p (t − s)−κ( 1

2 − 1
p ) ds

= c1 t−κ/2 · t,

where c1 = c2 ‖Qp‖p→p

∫ 1/2

0
s− κ

p (1−s)−κ( 1
2 − 1

p ) ds < ∞. Similarly the second
term can be estimated. Hence there exists a c2 > 0 such that

‖St − Tt‖2→∞ ≤ c2 t−
κ
2 · t

for all t ∈ (0, 1]. Similarly there exists a c3 > 0 such that

‖St − Tt‖1→2 ≤ c3 t−
κ
2 · t

for all t ∈ (0, 1].
Therefore by Lemma 2.5 it follows that

|tκTr St − tκTr Tt| = tκ
∣∣∣Tr

(
(St/2 − Tt/2)St/2 + Tt/2(St/2 − Tt/2)

)∣∣∣
≤ tκ μ(X)

(
‖St/2 − Tt/2‖2→∞‖St/2‖1→2

+ ‖Tt/2‖2→∞‖St/2 − Tt/2‖1→2

)

≤ μ(X) 2κ−1 c (c2 + c3) t
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for all t ∈ (0, 1] and the theorem follows. �

Theorem 4.1 will be essential to obtain conditions which imply that
Weyl limits are preserved under perturbation. We conclude this section with
comments on the hypothesis made in Theorem 4.1.

Remark 4.2. Adopt the notation and assumptions as in Theorem 4.1. Let
p ∈ (1,∞) and let S(p) and T (p) be the C0-semigroups on Lp which are
consistent with S and T . Let −Ap and −Bp be the generators of S(p) and
T (p). Then one automatically has Ap = Bp + Qp. The reason is as follows.
Let t > 0 and u ∈ L2 ∩ Lp. Then

S
(p)
t u − T

(p)
t u = Stu − Ttu =

∫ t

0

Ss(−A + B)Tt−su ds

= −
∫ t

0

Ss Q2 Tt−su ds = −
∫ t

0

S(p)
s Qp T

(p)
t−su ds.

Hence

S
(p)
t u − T

(p)
t u = −

∫ t

0

S(p)
s Qp T

(p)
t−su ds

for all t > 0 and u ∈ Lp. Then the claim follows from the next lemma.

Lemma 4.3. Let S and T be two C0-semigroups on a Banach space Y with
generators −A and −B. Let Q ∈ L(Y ). Suppose that

Stx − Ttx = −
∫ t

0

Ss Q Tt−sx ds

for all t > 0 and x ∈ Y . Then A = B + Q.

Proof. There exists an M ≥ 1 such that ‖St‖ ≤ M for all t ∈ (0, 1]. Let x ∈ Y .
There exists a t0 ∈ (0, 1] such that ‖Ttx − x‖ ≤ ε and ‖St Qx − Qx‖ ≤ ε for
all t ∈ (0, t0]. Let t ∈ (0, t0]. Then
∥∥∥∥

1
t

∫ t

0

Ss Q Tt−sx ds − Qx

∥∥∥∥ ≤ 1
t

∫ t

0

‖Ss Q Tt−sx − Qx‖ ds

≤ 1
t

∫ t

0

‖Ss‖ ‖Q‖ ‖Tt−sx − x‖+‖Ss Qx−Qx‖ ds

≤ (M ‖Q‖ + 1)ε.

So limt↓0
1
t

∫ t

0
Ss Q Tt−sx ds = Qx.

If x ∈ D(A), then

lim
t↓0

1
t (I − Tt)x = lim

t↓0

1
t (I − St)x + lim

t↓0

1
t (St − Tt)x = Ax − Qx.

Therefore A − Q ⊂ B. Since A − Q generates a C0-semigroup, one deduces
that A − Q = B. �

One may ask whether the conditions in Theorem 4.1 can be relaxed, by
requiring merely that A is a bounded perturbation of B. In fact, if one of the
two semigroups has a bounded generator, then this suffices (see 7.2.2 in [3]).
The following example shows that this weaker hypothesis does not suffice in
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general. More precisely, suppose that S and T be two C0-semigroups on L2

which extend consistently to C0-semigroups S(p) and T (p) on Lp for all p ∈
(1,∞) with generators −Ap and −Bp. Suppose that there exists a bounded
operator Q2 ∈ L(L2) such that A2 = B2 + Q2. If p ∈ (1,∞) \ {2}, then in
general there does not exists a bounded Qp ∈ L(Lp) such that Ap = Bp +Qp.
A counter example is as follows.

Example 4.4. Let ΔD be the Laplacian on L2(0, 1) with Dirichlet boundary
conditions. The semigroup S generated by ΔD extends consistently to a con-
traction semigroup S(p) in Lp(0, 1) for all p ∈ [1,∞], which is a C0-semigroup
if p ∈ [1,∞). For all p ∈ [1,∞) let −Ap be the generator of S(p). Then

D(Ap) = {u ∈ W 2,p(0, 1) : u(0) = u(1) = 0} ⊂ C[0, 1]

for all p ∈ (1,∞).
Choose g ∈ L2(0, 1) such that g �∈ Lp(0, 1) for all p ∈ (2,∞). Define the

operator B : L2(0, 1) → L2(0, 1) by

Bf = (f, g)L2(0,1) 1(0,1).

Then B is bounded from L2(0, 1) into L2(0, 1), but for all p ∈ [1, 2) the
operator B does not extend to a bounded operator from Lp(0, 1) into Lp(0, 1).
If p ∈ [1,∞), then B|D(Ap) is bounded and compact from D(Ap) into Lp(0, 1),
where D(Ap) is provided with the graph norm. Since S(p) is a holomorphic
semigroup, it follows from Desch–Schappacher [11] Theorem 1 that −(Ap+B)
is the generator of a holomorphic semigroup on Lp(0, 1) for all p ∈ [1,∞).
Clearly the operator A2−(A2+B) is bounded on L2(0, 1). But for all p ∈ [1, 2)
the operator Ap − (Ap + B) is not bounded on Lp(0, 1).

5. Weyl’s Law for the Dirichlet-to-Neumann Operator

In this section we prove Weyl’s law for the Dirichlet-to-Neumann operator on
a domain with C∞-boundary. The following result can be found in the book
of Rosenberg [26], for example.

Theorem 5.1. Let Ω ⊂ Rd be an open connected bounded set with C∞-
boundary Γ. Denote by ΔLB the Laplace–Beltrami operator on Γ. Let NLB

be the counting function for the positive operator −ΔLB. Then

lim
λ→∞

λ−(d−1)/2 NLB(λ) =
σ(Γ)

(4π)(d−1)/2 Γ(d+1
2 )

,

where σ(Γ) is the (d − 1)-dimensional Hausdorff measure on Γ.

Proof. It follows from Rosenberg [26] Theorem 3.24 that

lim
t↓0

t(d−1)/2 Tr SLB
t =

σ(Γ)
(4π)(d−1)/2

.

Then the theorem is a consequence of Karamata’s Tauberian theorem, Propo-
sition 2.1. �
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Now we are able to prove Weyl’s law for the Dirichlet-to-Neumann oper-
ator D0 on L2(Γ) associated to the potential V = 0 in (1). This result is due
to Sandgren [27].

Theorem 5.2. Let Ω ⊂ Rd be a non-empty open connected bounded subset
with C∞-boundary Γ. Let N be the counting function of the eigenvalues of
the Dirichlet-to-Neumann operator on L2(Γ). Then

lim
λ→∞

λ−(d−1) N(λ) =
σ(Γ)

(4π)(d−1)/2 Γ(d+1
2 )

.

Proof. We use the notation as in Theorem 5.1. Let N
√

LB denote the counting
function for

√−ΔLB . Then N
√

LB(λ) = NLB(λ2) for all λ > 0. Hence it
follows from Theorem 5.1 that

lim
λ→∞

λ−(d−1) N
√

LB(λ) =
σ(Γ)

(4π)(d−1)/2 Γ(d+1
2 )

.

Then Karamata’s Proposition 2.1 gives

lim
t↓0

td−1 Tr S
√

LB
t = Γ(d)

σ(Γ)
(4π)(d−1)/2 Γ(d+1

2 )
, (5)

where S
√

LB is the semigroup generated by −√−ΔLB .
It follows from (C.4) or Proposition C.1 in Appendix C of Chapter 12

in [29] that there exists a pseudo-differential operator Q of order 0 such
that D0 =

√−ΔLB + Q. For all p ∈ (1,∞) the operator Q extends to a
bounded operator Qp on Lp(Γ) by [28] Proposition VI.4 and a coordinate
transformation. Let S be the semigroup generated by −D0. Then S satisfies
the bounds (4) with κ = d − 1 by [13] Theorem 2.6. Then by perturbation,
Theorem 4.1, one deduces from (5) that

lim
t↓0

td−1 Tr St = Γ(d)
σ(Γ)

(4π)(d−1)/2 Γ(d+1
2 )

and the theorem follows by using Karamata’s theorem again. �
If Ω has merely a Lipschitz boundary, then Weyl upper bounds are valid.
Let Ω ⊂ Rd be an open bounded connected set with Lipschitz bound-

ary Γ. Consider the semigroup S generated by −D0, where D0 is the Dirichlet-
to-Neumann operator.

Proposition 5.3. There exists a constant b > 0 such that td−1 Tr St ≤ b for
all t ∈ (0, 1].

Proof. By [13] Theorem 2.6 the semigroup S is (d−1)-ultracontractive. Then
the upper Weyl bounds are a consequence of Proposition 2.6. �

In the next proposition we prove a lower bound, under the assumption
that the kernel of S satisfies Poisson upper bounds. It is an open problem
whether the kernel of S has Poisson upper bounds if the domain Ω merely
has a Lipschitz boundary. If Ω has a C∞-boundary, then these Poisson upper
bounds have been proved in [13] Theorem 1.1 and independently in [16] The-
orem 1. In work in progress, [14], these upper bounds are also proved if Ω



Vol. 88 (2017) Ultracontractivity and Weyl’s Law... 77

has a C1,ε-boundary, where ε ∈ (0, 1]. Since S is a positive semigroup (see
[6] page 67), the kernel of S is positive.

Proposition 5.4. Suppose the kernel K of the semigroup S satisfies Poisson
upper bounds, that is, there exists a c > 0 such that

Kt(x, y) ≤ c (t ∧ 1)−(d−1) 1(
1 +

|x − y|
t

)d

for all x, y ∈ Γ and t ∈ (0,∞). Then there exists an a > 0 such that a ≤
td−1 Tr St for all t ∈ (0, 1].

Proof. Set

c′ = sup
t∈(0,1]

sup
x∈Γ

t−(d−1)

∫

Γ

1
(

1 +
|x − y|

t

)d− 1
2

dσ(y).

Then c′ < ∞ by a quadrature estimate. Let r ≥ 1 be such that c c′√
1+r

≤ 1
2 .

There exists a c′′ > 0 such that σ(BΓ(x, rt)) ≤ c′′ td−1 for all x ∈ Γ and
t ∈ (0, 1].

Now let t ∈ (0, 1]. Then
∫

Γ\BΓ(x,rt)

Kt(x, y) dσ(y) ≤
∫

Γ\BΓ(x,rt)

c t−(d−1) 1(
1 +

|x − y|
t

)d
dσ(y)

≤ c
1√

1 + r

∫

Γ

t−(d−1) 1
(

1 +
|x − y|

t

)d− 1
2

dσ(y)

≤ c c′ 1√
1 + r

≤ 1
2

for all x ∈ Γ. Hence
∫

BΓ(x,rt)

Kt(x, y) dσ(y) = 1 −
∫

Γ\BΓ(x,rt)

Kt(x, y) dσ(y) ≥ 1
2

for almost every x ∈ Γ, since
∫
Γ

Kt(x, y) dσ(y) = (St1)(x) = 1(x) = 1 for
almost every x ∈ Γ. Therefore

Tr S2t = ‖St‖2
HS =

∫

Γ

∫

Γ

|Kt(x, y)|2 dσ(y) dσ(x)

≥
∫

Γ

∫

BΓ(x,rt)

|Kt(x, y)|2 dσ(y) dσ(x)

≥
∫

Γ

1
σ(BΓ(x, rt))

∣∣∣
∫

BΓ(x,rt)

Kt(x, y) dσ(y)
∣∣∣
2

dσ(x)
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≥ 1
4

∫

Γ

1
σ(BΓ(x, rt))

dσ(x)

≥ σ(Γ)
4c′′ t−(d−1)

and the proof is complete. �

So if the kernel of S satisfies Poisson upper bounds, then it follows from
Propositions 5.3 and 5.4 that there are a, b > 0 such that

a ≤ td−1 Tr St ≤ b

for all t ∈ (0, 1].
One might hope that in general for a positive self-adjoint operator A

for which there are constants a, b, κ > 0 such that St = e−tA is trace class
for all t > 0 and

a ≤ tκ Tr St ≤ b

for all t ∈ (0, 1], it would follow that limt↓0 tκ Tr St exists. Unfortunately, this
is false by the following counter example.

Example 5.5. We first show that there are N0, N1, . . . ∈ N0 and t0, t1, . . . ∈
(0, 1] such that 1 = t0, tn+1 < tn ≤ 2−n for all n ∈ N0, 0 = N0 < N1 < N2 <
. . . and if λ1, λ2, . . . ∈ [1,∞) are defined by

λn =

{
n if N2k < n ≤ N2k+1,

2n if N2k+1 < n ≤ N2k+2,
(6)

for all k ∈ N0, then∣∣∣∣∣∣
t2k+1

N2k+1∑
n=1

e−λnt2k+1 − 1

∣∣∣∣∣∣
≤ 2−k, (7)

∞∑
n=N2k+1+1

e−nt2k+1 ≤ 2−k,

∣∣∣∣∣∣
t2k+2

N2k+2∑
n=1

e−λnt2k+2 − 1
2

∣∣∣∣∣∣
≤ 2−k, and (8)

∞∑
n=N2k+2+1

e−nt2k+2 ≤ 2−k

for all k ∈ N0. The proof is by induction.
Set N0 = 0 and t0 = 1. Let k ∈ N0 and suppose that N2k and t2k are

defined. For all n ∈ N define λ′
n ∈ [1,∞) by

λ′
n =

⎧
⎪⎨
⎪⎩

n if there exists an l ∈ {0, . . . , k − 1} such that N2l < n ≤ N2l+1,

2n if there exists an l ∈ {0, . . . , k − 1} such that N2l+1 <n ≤ N2l+2,

n if n > N2k.
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Define A : (0,∞) → R by

A(t) =
∞∑

n=1

e−λ′
nt.

Since limt↓0 t
∑∞

n=N2k+1 e−nt = 1, it follows that limt↓0 |t A(t)−1| = 0. Hence
there exists a t2k+1 ∈ (0, t2k ∧ 2−(2k+1)) such that

|t2k+1 A(t2k+1) − 1| ≤ 2−(k+1). (9)

Next, there exists an N2k+1 ∈ N such that N2k < N2k+1 and
∞∑

n=N2k+1+1

e−nt2k+1 ≤ 2−(k+1). (10)

Then (7) follows from the triangle inequality from (9) and (10).
For all n ∈ N define λ′′

n ∈ [1,∞) by

λ′′
n =

⎧
⎪⎨
⎪⎩

n if there exists an l ∈ {0, . . . , k} such that N2l < n ≤ N2l+1,

2n if there exists an l ∈ {0, . . . , k − 1} such that N2l+1 < n ≤ N2l+2,

2n if n > N2k+1.

Further, define B : (0,∞) → R by

B(t) =
∞∑

n=1

e−λ′′
nt.

Since limt↓0 t
∑∞

n=N2k+1+1 e−2nt = 1
2 , it follows that limt↓0 |t B(t) − 1

2 | = 0.
Hence there exists a t2k+2 ∈ (0, t2k+1 ∧ 2−(2k+2)) such that∣∣∣∣t2k+2 B(t2k+2) − 1

2

∣∣∣∣ ≤ 2−(k+1).

Next, there exists an N2k+2 ∈ N such that N2k+1 < N2k+2 and
∞∑

n=N2k+2+1

e−nt2k+2 ≤ 2−(k+1).

(Note that the term is e−nt2k+2 , not e−2nt2k+2 .) Then∣∣∣∣∣∣
t2k+2

N2k+2∑
n=1

e−λnt2k+2 − 1
2

∣∣∣∣∣∣
≤ 2−(k+1) + t2k+2

∞∑
n=N2k+2+1

e−2nt2k+2

≤ 2−(k+1) +
∞∑

n=N2k+2+1

e−nt2k+2 ≤ 2−k

and (8) is valid.
By induction t0, t1, . . . and N0, N1, . . . are defined. Define λ1, λ2, . . .

by (6). Let A be the self-adjoint multiplication operator in �2 such that
Aen = λn en for all n ∈ N. Let S be the semigroup generated by −A.
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If k ∈ N, then

∣∣∣∣∣t2k+2

∞∑
n=1

e−λnt2k+2 − 1

2

∣∣∣∣∣ ≤
∣∣∣∣∣∣
t2k+2

N2k+2∑
n=1

e−λnt2k+2 − 1

2

∣∣∣∣∣∣
+ t2k+2

∞∑
n=N2k+2+1

e−λnt2k+2

≤ 2−k +
∞∑

n=N2k+2+1

e−nt2k+2 ≤ 2−(k−1).

Similarly,
∣∣∣∣∣t2k+1

∞∑
n=1

e−λnt2k+1 − 1

∣∣∣∣∣ ≤ 2−(k−1).

So

lim
k→∞

t2k+1Tr St2k+1 = 1

and

lim
k→∞

t2k+2Tr St2k+2 =
1
2
.

Therefore limt↓ t Tr St does not exists.
It is elementary to show that

1
2 e−2 ≤ t Tr St ≤ 1

for all t ∈ (0, 1].

6. Weyl’s Law for the Dirichlet-to-Neumann Operator with
Potential

Let Ω ⊂ Rd be open bounded connected with Lipschitz boundary. Since many
intermediate results in this section are valid on domains which do not have
a C∞-boundary, we state the lemmas with appropriate conditions on the
boundary. Let Γ = ∂Ω and we provide Γ with the (d−1)-dimensional surface
measure. We recall that for all p ∈ [1,∞) there exists a unique bounded
operator Tr : W 1,p(Ω) → Lp(Γ) such that Tr u = u|Γ for all u ∈ W 1,p(Ω) ∩
C(Ω). The operator Tr is called the trace operator.

Let p ∈ [1,∞) and u ∈ W 1,p(Ω) with Δu ∈ Lp(Ω). If ψ ∈ Lp(Γ), then
we write ∂νu = ψ if

∫

Ω

∇u · ∇v +
∫

Ω

(Δu) v =
∫

Γ

ψ v (11)

for all v ∈ C∞
c (Rd). Note that ψ is unique, if it exists. We say that ∂νu ∈

Lp(Γ) if there exists a ψ ∈ Lp(Γ) such that ∂νu = ψ. Then ∂νu is called the
normal derivative of u. Let p′ be the dual exponent of p. If p �= 1, then it
follows that (11) is valid for all v ∈ W 1,p′

(Ω) since {v|Ω : v ∈ C∞
c (Rd)} is

dense in W 1,p′
(Ω).
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Remark 6.1. Let p ∈ (1,∞) and u ∈ W 2,p(Ω). Then ∂νu ∈ Lp(Γ). In fact,
denote by ν : Γ → Rd the exterior normal. Thus ν = (ν1, . . . , νd) ∈ (L∞(Γ))d.
Let ψ =

∑d
j=1 νj Tr (∂ju). Then it follows from the divergence theorem, see

for example [1] A6.8(1), that ∂νu = ψ.

Denote by ΔD the Dirichlet Laplacian in L2(Ω), i.e., ΔD is the operator
in L2(Ω) defined by

dom(ΔD) =
{
u ∈ H1

0 (Ω) : Δu ∈ L2(Ω)
}

and ΔDu = Δu, the distributional derivative. If aD : H1
0 (Ω) × H1

0 (Ω) → C is
the sesquilinear form defined by

aD(u, v) =
∫

Ω

∇u · ∇v,

then −ΔD is the operator associated with aD. Hence ΔD is self-adjoint and
−ΔD is positive.

There is a remarkable result on the normal derivative of functions in
the domain dom(ΔD) of the Dirichlet Laplacian, which is a consequence of
results of Jerison–Kenig and Gesztesy–Mitrea.

Proposition 6.2. If u ∈ dom(ΔD), then ∂νu ∈ L2(Γ).

Proof. If u ∈ dom(ΔD), then u ∈ H3/2(Ω) by [18] Theorem B.2. This implies
that ∂νu ∈ L2(Γ) by [15] Lemma 2.4. �

Let V ∈ L∞(Ω,R) be a real-valued potential. We emphasize that we
do not assume that V is positive. Clearly ΔD − V generates a holomorphic
C0-semigroup on L2(Ω). We will assume throughout that

0 �∈ σ(−ΔD + V ). (12)

Since −ΔD + V has compact resolvent, this is equivalent with 0 not being
an eigenvalue of −ΔD + V . Then it follows that (−ΔD + V )−1 ∈ L(L2(Ω))
with range dom(ΔD). Hence Proposition 6.2 implies that ∂ν(−ΔD + V )−1 is
a linear map from L2(Ω) into L2(Γ). Actually, this map is bounded.

Lemma 6.3. ∂ν(−ΔD + V )−1 ∈ L(L2(Ω), L2(Γ)).

Proof. Let (wn)n∈N be a sequence in L2(Ω) and ψ ∈ L2(Γ). Suppose that
lim wn = 0 in L2(Ω) and lim ∂ν(−ΔD + V )−1wn = ψ in L2(Γ). Set un =
(−ΔD + V )−1wn for all n ∈ N. Then un ∈ D(ΔD) ⊂ H1

0 (Ω) and −ΔDun =
wn − V un for all n ∈ N. Since 0 �∈ σ(−ΔD + V ) it follows that lim un = 0 in
L2(Ω). Because

∫

Ω

|∇un|2 = (−ΔDun, un)L2(Ω) = (wn − V un, un)L2(Ω)
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for all n ∈ N, one deduces that lim
∫
Ω

|∇un|2 = 0. Let v ∈ H1(Ω). Then

(ψ,Tr v)L2(Γ) = lim
n→∞(∂νun,Tr v)L2(Γ)

= lim
n→∞

∫

Ω

∇un · ∇v +
∫

Ω

(Δun) v

= lim
n→∞

∫

Ω

∇un · ∇v −
∫

Ω

(wn − V un) v = 0.

Hence ψ = 0. By the closed graph theorem the lemma follows. �

We next consider the Dirichlet problem. Let ϕ ∈ L2(Γ) and u ∈ H1(Ω).
We say that u is a solution of the Dirichlet problem (13) if

[−Δu + V u = 0 as distribution on Ω and

Tr u = ϕ.
(13)

Clearly a necessary condition is that

ϕ ∈ Tr H1(Ω) = {Tr v : v ∈ H1(Ω)},

the trace space of Ω. Obviously, if ϕ ∈ Tr H1(Ω) and u ∈ H1(Ω), then u is a
solution of the Dirichlet problem (13) if and only if Tru = ϕ and∫

Ω

∇u · ∇v +
∫

Ω

V u v = 0

for all v ∈ H1
0 (Ω).

The following consequence of Proposition 6.2 is proved in [9] Corol-
lary 5.4. We include a proof for completeness.

Proposition 6.4. For all ϕ ∈ Tr H1(Ω) there exists a unique solution u ∈
H1(Ω) of the Dirichlet problem (13). Moreover, there exists a bounded oper-
ator

γV : L2(Γ) → L2(Ω)

such that γV ϕ is the solution of (13) for all ϕ ∈ Tr H1(Ω). Finally,

γV = −
(
∂ν(−ΔD + V )−1

)∗
.

Note that ∂ν(−ΔD + V )−1 ∈ L(L2(Ω), L2(Γ)) by Lemma 6.3.

Proof. Let ϕ ∈ Tr H1(Ω). Then there exists a u0 ∈ H1(Ω) such that ϕ =
Tr u0. Define the form aD

V : H1
0 (Ω) × H1

0 (Ω) → C by

aD
V (u, v) =

∫

Ω

∇u · ∇v +
∫

Ω

V u v.

Then aD
V is L2(Ω)-elliptic and continuous. We show that aD

V is not degenerate.
Let u ∈ H1

0 (Ω) and suppose that aD
V (u, v) = 0 for all v ∈ H1

0 (Ω). Then
(−ΔD + V )u = 0. So 0 ∈ σ(−ΔD + V ), which contradicts the assumption
(12). Define α : H1

0 (Ω) → C by

α(v) =
∫

Ω

∇u0 · ∇v +
∫

Ω

V u0 v.
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Then α is continuous and anti-linear. Hence by the Fredholm–Lax–Milgram
lemma, [7] Lemma 4.1, there exists a unique w ∈ H1

0 (Ω) such that

aD
V (w, v) = α(v)

for all v ∈ H1
0 (Ω). Define u = u0 − w. Then

∫

Ω

∇u · ∇v +
∫

Ω

V u v = 0

for all v ∈ H1
0 (Ω) and Tru = ϕ. So u is a solution of the Dirichlet problem

(13). Since −ΔD + V is injective, it is the only solution.
Let ϕ ∈ Tr H1(Ω). Let u ∈ H1(Ω) be the solution of the Dirichlet

problem (13). Then (−Δ + V )u = 0 weakly on Ω and Tru = ϕ. Let w ∈
L2(Ω) and write v = (−ΔD + V )−1w. Then v ∈ dom(ΔD) ⊂ H1

0 (Ω) and
∂νv ∈ L2(Γ) by Proposition 6.2. Moreover, −Δv + V v = w as distribution.
Note that

∫
Ω
(V u) τ =

∫
Ω
(Δu) τ =

∫
Ω

u Δτ = − ∫
Ω

∇u·∇τ for all τ ∈ C∞
c (Ω).

Approximating v by C∞
c -functions gives

∫
Ω
(V u) v = − ∫

Ω
∇u · ∇v. Then

∫

Γ

ϕ ∂ν(−ΔD + V )−1w =
∫

Γ

(Tr u) ∂νv

=
∫

Ω

∇u · ∇v +
∫

Ω

u Δv

=
∫

Ω

∇u · ∇v +
∫

Ω

u V v − w

= −
∫

Ω

u w.

Therefore (∂ν(−ΔD +V )−1)∗ϕ = −u. Since (∂ν(−ΔD +V )−1)∗ is continuous
by Lemma 6.3, the proposition follows. �

We now consider the Dirichlet-to-Neumann operator DV in L2(Γ) which
is the main object of our study in this section. It was defined in (1) and it
has a characterisation via forms. Define the form aV : H1(Ω) × H1(Ω) → C

by

aV (u, v) =
∫

Ω

∇u · ∇v +
∫

Ω

V u v.

Then DV is the operator in L2(Γ) associated with the pair (aV ,Tr ), see
[7] Sections 2 and 7. In particular, the operator DV is self-adjoint and lower
bounded by [7] Theorems 4.5 and 4.15. Of special interest is D0, the Dirichlet-
to-Neumann operator with V = 0 which we considered in the previous sec-
tion, since −D0 generates a submarkovian semigroup on L2(Γ) and therefore
has a canonical extension to Lp(Γ) for all p ∈ [1,∞], see [6] Section 4.4. If
V ≥ 0 then the semigroup generated by −DV is ultracontractive by [13] The-
orem 2.6. For general V ∈ L∞(Ω,R) the kernel expansion of Theorem 2.7
has an immediate consequence for the kernel of the semigroup generated by
−DV in case this semigroup is ultracontractive.
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Theorem 6.5. Let Ω ⊂ Rd be open bounded with Lipschitz boundary. Let
V ∈ L∞(Ω,R). Suppose that 0 �∈ σ(−ΔD + V ) and that the semigroup SV

generated by −DV is ultracontractive. Then the kernel of SV is continuous.

Proof. Let ϕ ∈ dom(DV ) be an eigenfunction with eigenvalue μ. Then there
exists a u ∈ H1(Ω) such that Tru = ϕ, (−Δ + V )u = 0 weakly on Ω and
∂νu = μ ϕ. Hence ∫

Ω

∇u · ∇v +
∫

Ω

V u v =
∫

Γ

μTr u Tr v

for all v ∈ H1(Ω). By [24] Theorem 3.14(ii) we conclude that u ∈ C(Ω). Then
ϕ = Tr u ∈ C(Γ). Now the theorem follows from Theorem 2.7. �

Corollary 6.6. Let Ω ⊂ Rd be open bounded with Lipschitz boundary. Let
V ∈ L∞(Ω,R). Suppose that 0 �∈ σ(−ΔD + V ) and that the semigroup SV

generated by −DV is ultracontractive. Then SV
t L1(Γ) ⊂ C(Γ) for all t > 0.

We shall now prove that the operator DV is a bounded perturbation of
D0. Recall that γ0, γV : L2(Γ) → L2(Ω) are the bounded operators introduced
in Proposition 6.4. We denote by MV the multiplication operator defined by
the function V on Lp(Ω), where p ∈ [1,∞] will be clear from the context.
Then Proposition 6.4 implies that the operator (γ0)∗ MV γV is bounded on
L2(Γ).

Proposition 6.7. DV = D0 + (γ0)∗ MV γV .

Proof. Let ϕ ∈ dom(DV ) and ψ ∈ dom(D0). Set u = γV ϕ and v = γ0ψ.
Then

(DV ϕ,ψ)L2(Γ) − (ϕ,D0ψ)L2(Γ) = aV (u, v) − a0(u, v)

=
∫

Γ

V u v = (MV γV ϕ, γ0ψ)L2(Γ)

= ((γ0)∗ MV γV ϕ,ψ)L2(Γ).

The operator (γ0)∗ MV γV is bounded on L2(Γ). Hence ϕ ∈ dom(D∗
0) =

dom(D0) and similarly ψ ∈ dom(DV ). Therefore

((DV − D0)ϕ,ψ)L2(Γ) = (DV ϕ,ψ)L2(Γ) − (ϕ,D0ψ)L2(Γ)

= ((γ0)∗ MV γV ϕ,ψ)L2(Γ)

and the proposition follows by density of dom(D0) in L2(Γ). �

Remark 6.8. In [9] Theorem 5.2 the equality dom(DV ) = dom(D0) = H1(Γ)
is proved.

Since the semigroup S generated by −D0 is submarkovian, it follows
that for all p ∈ [1,∞] the semigroup S extends consistently to a contraction
semigroup on Lp(Γ) and this semigroup is a C0-semigroup for all p ∈ [1,∞).
We denote the generator by −D0,p. We wish to extend Proposition 6.7 to
Lp(Γ) and also to prove that the semigroup generated by −DV extends con-
sistently to a C0-semigroup for all p ∈ [1,∞).
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If p ∈ [1,∞), then the Beurling–Deny criteria imply that the semigroup
generated by the Dirichlet Laplacian ΔD also extends consistently to a C0-
semigroup on Lp(Ω), whose generator we denote by ΔD

p . Since V ∈ L∞(Ω,R),
the semigroup generated by −(−ΔD + V ) extends consistently to a quasi-
contractive semigroup on Lp(Ω) for all p ∈ [1,∞], which is a C0-semigroup
for all p ∈ [1,∞). The generator is −(−ΔD

p + V ). By [5] Theorem 3.1 the
semigroup generated by −(−ΔD + V ) has Gaussian kernel bounds. Hence it
follows from [2] Corollary 4.3 (or Kunstmann–Vogt [21] Proposition 4) that
σ(−ΔD

p + V ) = σ(−ΔD
p + V ) for all p ∈ [1,∞). In particular, the operator

−ΔD
p + V is invertible because 0 �∈ σ(−ΔD + V ) by assumption (12).

We need regularity properties of the operators −ΔD
p + V . If Ω has a

C1,1-boundary, then

dom
(
ΔD

p

)
= W 2,p(Ω) ∩ W 1,p

0 (Ω)

for all p ∈ (1,∞) by [17] Theorem 2.4.2.5. Hence if Ω has a C1,1-boundary
and p ∈ (1,∞), then

dom(−ΔD
p + V ) = dom(ΔD

p ) ⊂ W 2,p(Ω)

and the operator (−ΔD
p + V )−1 is continuous from Lp(Ω) into W 2,p(Ω).

We next show that the operator (γ0)∗ MV γV extends consistently to a
bounded operator on Lp(Γ) for all p ∈ [1,∞], thus including the two end-
points.

Lemma 6.9. Suppose Ω has a C1,1-boundary. Then one has the following.

(a) Let p ∈ (1,∞) and q ∈ [p,∞] be such that 1
q > 1

p
d−p
d−1 . Then (γV )∗

extends consistently to a bounded operator from Lp(Ω) into Lq(Γ).
(b) Let p ∈ (1,∞). Then γV extends consistently to a bounded operator

from Lp(Ω) into Lp(Γ).
(c) Let p ∈ [1,∞]. Then the operator (γ0)∗ MV γV extends consistently to

a bounded operator on Lp(Γ).

Proof. ‘(a)’. The map (−ΔD
p + V )−1 is continuous from Lp(Ω) into W 2,p(Ω)

and ∂ν is continuous from W 2,p(Ω) into W 1− 1
p ,p(Γ) by [22] Theorem 2.5.5,

where we used that Ω has a C1,1-boundary. Now use the Sobolev embedding
theorem [22] Theorems 2.4.2 and 2.4.6.

‘(b)’. This follows from the previous statement and duality.
‘(c)’. Let p1 ∈ (d,∞). The embedding L∞(Γ) → Lp1(Γ) is continu-

ous and γV extends continuously from Lp1(Γ) into Lp1(Ω) by Statement (b).
Clearly MV is continuous from Lp1(Ω) into Lp1(Ω). Finally, the operator
(γV )∗ = −∂ν (−ΔD

p + V )−1 extends consistently to a continuous operator
from Lp1(Ω) into L∞(Γ) by Statement (a). So (γ0)∗ MV γV extends consis-
tently to a bounded operator from L∞(Γ) into L∞(Γ). Then the statement
follows by duality and interpolation. �

Proposition 6.10. Suppose Ω has a C1,1-boundary. Then for all p ∈ [1,∞] the
semigroup T generated by −DV extends consistently to a quasi-contractive
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semigroup on Lp(Γ), which is a C0-semigroup if p ∈ [1,∞). Moreover, there
exists a c > 0 such that

‖Tt‖p→q ≤ c t−(d−1)( 1
p − 1

q ) (14)

for all t ∈ (0, 1] and p, q ∈ [1,∞] with p ≤ q.

Proof. Recall that the semigroup S generated by −D0 is submarkovian, the
semigroup S extends consistently to a contraction semigroup S(p) on Lp(Γ)
for all p ∈ [1,∞] and this semigroup is a C0-semigroup for all p ∈ [1,∞). We
denoted the generator by −D0,p.

It follows from Lemma 6.9(c) that for all p ∈ [1,∞] there exists a
bounded operator Qp on Lp(Γ) such that Qp is consistent with the oper-
ator (γ0)∗ MV γV . Also DV = D0 + Q2 by Proposition 6.7. Let p ∈ [1,∞).
Let T (p) be the C0-semigroup generated by −(D0,p + Qp). Then T (p) is a
quasi-contractive semigroup. Moreover,

T
(p)
t ϕ = lim

n→∞

(
S

(p)
t/n e− t

n Qp

)n

ϕ

for all t > 0 and ϕ ∈ Lp(Γ). Since DV = D0 + Q2 it follows that T (p) is
consistent with the semigroup T . If p = ∞ then we define T

(∞)
t = (T (1)

t )∗ for
all t > 0. Then T (∞) is a semigroup on L∞(Γ) which is consistent with T .

Since S satisfies the ultracontractivity bounds (4) with κ = d − 1 by
[13] Theorem 2.6 and Q2 is bounded, it follows from Proposition 3.1(a) that
the ultracontractivity bounds (14) for T are valid. �

Remark 6.11. If d ≥ 3, then as in the proof of [13] Theorem 2.6 we can deduce
(d−1)-ultracontractivity of the semigroup generated by −D0 by the criterion
formulated in Theorem 2.3(c). In fact, the form domain of D0 is dom(D1/2

0 ) =
Tr H1(Ω) ⊂ Lq(Γ), where 1

q = 1
2 − 1

2
1

d−1 and the inclusion follows from [22]
Theorem 2.4.2. So Condition (vi) in Theorem 2.3(c) is satisfied with κ = d−1.
For d = 2 the proof is more involved and we refer to [13] Theorem 2.6.

Now we are able to prove the main theorem of this section.

Theorem 6.12. Suppose Ω has a C∞-boundary. Let V ∈ L∞(Ω,R) and sup-
pose 0 �∈ σ(−ΔD + V ). Let NV be the counting function associated with the
Dirichlet-to-Neumann operator DV on L2(Γ). Then

lim
λ→∞

λ−(d−1) NV (λ) =
σ(Γ)

(4π)(d−1)/2 Γ(d+1
2 )

.

Proof. The theorem follows immediately from Theorems 5.2, 4.1 and Propo-
sitions 6.7 and 6.10. �

We conclude with comments on the eigenvalues of DV . Let λ ∈ R.
Because 0 �∈ σ(−ΔD +V ) it follows that λ ∈ σ(DV ) if and only if there exists
a u ∈ H1(Ω) with u �= 0, such that

[−Δu + V u = 0 weakly on Ω,

∂νu = λ Tr u.
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Such kind of problem is sometimes called a Steklov eigenvalue problem. If
V = 0, then Theorem 6.12 is contained in the paper [27] of Sandgren. If V is
of class C∞ and also for more general elliptic operators than the Laplacian,
the Steklov eigenvalue problem is studied on manifolds by Koz̆enikov [20],
who also proved Weyl’s law for those operators.
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