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1. Introduction

Let D = {z : |z| < 1} be the unit disk in the complex plane and H (D) be the
space of all analytic functions on . For a € D, let o, be the automorphism

of D exchanging 0 for a, namely o,(z) = 2=2, z € D. For 0 < p < o0, the

l1—az’

Bergman space AP consists of all f € H(D) such that

11 = / F()PdA(z) < oo,

where dA(z) = Ldxdy denote the normalized area Lebesgue measure. The

R

Bloch space, denoted by B = B(D), is the space of all f € H(D) such that
I £lls = sup(1 = 211 (2)] < oo.

Under the norm || f||g = |f(0)| + ||f]l3, the Bloch space is a Banach space.
From Theorem 1 of [1], we see that

1flls ~ sup || f o o0 — f(a)] 4>
acD

See [23] for more information of the Bloch space.
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For 0 < p < oo, let HP denote the Hardy space of functions f € H(D)
such that
2w

1 7
150 = S o | |f(re®)[Pdb < .

We say that an f € H(D) belongs to the BMOA space, if
1 d¢
3 = su —/ —fiP= < 00,

where fr = T}\ I; f(()g—fr. It is well known that BMOA is a Banach space
under the norm ||f||saproa = |f(0)] + ||f||+. From [6], we have

[f1l« & sup || f o 0w — f(w)] 2.
weD

Throughout the paper, S(ID) denotes the set of all analytic self-maps
of D. Let v € H(D) and ¢ € S(D). The composition operator C,, and the
multiplication operator M, are defined by

(Cof)(z) = [le(2)), (Muf)(z) =u(z)f(2), f € H(D), z€D.

The weighted composition operator uC,, induced by w and ¢, is defined as
follows.

(uCp f)(2) = u(2)f(¢(2)), fe H(D).
It is clear that the weighted composition operator uC,, is the composition of
Cy, and M,.

It is well known that C, is bounded on BMOA for any ¢ € S(D)
by Littlewood’s subordination theorem. The compactness of the operator
Cy, : BMOA — BMOA was studied in [2,5,17,19,20]. Based on results in
[2] and [17], Wulan in [19] showed that Cy, : BMOA — BMOA is compact
if and only if

lim [[¢"]|« =0 and lim |logo0¢|.=0.
n—oo a

le(a)|—1

In [20], Wulan, Zheng and Zhu further showed that Cy, : BMOA — BMOA
is compact if and only if lim,, o ||¢™ ||« = 0. In [8], Laitila gave some func-
tion theoretic characterizations for the boundedness and compactness of the
operator uCy, : BMOA — BMOA. In [4], Colonna used the idea of [20] and
showed that uCy, : BMOA — BMOA is compact if and only if

lim [Jue™|ls =0 and  lim (log uooq —ula)| gz = 0.

2
le(@)l=1" 7 L= |p(a)]?
Motivated by results in [4], Laitila and Lindstrom gave estimates for norm
and essential norm of the weighted composition operator uCy, : BMOA —
BMOA in [9]. Among others, they showed that, under the assumption of the

boundedness of uC, on BMOA,
|uCslle,BMOA—BMOA R~

lim sup [[ug” |« + limsup (log lwo o, —u(a)| e
n—oo

lp(a)|—1 1- Iw(a)IQ)
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Recall that the essential norm of a bounded linear operator 7': X — Y
is its distance to the set of compact operators K mapping X into Y, that is,

[Tle.x—y = inf{||T" - K||X—>Y}:K is compact’

where XY are Banach spaces and || - || x—y is the operator norm.

By Schwarz—Pick Lemma, it is easy to see that Cy, : B — B is bounded
for any ¢ € S(D). The compactness of C, on B was studied in [10,12,18,20,
22]. In [20], Wulan, Zheng and Zhu proved that C, : B — B is compact if
and only if lim,, . [|¢™||g = 0. In [22], Zhao obtained the exact value for the
essential norm of C,, : B — B as follows.

€\ ;.
plles—s = (5) limsup " |
n—oo

In [14], Ohno, Stroethoff and Zhao studied the boundedness and compactness
of the operator uCy, : B — B.In [3], Colonna provided a new characterization
of the boundedness and compactness of the operator uCy, : B — B by using
|lue™||5. The essential norm of the operator uC, : B — B was studied in
[7,11,13]. In [11], the authors proved that

[uColle,8—8 ~

/ 1— 2
max | limsup u(z)¢" ()I( 3 12 ), lim sup log %|u’(z)|(1 — 12
lo(2)|—1 1 —|p(2)] lo(z)—1  L—lp(2)]

In [7], the authors obtained a new estimate for the essential norm of uC,,
B — B, i.e., they showed that

[uC e 55 ~ max (nmsup 12 (s nmsup<1ogj>||Ju<w>HB),
j—o0 Jj—o0
where I, f(2) = [ f/(Qu(Q)d¢, Juf(2) = [y f( )dC.

Motlvated by the Work of 3,4,9, 20] the aim of thls article is to give some
new estimates for the norm and essential norm of the operator uCy, : B — B.
The techniques we use are strongly inspired by the work on BMOA done by
Laitila and his collaborators (see [9]).

Throughout this paper, constants are denoted by C', they are positive
and may differ from one occurrence to the other. The notation a < b means
that there is a positive constant C' such that a < Cb. Moreover, if both a < b
and b < a hold, then one says that a = b.

2. Norm of uC, on the Bloch Space

In this section we give some estimates for the norm of the operator uC,
B — B. For this purpose, we need some lemmas which we state as follows.
The following lemma can be found in [23].

Lemma 2.1. Let f € B. Then

2
1f(2)] S 10g7|2”f||8, z € D.

11—z
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Lemma 2.2. For 2 <p < oo and f € B,

sup [[f o 0a — f(a)|a2 = sup [|f 0 00 — f(a)]|ar
acD a€D

Proof. Using the Holder inequality, we get
sup||f oo — f(a)|laz <sup||foo, — fa)|ar, (2.1)
acD achD

for 2 < p < oo.

On the other hand, there exists a constant C' > 0 such that (see [21,
p.38])

sup [|f o oq — f(a)lar < C|/flls Ssup|[fooa — f(a)llaz, (2.2)
ach a€D
which, combined with (2.1), implies the desired result. O
Lemma 2.3. [16] For f € A2,

112 ~ 1£(0)]* + /D [/ (w)*(1 = wl*)?dA(w).

The classical Nevanlinna counting function N, and the generalized
Nevanlinna counting functions N, -, for ¢ are defined by (see [15])

1 1
Ny(w) = Z logm and Ny (w) = Z (log m)77
ze€p~H{w} ze€p~H{w}
respectively, where v > 0 and w € D\{¢(0)}.

Lemma 2.4. [16] Let p € S(D) and f € A%. Then
1 o0l = | F(p(0) + / [/ (w) 2N 5 (w)dA(w).

Lemma 2.5. [15] Let ¢ € S(D) and v > 0. If (0) # 0 and 0 < r < |¢(0)],
then

1
Noal0) < 5 [ Noda
rD

Lemma 2.6. Let ¢ € S(D) such that ¢(0) = 0. If supg|y|<1 w2 Ny 2 (w) < 6,
then

46 12
N, < —(log — 2.3
#2(0) = ogzye (% [y (2
when 1 < |w| < 1.
Proof. See the proof of Lemma 2.1 in [17]. O

Lemma 2.7. For all g € A% and ¢ € S(D) such g(0) = ¢(0) =0, we have

lg o @llaz < |0l azllg]l a2 (2.4)
In particular, for oll f € B, a € D and ¢ € S(D),

[fopoas—flpa)llaz S lop@) o poaallazllfooa—fla)llaz
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Proof. Let ¢ € S(D) such that ¢(0) = 0. Then,

o 06— 0. (@O = | . i l_z|zis<|3§|lg)

From Lemma 2.3 and (2.5) we obtain

dA(w) < 4]6]%=.  (2.5)

1
loz 0 ¢ — o:(6(0)) % = /D (o2 0 ¢)'|*(log m)QdA(w)
= [ NocssdA) <ol @6)
D
For z € D\ {0}, from Lemma 4.2 in [16] and Lemma 2.5, we have

|2[° N 2(2) = |2* No06,2(0) < o No.og2(w)dA(w) < 4]6]%2. (2.7)
z

So, by Lemma 2.6 we get

16 9 1,
< Noo 9)2 .
Ngo(z) < (log 2)? lo||%2 (log |z|) , (2.8)
for z € D\ 3. Thus,
16
! 2N, A < - 2 2 9.
/]DJ\%IDJ |g (Z)| ¢,2(Z)d (Z) >~ (10g2)2 H¢5||A2||g||A2 ( 9)

In addition, for z € D and g € A?, from Theorems 4.14 and 4.28 of [23], we
have |¢'(2)| < (1 — |2|?)72||g|| a2 Then,

[ |9’ (2)|* Ny 2(2)dA(2) < 16H9H32/1 Ny 2(2)dA(2)
i) 5D

2

< 16]l¢1%: llgl%e- (2.10)
Since g(0) = 0, by Lemma 2.4 we have
lgo 6l ~ [ 1§ (2 Noa(:)aA(2) @.11)

Combine with (2.9), (2.10) and (2.11), we obtain
lg o @llaz S @l azllgll a2,
as desired. In particular, for all f € B, a € D and ¢ € S(D), if we set
g=1fo Op(a) — f(%o(a))v ¢ = Op(a) ©P O 0a,
we get
If epooa—flel@)llaz S llop@ o podallazllfooa—fla)laz. O
For the simplicity of the rest of this paper, we introduce the following
abbreviation. Set
a(u, ¢, a) = [u(a)] - lopa) © @ 0 oal a2,

B(u, p,a) = log E luo o, —u(a) sz,

2
1= p(a)
where a € D, uw € H(D) and ¢ € S(D).
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Theorem 2.8. Let u € H(D) and ¢ € S(D). Then

+ sup a(u, p, a) + sup B(u, p, a).

uCyllp—p =~ |u(0)|log ————
|| LP” | ( >| 1— |¢(0)|2 ach ach

Proof. First we give the upper estimate for |uCy||z—pg. For all f € B, using
the triangle inequality, we get

[(uCy f) 0 0a — (uCy f)(a)| 4>
= l[(uooq —ula)) - (fopoos— flyla)))
Fu(a)(fopooa— f(e(a))) + (uooq —ula))f(p(a))l a2
< [(wooa —u(a)) - (f o poos— fle(a)))la
+lu(@)[|[f o pooa— flp(a))llaz + |f(pa)llucoa —ula)llaz. (2.12)
By Lemmas 2.1 and 2.7, we have
lu(@)lllf o pooa—f(pa))llaz +|f(p(a))lluc o —ula)].a
S (el 0 70 = f(0)]e +108 Ty o 7 — (e Lel
< (alu,p.a) + Bu, ¢, a)) || 5. (2.13)
From Lemmas 2.1 and 2.2, we get

sup[|(uooa —u(a)) - (f o pooa— fp(a)))la

ach

N Suglog 2|luooe —u(a)llaz|lfopooa— flpla))az
ac

< suplog ————||luoo, — ¥(a opoo, — a

~ aeg g 1_ |¢(a)|2 H g 1/’( )HA2Hf Yoo f(@( ))HA2

N Sugﬂ(ua%a)llf oplls S Sugﬁ(w% a)llfls- (2.14)
ac ac

Then, by (2.12), (2.13) and (2.14), we have
sup [|(uCy f) 0 00 — (uC, f)(a) |l a2 < (sup a(u, ¢, a) + sup B(u, ¢, a)) || |-
acD acD acD
In addition, by Lemma 2.1, |(uC, f)(0)| < |u(0)]log ﬁﬂfﬂg, we get
[uCo fll
~ |(uCe 1)(0)] + sup [(uCe[f) 0 00 = (uCy f)(a)| a2

2
S [u(0)[log ———= [ flls + sup a(u, @, a) || |8 + sup B(u, ¢, a) || f |5,
1- |§0(0)| ach ach
which implies

2
[uCollp—5 S [u(0)|log ————— + sup a(u, ¢, a) + sup B(u, p, a).(2.15)
1- |<P(O)‘ a€D a€D

Next we find the lower estimate for ||uCy|s—p5. Let f = 1. It is easy to
see that |lul|g < ||[uCy||g—p. For any a € D, set

fa(2) = 0p(a)(2) —p(a), zeD. (2.16)
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Then, fo(0) = 0, fa(p(a)) = —¢(a), [|falls < 4 and [|fallcc < 2. Using the
triangle inequality, we get
a(u, p,a) = |u(a)| - [|oy@) © ¢ o 0q — p(a) + ¢(a)]| a2
= llu(a) - (fa o pooa = falp(a)))ll a2
< (wooq —ula)) - faopoaala
+(wooa) - faopooa—ula)fa(p(a))laz
< 2fluooa —ula)llaz + [[(uCyfa) 0 0a — (uCpfa)(a)] 4>

< 2lulls + 4luCy | 5—5 < 6uC,l5—s. (2.17)
Set
2
ha(Z) = log —_—, z € D. (218)
1—p(a)z
Then, h, € B, ho(¢(a)) = log ﬁ and sup,cp ||hallB < 2 +log 2. Using
the triangle inequality and Lemma 2.7, we obtain
B(u, ¢, a)

= logﬁ (uoo, —ula))| az

= llha(p(a))(uo o0 — u(a))l| a2
< (hao@ooa—halp(a))) - (uooa —u(a))l
Fll(wooa) - haopooa —ula)hap(a))l az
+ u(a)(ha 0 p 0 04 — halp(a)))| 42
S l(hae@ooa = halp(a))) - (uooa —u(a))l a2
+ [(uCpha) © 0a — (uCpha)(a)ll a2 + a(u, ¢, a)[|ha © 0 = ha(a)| 4>
S l(ha 0 9o 0q = ha(p(a))) - (wo oa — u(a))] a2
+ (24 1og2)[|uCy |5 + (2 + log 2)a(u, ¢, a). (2.19)
By Lemmas 2.2 and 2.7, we have

[(ha 0 9004 —halp(a))) - (o oq —ula))l 4
S (ha o poaa —ha(p(a)))llazlluo on —u(a)| Az
< |lha o plisllulls S [uCylB—8- (2.20)

Combining (2.17), (2.19) and (2.20), we have

sup o(u, ¢, a) + sup Blu,,a) S |[uCyllp—p-
aec

a€D
Moreover,
2
[u(0)[log W = [(uCpho)(0)] < (2 +1og 2)[[uCy|[p—5 < |[uCy|5—5-
Therefore,
2
[u(0)[log ———— +supa(u,p,a) + sup B(u, p,a) < [[uCyllz—s. O
1- |90(0)| a€D a€D
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Lemma 2.9. Suppose that uCy, : B — B is bounded. Then

sup [[uCy(0p(a) — #(a))lls ~ sup [lue” |5 (2.21)
a€D n>0
and
limsup [uC,(0pa) — 2(0)) 15 S limsup ™ 5. (2.22)
lp(a)|—1 n—o0

Proof. From Corollary 2.1 of [3], we see that

sup [[uCy 0y (q)ll8 ~ sup |lue”||s.
a€D n>0

Then (2.21) follows immediately.
The Taylor expansion of o) — ¢(a) is

oo

Op(a) — @(a) = - Z (W)n(l - ‘w(a)|2)zn+1.

n=0
Then, by the boundedness of uC,, : B — B we have

[uCy () — #(a))lls < (1 —|p(a Z p(a)["lue™ 5.
For each N, set
N
My =) [o(a)|"lue™ 5.
n=0

Then we get
HUJC (Ugo(a) - ( ))HB

< (1 p(a) ZI%7 ™ luge™ |15

oo

+(1=le@?) Y (@) lue™ 5
n=N+1
< Mi(1=|e(@)]?) + (L= le@)*) D le(a)” sup Jue™ ||
n=N+1 n>N+1
< Mi(1-lp(@)*) +2 sup [lug™ 5.
n>N+1

Taking lim sup|,(4)|—1 in the last inequality and then letting N — oo, we get
the desired result. O

Proposition 2.10. Let p€S(D) and ucH (D). Then the following claims hold.
(i) ForaeD, let fo(2) = op@) — w(a). Then
B(u $ra a)

log =@

a(u,p,a) S + [(uCpfa) 0 00 = (uCp fa)(a)| a2-
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. h2 —
(ii) Fora €D, let g, = Flaay Where ha(z) = log 1—%{ Then

Blu,p,a) S a(u, 9,a) + [[(ga © ¢ 0 00 = gal(p(a))) - (w0 00 — u(a))| a2
+ [(uCpga) 0 0a — (uCpga)(a)| a>-
(i) For all f € B and a € D,
[(uC,f) 0 0a = (uCy f)(a) 4>
S (weoa —u(a)) - (f opooa— fle(a)))la
+ (e, ¢, a) + B(u, ¢, a))|| f |-
(iv) Forall f € B anda €D,

H(u oo, —u(a))  (fopoo, — f(@(a)))HAz
S 11l min {sgﬂ(u,so,w), HU%HM} .

V18 TR

Proof. (i) It is easy to see that || f, 0 9 0 04|l0o < 2. For any a € D, we get

a(u, p,a) = [u(a)[|[f o pooa = fp(a))]a
= [[(ueoa —u(a)) - faopooa = (uCpfa) 0 ga = (uCyfa)(a)] a2

S llwo 0 = (@)L + 1uCfu) 000 — (W) @)
< DL 4 wCufa) 00— (O fu) )
%8 T e (@)

(ii) It is obvious that g,(p(a)) = log ﬁ. Since (ga © Opa) —
9a((a)))(0) =0,

90 © 90 0a = ga((a)) = ga © Tp(a) © (Tp(a) © ¥ © 0a) — galp(a)),
by Lemma 2.7 and the fact that sup,cp ||gq|lB < 0o we obtain

[u(@)lliga © @ © 00 = galp(a))llaz S (w, @, ) sup |lgalls S o, @, @).
ac

By the triangle inequality we get

Blu, ¢, a)
= [|ga((a)) - (uwo o —u(a))| a2
= [[(ga 0 p 004 — galp(a))) - (w0 0q — u(a))

+u(a)(ga 0 p o a — ga((a))) — (u(a)ge o ¢ 0 04 — u(a)ga(p(a)))ll a2
< (ga 0 po0a — galw(a))) - (wo aa —u(a))ll a2

+[u(a)[llga 0 0 00 — galp(a))|| a2z + [[(uCpga) © Ta — (UCpga)(a)| a2
S au, p,a) + [[(ga 0 9 000 — ga(p(a))) - (uo oy —u(a))l| a2

+ [[(uCpga) 0 0a — (uCpga)(a)ll a2,

as desired.
(iii) See the proof of Theorem 2.8.
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(iv) Using the fact that log2 < log I—Mpﬁ and Theorem 2.8, we have
sup ||u o o4 — u(a)| a2 < sup By, p,a) S ||uCyl -5 (2.23)
a€D a€D

By Lemma 2.2 and the Holder inequality, we obtain
l(uooa —u(a)) - (fowooa—flea))ll
= (w0 0q — u(a))*(f o p 070 — f((a)))?|| a2
< lluwooa —ula)|azllucoq —ua)lasllf o wooa — flp(a))lis
< llwooa = ula)llaz supluo oo = u(a)assup|lf o pooa = Flo(a))lls
ae ac

SUpgep || f o pooq — f(p(a))l?
< B(u, p,a) sup ||luo oq — u(a)]| a2 o | 1 - ( ))||A2.
a€D 98 Tp(@)?

Then, by the boundedness of C,, on B and (2.23), we obtain

SUpgep ||f 0 pooa — f(p(a))l3z
2
log e
5 SUPLep ||f 0 @ o aa — fe(a))|%e

< (sup B(u, ¢, a)) 2
acD log =@

Bu, p,a)sup [luc o — u(a)| 42
acD

- uCyllB—n5
<sup|fopoa, — f(p(a))|%: min supﬁ(u,%a),m
a€D acD

2
log g
2

< If o ¢||% min { sup B(u, , a), M
el log @
2
< 171 min { sup A(u, o.), ACelEB
acp V98 @r
as desired. ]

Theorem 2.11. Let u € H(D) and ¢ € S(D). Suppose that uCy, is bounded
on B. Then

2
uCyl|B—n =~ |u(0)| log —————— + sup ||ue"||g + sup B(u, ¢, a).
|| <P||B B | ( )‘ 1 _ |¢(0)|2 w30 || ¥ ||B eh ( ¥ )
Proof. For any f € B, by (iii) and (iv) of Proposition 2.10, we get
[uCe s S s (s . 0) + B0 . )
ac
By Lemma 2.9 and (i) of Proposition 2.10, we have
2
a(u, p,a) S B(u, ¢, a)/log ———= +sup [[uCy ful 5
T Telap Tl

S Blu, ¢, a) + sup [[ug” .
n>0
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Thus,

[uCy flls S (sup B(u, ¢, a) +sup [[ug”||5) [ fll5-
a€D n>0
In addition, (uCipf)(0)| = [u(O)]|£(2(0))| £ [u(0)][log gy - Thus,

2
uCy||p—n < |u(0)|log —————— + sup ||[up"™ ||z + sup B(u, p, a).
[uCyll [u(0)| o0 nzoll [ Sup ( )

On the other hand, let p,(z) = 2™. Then p,, € B for all n > 0. Thus

sup [[ue™|g = sup [[(uCy)pn|8 < [[uCy||B—p < o0,
n>0 n>0
which, together with Theorem 2.8, implies

2
u(0)|log —————= + sup ||lup"||5 + sup B(u, v, a) < ||uCy || B—5-
| ()| g1_|§0(0)|2 " || QD H ach ( SO ) || 4P|| D

Corollary 2.12. Let uw € H(D) and ¢ € S(D). Then uCy, : B — B is bounded
if and only if

sup [|ug" ||z < oo and suplog slluo o, —ula)lla2 < oo.
n>0 ac

2z
1 —[p(a)]

3. Essential Norm of ©C', on the Bloch Space

In this section we characterize the essential norm of the weighted composition
operator uCy, : B — B in several forms, specially we will give characteriza-
tions in terms of the Bloch norm of u¢™. For t € (0, 1), we define

E(p,a,t) ={z€D: |(040) 0 po0a)(z)| >t}

Similarly to the proof of Lemma 9 of [9], we get the following result. Since
the proof is similar, we omit the details.

Lemma 3.1. Let u € H(D) and p € S(D). Then

1/4
~ :=limsuplimsup sup / |u(0a(2))|4d14(2) < limsup lup™]|5-
r—1 t—1 |p(a)|<r E(p,a,t) n—oo

Theorem 3.2. Let v € H(D) and ¢ € S(D) such that uCy, : B — B is bounded.
Then

[uColle,5—5 ~ limsup [[up" |5 + limsup [uCygal|s

n—oo lp(a)|—1
~a+pB+7y
~ a+ limsup ||[uCygalls +7
lp(a)|—1

~ lim sup |Jue" || + ,g,

n—oo
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where & = im sup| (o)1 a(u, @, a), ﬁ = lim sup|,(q)|—1 B(u, p,a) and

9a(z) = (1og 1;@)2)2(10% 1_;@'2)_1-

Proof. Set f,(z) = z™. It is well known that f,, € B and f, — 0 weakly in B
as n — oco. Then

|uCylle,8—5 2 limsup ||[uCy fr| 5 = limsup |lue™||5. (3.1)
n—oo n—oo
Choose a,, € D such that |p(a,)| — 1 as n — oo. It is easy to check that g,,

are uniformly bounded in B and converges weakly to zero in B (see [14]). By
these facts we obtain

|uCylle, -8 2 hmsup |[uCs9a, |l = limsup [[uCygq|B- (3.2)

lo(a)|—1
By (3.1) and (3.2), we obtain
luColle.8—8 2 hmsup lue™||g + limsup ||uCygal| 8- (3.3)

[p(a)|—1
From (i) of Proposition 2.10, we see that
Blu, 2L a)
log T2y

which together with Lemma 2.9 implies that

a(u,,a) S + [uCe falls,

a = limsup a(u, ¢, a) < limsup ||[uCy fallg S hmsup lue™|lg.  (3.4)
le(a)]—1 le(a)]—1

From (ii) and (iv) of Proposition 2.10, we see that

Blu,p,0) S a(u, @,a) + [[(ga 0 ¢ © 00 = ga(p(a))) - (w0 04 — u(a))| a2
+1[(uCpga) 0 00 — (uCpga)(a)]| a2

uCy||B-nB
(1 0.0) + 1905 LA EE 4 g,
V18 TR@r
which implies that
3 = limsup B(u, p,a) < &+ limsup [|uCsgal - (3.5)
le(a)|—1 le(a)|—1

By Lemma 3.1, (3.3), (3.4) and (3.5), we have

[uCplle.s—5 Z & +7 + limsup [[uCygalls
lp(a)|—1

Za+y+5,
and

[uColle,5—p Z limsup [[up™||s + a + limsup [[uCpgal|s

n—oo le(a)|—1

2 limsup ||ue”||g + B

n—oo
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Next we give the upper estimate for ||uCy|le 5—5. For n > 0, we define
the linear operator on B by (K, f)(z) = f(;572). It is easy to check that K,
is a compact operator on B. Thus

|uCylle,s—p < limsup sup ||uCy,(I — Ky)f||5,
n—oo | fllp<1

where I is the identity operator. Let S, = I — K,,. Then,

4yl s < liminf [uC, S, 15

= liminf sup (|u(0)(Snf)(0(0))] + [|(uC,pSnfll5)

T flls<t

= liminf sup |[uCy,S,f||s- (3.6)

e Iflls<1
Let f € B such that |||z < 1. Fix n >0, 7 € (0,1) and t € (3,1). Then
luCsSnfllp  sup |(uCoSnf) © 0o — (uCy Sn f)(a)l|.42
ac

< s 0Cp5,1) 07 - (CS )
pla)|<r

+ sup [[(uCpSnf) 0 00 = (uCpSnf)(a)llaz. (3.7)
l¢(a)[>r

By (iii) and (iv) of Proposition 2.10, we have
sup  |[(uCySnf) 0 00 = (uCpSnf)(a)] a2
[p(a)|>r
uCoy||B—
S1Sufls s [ alup.a)+ Bl p.a) + —LelEE ) g

le(a)|>r log W
In addition,

sup ||(uctpsnf) 00q — (ucwsnf)(a')”A?

le(a)|<r
< sup (|(Suf)(p(@)lllwo o — u(a)] a2
le(a)|<r
+ ||U 00q ((Cgosnf) C00q — (Ctpsnf)(a))HAz)
< lulls max [(Sa f) ()] + 17 + 1,72, (39)
where
n= s [ (0 0a)(2) - (Snf) 0 90 0a(2) = (Suf)((a)PdA(2),
lp(a)|<r JD\E(p,a,t)

Iy = sup /E( t)|<“o‘7a)(z)-((Snf)osooca(Z)—(Snf)(¢(a)))|2dA(Z)-

[e(a)|<r

Let @4 = 0, (q) © ¢ © 0. Then by (3.19) in [8, p. 37], we have

|(Snf) ©0yp(a) © ‘Pa(z) - (Snf S 90)(‘1”
S sup [((Snf) 0 0p(a)) (w) = (Snf)(p(a))]

lw|<t
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for z € D\E(p, a,t). Since

[uo0a - Pallaz < flucos —ula)]azll¢allo + lul@)ll[@all2

S sup fluo o —u(a)llaz + a(u, @, an)
ach

S [[wCylls—5,
we have
LS sup sup [((Suf) 0 0p(a)) (W) = (Snf)(@(a)P[luooa - pallie
lo(a)|<r [w|<t

S uCyllap sup [(Snf)(2)]*.

l21< 15

By Lemma 2.2, we get

H(Snf) OCPYooTg — (Snf)(so(a))”iﬁ
< sup 1(Snf) 0 ooa — (Suf)(p(a)]ia

< sup ”f C00q — f(a')HilZ <1,
a€D

which implies that

1/2
12 < u U\ 2 4dA z
= s </E<¢,a’t>| ) ()>
< ||(Snf) o o oa — (Suf)(e(a))l}s

1/2
< sup ( / |u(0a(z))|4dA(z)> .
lp(a)|<r E(p,a,t)

By combining the above estimates, for 7 € (0,1) and t € (3, 1), we obtain
[uCSnflls

|uCyll5—5

S osup | a(u,@,a) + B(u,p,a) + ———e
[p(a)[>r A /log ﬁ

1/4
+ sup ( / |u<o—a<z>>4dA<z>>
‘@(a)lgr E(‘Pvavt)
+osup |(Suf)()uCylls—s.

l21<

Taking the supremum over || f||g < 1 and letting n — oo, we obtain

uCyl||s—n
WColles s S suwp | afupa) + Blu o, a) + —LeCelli=s
‘59(‘1)|>T 10g ﬁ

1/4
+ sup / u(oa(2)'dA() |
IW(a)‘ST E(So’avt)
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which implies that
[uCplle.5—5 S @+ B +7.

By (3.4), (3.5) and Lemma 3.1, we get

[uCylle.5—5 < B+ limsup [[ue”| 5

n—oo
< @+ limsup [|uCypga s + limsup lug" |5
lp(a)|—1 oo

S limsup [[uCpgalls + limsup [lug™ | 5.

le(a)|—1 n—00
By (ii), (iv) of Proposition 2.10, we have

uCylle.5—5

uC -
< sup | alu g a) + Blus g, a) + Cellizs

/ 2
[p(a)|>r IOg W

1/4
+ sup (/ u(aa(z))|4dA(z)>
le(a)|<r \J E(p,a,t)

Sl (SU)I‘D (a(u, p,a) + [[(uCypga) © 04 — (UCpga)(a)]| a2
w(a)|>r

10 0 — () (g0 0 9 0 00 — galp(@)l|az + —eZellE=B

1/4
4
+ ( /E ) dA<z>>

uCyl|B—n
< swp [ alue.a) + uCugalls + gallsiCel

[p(a)|>r A /logﬁ

. 1/4
4 MuCells—s ) | < / |u(0’a(2))|4dA(Z)> :
E(p,a,t)

2
V38 T@r

which implies that

2
log 2@

[uCplle,s—5 < a+ limsup [[uCpgals +7- m
[e(a)|—1
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