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Abstract. A general interpolation problem (which includes as particular
cases the Nevanlinna–Pick and Carathéodory–Fejér interpolation prob-
lems) is considered in two classes of slice hyperholomorphic functions of
the unit ball of the quaternions. In the Hardy space of the unit ball we
present a Beurling–Lax type parametrization of all solutions, and the
formula for the minimal norm solution. In the class of functions slice hy-
perholomorphic in the unit ball and bounded by one in modulus there
(that is, in the class of Schur functions in the present framework) we
present a necessary and sufficient condition for the problem to have a
solution, and describe the set of all solutions in the indeterminate case.
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1. Introduction

There are several approaches to the theory of functions over non commutative
algebras and over the quaternions; see e.g., [11,15,18,19,24]. In particular,
the notion of slice regularity in [17] comprises quaternionic polynomials and
power series with quaternionic coefficients on one side. Quite a number of
results have been obtained in this setting, and we refer to the books [6,14,16]
and the references therein for more information. First interpolation results in
this setting were obtained in [3], and the objective of this paper is to obtain
a more unified approach to interpolation theory. To set the framework, we
need first to recall some notation and definitions.

Let H be the algebra of real quaternions p = x0 + ix1 + jx2 +kx3 where
x� ∈ R and i, j, k are imaginary units such that ij = k, ki = j, jk = i and
i2 = j2 = k2 = −1. The conjugate, the absolute value, the real part and the
imaginary part of a quaternion p are defined as p̄ = x0 − ix1 − jx2 − kx3,
|p| =

√
x2

0 + x2
1 + x2

2 + x2
3, Re p = x0 and Im p = ix1+jx2+kx3, respectively.
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By S we denote the unit sphere of purely imaginary quaternions. Any I ∈ S

satisfies I2 = −1 so that the set CI = {x + Iy : x, y ∈ R} can be identified
with the complex plane. We say that two quaternions p and q are equivalent
if p = h−1qh for some nonzero h ∈ H. It turns out (see e.g., [12]) that p and
q are equivalent if and only if Re p = Re q and |Im p| = |Im q|, so the set of
all quaternions equivalent to a given p ∈ H form a 2-sphere which will be
denoted by [p]. We refer to [25] for systematic treatment of geometry over
quaternions.

Definition 1.1. Given an open set Ω ⊂ H, a real differentiable function f :
Ω → H is called left slice regular or left slice hyperholomorphic (or just slice
hyperholomorphic, in what follows) on Ω if for every I ∈ S,

(
∂

∂x
+ I

∂

∂y

)
fI(x + Iy) ≡ 0, (1.1)

where fI stands for the restriction of f to Ω ∩ CI .

The (slice) derivative of a (left) slice hyperholomorphic function is de-
fined pointwise by the formula

f ′(x + Iy) =
1
2

(
∂

∂x
− I

∂

∂y

)
fI(x + Iy). (1.2)

We will denote by R(Ω, Ω̃) the set of all functions f : Ω �→ Ω̃ ⊂ H which are
(left) slice hyperholomorphic on Ω and we will write R(Ω) in case Ω̃ = H.
In this paper, we will focus on functions defined and slice hyperholomorphic
on the unit ball B = {p ∈ H : |p| < 1}. Similarly to the complex case, the
functions f ∈ R(B) admit power series expansion

f(p) =
∞∑

k=0

pkfk (fk ∈ H) (1.3)

where the series on the right converges to f uniformly on compact subsets
of B; on the other hand, if lim supk |fk| 1

k ≤ 1, the power series as in (1.3)
converges absolutely on B and represents a slice hyperholomorphic function.
We thus may identify the function from R(B) with power series of the form
(1.3) with radius of convergence at least one. A simple computation shows
that the slice derivative of the monomial pkα equals pk−1αk; therefore, for f
of the form (1.3) we have

f ′(p) =
∞∑

k=0

pkfk+1(k + 1), (1.4)

and it is readily seen that the latter power series has the same radius of
convergence as that in (1.3). We will deal with two classes of slice hyperholo-
morphic functions. The first is the quaternionic Hardy space H2(B) consisting
of square summable power series:

H2(B) =
{

f(p) =
∞∑

k=0

pkfk : ‖f‖2
H2 :=

∞∑

k=0

|fk|2 < ∞
}

. (1.5)
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The space H2(B) will be denoted, from now on, simply as H2. It is a right
quaternionic Hilbert space with inner product

〈f, g〉 =
∞∑

k=0

ḡkfk if f(p) =
∞∑

k=0

pkfk, g(p) =
∞∑

k=0

pkgk. (1.6)

Another class of particular interest is the Schur class R(B,B) of slice hyper-
holomorphic functions mapping the quaternionic unit ball B into its closure.
Several characterizations of the latter class will be recalled in Theorem 2.2
below.

In the complex case, interpolation theory for Hardy and Schur class
functions has been thoroughly studied in the last century. The study of in-
terpolation theory for slice hyperholomorphic Schur functions was initiated
in [3] by handling a simple Nevanlinna–Pick problem; see also [1] for the
boundary version. In this paper we will consider a more general interpolation
problem which we introduce right away. Let us say that the matrix A ∈ H

n×n

is stable if its right spectrum (see [12,14,23]) is contained in B. For such a
matrix, the series

GE,A :=
∞∑

k=0

A∗kE∗EAk (1.7)

converges for every E ∈ H
1×n and defines the positive semidefinite matrix

GE,A which is the unique solution to the Stein equation

GE,A − A∗GE,AA = E∗E. (1.8)

The pair (E,A) is called observable if GE,A is positive definite. Given a stable
matrix A ∈ H

n×n and given E ∈ H
1×n, one can define a left functional

calculus f �→ (E∗f)∧L(A∗) on R(B) by

(E∗f)∧L(A∗) =
∞∑

k=0

A∗kE∗fk if f(p) =
∞∑

k=0

pkfk. (1.9)

Observe that the convergence of the series defining (E∗f)∧L(A∗) is guaran-
teed by the assumption that A is stable. With evaluation (1.9) in hands,
we formulate interpolation problems whose data set consists of the triple
(A,E,N) with A ∈ H

n×n, E,N ∈ H
1×n such that A is stable and the pair

(E,A) is observable.

Problem 1: Find all functions f ∈ H2 such that

(E∗f)∧L(A∗) = N∗. (1.10)

Problem 2: Find all functions f ∈ R(B,B) satisfying condition (1.10).
In Section 2.4, we will show that for certain particular choices of A,

E and N , the interpolation condition (1.10) amounts to Nevanlinna–Pick
or Carathéodory–Fejér type conditions. As we will also see in Section 2.4,
interpolation problems that do not appear in the complex case are particular
cases of our general scheme.

The main results concerning Problem 1 are presented in Theorem 1.2
below. Here and in what follows, the symbol In denotes the n × n identity
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matrix (or shortened to I, the size being clear from the context). The no-
tions of adjoint matrices, of Hermitian matrices, of positive semidefinite and
positive definite matrices over H are similar to those over C.

Theorem 1.2. Given A, E, N as in (1.10), let GE,A > 0 be defined as in (1.7)
and let

F (p) =
∞∑

k=0

pkFk =
∞∑

k=0

pkEAkG−1
E,AN∗, (1.11)

B(p) =
∞∑

k=0

pkBk = 1 − EG−1
E,A(I − A∗)−1E∗

+
∞∑

k=1

pkEAk−1(I − A)G−1
E,A(I − A∗)−1E∗. (1.12)

Then all solutions f to Problem 1 are parametrized by the formula

f = F + B � h, h ∈ H2, (1.13)

where h is a free parameter. Moreover, representation (1.13) is orthogonal in
H2 and

‖f‖2
H2 = ‖F‖2

H2 + ‖B � h‖2
H2 = ‖F‖2

H2 + ‖h‖2
H2 = NG−1

E,AN∗ + ‖h‖2
H2 .

(1.14)

In particular, F is the unique minimal norm solution to Problem 1.

The prof will be given in Sect. 3. We observe that the functions F
and B defined in (1.11), (1.12) belong to R(B) since A is stable. The �-
multiplication used in formula (1.13) is the usual convolution multiplication
(see (2.1) below). In Sect. 4, we study Problem 2. We show that the problem
has a solution if and only if the Pick matrix

P =
∞∑

k=0

A∗k(E∗E − N∗N)Ak

is positive semidefinite. If P is singular, the problem has a unique solution. In
case P is positive definite, the problem has infinitely many solutions which can
be described in terms of a linear fractional formula presented in Theorem 4.5.
The statement of the theorem requires more preliminaries, and is postponed
to Sect. 4.

2. Slice Hyperholomorphic Functions and Kernels

In this section we collect a number of basic facts needed in the sequel. Inter-
preting the set R(B) as the right quaternionic vector space of power series
(1.3) converging in B, one can introduce the ring structure on R(B) using the
convolution multiplication

(g � f)(p) =
∞∑

k=0

pk ·
(

k∑

r=0

grfk−r

)

if f(p) =
∞∑

k=0

pkfk, g(p) =
∞∑

k=0

pkgk,

(2.1)
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which is called (left) slice hyperholomorphic multiplication in the present con-
text. As a convolution multiplication of the power series over a noncommu-
tative ring, the �-multiplication is associative and noncommutative. Point
evaluation is not multiplicative with respect to the �-multiplication. However
we have

(g � f)(p) =

{
g(p)f(g(p)−1pg(p)) if g(p) = 0,

0 if g(p) = 0.
(2.2)

We also observe that (g � f)(x) = g(x)f(x) for every x ∈ R.
If the function f ∈ R(B) is as in (2.1), then we can construct its slice

hyperholomorphic inverse f−� as f−�(p) = (fc � f)−1fc(p) where the slice
hyperholomorphic conjugate fc of f is defined by

fc(p) =
∞∑

k=0

pkfk if f(p) =
∞∑

k=0

pkfk (2.3)

and f−� is defined in B outside the zeros of fc �f . If f satisfies f(0) = f0 = 0,
one can define its �-inverse f−� using the power series

f−�(p) =
∑

k=0

pkak

with the coefficients ak defined recursively by

a0 = f−1
0 and ak = −f−1

0

k∑

j=1

fjak−j (k ≥ 1).

If f(p) = 0 for all p ∈ B, the latter power series converges on B. Equalities
f−� � f = f � f−� ≡ 1 and (g � f)−� = f−� � g−� are immediate.

2.1. Right Slice Hyperholomorphic Functions

A real differentiable function f : Ω → H is called right slice hyperholomorphic
on Ω (in notation, f ∈ Rr(Ω)) if for every I ∈ S its restriction fI to Ω ∩ CI

is subject to

∂

∂x
fI(x + Iy) +

∂

∂y
fI(x + Iy)I ≡ 0.

The results for right slice hyperholomorphic functions are parallel to those
for (left) hyperholomorphic ones. A function f ∈ Rr(B) can be identified
with power series f(p) =

∑∞
k=0 fkpk converging on B. The set Rr(B) itself

is a left quaternionic vector space and it becomes a ring once we introduce
the right slice hyperholomorphic multiplication

(g �r f)(p) =
∞∑

k=0

(
k∑

r=0

grfk−r

)

pk if f(p) =
∞∑

k=0

fkpk, g(p) =
∞∑

k=0

gkpk,

which can be written alternatively as

(g �r f)(p) =
{

g(f(p)pf(p)−1)f(p) if f(p) = 0,
0 if f(p) = 0.

(2.4)
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2.2. The Space H2 and its Contractive Multipliers

Let us recall that a matrix-valued function K(p, q) : Ω×Ω → H
m×m is called

a positive kernel (in notation, K � 0) if the block matrix [K(qi, qj)]
r
i,j=1 is

positive semidefinite for any choice of finitely many points q1, . . . , qr. Equiv-
alently,

r∑

i,j=1

c∗
i K(qi, qj)cj ≥ 0 for all r ∈ N, c1, . . . , cr ∈ H

m, q1, . . . , qr ∈ Ω.

Definition 2.1. We say that the kernel K(p, q) : Ω × Ω → H
m×m is slice

sesquihyperholomorphic on an open set Ω ⊂ H if it is (left) slice hyperholo-
morphic in p and right slice hyperholomorphic in q̄.

The space H2 introduced in (1.5) as the set of square summable power
series, can be alternatively characterized as the reproducing kernel Hilbert
space with reproducing kernel

kH2(p, q) =
∞∑

n=0

pnqn. (2.5)

The latter means that the function kH2(·, q) belongs to H2 for every q ∈ B,
and for any function f ∈ H2 as in (1.3),

〈f, kH2(·, q)〉H2 =
∞∑

k=0

qkfk = f(q). (2.6)

Quaternionic Hardy spaces have been introduced in [5]. The next result iden-
tifying the class R(B,B) with the class of contractive multipliers of the quater-
nionic Hardy space H2 can be found in [3,4].

Theorem 2.2. Let S : B → H. The following are equivalent:

1. S is slice hyperholomorphic on B and |S(p)| ≤ 1 for all p ∈ B.
2. Sc is slice hyperholomorphic on B and |Sc(p)| ≤ 1 for all p ∈ B.
3. The operator MS of left �–multiplication by S

MS : f �→ S � f (2.7)

is a contraction on H2, that is, ‖S � f‖H2 ≤ ‖f‖H2 for all f ∈ H2.
4. The kernel

KS(p, q) =
∞∑

k=0

pk(1 − S(p)S(q))q̄k (2.8)

is positive on B × B.

Remark 2.3. If S ∈ R(B,B), then the contractive operator MS : H2 → H2

relates the kernels (2.5) and (2.8) via the reproducing kernel property (2.6)
as follows:

KS(p, q) = 〈(I − MSM∗
S)kH2(·, q), kH2(·, p)〉H2 (p, q ∈ H). (2.9)
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2.3. Interpolation Condition (1.10)
We now present several examples of the interpolation condition (1.10) cor-
responding to specific choices of A, E and N . Observe that if A is block
diagonal and if E and N are decomposed accordingly as

A =
[
A1 0
0 A2

]
, E =

[
E1 E2

]
, N =

[
N1 N2

]
,

then

(E∗f)∧L(A∗) =
[
(E∗

1f)∧L(A∗
1)

(E∗
2f)∧L(A∗

2)

]
, (2.10)

and condition (1.8) is equivalent to the system (E∗
j f)∧L(A∗

j ) = N∗
j ; j = 1, 2.

The matrix A is stable if and only if A1 and A2 are both stable, and the
observability of (E,A) implies observability of (E1, A1) and (E2, A2) (but not
vice versa). The significance of the observability assumption will be explained
below; now we present some particular examples of A and E.

Example 2.4. Given a1, . . . , an ∈ H, let

A =

⎡

⎢
⎣

a1 0
. . .

0 an

⎤

⎥
⎦ ∈ H

n×n, E =
[
1 . . . 1

] ∈ H
1×n. (2.11)

It is not hard to show that GE,A is singular if at least three of diagonal entries
in A belong to the same conjugacy class. On the other hand, if none three of
ai’s belong to the same conjugacy class, then the Vandermonde matrix

V =
[
E∗ A∗E∗ · · · A∗n−1E∗] =

[
aj−1

i

]n

i,j=1

is invertible by a result from [22]. Since 0 ≤ V V ∗ ≤ GE,A, we may conclude
that the pair (2.11) is observable if and only if the diagonal entries of A
are distinct and none three of them belong to the same conjugacy class.
Furthermore, for (A,E) as in (2.11) and f as in (1.3),

(E∗f)∧L(A∗) =
∞∑

k=0

⎡

⎢
⎣

ak
1
...

ak
n

⎤

⎥
⎦ fk =

⎡

⎢
⎣

f(a1)
...

f(an)

⎤

⎥
⎦ , (2.12)

and letting N =
[
c1 · · · cn

]
, we conclude that the general interpolation con-

dition (1.10) amounts to f(ai) = ci for i = 1, . . . , n.

Example 2.5. Given a ∈ H, let

A =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

a 1 . . . 0
0 a 1

0 0
. . . . . .

...
...

. . . . . . . . . 1
0 . . . 0 0 a

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, E =
[
1 0 . . . 1

]
. (2.13)

The pair (E,A) is observable since V V ∗ ≤ GE,A and the matrix

V =
[
E∗ A∗E∗ · · · A∗n−1E∗]
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is upper triangular and with all diagonal entries equal one (hence, V is in-
vertible). For f as in (1.3), we have

(E∗f)∧L(A∗) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

∞∑

k=0

akfk

∞∑

k=0

akfk+1 · (k + 1)

...
∞∑

k=0

akfk+n−1 · (k+n−1
k

)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢
⎣

f(a)
f ′(a)

...
f (n−1)(a)
(n − 1)!

,

⎤

⎥⎥
⎥⎥⎥
⎦

(2.14)

and letting N =
[
c0 c1 . . . cn−1

]
, we conclude that the general interpolation

condition (1.10) amounts to conditions f (j)(a) = j!cj for j = 0, . . . , n − 1.

The two latter examples are well known from the classical complex
theory. The quaternionic peculiarity is reflected in the first example by the
assumption that none three of interpolation nodes belong to the same conju-
gacy class. This assumption has been discussed in detail in [3] in the context
of Problem 2. Note that combining Examples 2.4 and 2.5 with (2.10) produces
the multipoint version of the Carathéodory–Fejér problem which prescribes
the values of the unknown interpolant along with several of its derivatives at
finitely many points. It can be shown that the pair (E,A) corresponding to
this problem is observable if and only if none three of right eigenvalues of A
belong to the same conjugacy class. The next numerical example is purely
quaternionic.

Example 2.6. Let A =
[
i/2 1
0 j/2

]
and E =

[
1 0
]
. Then a tedious calculation

shows that for f ∈ R(B)

(E∗f)∧L(A∗) =
[

f(−i/2)
i−j
2 f(−i/2) − i−j

2 f(i/2) + 1+k
2 f ′(−i/2)

]
,

and letting N =
[
c1 c2

]
we come up with interpolation conditions

f(−i/2) = c1, f(i/2) + if ′(−i/2) = (i − j)c2 + c1.

It is commonly known that in the complex case, the problems with inter-
polation conditions mixing the values of the interpolant and its derivatives
at distinct points do not admit nice (descriptions of) solution sets; in the
quaternionic setting, some problems of this type appear as particular cases
of the general scheme (1.10), i.e., are of the same type as Nevanlinna–Pick
or Carathéodory–Fejér conditions.

3. Interpolation by Hardy Space Functions

In the complex case, Nevanlinna–Pick interpolation problem in the Hardy
space H2(D) of the unit disk was first considered in [27]. Using the state-
space approach and realization formulas, a more general problem of the form
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(1.10) was considered in [9] for matrix-valued functions on D and adapted in
[2] for matrix-valued Hardy functions. The main result related to this section
is Theorem 1.2. Its proof will follow from several simple lemmas.

Lemma 3.1. The function F given in (1.11) solves Problem 1 and ‖F‖2
H2 =

NG−1
E,AN∗.

Proof. By (1.7), we have
∞∑

k=0

|Fk|2 =
∞∑

k=0

NG−1
E,AA∗kE∗EAkG−1

E,AN∗

= NG−1
E,A

( ∞∑

k=0

A∗kE∗EAk

)

G−1
E,AN∗ = NG−1

E,AN∗,

so that F ∈ H2 and ‖F‖2
H2 = NG−1

E,AN∗. Furthermore, by (1.9),

(E∗F )∧L(A∗) =
∞∑

k=0

A∗kE∗Fk =
∞∑

k=0

A∗kE∗EAkG−1
E,AN∗ = N∗

which means that F is a solution of the Problem 1. �

Lemma 3.2. Let F and B be defined in (1.11), (1.12). Then

〈F, B � h〉H2 = 0 and ‖B � h‖H2 = ‖h‖H2 for all h ∈ H2. (3.1)

Furthermore, for every p, q ∈ B,

KB(p, q) :=
∞∑

k=0

pk(1 − B(p)B(q)∗)qk

=
( ∞∑

k=0

pkEAk

)
G−1

E,A

( ∞∑

k=0

A∗kE∗qk

)
. (3.2)

Proof. We verify the first equality in (3.1) for the monomial h(p) = pm

(m ≥ 0). By (1.11) and (1.12),

〈F, B � h〉H2 =
∞∑

k=0

BkFk+m

= (1 − E(I − A)−1G−1
E,AE∗)EAmG−1

E,AN∗

+
∞∑

k=1

E(I − A)−1G−1
E,A(I − A∗)A∗k−1E∗EAk+mG−1

E,AN∗

= (1 − E(I − A)−1G−1
E,AE∗)EAmG−1

E,AN∗

+ E(I − A)−1G−1
E,A(I − A∗)GE,AAm+1G−1

E,AN∗

= E(I − A)−1G−1
E,A (GE,A(I − A) − E∗E + (I − A∗)GE,AA)

× AmG−1
E,AN∗

= E(I − A)−1G−1
E,A (GE,A − E∗E + A∗GE,AA) AmG−1

E,AN∗ = 0,
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where for the last equality we made use of (1.8). By the right linearity we
get the latter equality for all polynomials and subsequently, for all h ∈ H2,
since polynomials are dense in H2. Similarly,

‖B‖2
H2 = (1 − E(I − A)−1G−1

E,AE∗)(1 − EG−1
E,A(I − A∗)−1E∗

+ E(I − A)−1G−1
E,A(I − A∗)

( ∞∑

k=1

A∗k−1E∗EAk−1

)

× (I − A)G−1
E,A(I − A∗)−1E∗

= 1 − E(I − A)−1G−1
E,AE∗ − EG−1

E,A(I − A∗)−1E∗

+ E(I − A)−1G−1
E,AE∗EG−1

E,A(I − A∗)−1E∗

+ E(I − A)−1G−1
E,A(I − A∗)GE,A(I − A)G−1

E,A(I − A∗)−1E∗

= 1 − E(I − A)−1G−1
E,A [(I − A∗)GE,A + GE,A(I − A) − E∗E

− (I − A∗)GE,A(I − A)] G−1
E,A(I − A∗)−1E∗

= 1 − E(I − A)−1G−1
E,A [GE,A − E∗E − A∗GE,AA] G−1

E,A(I − A∗)−1E∗

= 1,

and since the operator Mp of left �-multiplication by the independent variable
p is isometric on H2, we have ‖B � h‖H2 = ‖h‖H2 = 1 for the monomial
h(p) = pm. On the other hand, if m ≥ 1, then

〈B, B � h〉H2 =
∞∑

k=0

BkBk+m

= B0Bm +
∞∑

k=1

BkBk+m

= (1 − E(I − A)−1G−1
E,AE∗)EAm−1(I − A)G−1

E,A(I − A∗)−1E∗

+ E(I − A)−1G−1
E,A(I − A∗)

( ∞∑

k=1

A∗k−1E∗EAm+k−1

)

× (I − A)G−1
E,A(I − A∗)−1E∗

= (1 − E(I − A)−1G−1
E,AE∗)EAm−1(I − A)G−1

E,A(I − A∗)−1E∗

+ E(I − A)−1G−1
E,A(I − A∗)GE,AAm(I − A)G−1

E,A(I − A∗)−1E∗

= E(I − A)−1G−1
E,A (E∗E + A∗GE,AA − GE,A)

× Am−1(I − A)G−1
E,A(I − A∗)−1E∗ = 0.

Since Mp is isometric, we have
〈
B � pm, B � pk

〉
H2 = 0 for all m = k. There-

fore, for a quaternion polynomial h(p) = h0 + · · · + p�h�, we have

‖B � h‖2
H2 =

�∑

i,j=0

〈
B � pihi, B � pjhj

〉
H2
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=
�∑

j=0

〈
B � pjhj , B � pjhj

〉
H2

=
�∑

j=0

〈Bhj , Bhj〉H2 =
�∑

j=0

|hj |2 = ‖h‖2
H2 ,

which proves the second equality in (3.1) for all quaternion polynomials,
which in turn extends to the whole H2 by an approximation argument.

To verify (3.2), we write (1.12) in the form B(p) = D + pe(p)M , where

B(p) = D + pe(p)M, where e(p) =
∞∑

k=0

pkEAk,

D = 1 − EG−1
E,A(I − A∗)−1E∗, M = (I − A)G−1

E,A(I − A∗)−1E∗.

(3.3)

Let us observe the following three equalities:

DD∗ = 1 − EG−1
E,AE∗, DM∗ = −EG−1

E,AA∗, MM∗ = G−1
E,A − AG−1

E,AA∗.
(3.4)

Indeed, making use of (1.8), we have

DD∗ = (1 − EG−1
E,A(I − A∗)−1E∗)(1 − E(I − A)−1G−1

E,AE∗

= 1 − EG−1
E,A(I − A∗)−1E∗ − E(I − A)−1G−1

E,AE∗

+ EG−1
E,A(I − A∗)−1(GE,A − A∗GE,AA)(I − A)−1G−1

E,AE∗

= 1 − EG−1
E,A(I − A∗)−1(GE,A(I − A)

+ (I − A∗)GE,A − GE,A + A∗GE,AA)

× (I − A)−1G−1
E,AE∗

= 1 − EG−1
E,AE∗

which confirms the first equality in (3.4). Furthermore,

DM∗ =(1 − EG−1
E,A(I − A∗)−1E∗)E(I − A)−1G−1

E,A(I − A∗)

=EG−1
E,A(I − A∗)−1((I − A∗)GE,AGE,A + A∗GE,AA)

× (I − A)−1G−1
E,A(I − A∗)

= − EG−1
E,A(I − A∗)−1A∗(I − A∗) = −EG−1

E,AA∗,

which verifies the second equality in (3.4). The verification of the third equal-
ity in (3.4) is straightforward and will be omitted. Let us also observe that

E + pe(p)A = E +
∞∑

k=0

pk+1EAk+1 =
∞∑

k=0

pkEAk = e(p).
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Making use of the latter equality along with (3.3), we have

B(p)B(q) = (D + pe(p)M)(D∗ + M∗e(q)∗q)

= DD∗ + pe(p)MD∗ + DM∗e(q)∗q + pe(p)MM∗e(q)∗q

= 1 − EG−1
E,AE∗ − pe(p)AG−1

E,AE∗ − EG−1
E,AA∗e(q)∗q

+ pe(p)(G−1
E,A − AG−1

E,AA∗)e(q)∗q

= 1 − EG−1
E,AE∗ − (e(p) − E)G−1

E,AE∗ − EG−1
E,A(e(q)∗ − E∗)

+ pe(p)G−1
E,Ae(q)

∗q − (e(p) − E)G−1
E,A(e(q)∗ − E∗)

= 1 + pe(p)G−1
E,Ae(q)

∗q − e(p)G−1
E,Ae(q)

∗.

Therefore,
∞∑

k=0

pk(1 − B(p)B(q))qk =
∞∑

k=0

pk(e(p)G−1
E,Ae(q)

∗ − pe(p)G−1
E,Ae(q)

∗q)qk

= e(p)G−1
E,Ae(q)

∗,

which proves (3.2). �

Lemma 3.3. A function g belongs to H2 and satisfies the homogeneous inter-
polation condition

(E∗g)∧L(A∗) = 0 (3.5)

if and only if it is of the form g = B � h for some h ∈ H2, where B is given
in (1.12).

Proof. Observe that again due to (1.8),

(E∗B)∧L(A∗) =
∞∑

k=0

A∗kE∗Bk

= E∗ − E∗EG−1
E,A(I − A∗)−1E∗

+ A∗
∞∑

k=1

A∗k−1E∗EAk−1(I − A)G−1
E,A(I − A∗)−1E∗

= E∗ − E∗EG−1
E,A(I − A∗)−1E∗

+ A∗GE,A(I − A)G−1
E,A(I − A∗)−1E∗

= ((I − A∗)GE,A − E∗E + A∗GE,A(I − A)) G−1
E,A(I − A∗)−1E∗

= 0.

Since for all m ≥ 0 and a ∈ H, we have

(E∗B � pma)∧L(A∗) = A∗(E∗B)∧L(A∗)a,

we conclude by linearity and continuity that for any h ∈ H2, the function
g = B � h satisfies condition (3.5). By the second equality in (3.1), B � h
belongs to H2.

Conversely, let (3.5) hold for a function g ∈ H2. By (1.6), this means
that g is orthogonal (in the metric of H2) to the function ex for any x ∈ H

n.
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In other words, g belongs to the orthogonal complement M⊥ of the right
linear span

M = spanr {e(p)x : x ∈ H
n} .

Using the formula for the reproducing kernel of a finite dimensional repro-
ducing quaternionic kernel Hilbert space (see for instance [7, Theorem 9.6,
p. 461]), we see that M is the (right) reproducing kernel Hilbert space with
reproducing kernel

kM(p, q) = e(p)G−1
E,Ae(q)

∗.

Hence, M⊥ admits the reproducing kernel

kM⊥(p, q) =
∞∑

k=0

pkqk − e(p)G−1
E,Ae(q)

∗ =
∞∑

k=0

pkB(p)B(q)qk, (3.6)

where the last equality follows from (3.2). Since g belongs to M⊥, it follows
that g = B � h for some h ∈ H2. �

Proof of Theorem 1.2: It follows from Lemmas 3.2 and 3.3 that any function
of the form (1.13) satisfies (1.14) and is a solution of Problem 1. Conversely,
let f be any solution of this problem, and let F be defined by (1.13). The
function f − F satisfies the homogeneous interpolation problem. By Lemma
3.3 f − F = B � h, where B is given by (1.14) and h ∈ H2. Formula (1.14)
follows from the orthogonality in (1.13), from the formula for the norm of F
in Lemma 3.1 and from the fact that MB is an isometry from H2 into itself.
This concludes the proof. �

4. Interpolation by Schur-class Functions

We start with several preliminary remarks. Making use of the given matrices
A, E, N such that GE,A > 0, we introduce the matrices

GN,A :=
∞∑

k=0

A∗kN∗NAk P := GE,A − GN,A =
∞∑

k=0

A∗k(E∗E − N∗N)Ak.

(4.1)

Remark 4.1. The matrix P satisfies the Stein equality

P − A∗PA = E∗E − N∗N. (4.2)

Indeed, the matrix GN,A satisfies equality GN,A − A∗GN,AA = N∗N , which
being subtracted from (1.8) gives (4.2).

Proposition 4.2. Let S(p) =
∞∑

k=0

pkSk ∈ R(B,B) and let MS : H2 → H2 be

the multiplication operator defined as in (2.7). Then S satisfies the condition

(E∗S)∧L(A∗) =
∞∑

k=0

A∗kE∗Sk = N∗ (4.3)
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if and only if

M∗
Se = n where e(p) =

∞∑

k=0

pkEAk and n(p) =
∞∑

k=0

pkNAk. (4.4)

Proof. We first observe that e and n are H
1×n-valued functions whose entries

belong to H2. Moreover, as it is readily seen from (1.7), (4.1) and (4.4),

‖ex‖2
H2 = x∗GE,Ax and ‖nx‖2

H2 = x∗GN,Ax for all x ∈ H
n. (4.5)

Assuming that equality (4.3) is in force, we also have

(E∗Mm
p S)∧L(A∗) =

∞∑

k=0

A∗k+mE∗Sk = A∗mN∗ for m = 0, 1, . . . . (4.6)

Therefore, for every x ∈ H
n, we have

〈M∗
Sex, pm〉H2 = 〈ex, Mm

p S〉H2 =
∞∑

k=0

SkEAk+mx = NAmx = 〈nx, pm〉H2 .

Since the latter equalities hold for all x ∈ H
n and since polynomials are dense

in H2, we conclude (4.4). On the other hand, if (4.4) holds true, then we also
have

(M∗
Se)(0) = n(0),

and taking adjoints in the latter equality gives (4.3). �

We next characterize solutions to Problem 2 in terms of a positive kernel.
This approach has its origins in [20,21,26]. The current proof is adapted from
[3,8,10].

Theorem 4.3. A function S : B → H is a solution to Problem 2 if and only if
the following kernel is positive on B × B:

K̂S(p, q) :=
[

P (e(q) − (S � n)(q))∗

e(p) − (S � n)(p) KS(p, q)

]
� 0, (4.7)

where P is given in (4.1) and where e and n are defined in (4.4).

Proof. Let us assume that S belongs to R(B,B) and satisfies condition (4.3)
(or equivalently, condition (4.4)). Then we have from (4.1), (4.5) and (4.4),

x∗Px = x∗GE,Ax − x∗GN,Ax

= ‖ex‖2
H2 − ‖nx‖2

H2

= ‖ex‖2
H2 − ‖M∗

Sex‖2
H2

= 〈(IH2 − MSM∗
S)ex, ex〉H2 (4.8)

for every x ∈ H
n. Furthermore,

ex − S � nx = (IH2 − MSM∗
S)ex, (4.9)

which together with the reproducing kernel property (2.6) gives

e(p)x − (S � n)(p)x = 〈(IH2 − MSM∗
S)ex, kH2(·, p)〉H2 (4.10)
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for all p ∈ B and x ∈ H
n. We now use (2.9), (4.8) and (4.10) to compute for

a fixed α ∈ H,

〈(IH2 − MSM∗
S)(ex + kH2(·, q)α), ex + kH2(·, p)α〉H2

= x∗Px + α (e(p)x − (S � n)(p)) x + x∗(e(q) − (S � n)(q))∗α
+αKS(p, q)α. (4.11)

Since S belongs to R(B,B), the operator MS : H2 → H2 is a contraction (by
Theorem 2.2) so that IH2 − MSM∗

S ≥ 0 and the expression on the right side
of (4.11) is a positive (on B×B) kernel for any fixed x ∈ H

n and α ∈ H. The
latter is equivalent to (4.7).

Conversely, let us assume that (4.7) holds. Then in particular, the kernel
KS(p, q) is positive on B × B and hence, S ∈ R(B,B) by Theorem 2.2. Let
us introduce the multiplication operators Te, Tn : H

n → H2 by

(Tex)(p) = e(p)x and (Tnx)(p) = n(p)x.

It is seen from (4.5) that

T ∗
e Te = GE,A and T ∗

nTn = GN,A. (4.12)

Let us consider the operator P̂ :
[
H

n

H2

]
→
[
H

n

H2

]
given by

P̂ =
[
T ∗
e Te − T ∗

nTn T ∗
e − T ∗

nM∗
S

Te − MSTn IH2 − MSM∗
S

]
=
[

P T ∗
e − T ∗

nM∗
S

Te − MSTn IH2 − MSM∗
S

]
,

(4.13)
where the second equality is the consequence of (4.1) and (4.12). The latter
operator is related to the kernel (4.7) by the equality
〈
P̂ f, f

〉
=

r∑

i,j=1

〈
K̂S(pi, pj)

[
xj

αj

]
,

[
xi

αi

]〉
, where f =

r∑

j=1

[
xj

kH2(·, pj)αj

]
,

holding for any choice of finitely many αi ∈ H, xi ∈ H
n and any pi ∈ B.

Since vectors f of the form as above are dense in H
n ⊕ H2 and since the

kernel K̂S(p, q) is positive on B × B, it follows from the latter equality that
P̂ is positive semidefinite. Observe that P̂ is the Schur complement of the
upper left block in the operator

P =

⎡

⎣
IH2 Tn M∗

S

T ∗
n T ∗

e Te T ∗
e

MS Te IH2

⎤

⎦ (4.14)

which is therefore, also positive semidefinite. But then the Schur complement
of the right bottom block in P is also positive semidefinite:

[
I − M∗

SMS Tn − M∗
STe

T ∗
n − T ∗

e MS T ∗
e Te − T ∗

e Te

]
=
[

I − M∗
SMS Tn − M∗

STe

T ∗
n − T ∗

e MS 0

]
≥ 0

from which we conclude that Tn − M∗
STe = 0, i.e., that condition (4.4) (and

therefore, condition (4.4) is satisfied). Thus, S is a solution to Problem 2,
which completes the proof of the theorem. �



180 D. Alpay et al. IEOT

Corollary 4.4. Problem 2 has a solution if and only if the matrix P (the Pick
matrix of the problem) is positive semidefinite.

Proof. The necessity part follows from Theorem 4.3 since condition (1.11)
implies P ≥ 0. The sufficiency part follows by standard approximation ar-
guments since in case P is positive definite, Problem 2 has a solution as we
will see from Theorem 4.5 below. More precisely, consider Problem 2 when
replacing N by

√
εN , with ε ∈ (0, 1). The Stein equation (4.2) becomes

P (ε) − A∗P (ε)A = E∗E − εN∗N.

For ε = 0, we have P (0) > 0 since the pair (E,A) is observable. Furthermore,
the function ε �→ P (ε) decreases in the sense of Loewner order, and is real
analytic in ε. It follows that there exists a sequence (εn)n∈N tending to 0 and
such that P (εn) > 0. Consider the corresponding solution Sn of Problem 2.
One concludes by using the counterpart of Montel’s theorem in the present
setting. See [13] for the latter. �

Let us note that

e(p) − (S � n)(p) =
∞∑

k=0

pk (E − S(p)N) Ak

=
[
1 −S(p)

]
�

( ∞∑

k=0

pk

[
E
N

]
Ak

)

. (4.15)

Therefore, all the entries in the kernel inequality (4.7) are defined in terms of
given E, N , A and an unknown function S. The description of all functions S
satisfying the latter inequality was established in [3] under the assumptions
that

1. the right spectrum of A is contained in B and
2. the unique solution P of the Stein equation (4.2) is positive definite.

Under these assumptions, let us introduce the 2 × 2 matrix-valued function

Θ(p) = I2 + (p − 1)
∞∑

k=0

pk

[
E∗

N∗

]
A∗kP−1(In − A)−1

[
E −N

]
(4.16)

which is clearly slice hyperholomorphic in B.

Theorem 4.5. Let us assume that P > 0 and let Θ =
[

Θ11 Θ12
Θ21 Θ22

]
be defined as

in (4.16). Then all solutions S to Problem 2 are given by the formula

S = (Θ11 � E + Θ12) � (Θ21 � E + Θ22)−� (4.17)

with the free parameter E running through the class R(B,B).

By Theorem 5.2 in [3], formula (4.17) parametrizes all functions S ∈
R(B,B) such that the kernel (4.7) is positive. But each such function is a
solution to Problem 2, by Theorem 4.3.

Theorem 4.6. Let us assume that the Pick matrix P ≥ 0 is singular. Then
Problem 2 has at most one solution which, if exists, is given by the formula

S(p) = R � Q(p)−�, (4.18)
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where

R(p) = e(p)y =
∞∑

k=0

pkEAky and Q(p) = n(p)y =
∞∑

k=0

pkNAky (4.19)

and where y ∈ H
n is any nonzero vector such that Py = 0.

Proof. Let us assume that S is a solution to the problem NP. Then the
matrix

[
P (e(p) − (S � n)(p))∗

e(p) − (S � n)(p) KS(p, p)

]

is positive semidefinite for every p ∈ B. From this positivity and from the
equality Py = 0 we conclude that ey(p) = (S � ny)(p). Thus any solution S
to Problem 2 must satisfy

S � Q(p) = R(p) for all p ∈ B. (4.20)

Due to the assumption that the pair (E,A) is observable, not all coefficients
of R are zeros and hence, the function R is not vanishing identically. Then it
follows from (4.20) that Q is not vanishing identically as well. Therefore, the
formula (4.18) holds (first on an open subset of B and then by continuity on
the whole B, since S is assumed to be in R(B,B)). So the solution (if it exists)
is unique, and this uniqueness implies in particular, that the representation
(4.18) does not depend on the particular choice of y ∈ Ker P . �

As in the complex case, Nevanlinna–Pick type interpolation problems
are of considerable interest for geometric function theory of slice hyperholo-
morphic functions [16] with further applications to quaternionic dynamics
and semigroups of composition operators on H2. Besides, Problems 1 and 2
considered in this paper are prototypical for interpolation problems in, respec-
tively, reproducing kernel Hilbert spaces of slice hyperholomorphic functions
and the classes of contractive multipliers of such Hilbert spaces. All these
questions still are largely open.
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