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Abstract. We discuss some spectral invariance results for non-smooth
pseudodifferential operators with coefficients in Holder spaces in this
paper. In analogy to the proof in the smooth case of Beals and Ueber-
berg, c.f. (Duke Math J 44(1):45-57, 1977; Manuscripta Math 61(4):459-
475, 1988), we use the characterization of non-smooth pseudodifferen-
tial operators to get such a result. The main new difficulties are the
limited mapping properties of pseudodifferential operators with non-
smooth symbols and the fact, that in general the composition of two
non-smooth pseudodifferential operators is not a pseudodifferential op-
erator. In order to improve these spectral invariance results for certain
subsets of non-smooth pseudodifferential operators with coefficients in
Holder spaces, we improve the characterization of non-smooth pseudo-
differential operators of A. and P., c.f. (Abels and Pfeuffer, Character-
ization of non-smooth pseudodifferential operators. arXiv:1512.01127,
2015).
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1. Introduction

A lot of spectral invariance results of pseudodifferential operators are al-
ready known for pseudodifferential operators with smooth symbols e.g. of
the Hérmander class S77(R"™ x R"). The symbol-class S's(R™ x R") with
m € R and 0 < 6§ < p <1 consists of all smooth functions p such that for all
k €Ny

P = s [0¢02p(a (g0 AT < oo
) = 1;7 n
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We define the associated pseudodifferential operator via

OP(p)u(z) := p(x, Dy )u(z) := /eim‘fp(x,f)ﬂ(f)dg Yu e S(R"), zeR"™,
Rn

where S(R™) is the Schwartz space, i.e., the space of all rapidly decreasing
smooth functions. Moreover 4 and .% [u] denote the Fourier transformation of
u. Additionally OPS;’?(;(R" x R™) is the set of all pseudodifferential operators
with symbols in the symbol-class S5 (R™ x R™).

A fundamental result in the theory of pseudodifferential operators al-
lows to conclude that the inverse of a pseudodifferential operator in the set
OPSS’(;(R" x R™), 0 <6 <p<1,6§ <1, which is invertible as an operator
on L?(R"), is again a pseudodifferential operator in the same symbol-class.
This important statement was shown by Beals [5] and Ueberberg [18]. Their
proof even showed that the same holds for all Bessel potential spaces H3 (R™),
s € R, see Definition 2.1 for the definition of these spaces, and that the spec-
trum is independent of the choice of the space.

Schrohe extended this result for weighted LP-Sobolev spaces in [15] and
together with Leopold even for Besov spaces of variable order of differentia-
tion B¢ (R™) in [9]. They verified that the spectrum of smooth pseudodif-
ferential operators in certain symbol-classes is independent of the choice of
the weighted LP-Sobolev space and of the choice of B;;Z(]R") respectively,
cf. [9,15].

There are several other results for spectral invariance of smooth pseu-
dodifferential operators in the literature, cf. e.g. [3,7,8,10,16].

In this paper we show the spectral invariance for non-smooth pseudodif-
ferential operators whose symbols are in the symbol-class C7S? (R x R™).
Here

CL(R™) = {f eS' R : Ifler = sup 27|F g fl e < OO},
J€No

is the so-called Holder-Zygmund space, where S'(R™) is the dual space of
S(R™), .Z ~![u] denotes the inverse Fourier transformation of u € S'(R") and
(pj)jen, constitute a dyadic partition of unity. Note that C7(R™) is equal
to the Hélder space C7(R™) if 7 ¢ N. The symbol-class C7.S)(R"™ x R"; M)
withm e R, 7>0,0<p<1and M € NyU {oo} is the set of all functions
p : R" x R" — C such that we have for all a, 8 € Njj with |a] < M and
6l <

i) 0%p(x,.) € CM(R") for all z € R,

it) 0J0gp € CO(R} x RY),

iii) [0gp( &) llcr@n) < Cal&)mPlol for all £ € R™.
For a given symbol p of the previous symbol-class we define the associated
pseudodifferential operator in the same way as in the smooth case and denote
it by p(z,D;) or OP(p). The set OPCIS],(R" x R™; M) consists of all
pseudodifferential operators with symbols in C7S7(R™ x R™; M).
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In analogy to the proof of the spectral invariance results of Ueberberg in
the smooth case, we use the characterization of non-smooth pseudodifferential
operators via iterated commutators by using the following set:

Definition 1.1. Let m € R, M € Ny U {oco} and 0 < p < 1. Additionally let
m € NoU {oo} and 1 < ¢ < co. Then we define AZ?(’JM(m, q) as the set of all
linear and bounded operators P : H;*(R™) — L(R"), such that for all | € N,
a1,...,ap € Ny and By, ...,0 € N with |a1| + |f1] =+ = ||+ 6] =1,
la] < M and |3] < m the iterated commutator of P

ad(—iz)* ad(D,)™ ... ad(—iz)* ad(D,)* P : H' *l*l(R™) — LI(R")
is continuous. Here o := a3 + -+ and := 061 +--- + ;.

The iterated commutators are defined in Definition 2.1 below. In case
M = oo we write A7 (17, q) instead of A3 (1, q). In [2] we showed that
every operator in such a characterization set is a non-smooth pseudodiffer-

ential operator if certain conditions hold:

Theorem 1.2. Let m € R, 1 < ¢ < oo, m € No with m >n/q and p € {0,1}.
Additionally let M € Ng U {o0} and define M := M — (n + 1). Assuming
Pe AZT()M(Th, q) and M > 1 we obtain for s € (0, —n/q] with s ¢ Ny:

P € OPC®ST(R" x R™; M — 1) 0 L(H"(R™), LY(R™)).

We loose some regularity with respect to m, here. This loss of regularity
can be avoided as we will see in this paper.

In the present paper we proceed as follows: in Sect. 2 we summarize
all notations and results needed later on. In particular we introduce the uni-
formly local Sobolev spaces W.’? and verify some important properties of
these spaces, cf. Sect. 2.2. Section 3 is devoted to the definition and the
properties of pseudodifferential operators of certain symbol-classes needed in
this paper. We begin with pseudodifferential operators with single symbols in
Sect. 3.1 while pseudodifferential operators with double symbols are treated
in Sect. 3.3.

The main purpose of Sect. 4 is to improve the characterization of non-
smooth pseudodifferential operators with coefficients in Holder spaces, cf.
Theorem 1.2. In analogy to the proof of Theorem 1.2 we show the existence
of a pointwise convergent subsequence of a bounded set of pseudodifferential
operators with coefficients in an uniformly local Sobolev space in Sect. 4.1
and verify a result for the symbol reduction of pseudodifferential operators
with coefficients in an uniformly local Sobolev space in Sect. 4.2. With those
results at hand, we are able to improve the characterization of non-smooth
pseudodifferential operators in Sect. 4.3.

By means of this characterization we show several spectral invariance
results for non-smooth pseudodifferential operators in Sect. 5. Section 5.1 is
devoted to the inverse of a non-smooth pseudodifferential operator P in the
symbol-class C7S{ o(R™ x R™). We show that P~' € OPC*Sg o(R™ x R"),
where s < 7 is arbitrary. Unfortunately, in contrast to the smooth case,
we loose some smoothness of the coefficients. Our next goal is to prove the
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spectral invariance of non-smooth pseudodifferential operators of the class
C’TS%O(]R” x R™: N) for sufficiently large N. To be more precise, we arrive
at the following statement: The inverse of a non-smooth pseudodifferential
operator of the order zero with coefficients in the Holder space C™7(R™)
is also a non-smooth pseudodifferential operator if its inverse is an element
of Z(H,(R")) for one |r| < m + 7. This is the topic of Sect. 5.3. Beyond
the characterization of non-smooth pseudodifferential operators we also use
the technique of approximation with difference quotients for the proof of the
above mentioned statement. We introduce this technique in Sect. 5.2. We are
able to improve the results of Sect. 5.3 in Sect. 5.4 for certain subclasses of
OPC’TS?,O(]R" x R™; N).

The present paper is based on a part of the PhD-thesis, cf. [13], of the
second author in this paper advised by the first author.

2. Preliminaries

We assume n € N throughout the whole paper unless otherwise noted. In
particular n # 0. For z € R we define

r:=max{0;x} and |z|:=max{k€Z:k <z}
Additionally
(€)== L+ o/)"? forallz €R" and  d€:= (2m) "dS,

Partial derivatives with respect to x € R"™ scaled with the factor —i are
denoted by

D2 = (—i)llg2 = (—i)llggr .. oo,
Here o = (a1, ..., ) € Ny is a multi-indez. For j € {1,...,n} we define
e; € Nj as the j-the canonical unit vector, i.e., (e;), = 1 if & = j and
(ej)k =0 else.

Considering two Banach spaces X,Y the set £ (X,Y) contains of all
linear and bounded operators A : X — Y. If X = Y, we also just write
Z(X).

Tterated commutators of linear operators are defined in the usual way:

Definition 2.1. Let X,V € {S(R"),S'(R™)} and P : X — Y be linear. We
define ad(—iz;)P : X — Y and ad(D,,)P: X — Y forall j € {1,...,n} and
u € X by

ad(—iz;)Pu = —iz; Pu+ P (iz;u),
ad(D,,)Pu = D,, (Pu) — P (Dy,u).

For arbitrary multi-indices «, 5 € Nij we denote the iterated commutator of
P as

ad(—iz)%d(D,) P:=[ad(—iz1)]°!. .[ad(—iz,)]*" [ad(D,, )]’ . .[ad(D,, )]*" P.
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2.1. Functions on R™ and Function Spaces
For convenience of the reader we introduce all functions and function spaces
needed later on in this subsection. Recall that the Hélder space of the order
m € Ny with Hélder continuity exponent s € (0,1) is denoted by C™*(R™)
and also by C™%%(R™). Moreover for s € R and 1 < p < oo the set
Hy(R"):={f¢€ S'(R™) : (D) f € LP(R") < oo} (2.1)

is called Bessel Potential space, where (D) := OP({£)®).

For y € R™ the translation function 7,(g) : R® — C of g € L'(R") is
defined as 7, (g)(x) := g(xz — y) for all x € R™.

Moreover a function f : R™ — C is homogeneous of degree d € R (for
|z| > 1) if f(rz) =r?f(z) z € R" for all |z| > 1 and r > 1.

A frequently used ingredient for verifying several results in this paper is
the dyadic partition of unity, i.e., a partition of unity (¢;),en, on R™ which
fulfilles the properties

supp o C B>(0) and supp ¢; C {€ € R : 2771 <|¢| < 2711}

for all j € N. Here B,-(0) denotes the open ball with radius r > 0 and center
0. A dyadic partition of unity can be constructed in the following way: We
take g € C°(R™) with po(€) =1 for all |{] < 1 and ¢((§) = 0 for €| > 2.
Then we set ©;(€) 1= po(277€) — ¢o(277T1¢) for all £ € R™ and j € N.

We also will need the next statement, cf. [2, Lemma 2.1]:

Lemma 2.2. Let1 < p < o0, s <0 andm := —|s|. Then for each f € H;(R")
there are functions g, € Hp L] (R™), where a € Ny with || < m, such that

° f_ Z axgou

la|<m

© % lgally i < Ol

o] <m.

where C' is independent of f, ga.

2.2. Uniformly Local Sobolev Spaces

Definition 2.3. Let 1 < ¢ < 0o, m € Ny, U C R" be open and X be a
Banach space. Then the space of all functions, which belong uniformly local
to LI(U; X) or Wi(U; X) is denoted by

uloc( ) - {f € Lloc( ) ||f||Lq

uloc (U;X) < OO}’
Wri(U; X)) ={felLl, (U;X):05feLl (U;X)forall|a| <m},

uloc uloc

respectively, where

(X
I fllwma .x) = Z 102 fllLs

uloc uloc

(U;x) = SUB ”f”Lq(Bl(a:)ﬂU;X) for f € Luloc(U;X)7
re

(U;X) forfEW 7q(U X)

uloc
la|<m

If X = C, we write L?, (U) instead of L?, (U;C) and W, 2%(U) instead

|(|)fW$OZ(U ;C). Moreover, we also write [|.[zs —and |[.|lyyme instead of
L4

. (®nye) and |[|[[wma mnic)-

ulog(
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The spaces LY, (U; X) and W"%(U; X) are Banach spaces. This can

uloc( uloc

be verified by using the fact that L?(U; X) is a Banach space.

Lemma 2.4. Let 1 < g < oo, m € Ny, X be a Banach space and 0 < 7 <
m —n/q with T ¢ N. Then

WHR™ X) — CT(R™; X)  is continuous.

uloc
Proof. Let a € Nj with |a| < |7] be arbitrary. Then we obtain
oms(@) - 2 0)lx
zFy |z —y|7~L7]
< sup 107 fll e 171 (Bryixy T+ 2102 Fllopnix) (2.2)

by splitting the supremum of the left side in the supremum over |[z—y| > 1 and
the rest. Using inequality (2.2) and ”fHCbL’J (Rnx) < SUPgern

for all functions f € C™(R™; X), we get
1fller@®nix) < Csuppern |fllor @mrayx)  forall f e CT(R™ X). (2.3)

The use of Corollary 4.3 in [4] and the embeddings (3.1)—(3.3) and (3.6) in
[4] yields the continuity of the embedding W™ (B1(0); X) — C7(B1(0); X).
Together with inequality (2.3) we obtain

Fllor@@x)

[fllcr@nx) < sup [[fller @y = sup 1f @+ )ller@mx
zER™ zER™

< Csup ||f(z+ )lwmas0)x) = Cllfllwmawnxy. O

weRn uloc

Now we want to discuss the case X = LZZOC

(R™):

Remark 2.5. Let m,m € Ny, n1 € N and o € Nij with la| < m. Assuming
a € WLYR™ W'(R"™)), we obtain

uloc uloc

1) Lf (R LI (R™))— LI, (R™xR™)is continuous V1 < ¢ < oo,

2) 9% € WI(R Wb R for all 1 < ¢ < oo.
Proof. We obtain the Claim 1) by using Bi(z,y) C Bi(x) x Bi(y) for all
x € R™ and y € R"™. Claim 2) easily follows from the definition of the
distributional derivatives. O

Lemma 2.6. Let m,N € Ny and 1 < q¢ < oo. We consider a measurable
function a : R™ x R™ — C such that for each o € Njj with || < N we have

e O7al(.,y) € Wi L(R™) for ally € R™,

uloc

e a(z,.) e WYR™) for all x € R™,

uloc
e sup [0y a(.,y)llwma@mny < Cq for a constant Cy > 0.
JeRn oo
Then a € WN’Q(RZ; W 9(R™)).

uloc uloc
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Proof. Because of a(z,.) € W]\l[o‘i(R") the a-th weak derivative of a in the

sense of @,(RZ§W$()Z(RH)) exists for all @ € Nj with || < N. Hence the
claim holds:

1/q
lall 2 @y o @y S D sup {/ ) Noa :’iqmn)dz}

laj<N YER™
Z Cayq sup | B1(y )|1/q < CNygpn- O
la|<N yER

With all these results at hand, we are able to show:

Lemma 2.7. Let1 < q < oo and m, N € Ng. Furthermore, let 2 be the set of
all measurable functions a : R™ x R™ x R™ — C such that

e Ogal.,&,y) € W 9(R") for all €,y € R and each oo € N} with |a] < N,

uloc
e a(z,&,.) € WAR™) for all x,& € R™.

Additionally let m € Ng such that for every a € Ny with |a] < N we have
suﬂg) ||8;‘a(.,£,y)||wﬁ;,q(w) < Cogl&)™ forall§ eR™ a € B.
yER™ uloc

If we define b : R™ x R" x R™ — C for a fized but arbitrary a € B by
b(z,&,y) = a(z,&,x+y) foralaxyeR
we get for each o, § € NI with |B] < m and |a|+ 3] < N and for all £ € R™:
185 07b(2, €, y)l| L1, @nxmy) < Caq(€)™
where C,, 4 is independent of a € X and £ € R™.

Proof. Lemma 2.6 and Remark 2.5 imply

6365 (ZE é’ y) c WN lal,q (RZ;Wuloclﬂ‘)q(Rn)) C Lq

uloc uloc(RZ; L Rn))

uloc(

for all ¢ € R™ and «, 3 € N} with |a| < N and |3| < m. Using Tonelli’s
theorem twice and the change of variable § := 2z + § we obtain for each
a, 0 € Ny with |o| < N and |5] < m:

/‘(80‘85(1)(2' f,z—&—gj’qdzﬂ ) < / ‘((‘)O‘aga)(z,f,z—&—gj)’qd(z,g)

1(z,y) 1(z)x B (y
/ / ’ 6’18ﬂ (2,€,7 ‘ dydz < / /yaaafa(z,g,g))\ng) dz
z) B (y+2) Bi(z) B2(y+w)
/ /\5“85 a(z,€,9)|" dz dj < / |05 02a(@.& )z, o) 40
2 (y+a) By () Bz (y+=)
< [ s 50 g 4% Cannl®)”

Ba(y+w=)
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for all z,&,y € R™ and a € . Finally, let o, € Nj with |5] < m and
|a] 4+ ]8| < N be arbitrary. An application of the chain rule and the previous
inequality provides:

Ha;amﬂ’b(xvgay)“Lq

1 ®rxrn) < Capgn(§)™ VEER"andae . O
Lemma 2.8. Let 1 < g < 0o, m € R and m € Ny with m > n/q. Moreover, let
B be a set of measurable functions a : R™ x R™ x R™ — C with the following
property:

e Jga(.,&y) € W™ 9(R") for all £,y € R™ and oo € NI with |a| < 21,

uloc

o a(x,£,.) € WAUR™) for all z, & € R™.

uloc

Additionally we assume that for all o € N with |« < 2m there is a constant
Ca,q such that

Seuﬂ%) ||8;a(-,€ay)||wf“vq(u§n) < Cog§)™ forall§ €R™, a € 2.
yeRn

uloc
Then we have for some Ciy, 4 < 00:

S;J.Rp lla(z, &, =+ ?/)ijgg,z(ux;) < Cg(§)™ forall e R" a € A.
JeRn :

Proof. Using a finite cover of B2(0,0) with open balls of radius 1 one easily
shows for all «, 3 € N with |5] < 2m and |a| <

1/q
q
swp | [ [ogosate gz ). 2)
z,yeR"
BQ(I’y)
< Cq||358§‘a(33, &+ y)||LgM R7 xXR7) (2.4)

for all a € A,£ € R™. Due to Lemma 2.6 and Remark 2.5 we get

Opola(a,&,y) € Wi 1M (Rys Wi IR ) © L8, (Ry: L, (RE))
for all £ € R™ and o, € Nj with |a] < 2m and |3] < m. We define
b(z,&,y) = a(z, &,z +y) for all ,£,y € R™. Using the Sobolev embedding
theorem and Tonelli’s theorem, we obtain for each o € Nj with |a| <

/ sup [02b(z,&,9)|? dz < C, / 1026(2, &, My (3, () 92
JEB1(Y) ¢
Bi(x) Bi(x)

q
<¢,y  [|gorncn)| i
IBIS By (2)% B ()

<c, Yy [ |oonnen| a2 (25)

|18]<mm Ba(z,y)
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for all a € # and z,y,£ € R™. Therefore (2.5), (2.4) and Lemma 2.7 yield

sup [la(z, &2+ ) yma g < D sup 1076(2, & W) Le, (mmy

n
yeR \a|<~

1/q
<Y s d [ sw g d:
_ x,yER" Bi(z) §€B1(y)

loe| <

1/q
<Cq >, D sw {/Bm) \656%(457@)(%(@@}

.
o< |8 <im YR

<C Y > 10000 e 0 o sy < Cmanl©™

la|<m |B|<m

for all a € # and £ € R". g

2.3. Space of Amplitudes and Oscillatory Integrals

In the following we will use oscillatory integrals defined by

Os -// e~ W Na(y,n)dydn := lin%) //x(sy,sn)e_iy'"a(y,n)dydn (2.6)

for all elements a of the space of amplitudes 7™ (R™ x R"), N € NgU{oo},
m,7 € R, the set of all functions a : R® x R® — C with the following
properties: For all «, f € Nj with |a| < N we have

i) 8300a(y,n) € CO(Ry x RY),

i) 050 aly, m)] < Cap(L+[n))™(1+[y)7 for all y,n € R™.
Here x € S(R™ xR"™) with x(0,0) = 1. If N = oo we also write /" (R" x R™)
instead of &Z™°(R"™ x R™).

Now we summarize the properties of the oscillatory integral we need

later on. For more details we refer to [2, Subsection 2.3]. In the following we
use for all m € N the next definition:

A™(Dy, &) = (&)"™(D,)™  if m is even,
m &
{©

Theorem 2.9. Let m,7 € R and N € Ng U {oco} with N > n+ 7. Then the
oscillatory integral (2.6) exists for each a € ™ N(R™ x R™). Additionally
for all 1,1',1g,lg € Ng withl >n+m, lo <N and N > 1" > n+ 7 we have

0s-[ [ = atymdyan = [ [ e 14T (D) [A'(D, aly. )dydn
Os // ~a(y, n)dydn = Os // W Al (D, y) A (Dy, m)aly, n)dydy

Theorem 2.10. Let m,7 € R, N € NgU {0} and k € N with N > k + 7.
WesetT =71 ift>—k,7T:=-k—1/24if7 €Z and 7 < —k and 7 :=

A™(D,,€) = (6D =3 (e

Jj=1

(D)™ 'Dy,  else.
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—k— (7| = [=7])/2 else. We define 7:=71" if 7> —k and 7 := 7 — T else.
For a € ™ N(R"F x R" ) we define

b(y,n) = Os -// e_iy/'”/a(y,y’,n,n’)dy’dn' forally, neR™

Let M :=max{m € Ng: N—m >1>k+7 for onel € No}. Then b is an
element of (QZfWﬁ’M(R" x R™) and for each o, 8 € N§ with |8] < M we have:

(‘3;‘856(%77) = Os -// e W 8385a(y,y’,n,n’)dy’dn’ forally, ncR™

3. Pseudodifferential Operators

Throughout this section we assume X" € {Wm’q'Hg’} for 1 < ¢ < oo,

uloc?

m € Rif X" = H and m € Ny else with 7 > n/q unless otherwise noted.

3.1. Pseudodifferential Operators with Single Symbols

The non-smooth symbol-class with coefficients in X]f was already introduced
n [12]. Analogous to the definition of Cm’SSg?(;(]R” x R™; M) we define

Definition 3.1. Let 1 < ¢ < oo, m € R, M € Ny U {oo} and 0 < p < 1. Then
the symbol-class XS} (R™ x R™; M) is the set of all p : R} x R} — C such
that

i) 9%p(z,.) € CM(R") for all x € R",

ii) 970¢p € CO(Ry x Ry),

i) 9gp(.,€) € X7 and 9gp(.,€)|xp < Cal€)™ 1ol for all € € R™
holds for all o, 8 € N§ with |a| < M and |B] < m — n/q. The function p
is called (non-smooth) symbol and m is called order of p. If M = oo, the

symbols are smooth in £. In this case we write X];T o(R™ x R™) instead of
X,?‘S;’?O(R" x R™; 00).

We define for all k € Ny with & < M the semi-norms

pI™ = sup max [98p(., )l xm (€)1
ceRrn |a|<k a

|

for all p € X Z;’LS;”LO(R” x R™; M). Equipped with the family of semi-norms

(|.|,(€m))k6{0,_“7M} the symbol-class X" S (R" x R"; M) is a Fréchet space.
In applications to partial differential equations, many pseudodifferential

operators are classical ones. They are defined in the following way:

Definition 3.2. Let m € R and 1 < ¢ < co. Then p € X["S7)(R" x R") is a
classical symbol of the order m if p has an asymptotic expansion

p(x,ﬁ) ~ Z pj(l’,é),

J€ENo
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where p; are homogeneous of degree m — j in ¢ (for [{| > 1) for all j € Ny
in the sense, that for all N € N we have

= pi(@.€) € XSV (R x R,
J<N
The set of all classical symbols of the order m is denoted by Xl’f T(R™ xR™).

For a more general definition we refer to [17]. We obtain due to Lemma
2.4 if X" = W™ and the continuous embedding H'(R™) — C7(R™) else:

uloc

Lemma 3.3. Let1 < ¢ < oo, m € R, M € NgU{oo} and 0 < p < 1. Assuming
0<7<m-—n/q, ¢ N we have
XS (R™ x R™; M) € C7 ST (R™ x R™; M).

Due to the last lemma we already defined the associated pseudodiffer-
ential operator p(z,D,) to a non-smooth symbol p € X, where X is one
of the symbol-classes defined in Definitions 3.1 and 3.2. The set of all non-
smooth pseudodiﬁ‘erentialNoperators with symbols in X is~denoted by OPX.
If M = oo we write OP XS], (R" x R") instead of OP XS] (R™ xR"; 00).
Remark 3.4. Let M € Ny U {0}, m € R and 0 < p < 1. Additionally
let Yth = X;ﬁ or, in case ¢ = o0, let Y:f”l = O™* with for m € Ny and
0<s<l.Letpe qu To(R™ < R™; M). Moreover, let [ € N, ay, ..., € Nj
and Bi,...,0 € Nj with |o; + 8;] =1 for all j € {1,...,n}, |o| < M and
|B] < m —n/q, where « ;== a1 + -+ g and B := 1 +---+ ;. Then

ad(—iz)® ad(D,)? ... ad(—iz)* ad(D,)’ p(z, D,)
is a pseudodifferential operator with the symbol

0¢ DEp(x, ) € Y 1lsT Pl R 5 RE: M — |af).

If p € X7'ST(R™ x R"), then 9¢ Dp(w,€) € Xy~ 187 1*I(Re x Rp). In
case p € ST (R™ x R™), we have 9¢ Dip(x,£) € Sy Plel(Rr x R7).
Proposmon 3.5. Let 1 <p < oo and s € R. Considering a partition of unity
(1j)jezn € CZ(R™) with

o Yo(x) >0 for all z € [0,1]",

o Yi(x) =o(x—j) for allz € R™ and j € Z™
we obtain

1/p
Wiy = | 3 Tty I

jezn

Proof. The case s > 0 follows directly from [12, Theorem 1.3]. Therefore let
5 < 0. In order to show
1/p
Nl emy < C | D M3 fl ey for all f € Hy(R")  (3.1)

jezn
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let f € Hy(R") and g € H, *(R") with 1/p+1/q = 1 be arbitrary. We define

N = Z g, where Z :={k € Z" : supp g Nsupp v # &}
keZ

and 7;(x) :=no(x — j) for all x € R™ and j € Z". Let (.,.) .. y—= denote the
5
standard duality pairing of Sobolev spaces. An application of the partition

of unity, Holder’s inequality for sequence spaces first and the proposition in
the case —s > 0 afterwards provides

(f,9) <Y ‘ 0%i f:9) 13, Fllezs 759 e
jezn ]GZ"
1/p 1/q
P g
<Coz | D I0ifll, > 159115«
jezn jezn
1/p
<Cqz Z ||1/ij||p§ HQHH;S'
Jez

Consequently we get (3.1) by duality and the previous inequality.
Now we define n; for every j € Z" as before and m := —|s]. Addition-
ally we choose an arbitrary f € Hy(R"). Because of Lemma 2.2, there are

go € Hy PI(R™), a € N with [a] < m, fulfilling f = 3, <,, 0%ga and
Y lal<m ||9a||H;7m < C||fll#;- Since n; =1 on supp 1; we obtain

i flh, < D 108 gallt, = > [1405 {gan; Mk,

lo|<m o] <m
(03 (03 p
< > {10205 9am5} s + 1102, 0)gams) s }
lor|<m

Since the commutators [0g, ;] form a bounded subset of OPST,(R™ x R"),
we find

lesf It < S0 3 {108 {0ngatlli + Cllgatull i}

kEZ+j |a|<m

<C Z Z ”wkga“ s—lsl

kEZ+j|al<m

Using the case s > 0 provides:

Z ijf”pé <CZ Z Z ”7/}169(1” HE Ls) SCZ Zﬂ%gaﬂ 5= Ls]

JEL™ JEL™ k€EZ+] |a|<m la|<m jeELZ™
<CZ HgaHps Ls) SC”prs O
la|]<m

We will use the following boundedness results for non-smooth pseudo-
differential operators, cf. Lemma 3.4 in [2], Theorem 3.7 in [2], Theorem 2.1
n [11], Lemma 2.9 in [11]:
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Lemma 3.6. Let 7 >0 and X € {CT(R"),CI(R"),X]"}. Let M € NoU{oo},
m € R and 6 =0 in the case X ¢ {C7,CT} and 0 < p,6 <1 else. For every
bounded subset 8 C X S's(R" x R"; M), {p(z,D;) : p € B} is a bounded
subset of L(S(R™), X).

Theorem 3.7. Let m € R, 0 < 0 < p <1 withp >0 and 1 < p < oo.
Additionally let 7 > % 5 ifp < 1land T > 0 if p =1 respectively.
Moreover, let N € NU {oo} with N > n/2 for2 <p < oo and N > n/p else,
ky = (1 —p)n|l/2—1/p| and let B C C’ISZ?{IC”(R” x R™; N) be bounded.
Then for each s € R with

(1—p)%—(1—5)7’<5<7’

there is some Cs > 0 such that
la(e, Do) Fliy < Collfll g for all f € H™®") and 0 < 2
Theorem 3.8. Let m € R and 7 > 5. Moreover, let a € C7Si(R" x R™; N)

where N € NU{oo} with N > n/2. Then for each s € R withn/2—7 < s<T
we have

la(z, Do) fllas < Csllfllgg+m  for all f € Hy ™™ (R™).
Theorem 3.9. Let m € R, N > n/2, 7 > 0. Moreover let P be an element of
OPCISyy "*(R" x R™; N). Then
P: HyT™(R™) — Hy(R™) s continuous for all —7 < s < T.

We can prove similar boundedness results for non-smooth pseudodif-
ferential operators.

Theorem 3.10. Let 1 < p,q < oo and m,m € R with m > n/q. Moreover, let
% C H'STH(R™ x R™) be bounded. Then for each s € R with

n(l/p+1/¢-1)" —m<s<m—n(l/g—1/p)"
we have
la(z, Do) fllzgy < Csllfllgggem  for all f € HZY™R™)  and all  a€ B.

Proof. By means of [12, Theorem 2.2, a(z, D,) € L (H;T™(R"), H3(R"))
for every a € #. An application of the Banach—Steinhaus theorem yields the
uniform norm estimate; see [2, Lemma 3.5] for more details. O

Note that the last theorem even holds for 0 < p < oo and ¢ € {1, 00}
if 42 = 1, cf. [12, Theorem 2.2]. A similar result holds for pseudodifferential
operators of the class H(?LS%(R” xR™), 0 <46 < 1,if 4% = 1, cf. [12,
Theorem 2.2].

As a consequence of the previous theorem we obtain the next result.

Lemma 3.11. Let 1 < p,q < oo and m € R with m > n/q. Assuming
n(l/p+1/g—1D) " —m<s<m—-nQ1/g-1/p)",
there is some Cs > 0 such that
labllay < Collallip [bllus for all a € HI(R™), be HIR™). (3.2)
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Theorem 3.12. Let m € R, 1 < p,q < oo and m € N with m > n/q. We
assume that 8 C W 25T (R™ x R™) is bounded. Then for each s € R with

uloc
—m+n/g<s<m-n(l/qg—1/p)*" (3.3)
there is some Cs > 0 such that

la(e, Da) g < Colfllggen for all | € Hy*™(R) and o € .

Proof. One argues as in the proof of Theorem 3.10, using [12, Theorem 2.6].
U

We remark that the previous theorem even holds for 0 < p < oo and
q=1if $2 =1 and if s € R fulfills

n(max{1,1/p} —1) —m+n/g<s<m-n(l/g—1/p)*"

instead of the assumption (3.3) due to [12, Theorem 2.6].
Next we want to improve the previous statement for classical pseudo-
differential operators of the symbol-class W "95™ (R"™ x R™):

uloc cl

Theorem 3.13. Letm € R, 1 < p,q < co andm € N withm > n/q. Assuming
a bounded subset 8 C W'™18™(R™ x R™) we get for each s € R with

uloc™ cl
n(l/p+1/g—1D) T —m<s<m—-n(1/qg—1/p)*"
the existence of a constant Cs > 0 such that

la(@, Do) fllay < Collfllygem  for all f € H™(R™), a€ B (3.4)

Proof. Let s and p be as in the assumptions. Since {H;(R") : s € R} is a
microlocalizable set, cf. [1, Theorem 5.20], (3.4) is a direct consequence of
[17, Proposition 1.1B] for each fixed a € 2 if the following inequality holds:

gy < CullF s lgllyma  for all £ € HI(R™),g € W), (3.5)

loc

In view of Proposition 3.5 we choose a partition of unity (¢;);jez» C C2°(R™)
with supp 9o C [—r,r]" for one fixed r > 1 and ¢;(x) = ¢o(z — j) for all
z € R" and j € Z". With Z; := {k € Z" : supp ¥ Nsupp ¢; # &}, we define

= Z Yp(x) for all z € R"™ and every j € Z".
kez;

Choosing a finite cover (Bj (xl))fil, N € N, of supp 7y with open balls of

radius 1 provides a finite cover (Bi(x; — j))i\,:1 of supp ;. Hence N is inde-
pendent of j € Z™. By means of the Leibniz rule we obtain:

Iy < 30 3 cal,azz N CIRE

|a|<m a1taz=a B (zi+j)

< Cm”g”Wm 9 (Rn)
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for all g € W™"9(R") and j € Z™. Together with Proposition 3.5 and Lemma

uloc

3.11 we conclude inequality (3.5):
1£9l% < Co S MW )0y < Com 3 0551

jezn jezn

< Comllfyy 3 WSl < Comloly 1

77j9||p i
q

for all f € Hy(R") and g € W, "4(Rn) The independence of a € % of the

uloc
constant Cj in (3.4) is again a consequence of the Banach—Steinhaus theorem,

cf. [2, Lemma 3.5]. O

3.2. Kernel Representation

The present subsection is devoted to the kernel representation of a non-
smooth pseudodifferential operator p(z, D,), whose symbol is in the class
XS (R™ x R™) for a Banach space X with C2°(R") € X C CO(R"), we
refer to [17, Chapter 1] for the definition of these symbol-classes. In particular
we can choose X € {C™7T,CHT HI™ , WL with m € Ng, 0 < 7 < 1 and
1<qg<o0.

Theorem 3.14. Let p € X ST (R" x R"), where C°(R™) € X € C°(R") is a
Banach space and m € R. Then there is a function k : R™ x (R™\{0}) — C
such that k(x,.) € C°(R™\{0}) for all x € R™ and

p(z, /k‘xw— (y)dy for all x ¢ supp u

for all u € S(R™). Moreover, for every o € Ny and each N € Ny the kernel
k satisfies

Conlz|7mmlel () =N if n+m+ |a| >0,
102k (., 2)llx < § Can(1+[logl2|))(z)"Y  ifn+m+|a| =0,
Can{(z)™N if n+m+lal <O0.

uniformly in z € R™\{0}.

Proof. We are able to prove the statements in a similar way as in [1, Theorem
5.12]. The main idea of the proof is to decompose

p(z, D) f = Zp(x, D.)p;(Dy)f forall f e S(R™)

Jj=0

where (¢;)jen, is a dyadic partition of unity. The series converges in X
due to Lemma 3.6. First of all we construct a kernel k; of the operator
pj(x, Dy) = p(x, Dy);(D;) for each j € Ny. This can be made in the same
way as in the smooth case. We just have to use [|0g¢p(.,§)[|x < C(g)m—lel

instead of [0g'p(.,&)| < Cq (€ym=lel for all @ € NP and all ¢ € R”. Afterwards
we use this kernel decompositions to construct the kernel of p(z, D,) as in
the smooth case. By means of X C C%(R") we get the absolute and uniform
convergence of k(z,z) = Z] “okj(x,2). O



56 H. Abels and C. Pfeuffer IEOT

Remark 3.15. If we even have p € S{5(R™ x R™) in the previous theorem,
we can show that k(.,z) is smooth for all z € R™ while applying Theorem
3.14 with X = C7T for all 7 € R. This result already was shown in e.g. [1,
Theorem 5.12].

3.3. Double Symbols

Definition 3.16. Let 0 < s <1, m € Np, 1 < ¢ < oo and m,m’ € R. Further-
more, let N € NgU {oo}, 0 < p <1and X € {C™* W7}, Additionally let
m > n/qin case X = W, "% Then the space of non-smooth double symbols
XS (R xR™ x R" x R™; N) is the set of all p : R x R x R, x R, — C
such that

i) 9200 0g'p(.,€,2,¢") € X V€, 2!, € R,

0200059 p € CO(R? x RE x RY, x RY,),

ii) 11020 08 p(-, &, 2",&)||x < Caypr.ar (€)™ PIN (Y™ =Pl g 27, ¢ € R™
and f,a, ', ¢’ € Ny with |8] < m and |a| < N. In case N = co we write
XS (R x R™ x R™ x R™) instead of X.§)"™ (R™ x R™ x R™ x R";00).
Furthermore, we define the set of semi-norms {||Zﬁ”m/ 1k € Ng} by
Pl = max  sup [|0g0) 08 p(., &, o, €)|x () (el (g~ el

la|<N &2l &' ERP
|+ |+ | <k
Because of the previous definition p € XS7"(R" x RY) is often called
a non-smooth single symbol.

Definition 3.17. Let 0 < s <1, m € Ny, 1 < ¢ < oo and m,m’ € R. Further-
more, let N € NgU {00}, 0 < p<1and X € {C™*, W9} Additionally let

uloc

m > n/qin case X = Wﬁ){i Assuming p € XS;%ml (R" x R™ x R™ x R"; N),

we define the pseudodifferential operator P = p(x, D, 2, D,+) such that for
all w € S(R™) and z € R”

Pu(z) == Os / / / / HEVD (£ n oy e +y + o )dydy' dEdE.

The existence of the previous oscillatory integral is a consequence of the
properties of such integrals. For more details we refer to [13, Lemma 4.64].

The set OPXSZL(’)m/ (R™ x R™ x R™ x R™; N) consists of all non-smooth
pseudodifferential operators whose double symbols are in the symbol-class

XS;%mI(R” x R™ x R™ x R"™; N). Moreover for N € Ng U {co} and m € R
we denote the space XS] (R" x R™ x R";N) as the set of all symbols
pE XS;%O(R" x R™ x R™ x R™; N) which are independent of ¢’. The pseu-
dodifferential operator p(x, D,,z’) is defined by

p(xa D,, x,) = p($7 D,, ‘T/a Dac’)-

Additionally OPX S (R" x R" x R™; N) is the set of all non-smooth pseudo-
differential operators whose double symbols are in XS, (R™ x R™ x R"; N).

Due to Lemma 2.4 and the definition of the non-smooth symbol-classes
we obtain:
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Remark 3.18. Let 1 < ¢ < oo, m,m’ € R and m € Ny with m > n/q.
Moreover, let N € Ng U {oco} and 0 < p < 1. Assuming 0 < 7 < m — n/q,
7 ¢ N, we have

W;?;;SZ()"“ (R" x R" x R" x R™; N) C CTS;%"L/ (R™ x R™ x R™ x R"; N).

By means of Lemma 2.8 we get:

Lemma 3.19. Let m € R, 1 < g < oo and m € No with m > n/q. Moreover,
let0 < p<1and N € NoU{oo}. Assuming B C W15 (R" xR" xR"; N)
bounded, for each v, € Ny with |6] < N there is some Cy, 4.6 such that

sup 10;0a(z, & & +y)llyma @) < Cingrs (€)™ Vae 8,6 R
y n

4. Improvement of the Characterization

In this section we show that the operator P of Theorem 1.2 is even an element

of OPWf;O’gS{’fO(R" x R™; M — 1). The proof of this statement is essentially
the same as the one of Theorem 1.2. We just have to replace the results for
pseudodifferential operators with coefficients in a Holder space with analogous
ones for pseudodifferential operators with coefficients in an uniformly local
Sobolev space.

The main difficulty originates from the symbol reduction of non-smooth
double symbols of the class X Sg (R" xR xR™ xR"; M) to non-smooth single
symbols with coefficients in X, where X = Wﬂé’i. Both cases, X = C™7 and
X = W™ make use of

uloc
sup |0 0a(., &, +y)|x < CE™,
yER™

where a € XSFH(R" x R" x R"; M) and 7,6 € Ny with |[§| < M. While
this estimate directly follows from the definition of the symbol-class in case
X = C™7, this proof turned out to be rather tedious for case X = W,
in Sect. 2.2. The symbol reduction for uniformly local Sobolev spaces is the
subject of Sect. 4.2. But let us begin with proving the existence of a pointwise

convergent subsequence of a bounded set of W,72950 .

. . . m,q o0
4.1. Pointwise Convergence in WSy

Theorem 4.1. Let M € Ny U {oo}, m € No, 1 < ¢ < 0o and X = W4

uloc”

Furthermore, let (p:)e>0 € XSG o(R™ x R"™; M) be bounded. Then there is a
subsequence (pe,)ien C (Pe)eso with e — 0 for | — oo and some function
p:R" x R" — C such that

i) p(z,.) € CM~YR") for all z € R",
ii) 970¢p € CO(Ry x RY),
iii) 858?]95, loe, agagp uniformly on each compact set of R™ x R™
or every «, 3 € with o) < M —1 an < 1m —n/q. Moreover,
B €N with o] <M —1 and |8 7 M
pEXS0o(R” x R™; M —1).
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In case X = C™*, 0 < s < 1, the previous theorem holds for ¢ = oo
due to [2, Theorem 4.3].

Proof of Theorem 4.1. Let 7 < m—n/q with 7 ¢ N. On account of Lemma 3.3
we are able to apply Theorem 4.3 in [2] and get the existence of a subsequence
(pe,)ien € (pe)eso with g, — 0 for | — oo which fulfills the properties
i), i) and i) for some p € CTSF(R™ x R™; M — 1). It remains to show
peW, lOCSO o(R™ x R™; M —1). By means of i) and i), we just have to check
o¢p(.,§) € W4(R") for all € € R and

uloc

Hagp(7£)”W:;(’)Z(R") S Ca for all é- € Rn,

for all & € Nj with |a| < M — 1. Let a € Nj with |a| < M —1 and { € R”
be arbitrary but fixed. Moreover let z; € {n‘1/2z 1z € Z”} for each j € N
such that R" = UJeN Bi(z;). The boundedness of (pe,)ien as a subset of

ulocSO o(R™ x R™; M) yields

108 P (g By (2)) < 108 P2 ()l mny < Clas (4.1)

for all j,l € N and £ € R™. Let j € N be arbitrary but fixed. Because of the
reflexivity of H]"(Bi(z;)) there is a subsequence (O Per,, )men of (O¢'pe, )ien
such that

O Per,, (&) = Qae; in HM(Bi(z))

for m — oo. The compact embedding H]"(Bi(z;)) —<— C°(Bi(z;)) even
gives us

O¢per,, (+6) T Gaey  in CV(Bi(z)).

Together with iii) the uniqueness of the limit provides gn.¢; = agp(.,g).
Consequently every arbitrary weak convergent subsequence of (9¢'pe, )ien has
the same weak limit. Hence an application of [14, Chapter 3, Lemma 0.3]
implies

0¢pe,(-,€) = 9gp(.,€) in H(Bi(z)))
for I — oo. Using the previous weak convergence and (4.1), we get
10 PCs Ol stz (31 2y < Hmink (|0 e, (- )l (3,z)) < Ca Vi €N (4.2)

for all ¢ € R™. Since there is an N € N, independent of zg € R", with
Bi(xg) C Uszl Bi(z;,) for ji,...,jn € N, we get together with (4.2)

sup [1082C: Ollwa @y = 590 sup (10¢p(-Ollarg (51 o)) < Car O
¢eRn £ER™ zoeRn
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4.2. Symbol Reduction of Double Symbols in WZI ;ZS(’)’?O

The goal of this section is to prove

Theorem 4.2. Let 1 < ¢ < oo, m € N with m >n/q, m € R and X = lelo"i.
Additionally let N € Ng U {oo} with N > n. We define N :== N — (n+ 1).
Furthermore, let  C XSih(R™ x R" x R™"; N) be bounded. For a € % we

define ay, : R™ x R™ — C by

ar(z,€) := Os —// e~ Wa(x,n + & x + y)dydn

for all x,§ € R™. Then {ar, : a € B} C XS7H(Ry x RY; N) is bounded and
we have

a(z, Dy, 2" )u = ar(x,Dy)u  for alla € B and u € S(R™). (4.3)

In case X = C™3 0 < s < 1, the previous theorem holds due to
[2, Theorem 4.13 and Theorem 4.15]. For the proof of the general case of
Theorem 4.2 the next proposition, cf. [2, Proposition 4.6], is needed.

Proposition 4.3. Let m € R and X be a Banach space with X — L*>(R").
Considering an ly € Ny with —lyg < —n, let B be a set of functions r :
R™ x R™ x R" x R™ — C which are smooth with respect to the fourth variable
such that for all l € Ny there is some C; > 0 such that

Dy r (& my)lx < Cily) (€ +m™ VEny eRYre B (44)
Then [e=®Mr(z,&,n,y)dy € L* (R}) for all z,& € R™. If we define

fe.g) = [ | [ o
for x, & € R™ and r € B we have for some C > 0

(8| x SCE™  forallé €R™ and r € A.

In the same manner as in the proof of Lemma 4.9 of [2] the previous
result enables us to prove the next lemma:

Lemma 4.4. Let 1 < q < oo, m € Ny with m >~n/q and m € R. Additionally
let N € No U {oo} withn < N. We define N := N — (n + 1). Moreover,
let B C W, ISE(R™ x R™ x R™; N) be bounded. For a € % we define

ar : R" xR™" — C as in Theorem 4.2. Then we have for each v € Ni with
v <N

||8gaL(.7§)||W$£(Rn) <C )™ forall eR™ and a € B (4.5)
for some C > 0.

Proof. Since Theorem 4.2 already holds if X is a Holder space and with
Lemma 3.3 at hand, it remains to show (4.5). Due to a € %m’N(RZ x Rp),
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N — N =k > n and Lemma 3.19 we can apply Theorem 2.9 and Proposition
4.3 and get for each z,£ € R™, a € # and [y € Ny with n <y < N:

oz (&) lyme = Hos [ Alo(Dn,y)a(m,£+n,x+y)dydnH

W (Ry)

uloc

Wit (RY)

uloc

= H//e"'y'"Al"(Dmy)a(w,é +,7+ y)dydnH
< )™ forall £ € R" and a € A.

For more details concerning the second equality we refer to Proposition 4.8
of [2]. Thus the theorem holds for v = 0. Now let v € N2 with |y| < N.
Because of N — N = 2k > n for some k € Ny and a € %m’N(]RZ x RY), we
can apply Theorem 2.10 and get

0far(z,£) = Os // e V0l a(w,n + & x + y)dydn.
The first case, applied on the set {0/a : a € %}, yields (4.5). O

Proof of Theorem 4.2. On account of Remark 3.18, case X is a Hoder space
and Lemma 4.4 the claim holds. ]

4.3. Characterization of Non-Smooth Pseudodifferential Operators

With all the work done in the last subsections we are able to improve Theorem
1.2.

Theorem 4.5. Let m € R, 1 < q¢ < o0, p €~{0,1}, m € Ng with m > n/q.
Additionally let M € No U {co} and define M := M — (n+ 1). Considering
PGAmM( ,q) and M > 1 we have

P e OPW]SAST(R™ x R"; M — 1) 0L (H" (R™), LY(R™)).

Proof. Let us assume p = 0 first. The proof of the claim is essentially the same
as that one of Theorem 1.2, cf. Subsection 4.4 in [2]. In case m = 0 we just
have to replace the results for pseudodifferential operators with coefficients in
Holder spaces with corresponding ones for pseudodifferential operators with
coefficients in uniformly local Sobolev spaces.

For verifying the case p =1 let 7 € (0,7 —n/q], 7 ¢ N. An application
of Theorem 1.2 yields

P € OPCTST)(R™ x R™; M — 1) N Z(H"(R"), LY(R™)).

Let a € N2 with |a| < M — 1 be arbitrary. Due to the proof of Theorem 1.2,

cf. [2, Theorem 4.22] we know that ad(—iz)*P € A}’ Sled-M= la‘( q). Hence
an application of Theorem 4.5 provides

ad(—iz)* P € OPW0 Sy 1 (R x R™; M — || — 1).

uloc
On account of the proof of Theorem 1.2 the symbol of ad(—iz)* P is 9¢'p(z, ).
This implies P € OPW, locSl H(R™ x R™; M — 1), O
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If we use Theorem 4.5 instead of Theorem 1.2 in the proof of Theorem
5.1 in [2], we can improve the result for the symbol composition of non-smooth
pseudodifferential operators:

Theorem 4.6. Let m; € R, M; € NU {oo} and p; € {0,1} for i € {1,2}.
Moreover, let 0 < 7; < 1 and m; € Ng be such that 7;+m; > (1—p;)n/2 =: k;
for i € {1,2}. We define p := min{py;pa} and m := my + mo + ki + ko.
Additionally let m, M € N and 1 < q < 0o be such that

i) M < min{M; —max{n/q;n/2} :i e {1,2}},
ii) n/q < m < min{my;msa},
11) ﬁl<7h2+7’2*m17k1,
V) pM +m < mg + 19 +mq + ky,
)
)

—. e

v) M >1, where M := M — (n+1),
vi) ¢ =2 Zf(pl,pz)#(l 1).

Considering two symbols p; € C™ 7S M (R™ x R™; M;), i € {1,2}, we obtain

pi(@, Dy)pa(w, Dy) € OPWIS™ (R™ x R™; M — 1).
We are even able to improve this result for non-smooth pseudodifferen-
tial operators with coefficients in the uniformly local Sobolev spaces:

Theorem 4.7. Let m; € R and 1 < ¢; < oo for i € {1,2}. Additionally let
m,; € No with m; > n/q; fori € {1,2}. We define m := my + my. Moreover
let m,M €N and 1 < q < oo be such that

i) n/q <m <min{ms —n/q;m2 —n/q},
11; m < mg —n(1l/qz—1/q)" —ma,
)

=

ii M+m<m2—n/qQ+m1,
M > 1, where M := M — (n+1).

iv

Considering two symbols p; € W% STG(R™ x R™), i € {1,2}, we obtain

uloc
p1(x, Dy)pa(x, D) € OPW. locSl To(R™ x R™: M — 1).

Proof. Proceed as in the proof of Theorem 5.1 in [2]. We just have to replace
Theorem 3.7 with Theorem 3.12 and use Remark 3.4. O

Analogous to the statement of Theorem 4.6 it is possible to verify a
similar result for the composition of two pseudodifferential operators of the
symbol-class H mSm o (R™xR™) by using Theorem 3.10 instead of Theorem 3.7.

We also Could consider the composition of two non-smooth pseudodif-
ferential operators whose coefficients are either in a Holder space, in a Bessel
potential space or in an uniformly local Sobolev spaces, however in different
spaces. Adapting the proof of Theorem 4.6 one could obtain similar results
for these cases.
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5. Spectral Invariance

5.1. The Inverse of a Pseudodifferential Operator in the Symbol-Class
C'rS(‘))’0
In the present subsection we prove the following theorem:

Theorem 5.1. Let m € Ny and 0 < 7 < 1. We assume
m:=max{k € Ng: m+7—k>n/2} >n/2.
For every p € C™7 83 o(R™ x R™) with p(x,Dy)~" € L (L*(R")) we get
p(z,D,)~ € OPW/2S0 o(R™ x R™) € OPC*Sp o(R"™ x R™)

uloc

for all s € (0,7 — n/2] with s ¢ N.

Ueberberg proved a similar result for the smooth case, cf. [18, Theorem
4.3]:

Theorem 5.2. Let 1 < g< oo and 0 << p <1 withd <1.
i) Considering a symbolp € 5275(R" xR"™) where p(z, D,)~! € £L(L*(R"))
we obtain p(x, D,)~" € OPS) s(R™ x R™).
ii) Assuming a symbol p € SY ;(R™ x R™) where p(x, D,)~" € £ (LY(R"))
we get p(x, D)~ € OPS%(;(R" x R™).

In order to verify Theorem 5.1, we use the main idea of the proof in
the smooth case: We want to apply the characterization of pseudodifferential
operators. Thus we just have to show the boundedness of certain iterated
commutators of p(z, D,)~!. Since we already know that the iterated commu-
tators of p(x, D,,) have these mapping properties, we try to write the iterated
commutators of p(z, D)~ ! as a sum and compositions of p(x, D,)~! and the
iterated commutators of p(x, D, ). Unfortunately, non-smooth pseudodiffer-
ential operators are in general not bounded as operators from S(R™) to S(R™)
like the smooth ones. Therefore we have to prove the formal identities for the
iterated commutators rigorously.

Remark 5.3. (Formal identities for the iterated commutators)
Let m,s e R, 1 < ¢ < oo and M,m € Ny with m + M > 1. We assume that
P e ZL(H:t™, HE) with P! € Z(HE, Hit™) and

ad(—iz)** ad(D,)"" ... ad(—iz)™ ad(D,)" P € L(H ™™, H})
foralll € N, aq,...,a; € Nj and f1,...,0 € Nij with |o; + ;| = 1 for all
je{l,... 0} Jaa| + -+ || < M and |By| + -+ 3] < m. For o, 3 € Ni
with |a + 8] = 1 we have ad(—iz)*ad(D,)’P~! : S(R") — S'(R"). We
consider |F] =0 and a = e; for an arbitrary j € {1,...,n} first. On account
of ad(—ix;)P € L (H;t™, H;), we know that

ad(—iz;) Pu = —iz;Pu+ P(irju) € H;(R") for all u € S(R™). (5.1)

If u e S(R") € H""*(R"), we obtain P(izju) € H;(R"). Together with
(5.1) this implies

—idzjPu € Hj(R") for all u € S(R™). (5.2)
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Now we define 7 := {Pu:u € S(R")} C HJ(R"). To show the density of ¥
in H3(R") we choose an arbitrary v € H;(R™). Due to P~! € Z(H;, H;™™)
we have u := P~'v € H;T™(R") and therefore v = Pu. Considering a
sequence (u;)jen, € S(R™), which converges to u in H;"™(R"), we define
v; := Pu; for each j € Ny. By means of P € X(H;er,Hqs) the sequence
(vj)jen converges to v. This implies the density of 2 in HJ;(R"). Next we
define Q : 2 — H;t"™(R"™) by Qu := —iz; P~ u+ P~ (iz;ju) for all u € 2.
Due to (5.2) @ is well-defined and we obtain for all v € S(R™):

Q(Pu) = —izju+ P~ (iz;Pu) = — P~ [ad(—ixz;) Plu. (5.3)

Because of ad(—iz;)P € L(H;t™, HS) and P~ € ZL(HS H;t™) we get
|Q(Pu)| gyz+m < Cl|Pul|a for all w € Hy(R™). Due to the density of & in
H}(R™) this implies Q € £ (H7, H:*™). As a direct consequence we obtain

ad(—iz;)P~" € L(H, H;™™)

since Qu = ad(—ixz;)P~ u for all u € S(R™). Together with 2 C Hj(R")
and (5.3) we get

[ad(—iz; )P~ |Pu = —P *ad(—iz;)Plu for all u € S(R™).

Due to [ad(—iz;) PP € L (H;t™) and P~'[ad(—ix;)P] € L (H;t™) the
previous equality holds for all uw € H;*™(R™). Since P € ZL(H;*™; HY) is
surjective, we have for all v € H;(R"):

ad(—iz)* ad(D,)? P~ v = [ad(—iz;)P~ v = —P~'[ad(—iz;)P|P~ v

= — P~ ad(—iz)* ad(D,)’ PP~ 0. (5.4)

In case f =e¢;, j € {1,...,n} and |a| = 0 we get equality (5.4) for all

u € S(R™) in the same way as before. Moreover, let | € N, avq, ..., oq € NJ and

Bi,...,0 € N§ with |o; + ;| =1forall j € {1,...,l}, |oq| +---+|ay| < M

and |B1|+ -+ 6| < m. Denoting o := a1 +---+aand 8:=F1+---+ 5
we get by mathematical induction with respect to I:

ad(—iz)® ad(D,)? ... ad(—iz)* ad(D,)"P~! = Z Ryt ol Bt

(aq+.+ag) ot (a) +..Fap)=a
(Bl 4B+ (B4 +B)=8

where

I —1
Roy o abph.p = Cal alpt,.. g P

lag}
o [ad(—im)all ad(Dy)P ... ad(—iz)®1 ad(D,)% P} p!
oo [ad(—ix)af ad(D,)? ... ad(—iz)™ ad(Dz)ﬂiP]P’l.
Proof of Theorem 5.1. Let | € Ng, a1,...,0q € Ny and §1,..., 0 € Nij with

laj + 051 =1 for all j € {1,...,n} and |81 + --- + G| < 1 be arbitrary.
On account of p(x,D,) € Afo(r,2), which holds by means of Theorem



64 H. Abels and C. Pfeuffer IEOT

3.8, and P~! € Z(L*(R")) we can apply Remark 5.3 and get if we define
P :=p(x,D,):

ad(—iz)* ad(D,)" ... ad(—iz)* ad(D,)* P~! = > Ry aipi g

......
(ai+.tap)+-+(aj+...+ap)=a
(Bl+. 4B ++(Bl+..+8])=8
where Ry1 ot g1 g are defined as in Remark 5.3. Since P € A o(11,2)
and P! € £ (L*(R™)), we obtain P~! € A (7, 2). Considering an s with
0<s<m—n/2and s ¢ N, Theorem 4.5 and Lemma 3.3 yield the claim. [

In the same way, using Theorem 3.9 instead of Theorem 3.8, we can
show:

Lemma 5.4. Let m € Ny with m > n/2 and 0 < 7 < 1. For every non-smooth
symbol p € Cm’TS’(;g/Z(R” x R™) with p(z, D)~ € ZL(L*(R™)) we get

p(z, Dy) ™t € OPW]2S0 o (R™ x R™) € OPC*S) o(R™ x R™)

uloc

for all s € (0,m —n/2] with s ¢ N.

5.2. Properties of Difference Quotients

Our next aim is to prove the spectral invariance for pseudodifferential opera-
tors P € OPCTS) o(R™ x R™), 7 > 0. The proof is again based on the formal
identities for the iterated commutators of P~1, cf. Remark 5.3. In this case
ad(—iz)*ad(D,)?P, |a| # 0 are pseudodifferential operators of negative or-
der —|a|. Hence the order of the Bessel potential space increases by applying
ad(—iz)*ad(D,)? P, |a| # 0. Therefore P~1 € Z(L4(R™)) is not sufficient.
We even need P! € Z(H, *(R")) for certain s € No. As we always try
to restrict the assumptions as much as possible, we use the tools of differ-
ence quotients in order to get P~' € Z(H_ *(R")) if P~ € Z(LY(R")) is
assumed.

Definition 5.5. Let h € R\{0} and j € {1,...,n}. For u € §'(R") define the
difference quotient of u by

8§ju = h™Hu(. + hej) — u}.
Difference quotients have the following useful properties:

Lemma 5.6. Let m € R, m € N, 0 <7 <1 and M € No U {oo}. Considering
p € C™TSTH(R™ x R™; M), we get for all j € {1,...,n}:

i) {ajgjp(x,g) he R\{O}} C TG (R x R M) is bounded,
ii) [Bﬁj,p(x,Dx)]u(x) = dejhp) (x,Dx)u} (x + hej) for all w € S(R™),
x € R™ and h € R\{0}.

iii) Additionally let M € No U {oo} with M > n/2 for ¢ > 2 and M > n/q
else and s € R with |s| < m — 1+ 7. Then we have for some C > 0:

||[8§j,p(m,D$)]u||Hg < Cllullgs+m  for all u e H;P™(R™), h € R\{0}.
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Proof. The fundamental theorem of calculus provides claim i). An elementary
calculation, using 6}677;7112(5) = 05 u(§) shows 4i). Finally iii) follows from
i), Theorem 3.7 and the density of S(R") in H;*™(R"). O

Theorem 5.7. (Difference quotients and weak derivatives)
Let 1 <p < oo andseR.

i) There exists a constant C such that, for allu € H3 T (R™), all h € R\{0}
and all j € {1,...,n},
10z, ullz; < Cll0s,ully.
ii) Let u € Hy(R") and assume that
||(’9£ju||H; <C forallje{l,...,n} and h € R\{0}.
Then u € Hy*H(R™) and [|0,,ullms < C.
Note that assertion ii) is false for p =1 while i) also holds for p = 1.

Proof. The proof of i) in case s = 0 is essentially the same as that one of
Theorem 5.8.3 in [6]. Using Lemma 5.6, the general case then holds, since

103 ullzy = 107, (Do) ull e < Cll0s, (Da)*ull Lo = C'10a, ull

for all h € R\{0} and v € H;*(R™). Similarly to ii) is a consequence of case
s =0 and Lemma 5.6. O

The previous theorem allows us to verify the following proposition:

Proposition 5.8. Let kK € Ng, 7 € R and 1 < q¢ < co. Moreover, let P be an
operator, which fulfills for all s € {r,r+1,...,r+ k} the properties
i) Pe Z(H;,Hy),
ii) Pc Z(H;+k+1,Hg+k+1)7
iii) {[P,0},]:h e R\{0}} C Z(H;, Hy) is bounded for all j € {1,...,n},
iv) P71 e ZL(Hy, Hy).
Then P~ e £ (H;, HE) for each s € {r,r+1,...,r +k+1}.

Proof. We prove the claim by mathematical induction with respect to s. In
case s = r there is nothing to show. For s € {r,r+1,...,7+k} we choose an
arbitrary j € {1,...,n} and f € H¥*'(R") C H;(R"™). Due to the induction
hypothesis there is a u € H(R") with u = P~'f. Since P € Z(H}, H}),
we get Pu € H;(R") and consequently aj;j (Pu) € H;(R™). Similarly we get
P(@gj u) € H;(R™). An application of P~ to P(@gj u) = [P, 8£j]u—|—3£j (Pu),
the induction hypothesis, the assumptions and Theorem 5.7 ) yield

103 ully = 1P~ [P, 9 Ju+ 0y (Pu)Y|m; < CIP,0y Jullm; + CllOg, fllm;

< Cllullg; + Cll0z, fllug < C for all h € R\{0},u € HJ(R™).

Therefore Theorem 5.7 ii) provides u € H, g“‘l(R”) which proves the surjectiv-
ity of the linear, bounded and injective operator P : Hi*'(R™) — HtH(R™).

Then P! is an element of £ (H; !, H;t!) by means of the bounded inverse
theorem. O]
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By means of the previous proposition we obtain the central result of
this subsection:

Theorem 5.9. Let 1 < g < o0, 0 < 7 < 1 and m € N. Additionally let
N € No U {0} with N > n/2 for ¢ > 2 and N > n/q else. We define
kE=max{l € Ng : r+1 < m + 7} for one r € R with |r|] < m + 7.
Considering p € C™7 S} o(R" x R™; N)), where p(x,D,)~" € £ (H}, H}), we
obtain

p(z,Dy)"" € L(H HS) forall s € [-r —k,r+ k. (5.5)
Proof. On account of Theorem 3.7 and Lemma 5.6 we can apply Proposition
5.8 and get the claim for all s € {r,...,r + k}. With (6‘%)* = fa;jh at
hand we have [P*, 827,] =[P, 8;77’]*. An application of Proposition 5.8 to P*
provides the claim for all s € {—r —k,...,r — 1}. Then the claim follows for
all s € [—r — k,r + k] by means of interpolation. O

5.3. Spectral Invariance of Pseudodifferential Operators in Cﬁ"‘"S(l),O

Theorem 5.10. Let 1 < gy < oo and 0 < 7 < 1. Moreover, let m,m € Ny
with m > m > n/q and M € Ny with n < M < m — m. We define
M := M — (n +1). Furthermore, let N € NU {oo} with N — M > n/2 if
qo > 2 and N — M > n/qy else. Considering p € Cﬁ“TSlO,O(R" x R™: N),

where p(x, Dy) ' € L(H] ,H} ) for one |r| < m+ 7, we get

p(z, D)™t € OPW% 80 ((R™ x R™; M — 1).

uloc
In case M — 1 > n/q for some 1 < ¢ < 2, we even have
p(z, D)t € L(L9, L) for all q € [g;00) U {go}-
Proof. An application of Theorem 5.9 provides the boundedness of
p(z, D)~ ' € L(H,*® H,*) forall s€{0,...,M}. (5.6)

q0

Let ! € No, ai,...,aq € Ny and 5y, ..., 0, € Ny with |a;|+|6;| =1forall j €

{1,...,1}, || £ M and || < m where o := a1+ -+ and §:= B1+- - -+0;.

Then Remark 3.4 and Theorem 3.7 yield for all s € {0,..., M — |al}:

ad(—iz)* ad(D,)” ... ad(—iz)** ad(D,)" p(x, D,) € L(H >~ H_ *).

(5.7)

Setting P := p(x, D,) we get due to Remark 5.3

ad(—iz)™ ad(Dgc)B1 .cad(—ix)™ ad(Dgc)ﬁlP_1 = Z Ra%,“”a%,ﬁ}’___ﬂf

(.. 4ol )+t (ol +..+al)=a
(Bt 4B+ -+ (B 4. +8D)=5

where R,1 o1 g1, g is defined as in Remark 3.4. Together with (5.6) and
(5.7) this provides P~1 € A?:éw (11, qo). By means of Theorem 4.5 and Lemma
3.3 we get for each 0 < 7 < m —n/qgo with 7 ¢ N:

p(z, Dy)~t € OPW2 8 ((R™ x R™; M — 1) N.Z(L*(R™))

uloc

C 7S o(R™ x R™; M —1).
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Finally, considering M —1 > n/§ for some 1 < § < 2 we obtain for ¢ € [, c0)
due to Theorem 3.7 the boundedness of P~ : L¢(R™) — L4(R"). O

The relation to the spectral invariance of Theorem 5.10 is emphasised
in the next corollary which easily can be verified by means of Theorem 5.10.
For more details we refer to [13, Corollary 6.12].

Corollary 5.11. Let the assumptions of Theorem 5.10 hold. Additionally we
choose an arbitrary but fired ¢ € (1,2] fulfilling the conditions of Theorem
5.10 and denote

Pra :=p(z,D,) : LY(R") — LYR") for all § < q < occ.
Then o(Prqe) = o(Prr) for all § < q,r < 0o.

Now one may wonder whether it is possible to prove that p(z, D,)~!
is even an element of OPW, 2259 ((R™ x R™) if all assumptions of the The-

orem 5.10 are fulfilled and additionally p(z, D,) € OPC™TS} ((R™ x R™).
Unfortunately in general this is not the case as we see in the next example:

Ezample 5.12. Let 1 < go < oo and 7 > |n/qo|+n+4. Additionally let p(§) €
S7o(RY x RE) be such that p is not constant and p(D,)~' € Z(L%(R™)).
Moreover let a € C7(R™) such that there exists a point wy which has no
open neighbourhood on which a is smooth and such that there exist two
constants ¢, C > 0 with C' > a(x) > ¢ for all z € R". Then T := a(z)p(D,) €
759 o(R™ x R™) fulfills all assumptions of Theorem 5.10 for M = n + 3 and

m = |7]—(n+3). Consequently T-1 € OPVV:';(;E‘J 59 o(R™xR™; M—1), where

M :=M — (n+1), but T~ ¢ OPCTSY ((R" x R") with 7 € (0,17 — 1/qo].
In particular 77! ¢ OPWm’qS%O(R" x R™) due to Lemma 3.3.

uloc

Proof. In fact, by Theorem 5.2, p(D,)~" € OPS} (R™ x R™). Moreover
T-! = p(D,)tb(x) with b := 1/a € CT(R"). In particular, T~ is bounded
in Z(L%(R™)). Now assume that 7' € C7SY ((R™ x R™). If k(z — y) with
k € C>°(R™\{0}) is the kernel of p(D,)~"! in the sense of Theorem 3.14, the

kernel of T~ 1 is k(z,x — y) = k(x — y)b(y), i.e.,

~ k

k(z,z) = k(2)b(x — z) = a(x(i)z)'
(for b € C*°(R™) this is obvious; the general case follows from convolution
of b with the usual mollifier p.(x) = e7"p(x/e) and then passing to the
limit € — 0). Recall that k(z,.) € C>°(R™\{0}) for every z. Since p is not
constant, there exists a zg with k~(zo) = 0. Choosing xq such that ug = xg— 2z,

it follows from k(z) = a(xo — 2)k(zo, z) that there exists a neighbourhood of
up on which a is smooth. This is a contradiction to the choice of a. O

5.4. Spectral Invariance of Pseudodifferential Operators in the Symbol-Class
W.ai5eS1,0
The present subsection serves to improve Theorem 5.10 for non-smooth pseu-

dodifferential operators of the order zero with coefficients in W:9(R™).



68 H. Abels and C. Pfeuffer IEOT

Analyzing the proof of Theorem 5.10 we see that we need similar results
for pseudodifferential operators whose symbols are in WSZI;ZS{’?O(R" x R™)
instead of Theorem 5.9 and Remark 3.4:

Lemma 5.13. Let 1 < ¢ < oo, m € R and m € N with m > 1+ n/q.
Considering p € W 2157 (R™ x R™), we get the boundedness of

uloc

{00 pla.€) b € B\[0}} € Wi M 1S (R < BY)

uloc

forallj€{1,...,n}.

Proof. Let ¥ € C°(R™) be such that supp ¢ C B2(0) and 9(z) = 1 for all
T € Bl~(0). Assuming an arbitrary o € Nij we get due to Theorem 5.7 and
p € WiiST(R™ x R™):

uloc

10202 p(.Ollyym 1oy < S sup 90508 [p(a, ) (w — )]l Loz

18]<m—1YR"

<C Y sup [0.,000¢ [p(x, ©)¢(x — y)]ll Lo
|18]<m—1 YER"

<C Z sup Hafﬁgap(wf)”LQ(Bz(y))
|81 <m VER"

< CllOgp(z: Ollwrma @)
< c)ymlel for all € € R™, h € R\{0}. -

Lemma 5.14. Let 1 < ¢,q < oo, m € R and m € N with m > 1 +n/q.
Assuming p € WIS (R™ x R™) we get for every j € {1,...,n} and all
h € R\{0}:

[82],,}9(1}, D,)u(z) = <8z_jhp> (, Dy)u(z + hej) Vue S(R"),z € R".
Moreover, for all —=m+1+n/q < s <m—1—n(l/q—1/q)" there is a
constant C, independent of h € R\{0}, such that

||[8£j,p(x,Dm)]u||H§ < C||u||H‘.;+7n for allu € H§+m(R”),
where j € {1,...,n}.

Proof. Proceed as in the proof of Lemma 5.6, using Lemma 5.13 and Theorem
3.12 instead of Lemma 5.6 and Theorem 3.7. O

Lemma 5.15. Let 1 < q,¢ < 0o and m € N with m > 1+ n/q. Considering
p € WolSP o(R™ X R™), where the inverse operator p(x, D,) ™" € ZL(HE, HY)

for one —m +n/q<r <m-—n(l/qg—1/¢)", we obtain
p(z,D,) "t € ZL(HZ, H3) forallse[r—1r+k|

Here k and | are defined by k := max{l;le No:r+k<m—n(l/qg—1/4)*t}
and | :=max{l € Ng: —m +n/q <r—1}.
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Proof. Replacing Theorem 3.7 with Theorem 3.12 and Lemma 5.6 with
Lemma 5.14, the statement follows in the same way as that one of
Theorem 5.9. g

Comparing the previous result with that one of Theorem 5.9 the differ-
ence lies in the choice of the neighbourhood of r. The previous lemma allows
us to improve Theorem 5.10:

Theorem 5.16. Let 1 < ¢,q0 < oo, m € Ny with m > max{l + n/q,n/qo}
and X(N) = Wﬁ;‘éS?,O(R" x R™; N) for all N € No U {oo}. Additionally let
m € Ny withn/qy < m < max{r € Ng : r < m—n/q}. Moreover, let M € Ny
with n < M < m — 1 —n/q. We define M := M — (n + 1). Considering
p € X(c0), where p(z,D,)~" € Z(H} ,H} ) for one

q0’
—m+nlg<r<m-n(l/qg—1/q)" (5.8)
we get

p(z,D,)~' € OPW/;®SY (R™ x R™; M — 1).

uloc
In case M — 1 > n/q for one 1 < § <2, we even have
p(z, D)t € L(LI,L7)  for all § € [g;00) U {go}-

Proof. Proceed as in the proof of Theorem 5.10 using Lemma 5.15, Remark
3.4 and Theorem 3.7 instead of Theorem 5.9, Remark 3.4 and Theorem 3.12.
O

Theorem 5.16 in fact is an improvement for P € OPWZZ%S?’O(R” x R™)
because Theorem 5.16 holds for the less strict assumption

—m+n/g<r<m-n(l/qg—1/q)".
In case X (N) = H"S? o(R"xR"; N) or X(N) = W16 (R™ x R™; N),

uloc™ cl
N € Ny U {0}, the claim of Theorem 5.16 even holds for M € Ny with
n<M<m—m-—n(l/¢g+1/q —1)" if we replace (5.8) with the inequality
n(1/qo+1/qg—1)" —m <r <m-—n(1/qg—1/qo)". For more details, see [13,
Section 6.4].
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