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1. Introduction and Preliminaries

The theory of crossed products of C∗-algebras started with the papers by Tu-
rumaru [12] and Zeller-Meier [14]. Their origins can be traced back to statis-
tical mechanics, where crossed products were called covariance algebras, and
to the group measure space constructions of Murray and von Neumann. The
crossed products of C∗-algebras have attracted a great deal of attention for
nearly 60 years, and a large part of the C∗-algebra literature is concerned with
crossed products. In 2007, Williams [13] gave a detailed systematic exposition
of the recent developments in the theory of crossed products of C∗-algebras.

A crossed product of a C∗-algebra is a C∗-algebra A �α G built from
a C∗-dynamical system (A,G, α), where A is a C∗-algebra, G is a locally
compact group, and α is a strongly continuous representation of G on A
as involutive automorphisms. The crossed product construction provides a
useful means to construct new examples of C∗-algebras.

Various generalizations of C∗-algebra crossed products are available
[5,6,8,9]. Among others, Dirksen et al. [3] constructed and studied Banach
algebra crossed products associated with a Banach algebra dynamical sys-
tem (A,G, α), where A is a Banach algebra, G is a locally compact group,
and α is a strongly continuous representation of G on A as automorphisms.
Roughly speaking, the Banach algebra crossed product (A �α G)R is a com-
pletion of Cc(G,A) depending on a class R of representations. Some funda-
mental properties and applications are established in a series of papers [1–3].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00020-016-2282-5&domain=pdf
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General Banach algebras lack the convenient rigidity of C∗-algebras where,
e.g., morphisms are automatically continuous and even contractive, and this
makes the task of developing the basics more laborious than it is for crossed
products of C∗-algebras.

Given a C∗-dynamical system, besides the full crossed product C∗-
algebra, there is another important crossed product C∗-algebra, namely the
reduced crossed product, which was defined by Zeller-Meier for discrete groups
in [14] and generalized by Takai [11]. For a C∗-algebra dynamical system, it
was proved that the crossed product and the associated reduced crossed prod-
uct are equal by Zeller-Meier [14] for discrete groups and by Takai [11] for
amenable groups. The importance of this theorem in the C∗-dynamical sys-
tem theory lies in the fact that the reduced crossed product is more concrete
and many familiar groups are amenable, such as abelian groups and com-
pact groups. In the present paper, we will define the reduced Banach algebra
crossed product and establish this equality in the Banach algebra dynamical
system setting, see Theorem 3.4. For this purpose, some properties about
regular representations are investigated.

We now introduce some basic definitions and notations, and provide
a brief recapitulation of the definition of a Banach algebra crossed product
from [3].

Given a Banach algebra A, by Aut(A) we denote the group of bounded
automorphisms of A. For a Banach space X, we use B(X) and Inv(X) to
denote the algebra of all bounded linear operators on X and the group of
invertible elements in B(X), respectively.

Suppose X is a Banach space and G is a locally compact group. By
Cc(G,X) we denote the space of all continuous compactly supported X-
valued functions. By [13, Lemma 1.91], there is a linear map f �→ ∫

G
f(s)dμ(s)

from Cc(G,X) to X which is characterized by
〈∫

G

f(s)dμ(s), x∗
〉

=
∫

G

〈f(s), x∗〉dμ(s)

for all f ∈ Cc(G,X) and x∗ ∈ X∗, where μ is a fixed left Haar measure on G
and X∗ is the topological dual of X. It is not difficult to verify that

T

∫

G

f(s)dμ(s) =
∫

G

Tf(s)dμ(s)

for all f ∈ Cc(G,X) and T ∈ B(X). Moreover, let ψ : G → B(X) be com-
pactly supported and strongly continuous, and define

∫

G

ψ(s)dμ(s) :=
[

x �→
∫

G

ψ(s)xdμ(s)
]

.

Then by [3, Proposition 2.19],
∫

G
ψ(s)dμ(s) is in B(X) and

T

∫

G

ψ(s)dμ(s)R =
∫

G

Tψ(s)Rdμ(s)

for all T,R ∈ B(X).
Recall that a Banach algebra dynamical system is a triple (A,G, α),

where A is a Banach algebra, G is a locally compact group, and α : G →
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Aut(A) is a strongly continuous representation of G on A. Let (A,G, α) be
a Banach algebra dynamical system and let X be a Banach space. Then a
covariant representation of (A,G, α) on X is a pair (π,U), where π is an
algebra homomorphism from A to B(X), and U is a group homomorphism
from G to Inv(X), such that for all a ∈ A and s ∈ G,

π(αs(a)) = Usπ(a)Us−1 .

Here Us means U(s). The covariant representation (π,U) is called continuous
if π is norm bounded and U is strongly continuous. Let R be a class of
continuous covariant representations of (A,G, α). Then R is called uniformly
bounded if there exist a constant C ≥ 0 and a function γ : G → [0,∞), which
is bounded on compact subsets of G, such that for all (π,U) in R, ‖ π ‖≤ C,
and ‖ Ur ‖≤ γ(r) for all r ∈ G.

Let (A,G, α) be a Banach algebra dynamical system. For any f, g ∈
Cc(G,A) and s ∈ G defining the twisted convolution

[f ∗ g](s) :=
∫

G

f(r)αr(g(r−1s))dμ(r)

gives Cc(G,A) the structure of an associative algebra. If (π,U) is a contin-
uous covariant representation of (A,G, α) on the Banach space X, then the
integrated form π � U of (π,U) is defined by

π � U(f) :=
∫

G

π(f(s))Usdμ(s) (f ∈ Cc(G,A)).

It is not difficult to verify that π � U is a representation of Cc(G,A) on X.
Now let R be a non-empty uniformly bounded class of continuous co-

variant representations of (A,G, α). Then we can define the algebra seminorm
σR on Cc(G,A) by

σR(f) = sup
(π,U)∈R

‖π � U(f)‖ (f ∈ Cc(G,A)),

and denote the completion of the quotient Cc(G,A)/ ker σR by (A �α G)R,
with ‖·‖R denoting the norm induced by σR. The Banach algebra (A�αG)R

is called the crossed product corresponding to (A,G, α) and R.

2. Regular Representations

We begin with a definition.

Definition 2.1. Let G be a locally compact group, let X be a Banach space,
and let 1 ≤ p < ∞. We define the p-norm on Cc(G,X) by

‖f‖p =
(∫

G

‖f(s)‖pdμ(s)
)1/p

,

and define Lp(G,X) as the completion of Cc(G,X) with this norm.

Let (A,G, α) be a Banach algebra dynamical system and let π be a
continuous representation of A on a Banach space X. To let the following de-
finitions make sense, we require that π is α-bounded, that is, there is M > 0
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such that ‖π(αt(a))‖ ≤ M‖a‖ for all a ∈ A and t ∈ G. In C∗-algebra dynam-
ical systems, this requirement is automatically satisfied. We now define the
induced algebra representation π̃ of A and the left regular group representa-
tion Λ of G on the space Lp(G,X) for 1 ≤ p < ∞ by the formulae:

[π̃(a)h](s) := π(αs−1(a))h(s) (a ∈ A, s ∈ G,h ∈ Lp(G,X)),

(Λrh)(s) := h(r−1s) (r, s ∈ G,h ∈ Lp(G,X)).

Obviously, the requirement that π is α-bounded guarantees the boundedness
of π̃. By [1, Corollary 5.9], (π̃,Λ) is a continuous covariant representation of
(A,G, α). We will call (π̃,Λ) the regular covariant representation associated
with π.

Lemma 2.2. Let (A,G, α) be a Banach algebra dynamical system, let π be a
continuous representation of A on a Banach space X, and let 1 ≤ p < ∞.

(1) For all r ∈ G, Λr is an invertible isometry on Lp(G,X).
(2) Suppose there is M > 0 such that ‖π(αt(a))‖ ≤ M‖a‖ for all a ∈ A and

t ∈ G. Let π̃ be the induced algebra representation of A associated with
π on Lp(G,X). Then ‖π̃‖ ≤ M .

(3) Suppose ‖α‖ = sup{‖αt‖ : t ∈ G} < ∞. Then π is α-bounded. Moreover,
if π̃ is the induced algebra representation of A associated with π on
Lp(G,X), then ‖π̃‖ ≤ ‖α‖‖π‖.

(4) Suppose (π,U) is a continuous covariant representation of (A,G, α) for
some group homomorphism U from G to Inv(X) which satisfies ‖U‖ :=
supt∈G ‖Ut‖ < ∞. Then π is α-bounded and ‖π ◦ αt‖ ≤ ‖U‖2‖π‖ for
all t ∈ G. Moreover, if π̃ is the induced algebra representation of A
associated with π on Lp(G,X), then ‖π̃‖ ≤ ‖U‖2‖π‖.

Proof. (1) and (2). They are straightforward verifications.
(3). For all t ∈ G, ‖π◦αt‖ ≤ ‖π‖‖αt‖ ≤ ‖α‖‖π‖. By (2), ‖π̃‖ ≤ ‖α‖‖π‖.
(4). The covariance relation π(αt(a)) = Utπ(a)U−1

t implies that
‖π(αt(a))‖ ≤ ‖U‖2‖π‖‖a‖ for all a ∈ A and t ∈ G, and hence ‖π̃‖ ≤ ‖U‖2‖π‖
by (2). �

The following lemma shows that for f, ξ ∈ Cc(G,X), π̃ � Λ(f)ξ can be
calculated pointwise.

Lemma 2.3. Let (A,G, α) be a Banach algebra dynamical system. Let π : A →
B(X) be an α-bounded representation of A on a Banach space X, and let
(π̃,Λ) be the associated regular covariant representation on Lp(G,X) for 1 ≤
p < ∞. Then for all f, ξ ∈ Cc(G,X) and s ∈ G, we have

[π̃ � Λ(f)ξ](s) =
∫

G

π(α−1
s (f(r)))ξ(r−1s)dμ(r).

Proof. It is an obvious modification of [1, Lemma 5.10]. �

The following will be used in the proof of Theorem 3.2. A similar result
was proved for C∗-algebra dynamical systems (cf. [10, Theorem 7.7.5]).
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Proposition 2.4. Let (A,G, α) be a Banach algebra dynamical system. Let π be
an α-bounded representation of A on a Banach space X, and let (π̃,Λ) be the
associated regular representation of (A,G, α) on Lp(G,X) for 1 ≤ p < ∞.
Let f ∈ Cc(G,X). If π(f(r)) = 0 for some r ∈ G, then π̃ � Λ(f) = 0.
In particular, if π is faithful, then the integrated form π̃ � Λ is a faithful
representation of Cc(G,A) on Lp(G,X).

Proof. First we suppose that π(f(e)) = 0. Then there are x ∈ X and x∗ ∈ X∗

such that 〈π(f(e))x, x∗〉 = 0. By the continuity of f , π and α and arguing as
for [3, Proposition 2.3], the map (r, s) �→ π(α−1

r (f(s))) from G × G to B(X)
is continuous. Thus, we have a neighborhood V of e such that

|〈π(α−1
r (f(s)))x − π(f(e))x, x∗〉| <

|〈π(f(e))x, x∗〉|
2

holds for all r, s ∈ V . Choose ψ ∈ C+
c (G) with support contained in a sym-

metric neighborhood W of e satisfying W 2 ⊆ V such that
∫

G

∫

G

ψ(s−1r)ψ(r)dμ(r)dμ(s) = 1.

For ξ ∈ Lp(G,X), a simple computation gives
∣
∣
∣
∣

∫

G

〈ψ(s)ξ(s), x∗〉dμ(s)
∣
∣
∣
∣ ≤ ‖x∗‖‖ψ‖q‖ξ‖p,

where 1
p + 1

q = 1. So we can define φ ∈ (Lp(G,X))∗ by

〈ξ, φ〉 =
∫

G

〈ψ(s)ξ(s), x∗〉dμ(s) (ξ ∈ Lp(G,X)).

Define η ∈ Cc(G,X) by

η(s) = ψ(s)x (s ∈ G).

Then by Lemma 2.3,

|〈π̃ � Λ(f)η, φ〉 − 〈π(f(e))x, x∗〉|

=
∣
∣
∣
∣

∫

G

∫

G

〈ψ(r)π(α−1
r (f(s)))η(s−1r), x∗〉dμ(r)dμ(s) − 〈π(f(e))x, x∗〉

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

G

∫

G

〈ψ(r)ψ(s−1r)π(α−1
r (f(s)))x, x∗〉dμ(r)dμ(s) − 〈π(f(e))x, x∗〉

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

G

∫

G

ψ(r)ψ(s−1r)〈π(α−1
r (f(s)))x − π(f(e))x, x∗〉dμ(r)dμ(s)

∣
∣
∣
∣

≤
∫

G

∫

G

ψ(r)ψ(s−1r)|〈π(α−1
r (f(s)))x − π(f(e))x, x∗〉|dμ(r)dμ(s)

≤ |〈π(f(e))x, x∗〉|
2

.

From this we see that 〈π̃ � Λ(f)η, φ〉 = 0 and hence π̃ � Λ(f) = 0.
Now suppose that f(r) = 0 for some r ∈ G. Define g(s) := αr−1(f(rs)).

Then g ∈ Cc(G,A) by [3, Lemma 2.11] and g(e) = 0, and hence π̃ �Λ(g) = 0
by the previous result. Compute
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π̃ � Λ(g) =
∫

G

π̃(αr−1(f(rs)))Λsdμ(s)

=
∫

G

π̃(αr−1(f(s)))Λr−1sdμ(s)

=
∫

G

Λr−1 π̃(f(s))Λsdμ(s)

= Λr−1 ◦ π̃ � Λ(f).

This together with the inequality π̃�Λ(g) = 0 implies that π̃�Λ(f) = 0. �

3. Reduced Crossed Products

In this section, we will define and study the reduced crossed product as-
sociated with a Banach algebra dynamical system. Let (A,G, α) be a Ba-
nach algebra dynamical system, and suppose that R is a class of contin-
uous covariant representations of (A,G, α). Then R is called uniformly α-
bounded if there exist a constant C ≥ 0 and a function γ : G → [0,∞),
which is bounded on compact subsets of G, such that for all (π,U) in R,
‖ π ◦ αr ‖≤ C, and ‖ Ur ‖≤ γ(r) for all r ∈ G. Since αe is the identity on
A, the uniform α-boundedness implies the uniform boundedness. Conversely,
if sup{‖Ur‖ : r ∈ G, (π,U) ∈ R} < ∞, then the uniform boundedness of R
implies the uniform α-boundedness by Lemma 2.2.

Now let R be a non-empty uniformly α-bounded class of continuous co-
variant representations of a Banach algebra dynamical system (A,G, α). Let
[1,∞)R denote the set of all maps from R to [1,∞). For θ ∈ [1,∞)R, let R̃(θ)
be the set of all regular covariant representations (π̃,Λ) on Lθ(π,U)(G,X) that
are associated with π as (π,U,X) varies over R. Let Θ be a non-empty subset
of [1,∞)R and let R̃(Θ) = ∪θ∈ΘR̃(θ). Then R̃(Θ) is a non-empty uniformly
bounded class of continuous covariant representations by Lemma 2.2. We call
R̃(Θ) the class of regular representations of (A,G, α) associated with R and
Θ, and call (A �α G)R̃(Θ) the reduced crossed product of (A,G, α) associated
with R and Θ.

Takai [11] proved that for a C∗-algebra dynamical system with the group
amenable the crossed product and the associated reduced crossed product are
equal. We will establish this theorem in the Banach algebra dynamical system
setting. For this, we need a characterization of amenable groups.

Lemma 3.1. [4] Let G be a locally compact group with Haar measure μ. If G
is amenable, then, for every ε > 0 and compact set K ⊂ G containing the
identity element of G, there exists a compact set U with

μ(U) > 0 and
μ(KU�U)

μ(U)
< ε.

Here KU � U = (KU\U) ∪ (U\KU) is the symmetric difference of the sets
KU and U .

The following is the key step to our main results.
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Theorem 3.2. Let (A,G, α) be a Banach algebra dynamical system and let
1 ≤ p < ∞. Let (π,U) be a continuous covariant representation of (A,G, α)
on the Banach space X and suppose

‖U‖ := sup
r∈G

‖Ur‖ < ∞.

Let (π̃,Λ) be the regular continuous covariant representation of (A,G, α) as-
sociated with π on Lp(G,X). If G is amenable, then

‖(π̃ � Λ)(f)‖ ≥ 1
‖U‖2

‖(π � U)(f)‖

holds for all f ∈ Cc(G,A).

Proof. Define a map T from Lp(G,X) to itself by

(Tξ)(r) = U−1
r (ξ(r)) (ξ ∈ Lp(G,X), r ∈ G).

Then T is obviously linear. It is not difficult to verify that T is bijective and
(T−1ξ)(r) = Ur(ξ(r)) (ξ ∈ Lp(G,X), r ∈ G). Moreover, for ξ ∈ Lp(G,X),
we have

‖Tξ‖p =
∫

G

‖(Tξ)(r)‖pdμ(r)

=
∫

G

‖U−1
r (ξ(r))‖pdμ(r)

≤
∫

G

‖U−1
r ‖p‖ξ(r)‖pdμ(r)

≤ ‖U‖p‖ξ‖p.

So ‖T‖ ≤ ‖U‖. Similarly, ‖T−1‖ ≤ ‖U‖.
Let f ∈ Cc(G,A). We will show, given ε > 0, that

‖T−1(π̃ � Λ)(f)T‖ > ‖(π � U)(f)‖ − ε. (3.1)

If ‖(π�U)(f)‖ < ε, (3.1) is obvious. If ‖(π�U)(f)‖ = ε, then (π�U)(f) = 0
and hence π(f(r)) = 0 for some r ∈ G. Thus (π̃�Λ)(f) = 0 by Proposition 2.4
and hence T−1(π̃ � Λ)(f)T = 0. So

‖T−1(π̃ � Λ)(f)T‖ > 0 = ‖(π � U)(f)‖ − ε.

We now suppose that ‖(π � U)(f)‖ > ε. Choose x0 ∈ X, such that
‖x0‖ = 1 and

‖(π � U)(f)x0‖ > ‖(π � U)(f)‖ − ε

2
.

Let

δ =
‖(π � U)(f)‖ − ε

2

‖(π � U)(f)‖ − ε
− 1.

Then δ > 0.
Set S = supp(f)∪{e}. Since f ∈ Cc(G,A), both S and S−1 are compact

subsets of the locally compact group G. By Lemma 3.1, there is a compact
subset K ⊂ G such that

μ(K) > 0 and μ(S−1K � K) < δμ(K).
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Since e ∈ S−1, the latter inequality implies μ(S−1K) < (1 + δ)μ(K). Since
the Haar measure is outer regular on Borel sets, there is an open set V such
that V ⊇ S−1K and μ(V ) < (1 + δ)μ(K). By Urysohn’s lemma, there is
ψ ∈ Cc(G) satisfying 0 ≤ ψ(s) ≤ 1 for all s ∈ G, ψ(s) = 1 for all s ∈ S−1K,
and ψ(s) = 0 for all s /∈ V .

Define η ∈ Cc(G,X) by

η(s) = ψ(s)x0, s ∈ G.

Then

‖η‖ =
(∫

G

‖η(r)‖pdμ(r)
)1/p

=
(∫

V

|ψ(r)|p‖x0‖pdμ(r)
)1/p

≤ μ(V )1/p < (1 + δ)1/pμ(K)1/p ≤ (1 + δ)μ(K)1/p.

By definition, (Tη)(s) = U−1
s (ψ(s)x0) = ψ(s)U−1

s (x0) for s ∈ G. It follows
from the strong continuity of U that Tη ∈ Cc(G,X).

For r ∈ K, by Lemma 2.3 and noting η(s−1r) = x0 if s ∈ S with
f(s) = 0, we have

[T−1(π̃ � Λ)(f)Tη](r)

= Ur(((π̃ � Λ)(f)Tη)(r))

= Ur

∫

G

π(α−1
r (f(s)))[(Tη)(s−1r)]dμ(s)

=
∫

G

Urπ(α−1
r (f(s)))[(Tη)(s−1r)]dμ(s)

=
∫

G

π((f(s))UrU
−1
s−1r(η(s−1r))dμ(s)

=
∫

G

π(f(s))Us(η(s−1r))dμ(s)

=
∫

G

π(f(s))Usx0dμ(s)

= (π � U)(f)x0.

Therefore

‖T−1(π̃ � Λ)(f)Tη‖p ≥
∫

K

‖[T−1(π̃ � Λ)(f)Tη](r)‖pdμ(r)

=
∫

K

‖(π � U)(f)x0‖pdμ(r)

= ‖(π � U)(f)x0‖pμ(K)

> (‖(π � U)(f)‖ − ε

2
)pμ(K).
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Hence,

‖T−1(π̃ � Λ)(f)T‖ ≥ ‖T−1(π̃ � Λ)(f)Tη‖
‖η‖

>
(‖(π � U)(f)‖ − ε

2 ) μ(K)1/p

(1 + δ)μ(K)1/p

=
‖(π � U)(f)‖ − ε

‖(π � U)(f)‖ − ε
2

·
(
‖(π × U)(f)‖ − ε

2

)

= ‖(π � U)(f)‖ − ε,

establishing (3.1).
Now, Eq. (3.1) together with

‖T−1(π̃ � Λ)(f)T‖ ≤ ‖T−1‖‖(π̃ � Λ)(f)‖‖T‖ ≤ ‖U‖2‖(π̃ � Λ)(f)‖,

gives

‖(π̃ � Λ)(f)‖ >
1

‖U‖2
(‖(π � U)(f)‖ − ε).

By the arbitrariness of ε, we have

‖(π̃ � Λ)(f)‖ ≥ 1
‖U‖2

‖(π � U)(f)‖,

as desired. �

Theorem 3.3. Let (A,G, α) be a Banach algebra dynamical system. Let R be
a non-empty uniformly bounded class of continuous covariant representations
of (A,G, α) and suppose that sup{‖Ur‖ : (π,U) ∈ R, r ∈ G} < ∞. Let Θ be a
non-empty subset of [1,∞)R. Let R̃(Θ) be the uniformly bounded class of reg-
ular representations of (A,G, α) associated with R and Θ. If G is amenable,
then (A �α G)R∪R̃(Θ) and (A �α G)R̃(Θ) are isomorphic.

Proof. Let f be in Cc(G,A). Obviously σR∪R̃(Θ)(f)=max{σR(f), σR̃(Θ)(f)}.
By Theorem 3.2, we have

1
M2

σR∪R̃(Θ)(f) ≤ σR̃(Θ)(f) ≤ σR∪R̃(Θ)(f),

where M = sup{‖Ur‖ : (π,U) ∈ R, r ∈ G}. So ker σR̃(Θ) = ker σR∪R̃(Θ) and
the norms ‖ · ‖R̃(Θ) and ‖ · ‖R∪R̃(Θ) are equivalent on Cc(G,A)/ ker σR̃(Θ).

Thus, by the definition of the crossed product, (A �α G)R∪R̃(Θ) and (A �α

G)R̃(Θ) are isomorphic. �

For a C∗-algebra dynamical system (B,G, α) and a covariant represen-
tation (π,U) of (B,G, α) on a Hilbert space, we know that αt is an isometry
for each t ∈ G, ‖π‖ ≤ 1 and Ut is an isometry for each t ∈ G. The following
is a natural generalization of Takai’s result in [11] on C∗-algebra dynamical
systems to Banach algebra dynamical systems.
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Theorem 3.4. Let (A,G, α) be a Banach algebra dynamical system, where G
is amenable. For C > 0, let RC,iso denote the set of all continuous covariant
representations (π,U) of (A,G, α) on Banach spaces such that ‖π‖ ≤ C and
Ut is an isometry for each t ∈ G. Let Θ be a non-empty subset of [1,∞)RC,iso

and let R̃C,iso(Θ) be the class of regular representations of (A,G, α) associated
with RC,iso and Θ. Then the crossed product (A �α G)RC,iso and the reduced
crossed product (A �α G)R̃C,iso(Θ) are isometrically isomorphic.

Proof. By the hypothesis,

sup{‖Ut‖ : (π,U) ∈ RC,iso, t ∈ G} = 1.

This together with Lemma 2.2 implies that R̃C,iso(Θ) ⊆ RC,iso. Hence by
Theorem 3.2, we have

σRC,iso(f) ≤ σR̃C,iso(Θ)(f) ≤ σRC,iso(f)

for all f ∈ Cc(G,A). So, ker σR̃C,iso(Θ) = ker σRC,iso and ‖ · ‖R̃C,iso(Θ) =
‖ · ‖RC,iso on Cc(G,A)/ ker σRC,iso . By the definitions, (A �α G)RC,iso and
(A �α G)R̃C,iso(Θ) are isometrically isomorphic. �

We remark that a similar result was established in [7] for special cases.
A Banach algebra dynamical system (A,G, α) is called isometric if αt is
an isometry for each t ∈ G. Given an isometric Banach algebra dynamical
system (A,G, α), Li and Xu [7] define the crossed product A �α G to be
our (A �α G)R1,iso for which R1,iso is the class of all continuous covariant
representations (π,U) of (A,G, α) on Banach spaces such that ‖π‖ ≤ 1 and
Ut is an isometry for each t ∈ G. Also, they define the reduced crossed product
A �α,r G to be (A �α G)R̃con for which

R̃con =
⋃

1≤p<∞
{(π̃,Λ)p : π is a contractive representations of A},

where (π̃,Λ)p denotes the regular covariant representation of (A,G, α) on
Lp(G,X) associated with the contractive representations π of A on the Ba-
nach space X. When G is compact, Li and Xu showed that A �α G and
A �α,r G are isometrically isomorphic [7, Theorem 5.1].

We observe that [7, Theorem 5.1] is a consequence of Theorem 3.2 and
also holds when G is amenable. To see this, let Θ be a non-empty subset of
[1,∞)R1,iso . In general, A �α,r G does not coincide with (A �α G)R̃1,iso(Θ).
However, when G is amenable, by Theorem 3.2 and noting R̃1,iso(Θ) ⊆
R̃con ⊆ R1,iso,

σR1,iso(f) ≤ σR̃1,iso(Θ)(f) ≤ σR̃con(f) ≤ σR1,iso(f)

for all f ∈ Cc(G,A), which implies that A �α,r G = (A �α G)R̃1,iso(Θ) =
A �α G.
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