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1. Introduction

For a real number p ∈ (1,∞) and a bounded domain Ω ⊂ R
n, the eigenvalue

problem for the p-Laplacian

Δp(u) := div
(
|∇u|p−2 ∇u

)
(1.1)

is given by
− Δp(u) = λ|u|p−2u. (1.2)

Aside from being a generalization of the eigenvalue problem for the Lapla-
cian, problem (1.2) can be viewed as the Euler–Lagrange equation for the
optimization problem

inf
0 �=u∈W 1,p

0 (Ω)

‖|∇u|‖p

‖u‖p
; (1.3)

indeed, the Fréchet derivative of the norm

u −→ ‖|∇u|‖p (1.4)

on the Sobolev space W 1,p
0 (Ω) is given by

(grad ‖f‖p)(x) =
|f(x)|p−2f(x)

‖f‖p−1
p

. (1.5)

The reader is referred to [3] for a more general treatment of such problems.
With the introduction of variable exponents Lebesgue spaces by Kovác̆ik
and Rákosńık ([11]) a frenzy of generalizations to the new setting ensued.
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The tempting natural extension that results from the mere replacement of
p with p(x) in problem (1.2) gives raise to what is best described as the
modular version of the eigenvalue problem. However, due to the lack of ho-
mogeneity in the setting of variable p, the modular version is not even related
to the optimization problem (1.3). The Euler–Lagrange equation for (1.3) in
the variable exponent case relies on Theorem 3.2 (see also [6–8]). In [10],
this alternative eigenvalue problem is presented. In this paper we prove that
the eigenfunctions are stable with respect to the variable exponent p. For
constant p, the question of stability was introduced and answered in [15]:
The methods therein are not suitable for the treatment of the variable expo-
nent case. Corresponding problems for the modular eigenvalue problem were
studied in [12,14].

2. Modulars and Generalized Lebesgue Spaces

Throughout this paper Ω ⊂ R
n, n ≥ 1 will stand for a bounded Lipschitz

domain. In the sequel we will exclusively consider exponents

p : Ω → R , p ∈ C(Ω)

satisfying

1 < p− = inf
Ω

p(x), p+ = sup
Ω

p(x) < ∞;

functions in this class will be referred to as admissible exponents. Denote by
Lp(·)(Ω) the set of all real-valued, Borel measurable functions on Ω for which

ρp(·)(f) :=
∫

Ω

|f(x)|p(x) dx < ∞.

The function ρp is a convex monotone modular on Lp(·)(Ω) and

‖u‖Lp(·)(Ω) := inf
{

λ > 0 : ρp(·)
(u

λ

)
≤ 1

}

defines a norm under which Lp(·)(Ω) is a Banach, reflexive, uniformly con-
vex space (see [17]). It is apparent that the latter coincides with the usual
Lebesgue Lp(Ω) norm when p is constant; accordingly the family

(
Lp(·)(Ω)

)
for varying p will be referred to as the generalized Lebesgue class in Ω. The
generalized Sobolev class in Ω can be defined analogously, namely

W 1,p(·)(Ω) :=
{

u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)
}

endowed with the norm

‖u‖W 1,p(·)(Ω) := ‖u‖Lp(·)(Ω) + ‖|∇u|‖Lp(·)(Ω).

The closure of C∞
0 (Ω) in W 1,p(·)(Ω) will be denoted by W

1,p(·)
0 (Ω) and will

be furnished with the norm

‖v‖
W

1,p(·)
0 (Ω)

:= inf

{
λ > 0 :

∫

Ω

( |∇v(x)|
λ

)p(x)

dx ≤ 1

}
.
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Theorem 2.1. Let p(·) be an admissible exponent. Then the embedding

E : W
1,p(·)
0 (Ω) ↪→ Lp(·)(Ω)

is compact.

Corollary 2.2. (Poincaré’s inequality) There exists a positive constant C such

that for all u ∈
◦

W 1,p(·) (Ω),

‖u‖p(·) ≤ C‖|∇u|‖p(·).

Proof. We refer the reader to [5,8,11] for the details of Theorem 2.1 and its
Corollary. �

We highlight the inequalities

min
{

ρ
1

p+

p(·)(w), ρ
1

p−
p(·)(w)

}
≤ ‖w‖p(·) ≤ max

{
ρ

1
p+

p(·)(w), ρ
1

p−
p(·)(w)

}
(2.1)

valid for any w ∈ Lp(·)(Ω) (see [12]). The estimate of the norm of the embed-
ding Lq(·)(Ω) ↪→ Lp(·)(Ω) resulting from the application of Hölder’s inequality
turns out to be too coarse for the present analysis; we accordingly include
the following version of a more refined estimate first observed in [9, Lemma
4.1], (see also [12]):

Lemma 2.3. For admissible exponents p(·) and q(·) with p < q < p+ ε a.e. in
Ω and a Borel-measurable function f : Ω → R, one has the inequality:∫

Ω

|f(x)|p(x) dx ≤ ε|Ω| + ε−ε

∫

Ω

|f(x)|q(x) dx.

Corollary 2.4. If p(·) and q(·) are as above, then estimate

‖Ep,q‖ ≤ ε−ε + ε|Ω|
holds for the norm ‖Ep,q‖ of the embedding

Ep,q : Lq(·)(Ω) → Lp(·)(Ω).

3. Smoothness Properties of the Variable-Exponent Lebesgue
Norms

In this section we state without proof the smoothness properties of the Lebe-
segue spaces with variable exponents.

Theorem 3.1. Let p(·) be an admissible exponent. The following statements
are equivalent:

(i) Lp(·)(Ω) is reflexive;
(ii) Lp(·)(Ω) and Lp′(·)(Ω) have absolutely continuous norms;
(iii) Lp(·)(Ω) is uniformly convex;

Proof. See [8,17]. �
It is well known (see [8, Lemma 1.1, Theorem 1.2]) that the conditions

in Theorem 3.1 imply that the norm ‖ · ‖p(·) is Fréchet differentiable. The
next result was first obtained in [6,7].
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Theorem 3.2. Let Ω be a bounded open subset of Rn and let p(·) be admissible.
Then for every f ∈ Lp(·)(Ω)\{0},

(grad ‖f‖p(·))(x) =
p(x) ‖f‖−p(x)

p(·) |f(x)|p(x)−1 sgn f(x)
∫
Ω

p(x) ‖f‖−p(x)−1
p(·) |f(x)|p(x)

dx
. (3.1)

Proof. Put

A(x) =
( |f(x)|

‖f‖
)p(x)−1

sgn f(x), B =
∫

Ω

p(x) ‖f‖−p(x)−1
p(·) |f(x)|p(x)

dx.

Thus the right-hand side of (3.1) equals p(x) ‖f‖−1
p(·) A(x)/B. Note that

p−
‖f‖p(·)

=
p−

‖f‖p(·)
ρp

(
f/ ‖f‖p(·)

)
≤ B ≤ p+

‖f‖p(·)
.

Moreover,

ρp′ (A) =
∫

Ω

(
|f(x)|
‖f‖p(·)

)p(x)

dx = 1.

Hence the right-hand side of (3.1) represents an element of Lp′(·)(Ω) ( 1
p + 1

p′ =

1) and so can be identified with an element of the dual of Lp(·)(Ω), the value
of which at f is ‖f‖p . The result follows. �

An immediate consequence of Theorem 3.2 is the following:

Corollary 3.3. The norm on W
1,p(·)
0 (Ω),

u −→ ‖|∇u|‖p(·) = ‖u‖1,p(·)
is Fréchet differentiable with derivative given by

(grad ‖|f |‖1,p(·))(x) =
p(x) ‖|∇f |‖−p(x)

p(·) ||∇f(x)||p(x)−1 sgn ∇f(x)
∫
Ω

p(x) ‖|∇f |‖−p(x)−1
p(·) |∇f(x)|p(x)

dx
.

As it transpires from Theorem 2.1 and Corollary 2.2, there exists (at
least) a function u0 that minimizes the Rayleigh quotient, that is

inf
0 �=v∈

◦
W 1

p(·)(Ω)

‖|∇v|‖p(·)
‖v‖p(·)

=
‖|∇u0|‖p(·)

‖u0‖p(·)
(3.2)

Notice that u0 can be chosen satisfying ‖|∇u0|‖p(·) = 1. As shown in [3] (see
also [8]), each such extremal function satisfies the Euler–Lagrange equation∫

Ω

grad
(‖u0‖1,p(·)

)
(x)∇h(x) dx = λp

∫

Ω

grad
(‖u0‖p(·)

)
(x)h(x) dx, (3.3)

with λp = 1
‖E‖ ,

where E is the embedding given in Theorem 2.1. In what follows we denote
by Ep(·) the eigenvalue problem (that follows from 3.3)

− div
(
|∇u|p(·)−2 ∇u

)
= λp |u|p(·)−2

u (3.4)
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which generalizes the well-known eigenvalue problem for the p-Laplacian.

4. Stability of the Eigenfunctions

In this section we turn to the stability of the eigenvalue problem (3.4) under
perturbation of the exponent p.

Theorem 4.1. Let Ω ⊆ R
n be a bounded domain with a Lipschitz boundary.

Consider a non-decreasing sequence (pj)j ⊆ C(Ω) converging uniformly in Ω
to its supremum q ∈ C(Ω). Assume further that n < q− ≤ q+ < ∞. For each
j ∈ N let uj be the extremal function chosen in (3.2), with ‖|∇uj |‖pj(·) = 1.
Then there exists a subsequence of (pj)j (still denoted by (pj)j) and a function
u ∈ W

1,q(·)
0 (Ω) with

‖|∇u|‖q(·) = 1

that minimizes the Rayleigh quotient (3.2), such that uj ⇀ u in W
1,p1(·)
0 (Ω).

Moreover, if λi and λq denote the first eigenvalues of the problems Epi(·) and
Eq(·) (see 3.3), respectively one has in addition:

λi → λq as i → ∞. (4.1)

In particular, if q− ≥ 2, the following strong convergence holds:

‖|∇uj − ∇u|‖q(·) → 0 as j → ∞. (4.2)

Proof. In view of Lemma 2.3, for j ≤ i it holds that

‖|∇ui|‖pj(·) ≤
(
‖pi − pj‖−‖pi−pj‖∞∞ + ‖pi − pj‖∞|Ω|

)
. (4.3)

Remark. The condition q>n in the above theorem cannot be removed, even
in the case of constant exponent p. In [16] the author constructs a specific
domain for which the theorem fails for a constant exponent p : 1 < p ≤ n.

It follows that the sequence (ui)i≥j is bounded in W
1,pj(·)
0 (Ω). By virtue

of the compactness result in Theorem 2.1, the sequence (ui)i≥j can be as-
sumed to be weakly convergent in W

1,pj(·)
0 (Ω). A straightforward argument

yields the validity of the assumption that (ui)i is weakly convergent (in
W 1,pj(·)(Ω)) to

u ∈
∞⋂
1

W 1,pj(·)(Ω).

Next, we show that actually

u ∈ W 1,q(·)(Ω) and ‖|∇u|‖q(·) ≤ 1; (4.4)

in fact, by definition and in view of the inequalities given in (2.1), assertion
(4.4) is an automatic consequence the next Lemma:

Lemma 4.2. For u as in the previous paragraph,∫

Ω

|∇u|q ≤ 1 (4.5)



250 J. Lang and O. Méndez IEOT

Proof. For any admissible exponent r, the functional

Fr : W
1,r(·)
0 (Ω) −→ [0,∞) (4.6)

Fr(v) =
∫

Ω

|∇v|r (4.7)

is weakly-lower semicontinuous; this fact in conjunction with Fatou’s Lemma
and Lemma 2.3 yields∫

Ω

|∇u|q ≤ lim inf
k

∫

Ω

|∇u|pk ≤ lim inf
k

lim inf
j

∫

Ω

|∇uj |pk (4.8)

≤ lim inf
k

lim inf
j

(
‖pk − pj‖−‖pk−pj‖∞∞ + ‖pk − pj‖∞|Ω|

)
,

from which (4.5) is an immediate consequence, since pi → q uniformly in
Ω. �

Next, we address the minimality of the Rayleigh quotient for u. Let
v ∈ W

1,q(·)
0 (Ω) with ‖|∇v|‖q(·) ≤ 1; furthermore take (vk)k ⊂ C∞

0 (Ω) with

vk → v and ∇vk → ∇v in Lq(·)(Ω).

For each fixed k ∈ N, we underline the convergence statements (which follow
directly from Lebesgue’s dominated convergence theorem) for fixed k, one
has ∫

Ω

|vk|pi →
∫

Ω

|vk|q

as i → ∞ and ∫

Ω

|∇vk|pi →
∫

Ω

|∇vk|q as i → ∞. (4.9)

A straightforward calculation shows that this implies

‖vk‖pi(·) → ‖vk‖q(·)
and

‖|∇vk|‖pi(·) → ‖|∇vk|‖q(·)
as i → ∞.
On the other hand, the sequence (ui)i ⊂ Lp(·)(Ω) can be considered to con-
verge to u a.e.; accordingly and using the fact that q− > n, which in particular
implies

‖ui‖∞ ≤ C

for some positive constant C, independent of i, it follows that∫

Ω

|ui|pi →
∫

Ω

|u|q as i → ∞, (4.10)

which immediately yields

‖ui‖pi(·) → ‖u‖q(·) as i → ∞. (4.11)

As a byproduct of (4.11) one has assertion (4.1):

λi =
1

‖ui‖pi(·)
→ 1

‖u‖q(·)
as i → ∞.
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Hence, for fixed ε > 0 and i ∈ N large enough, the minimal character of ui

yields
‖vk‖q(·)

‖|∇vk|‖q(·)
≤ ‖vk‖pi(·)

‖|∇vk|‖pi(·)
+ ε ≤ ‖ui‖pi(·) + ε. (4.12)

Letting i → ∞ in (4.12) it follows that

‖vk‖q(·)
‖|∇vk|‖q(·)

≤ ‖u‖q(·) (4.13)

and letting k → ∞ in (4.13)

‖v‖q(·)
‖|∇v|‖q(·)

≤ ‖u‖q(·). (4.14)

In particular, since ‖|∇u|‖q(·) ≤ 1, one can set u = v in the preceding in-
equality to get

‖|∇u|‖q(·) ≥ 1;

in all
‖|∇u|‖q(·) = 1. (4.15)

We now turn to the proof of (4.2). Invoking the weak-lower semiconti-
nuity of the functional (4.6) it is clear that
∫

Ω

|∇u|pk ≤ lim inf
j

∫

Ω

∣∣∣∣
∇(u + uj)

2

∣∣∣∣
pk

(4.16)

≤ lim inf
j

(
‖pk−pj‖−‖pk−pj‖∞∞

∫

Ω

∣∣∣∣
∇(u + uj)

2

∣∣∣∣
pj

+‖pk−pj‖∞|Ω|
)

.

Convexity yields
∫

Ω

∣∣∣∣
∇(u + uj)

2

∣∣∣∣
pj

≤ 1
2

∫

Ω

|∇u|pj +
1
2

∫

Ω

|∇uj |pj =
1
2

∫

Ω

|∇u|pj +
1
2
, (4.17)

Lebesgue’s dominated convergence theorem implies furthermore

lim
j→∞

∫

Ω

|∇u|pj =
∫

Ω

|∇u|q ≤ 1. (4.18)

In all

lim inf
j

∫

Ω

∣∣∣∣
∇(u + uj)

2

∣∣∣∣
pj

≤ 1. (4.19)

For an arbitrary δ > 0, let I be so large that the conditions j ≥ I, k ≥ I
imply

‖pk − pj‖−‖pj−pk‖∞∞ < 1 + δ , ‖pk − pj‖∞|Ω| < δ

and

lim inf
j

∫

Ω

∣∣∣∣
∇(u + uj)

2

∣∣∣∣
pj

< δ + inf
j≥I

∫

Ω

∣∣∣∣
∇(u + uj)

2

∣∣∣∣
pj

, (4.20)

then, by virtue of (4.16), if j, k ≥ I:
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∫

Ω

|∇u|pk ≤
(

(1 + δ)
∫

Ω

∣∣∣∣
∇(u + uj)

2

∣∣∣∣
pj

+ δ

)
(4.21)

≤ (1 + δ)
(

1
2

∫

Ω

|∇u|pj +
1
2

∫

Ω

|∇uj |pj

)
+ δ.

The precedding inequality together with (4.19) yields

lim
j

∫

Ω

∣∣∣∣
∇(u + uj)

2

∣∣∣∣
pj

= 1. (4.22)

Using Clarkson’s inequality one gets∫

Ω

∣∣∣∣
∇u + ∇uj

2

∣∣∣∣
pj

+
∫

Ω

∣∣∣∣
∇u − ∇uj

2

∣∣∣∣
pj

≤ 1
2

∫

Ω

|∇u|pj +
1
2

∫

Ω

|∇uj |pj ; (4.23)

in conjunction with (4.22) , inequality (4.23) yields

lim
j

∫

Ω

∣∣∣∣
∇u − ∇uj

2

∣∣∣∣
pj

= 0,

which by virtue of (2.1) implies (4.2). �
We next investigate the spectral variation under the assumption of a

non-increasing sequence of variable exponents.

Theorem 4.3. Let Ω ⊂ Rn, be a bounded,Lipschitz domain. Consider a non-
increasing sequence (pj) ⊂ C(Ω) uniformly convergent in Ω to its infimum
p = infj pj; assume 1 < p− ≤ p+ < ∞. Let λi and λp denote respectively the
first eigenvalues of the problems Epi(·) and Ep(·). Let ui be an eigenfunction
corresponding to λi. Then, there exists u ∈ W

1,p(·)
0 (Ω) such that

uj ⇀ u in W
1,p(·)
0 (Ω) and uj → u strongly in Lp(·)(Ω).

In addition, it holds that

λi → λp, as i → ∞. (4.24)

In particular, if p− ≥ 2, the following strong convergence holds:

‖|∇uj − ∇u|‖q(·) → 0 as j → ∞. (4.25)

Proof. As was shown above (see 3.2), for each i ∈ N the function ui ∈
W

1,pi(·)
0 (Ω) that minimizes the ith-Rayleigh quotient can be chosen so that

‖ui‖pi(·) = 1, that is:

‖|∇ui|‖pi(·)
‖ui‖pi(·)

= inf
0 �=v∈

◦
W 1

pi(·)(Ω)

‖|∇v|‖pi(·)
‖v‖pi(·)

. (4.26)

We distinguish three mutually exclusive cases, namely n ≤ p−, p− < n ≤ p+

and p+ < n.
To address the case p+ < n, we observe than under this condition, one

has in Ω, np
n−p >

p2
−

n−p+
. It follows that uniformly in Ω,

p +
p2

−
n − p+

<
np

n − p
.

Select I ∈ N such that i ≥ I implies pi < p + p2
−

n−p+
uniformly in Ω.
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Sobolev’s embedding theorem yields the existence of u ∈ L
np

n−p (Ω) such
that ui ⇀ u in W

1,p(·)
0 (Ω) and ui → u strongly in L

np
n−p (Ω); moreover, since

the unit ball is weakly compact in W
1,p(·)
0 (Ω),

‖|∇u|‖p(·) ≤ 1.

A straightforward application of Lebesgue’s dominated convergence theorem
yields ∫

Ω

|u|pi →
∫

Ω

|u|p as i → ∞,

which readily implies

‖u‖pi(·) → ‖u‖p(·) as i → ∞.

For I ≤ i ∈ N it holds the inclusion

L
np

n−p (Ω) ↪→ Lpi(Ω).

Thus, provided i ≥ I:

‖ui‖pi(·) ≤ ‖ui − u‖pi(·) + ‖u‖pi(·). (4.27)

Select v ∈ W
1,p(·)
0 (Ω) with ‖|∇v|‖p(·) = 1 and a sequence (vk)k ⊂ C∞

0 (Ω) with
vk → v in Lp(·)(Ω) and ∇vk → ∇v in Lp(·)(Ω). It is clear from Lebesgue’s
dominated convergence theorem that as i → ∞,∫

Ω

|vk|pi −→
∫

Ω

|vk|p

and ∫

Ω

|∇vk|pi −→
∫

Ω

|∇vk|p.

It is readily concluded that as i → ∞,

‖vk‖pi(·) → ‖vk‖p(·)

and

‖∇vk‖pi(·) → ‖∇vk‖p(·)

Therefore, for a given ε > 0 and k large enough,

‖|∇v|‖p(·)
‖v‖p(·)

≥ ‖|∇vk|‖p(·)
‖vk‖p(·)

− ε ≥ ‖|∇vk|‖pi(·)
‖vk‖pi(·)

− ε

≥ ‖|∇ui|‖pi(·)
‖ui‖pi(·)

− ε =
1

‖ui‖pi(·)
− ε; (4.28)

the latter in conjunction with (4.27) implies

‖|∇v|‖p(·)
‖v‖p(·)

≥ 1
‖ui − u‖pi(·) + ‖u‖pi(·)

+ ε; (4.29)

in all
‖|∇v|‖p(·)

‖v‖p(·)
≥ 1

‖u‖p(·)
. (4.30)
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In particular, (4.30) holds for v = u, which immediately yields

‖|∇u|‖p(·) ≥ 1.

In all, the limit function u minimizes the Rayleigh quotient, i.e, (3.2) is valid
taking u = u0.

Consider now the second case, namely n ∈ (p−, p+]. As in the previous
instance, a straightforward application of Sobolev’s embedding theorem yields
u ∈ W

1,p(·)
0 (Ω) and a subsequence (ui)i convergent to u weakly in W

1,p(·)
0 (Ω)

and strongly in Lp(·)(Ω). Our first order of business will be to show that
u ∈ LpI (Ω) for some I ∈ N. To that effect we start by considering the
function

S : [1, n) −→
[

n

n − 1
,∞

)
, S(x) =

nx

n − x
.

Select positive numbers δ, ε satisfying the conditions

ε < min
{

1
n − 1

,
p2

−
n − p−

}
, p− − δ > 1 and n + δ <

n(n − δ)
δ

. (4.31)

Set q1 = pp − δ , r1 = S−1 (S(q1) + ε)), choose q2 ∈ (q1, r1) and r2 =
S−1 (S(q2) + ε)). For j ≥ 3, let qj ∈ (rj−2, rj−1) and

rj = S−1 (S(qj) + ε)) .

It is clear that

rj −→ n as j −→ ∞;

let rM be the first term in the sequence that exceeds n − δ. The collection
{
p−1 ((qj , rj)) , j = 1, 2, . . . ,M

} ⋃
(4.32)

{
p−1 ((qM , rM )) , p−1 ((n − δ, n + δ)) , p−1

(
(n +

δ

2
,∞),

)}

is an open covering of Ω; for the sake of notational uniformity let’s establish
the following convention:

qM+1 = n − δ , rM+1 = n + δ , qM+2 = n +
δ

2
, rM+2 = ∞

and

Ωk = p−1((qk, rk)).

Let (ϕk)1≤k≤M+2 be a (smooth) partition of unity subordinated to the cov-
ering (Ωk)k. For each j = 1, 2, . . . ,M + 2 the sequence (uiϕj)i converges in
Lp(·)(Ω) to uϕj . Moreover,

(uiϕj)i ⊂ W
1,qj

0 (Ω)

and

‖uiϕj‖1,qj ,Ω ≤ C

for a positive constant C independent of i. Because of the compactness of the
embedding

W
1,qj

0 (Ω) ↪→ L
nqj

n−qj (Ω)
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it follows that without loss of generality that for each j = 1, 2, . . . , M ,

(uiϕj)i

can be considered to be convergent in L
nqj

n−qj (Ω), say to v. Clearly, v is sup-
ported in Ωj and denoting by χk the indicator function of Ωk, one has

pχj ≤ nqj

n − qj
. (4.33)

Thus, v ∈ Lp(·)(Ω), since
∫

Ω

|v|p =
∫

Ω

|v|pχj ≤ (‖v‖pχj

)α ≤ C

(
‖v‖ nqj

n−qj

)α

< ∞ (4.34)

for some α independent of i, hence∫

Ω

|uiϕj − v|p =
∫

Ω

|uiϕj − v|pχj ≤ (‖uiϕj − v‖pχj

)α ≤ C‖uiϕj − v‖ nqj
n−qj

.

It follows that v = uϕj ∈ L
nqj

n−qj (Ω).
Likewise, since for any w ∈ W

1,p(·)
0 (Ω) one has

1 =
∫

Ω

∣∣∣∣
∇(wϕM+1)

‖∇(wϕM+1)‖p(·)

∣∣∣∣
p

=
∫

Ω

∣∣∣∣
∇(wϕM+1)

‖∇(wϕM+1)‖p(·)

∣∣∣∣
pχM+1

and

qM+1 < pχM+1 < rM+1 <
nrM+1

n − rM+1
− ε =

nqM+1

n − qM+1

it follows that

‖∇(wϕM+1)‖qM+1(·) ≤ C‖∇(wϕM+1)‖χM+1p(·) ≤ C‖∇(wϕM+1)‖p(·).

Thus, for some positive constant C independent of i,

‖uiϕM+1‖1,n−δ,Ω ≤ C,

whence (uiϕM+1)i can be considered to converge strongly in

L
n(n−δ)

δ (Ω) ↪→ Ln+δ(Ω).

As in (4.34), a straightforward calculation shows that

v ∈ Lp(·)(Ω);

consequently

v = uϕM+1 ∈ L
n(n−δ)

δ (Ω).

Along the same lines it can be readily shown that

uϕM+2 ∈ C(Ω).

Let I ∈ N be large enough so that uniformly in Ω,

pI < p +
1
2

min
{

nqj

n − qj
− pχj , j = 1, 2, . . . M + 1

}
.

Then, for i = 1, 2, . . . ,M + 2

uϕj ∈ LpI(·)(Ω),
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in all:

u =
M+2∑
j=1

uϕj ∈ LpI(·)(Ω).

Next, we observe that for i ≥ I,

‖ui‖pi(·) ≤ ‖ui − u‖pi(·) + ‖u‖pi(·). (4.35)

Since

‖ui − u‖pi(·) −→ 0 as i −→ ∞
and

‖u‖pi(·) −→ ‖u‖p(·) as i −→ ∞,

letting i → ∞ in (4.35) one has

‖ui‖pi(·) −→ ‖u‖p(·) as i −→ ∞. (4.36)

Next, the argument following (4.27) shows that u satisfies the required min-
imization property and that

‖|∇u|‖p(·) = 1.

Finally, (4.36) is obviously valid if one assumes n ≤ p−, for then the inclusion
W 1,p

0 (Ω) ↪→ C(Ω) is compact and in this setting, convergence statements refer
to uniform convergence in Ω. The strong convergence (4.25) is obtained along
the same lines as the corresponding part of Theorem 4.1. This last observation
ends the proof of Theorem 4.3. �
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spaces with variable exponents, Lecture notes in Mathematics, vol.
2017. Springer, Heidelberg (2011)

[6] Dinca, G., Matei, P.: Geometry of Sobolev spaces with variable expo-
nent: Smoothness and uniform convexity. C. R. Math. Acad. Sci. Paris Ser.
I 347, 885–889 (2009)

[7] Dinca, G., Matei, P.: Geometry of Sobolev spaces with variable exponent and
a generalization of the p-Laplacian. Anal. Appl. 7(4), 373–390 (2009)

[8] Edmunds, D., Lang, J., Méndez, O.: Differential operators on spaces of variable
integrability. World Scientific, Singapore (2015)

[9] Edmunds, D., Lang, J., Nekvinda, A.: Some s−numbers of an integral operator

of Hardy type on Lp(·) spaces. J. Funct. Anal. 257, 219–242 (2009)



Vol. 85 (2016) Stability of Eigenfunctions 257

[10] Franzina, G., Lindqvist, P.: An eigenvalue problem with variable expo-
nents. Nonlinear Anal. Appl. 85, 1–16 (2013)
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