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Abstract. We consider compact Hankel operators realized in �2(Z+) as
infinite matrices Γ with matrix elements h(j + k). Roughly speaking,
we show that, for all α > 0, the singular values sn of Γ satisfy the
bound sn = O(n−α) as n → ∞ provided h(j) = O(j−1(log j)−α) as
j → ∞. These estimates on sn are sharp in the power scale of α. Similar
results are obtained for Hankel operators Γ realized in L2(R+) as integral
operators with kernels h(t + s). In this case the estimates of singular
values of Γ are determined by the behavior of h(t) as t → 0 and as
t → ∞.
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1. Introduction

1.1. Basic Notions

The theory of Hankel operators exists in two representations: discrete and
continuous. In the discrete representation, one starts with a sequence of com-
plex numbers {h(j)}∞

j=0, and one formally defines the Hankel operator Γ(h)
in �2(Z+) as the “infinite matrix” {h(j + k)}∞

j,k=0, i.e.

(Γ(h)u)(j) =
∞∑

k=0

h(j + k)u(k), u = (u(0), u(1), . . .). (1.1)

The Nehari theorem says that the Hankel operator Γ(h) is bounded on �2(Z+)
if and only if the symbol of Γ(h), defined by

ω(μ) =
∞∑

j=0

h(j)μj , |μ| = 1, (1.2)

belongs to the class BMO(T) of functions of the bounded mean oscillation on
the unit circle T. A simple sufficient condition for the boundedness of Γ(h)
is the estimate h(j) = O(j−1) as j → ∞.
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In the continuous representation, one starts with a function h∈L1
loc(R+)

(R+ = (0,∞)), and the integral Hankel operator Γ(h) in L2(R+) with the
kernel h is given by the formula

(Γ(h)u)(t) =
∫ ∞

0

h(t + s)u(s)ds. (1.3)

Similarly to the discrete case, the Hankel operator Γ(h) is bounded on L2(R+)
if and only if the corresponding symbol (i.e. the Fourier transform of h under-
stood in the sense of distributions) belongs to the class BMO(R). A simple
sufficient condition for the boundedness of Γ(h) is the estimate

|h(t)| ≤ C/t, t > 0.

Throughout the paper, we will use the boldface font for objects associated
with the continuous representation.

1.2. A Conjecture

Let ω be the symbol (1.2) of a Hankel operator Γ(h), and let Sp be the
Schatten class of compact operators (see Sect. 1.4). V. Peller has shown that

Γ(h) ∈ Sp ⇔ ω ∈ B1/p
pp (T), p > 0, (1.4)

where B
1/p
pp (T) is the Besov space; see the book [7] for the proof, the history

and references to the relevant papers of other authors. By using the real inter-
polation between Besov spaces, V. Peller has deduced from (1.4) a necessary
and sufficient condition (given by the finiteness of the expression (4.3)) for
the estimate

sn(Γ(h)) = O(n−α), n → ∞, α > 0, (1.5)

for the singular values of Γ(h); we refer again to the book [7] for the details.
This condition is stated in terms of the inclusion of ω into a certain function
class of the Besov-Lorentz type denoted in [7, Sect. 6.5] by B

1/p
p,∞ where

p = 1/α. Similar results exist in the continuous case.
Our aim here is to give a simple sufficient condition for (1.5) directly in

terms of the sequence h(j). It is expected that the faster rate of convergence
h(j) → 0 as j → ∞ implies the faster rate of convergence of the singular
values sn(Γ(h)) → 0 as n → ∞. We show that the correct condition on the
decay of h(j) is given in the logarithmic scale. To be more precise, we discuss
the following
Conjecture

h(j) = O(j−1(log j)−α) ⇒ sn(Γ(h)) = O(n−α), α > 0. (1.6)

Let us consider two special cases that motivate this conjecture.
(i) α = 0. It is well known (see, e.g., [7]) that the Hankel operator Γ(h)

(the Hilbert matrix) corresponding to the sequence

h(j) =
1

j + 1
, j ≥ 0, (1.7)
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is bounded (but not compact). It follows that

h(j) = O(1/j), j → ∞ ⇒ Γ(h) ∈ B (1.8)

(B is the class of bounded operators).
(ii) α > 1/2. A Hankel operator Γ belongs to the Hilbert-Schmidt class

S2 if and only if
∞∑

n=1

sn(Γ(h))2 =
∞∑

j=0

(j + 1)|h(j)|2 < ∞. (1.9)

Obviously, the series in the r.h.s. converges if h(j) = O(j−1(log j)−α) for
some α > 1/2, and the series in the l.h.s. converges if sn(Γ(h)) = O(n−α) for
some α > 1/2.

The main purpose of this paper is to show that the above conjecture
is partially true. More precisely, we prove that the conjecture is true for
α < 1/2; for α ≥ 1/2, we prove that the conclusion of (1.6) becomes true
if we assume that the sequence h(j) behaves sufficiently regularly, i.e. if we
impose appropriate additional assumptions on the sequence of differences
h(j + 1) − h(j) and on its higher order iterates. We also obtain analogous
results in the continuous case. Precise statements are given in Sect. 2.

Let us comment on the proofs. For α ≥ 1/2 we deduce our results from
Peller’s necessary and sufficient condition ω ∈ B

1/p
p,∞ for the estimate (1.5).

For α < 1/2 our approach is more direct and relies on the real interpolation
between the cases (i) and (ii) (where α is arbitrarily close to 1/2) mentioned
above.

1.3. Discussion

To a large extent, our aim is to provide technical tools for [8], where we
study the asymptotic behavior of eigenvalues of compact self-adjoint Hankel
operators. In particular, in [8] we show that for the sequence

h(j) = j−1(log j)−α, j ≥ 2, α > 0, (1.10)

the asymptotics

sn(Γ(h)) = v(α)n−α + o(n−α), n → ∞, (1.11)

holds with the explicit constant v(α) given by

v(α) = 2−απ1−2α
(
B

(
1
2α , 1

2

))α
, (1.12)

where B(·, ·) is the standard Beta function. Clearly, (1.10), (1.11) show that
the exponent α in the right-hand side of (1.6) is optimal in the class of Hankel
operators we consider.

Our sufficient condition for (1.5) in terms of the sequence h is quite
explicit. However, it is far from being necessary because we do not take
into account possible oscillations of h(j). In order to illustrate this point,
let us observe that in the limit α → 0 our results reduce to the well-known
implication (1.8). There are many sequences that fail to satisfy h(j) = O(j−1)
but such that Γ(h) ∈ B. Consider, for example, h(j) = n−2 for j = n4, n ∈ N,
and h(j) = 0 otherwise. Obviously, the estimate h(j) = O(j−1) fails, but the
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symbol (1.2) is bounded in the unit disc and hence Γ(h) ∈ B by the Nehari
theorem.

1.4. Schatten Classes

Let us recall some basic information on ideals of compact operators in a
Hilbert space (see the books [2,5]). We denote by B the set of all bounded
operators, ‖·‖ is the operator norm; S∞ is the set of all compact operators.
Let {sn(Γ)}∞

n=1 be the non-increasing sequence of singular values of Γ ∈ S∞
(i.e. the eigenvalues of

√
Γ∗Γ). For p > 0, the Schatten class Sp and the weak

Schatten class Sp,∞ of compact operators are defined by the conditions

Γ ∈ Sp ⇔ ‖Γ‖p
Sp

:=
∞∑

n=1

sn(Γ)p < ∞

and

Γ ∈ Sp,∞ ⇔ ‖Γ‖Sp,∞ := sup
n≥1

n1/psn(Γ) < ∞.

The classes Sp and Sp,∞ are the ideals of the algebra B with the quasi-norms
‖·‖Sp

and ‖·‖Sp,∞ . The class S0
p,∞ is the closed linear subspace of Sp,∞ defined

by

Γ ∈ S0
p,∞ ⇔ lim

n→∞ n1/psn(Γ) = 0.

Equivalently, S0
p,∞ may be defined as the closure of the set of all finite rank

operators in the quasi-norm ‖·‖Sp,∞ . We have

Sp ⊂ S0
p,∞ ⊂ Sp,∞ ⊂ S∞.

1.5. Plan of the Paper

We state our main results in Sect. 2. Their proofs are given in Sects. 3 and 4
for the continuous and discrete cases, respectively. It is convenient to start the
proofs with the continuous case because integration by parts is more visual
than the corresponding procedure (the Abel transformation for series) in the
discrete case.

Throughout the rest of the paper, C (possibly with indices) denotes
constants in estimates, and the value of C may change from line to line.
Notation |X| means the Lebesgue measure of the set X ⊂ T or of X ⊂ R. We
make a standing assumption that the exponents p > 0 and α > 0 are related
by α = 1/p.

2. Main Results

2.1. Discrete Representation

Let the Hankel operator Γ(h) be defined by formula (1.1) in the space �2(Z+).
First we justify the conjecture (1.6) for α < 1/2. This case turns out to be
significantly simpler. Here p > 2 and Sp,∞ �⊂ S2.
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Theorem 2.1. Let α < 1/2 and let {h(j)}∞
j=0 be a sequence of complex num-

bers such that
h(j) = O(j−1(log j)−α), j → ∞. (2.1)

Then the singular values of the corresponding Hankel operator Γ(h) satisfy
the estimate

sn(Γ(h)) = O(n−α), n → ∞. (2.2)
Moreover, there is a constant C(α) such that

‖Γ(h)‖Sp,∞ ≤ C(α) sup
j≥0

(j + 1)(log(j + 2))α|h(j)|, p = 1/α.

Next, consider the case α ≥ 1/2. Here, besides (2.1), we require some
additional assumptions. For a sequence h, we denote by h(m), m = 0, 1, 2, . . .
the sequences of iterated differences. Those are the sequences defined itera-
tively by setting h(0)(j) = h(j) and

h(m)(j) = h(m−1)(j + 1) − h(m−1)(j), j ≥ 0.

The number of times we need to iterate will be determined by the integer

M(α) =

{
[α] + 1, if α ≥ 1/2,

0, if α < 1/2,
(2.3)

where [α] = max{m ∈ Z+ : m ≤ α}. We observe that if a sequence h is given
explicitly by h(j) = j−1(log j)−α for all sufficiently large j, then it satisfies

h(m)(j) = O(j−1−m(log j)−α), j → ∞, (2.4)

for all m ≥ 0.
The following result includes Theorem 2.1 as a particular case.

Theorem 2.2. Let α > 0, and let M = M(α) be defined by (2.3). Let h be
a sequence of complex numbers that satisfies (2.4) for all m = 0, 1, . . . ,M .
Then the estimate (2.2) holds, and there is a constant C(α) such that

‖Γ(h)‖Sp,∞ ≤ C(α)
M∑

m=0

sup
j≥0

(j + 1)1+m(log(j + 2))α|h(m)(j)|, p = 1/α.

(2.5)

Theorem 2.3. If (2.2) holds with o instead of O for all m = 0, 1, . . . , M , then
we have

sn(Γ(h)) = o(n−α), n → ∞. (2.6)

Theorems 2.1, 2.2 and 2.3 are proven in Sect. 4. As was already men-
tioned, Theorem 2.1 admits a direct proof based on the real interpolation
between the cases Γ(h) ∈ S2 and Γ(h) ∈ B. In the proof of Theorem 2.2,
we proceed from the results of [7] which give necessary and sufficient condi-
tions for Γ(h) ∈ Sp and hence for Γ(h) ∈ Sp,∞ in terms of the symbol (1.2)
of this operator. We prove that under the hypothesis of Theorem 2.2, such
conditions are satisfied. Theorem 2.3 is deduced from Theorem 2.2 by simple
approximation arguments.

Remark 2.4. 1. As already mentioned above, relations (1.10) and (1.11)
show that the exponent α in (2.2) is optimal.
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2. Theorem 2.2 is false if no conditions on the iterated differences h(m)(j)
are imposed. Further, while our condition on the exponent M(α) is
probably not optimal, it is not far from being so. Indeed, Example 4.7
shows that, for α ≥ 2, one cannot take M(α) = [α] − 2 in Theorem 2.2.
The same example shows that for α > 1 one cannot take M(α) = 0.
Probably, it is also impossible for α ∈ [1/2, 1], but we do to have the
corresponding counter-example.

3. Some sufficient conditions for the inclusion Γ(h) ∈ S1, stated in terms
of the sequences h, h(1) and h(2) were found in [3]. They are similar in
spirit to Theorem 2.2.

4. If h(j) = O(j−γ) for some γ > 1 as j → ∞ and if some conditions on the
iterated differences h(m)(j) are satisfied, then one can expect that the
singular values sn(Γ(h)) decay faster than any power of n−1 as n → ∞.
In fact, H. Widom showed in [9] that for h(j) = (j + 1)−γ , γ > 1, the
corresponding Hankel operator Γ(h) is non-negative and its eigenvalues
converge to zero as

λ+
n (Γ(h)) = exp

(
−π

√
2γn + o(

√
n)

)
, n → ∞.

Some additional results in this direction were obtained in [6].

If a sequence h(j) satisfies (2.4) for m = 0 and if ζ ∈ T, then the
sequence ζjh(j) satisfies the same condition; but for m > 0 this implication
is no longer true. Nevertheless we have the following simple generalization of
Theorems 2.2 and 2.3.

Theorem 2.5. Let the sequences h1, h2, . . . , hL satisfy the hypothesis of Theo-
rem 2.2 (resp. Theorem 2.3), and let ζ� ∈ T, � = 1, . . . , L. Then the estimate
(2.2) (resp. (2.6)) holds true for the Hankel operator Γ(h) corresponding to
the sequence

h(j) =
L∑

�=1

ζj
� h�(j), ζ� ∈ T. (2.7)

Proof. For a sequence h and for ζ ∈ T, we denote by qζ the sequence qζ(j) =
ζjh(j). Let Uζ be the unitary operator in �2(Z+) given by

(Uζf)(j) = ζjf(j), j ≥ 0.

By inspection we have
Γ(qζ) = UζΓ(h)Uζ (2.8)

and therefore sn(Γ(qζ)) = sn(Γ(h)) for all n.
Since the classes S0

p,∞ and Sp,∞ are linear spaces, the estimate (2.2)
(resp. (2.6)) for the operators Γ(h�) extends to the sum

Γ(h) =
L∑

�=1

Uζ�
Γ(h�)Uζ�

.

This concludes the proof. �
Of course, instead of a finite sum in (2.7) one can consider infinite series

or integrals.
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2.2. Continuous Representation

Now the Hankel operator Γ(h) is defined by formula (1.3) in the space
L2(R+).

In the discrete representation, the spectral properties of Γ(h) are deter-
mined by the asymptotic behaviour of the sequence h(j) as j → ∞. In the
continuous representation, the behaviour of the kernel h(t) for t → 0 and for
t → ∞ as well as the local singularities of h contribute to the spectral proper-
ties of the Hankel operator Γ(h). Therefore we impose some local smoothness
conditions on h(t), but our main focus is the behaviour of h(t) as t → 0 and
t → ∞.

Recall (see, e.g., [7]) that the Carleman operator, corresponding to the
kernel h(t) = 1/t, is bounded. From here, similarly to (1.8), one easily obtains

|h(t)| ≤ C/t ⇒ Γ(h) ∈ B. (2.9)

In the continuous case, the Hilbert-Schmidt condition is given by
∞∑

n=1

sn(Γ(h))2 =

∞∫

0

t|h(t)|2dt < ∞. (2.10)

Of course, this condition is satisfied if we have h ∈ L2
loc(R+) and h(t) =

O(t−1| log t|−α) for some α > 1/2 as t → 0 and for t → ∞.
This suggests that one should consider kernels h(t) that are logarithmi-

cally “smaller” than 1/t both for t → 0 and for t → ∞. Indeed, the analogue
of the estimate (2.1) in the continuous case is

|h(t)| ≤ A0t
−1〈log t〉−α, t > 0; (2.11)

here and in what follows we use the notation 〈x〉 = (|x|2+1)1/2. For α < 1/2,
condition (2.11) suffices; for α ≥ 1/2, we also need additional conditions on
the derivatives h(m)(t) = (d/dt)mh(t). The following result is the “continuous
analogue” of Theorem 2.2.

Theorem 2.6. Let α > 0 and let M = M(α) be the integer given by (2.3).
Let h be a complex valued function in L∞

loc(R+); if α ≥ 1/2, suppose also that
h ∈ CM (R+). Assume that

|h(m)(t)| ≤ Amt−1−m〈log t〉−α, t > 0, (2.12)

with some constants A0, . . . , AM for all m = 0, . . . ,M . Then the singular
values of the corresponding Hankel operator Γ(h) satisfy

sn(Γ(h)) = O(n−α), n → ∞ (2.13)

and, for some constant C(α),

‖Γ(h)‖Sp,∞ ≤ C(α)(A0 + · · · + AM ), p = 1/α.

Theorem 2.7. In addition to the hypothesis of Theorem 2.6, assume that

|h(m)(t)| = o
(
t−1−m〈log t〉−α

)
as t → 0 and as t → ∞. (2.14)

Then
sn(Γ(h)) = o(n−α), n → ∞. (2.15)
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Theorems 2.6 and 2.7 are proven in Sect. 3. Their proofs are similar to
those in the discrete case. In particular, for α < 1/2, Theorem 2.6 admits
a direct proof based on the real interpolation between the Hilbert-Schmidt
condition (2.10) and the sufficient condition (2.9) for the boundedness of
Γ(h). In the case α ≥ 1/2, we proceed from the results of [7] which give
necessary and sufficient conditions for Γ(h) ∈ Sp and hence for Γ(h) ∈ Sp,∞.
We prove that under the hypothesis of Theorem 2.6, such conditions are
satisfied. Theorem 2.7 is deduced from Theorem 2.6 by simple approximation
arguments.

Remark 2.8. 1. The exponent α in (2.13) is optimal. Indeed, let h(t) be a
sufficiently smooth real valued function such that for some α > 0

h(t) = t−1| log t|−α (2.16)

for all sufficiently small t, and h(t) = 0 for all sufficiently large t. Then
it follows from the results of [8] that

sn(Γ(h)) = v(α)n−α + o(n−α), n → ∞, (2.17)

where the constant v(α) is given by (1.12). Similarly, if (2.16) holds for
all large t and h(t) = 0 for all small t, then again by the results of [8]
we obtain (2.17).

2. Some sufficient conditions for the estimate sn(Γ(h)) = O(n−α) in terms
of the smoothness of h were obtained in [4], see, e.g., Corollary 4.6
there. These conditions require that h(t) vanish very fast as t → ∞ but
allow for some singular behaviour as t → 0. These results are somewhat
similar to Theorem 2.6 but are less sharp.

For a function h(t) and for a ∈ R, let us denote qa(t) = eiath(t). If h
satisfies (2.12) for some m > 0, then qa does not necessarily satisfy the same
condition. Nevertheless, similarly to the discrete case, the following simple
argument allows us to extend our results to Γ(qa). Let the unitary operator
Ua in L2(R+) be defined by the formula (Uaf)(t) = eiatf(t). The role of
(2.8) is now played by the identity

Γ(qa) = UaΓ(h)Ua.

It follows that the singular values of the operators Γ(qa) and Γ(h) coincide.
Reasoning as in the proof of Theorem 2.5, we obtain the following general-
ization of Theorems 2.6 and 2.7.

Theorem 2.9. Let the functions h1,h2, . . . ,hL satisfy the hypothesis of The-
orem 2.6 (resp. of Theorem 2.7), and let a� ∈ R, � = 1, . . . , L. Then for the
Hankel operator Γ(h) with the kernel

h(t) =
L∑

�=1

eia�th�(t) (2.18)

the estimate (2.13) (resp. (2.15)) holds true.

Of course, instead of a finite sum in (2.18) one can consider infinite
series or integrals.
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Note that the Hankel operators in the discrete and continuous cases
are related through the Laguerre transform (see, e.g., [7, Theorem 1.8.9]) or
by linking the symbols through a conformal map from the unit disc onto
the upper half-plane. In some aspects of the theory of Hankel operators, this
relation allows one to transfer results from the discrete case to the continuous
one (or vice versa) quite easily. In this paper, technically it is simpler to carry
out proofs in each case independently.

3. Continuous Representation

Recall that the Hankel operator Γ(h) is defined by formula (1.3) in the space
L2(R+). Here we prove Theorems 2.6 and 2.7.

3.1. The Case α < 1/2

We will use weighted Lp classes on R+ with the weight v(t) = 1/t:

g ∈ Lp
v(R+) ⇔ ‖g‖p

Lp
v

=
∫ ∞

0

|g(t)|pv(t)dt < ∞, v(t) = 1/t,

and the corresponding weak class

g ∈ Lp,∞
v (R+) ⇔ ‖g‖p

Lp,∞
v

= sup
s>0

sp

∫

t:|g(t)|>s

v(t)dt < ∞. (3.1)

By definition, for p = ∞ the weighted class L∞
v coincides with the usual

(unweighted) L∞ class.
Below we will use the real interpolation method (the “K-method”), see,

e.g. [1, Sect. 3.1] for the details. A pair (X0,X1) of quasi-Banach spaces is
called compatible, if both X0 and X1 are continuously embedded into the
same Hausdorff topological vector space. Real interpolation with the para-
meters 0 < θ < 1 and 1 ≤ q ≤ ∞ between a compatible pair of quasi-Banach
spaces (X0,X1) yields an intermediate quasi-Banach space (X0,X1)θ,q. In
particular, we have

(L2
v, L∞

v )θ,∞ = Lp,∞
v , (S2,B)θ,∞ = Sp,∞, θ = 1 − 2/p. (3.2)

If (X0,X1) and (Y0, Y1) are two compatible pairs of quasi-Banach spaces
and if T is a bounded linear map from X0 to Y0 and from X1 to Y1, then
the real interpolation method ensures the boundedness of T as a map from
(X0,X1)θ,q to (Y0, Y1)θ,q.

Lemma 3.1. Let v(t) = 1/t, and let h : R+ → C be a measurable function
such that h/v ∈ Lp,∞

v with some p > 2. Then Γ(h) ∈ Sp,∞ and

‖Γ(h)‖Sp,∞ ≤ Cp‖h/v‖Lp,∞
v

. (3.3)

Proof. The case h = v corresponds to the Carleman operator, which has the
norm π. From here we obtain that if h/v ∈ L∞, then Γ(h) ∈ B, and

‖Γ(h)‖ ≤ π‖h/v‖L∞ = π sup
t>0

t|h(t)|.
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On the other hand, we have the Hilbert-Schmidt relation (2.10). Thus, the
linear map

h/v �→ Γ(h) (3.4)
is bounded from L∞

v = L∞ to B and from L2
v to S2. In view of (3.2), we

see that the map (3.4) is bounded from Lp,∞
v to Sp,∞, and the estimate (3.3)

holds true. �
Proof of Theorem 2.6 for α ≤ 1/2. Since |h(t)/v(t)| ≤ A0〈log t〉−α and

∫

A0〈log t〉−α>s

v(t)dt =
∫

〈log t〉<(A0/s)p

t−1dt ≤ CAp
0s

−p, s > 0,

it follows from definition (3.1) that h/v ∈ Lp,∞
v . Now it remains to use

Lemma 3.1. �
As a by-product of the above argument, we also obtain

Theorem 3.2. For all p ≥ 2, one has

‖Γ(h)‖p
Sp

≤ Cp

∫ ∞

0

tp−1|h(t)|pdt. (3.5)

Proof. Let us choose the interpolation parameter q = p and use that

(L2
v, L∞

v )θ,p = Lp,p
v = Lp

v, (S2,B)θ,p = Sp,p = Sp, θ = 1 − 2/p.

Then considering again the mapping (3.4), we see that

‖Γ(h)‖p
Sp

≤ Cp‖h/v‖p
Lp

v
= Cp

∫ ∞

0

tp−1|h(t)|pdt,

as required. �
Theorem 3.2 can also be proven by the complex interpolation method

which shows that (3.5) holds with Cp = πp−2.

3.2. The Case α ≥ 1/2
Let w ∈ C∞

0 (R+) be a function with the properties w ≥ 0, suppw = [1/2, 2]
and ∑

n∈Z

w(t/2n) = 1, ∀t > 0. (3.6)

For n ∈ Z, let wn(t) = w(t/2n). For a function h ∈ L1
loc(R+) and for n ∈ Z,

set ̂

hn(x) :=
∫ ∞

0

h(t)wn(t)eixtdt, x ∈ R. (3.7)

Theorem 3.3. [7, Theorem 6.7.4]
Let h ∈ L1

loc(R+). The estimate

‖Γ(h)‖p
Sp

≤ Cp

∑

n∈Z

2n

∫ ∞

−∞
|

̂

hn(x)|pdx (3.8)

holds, so that Γ(h) ∈ Sp if the r.h.s. in (3.8) is finite.

The convergence of the series in (3.8) means that the symbol of the
operator Γ(h) belongs to the Besov class B

1/p
pp (R). Further, we have
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Theorem 3.4. Let h ∈ L1
loc(R+). Suppose that

|||h|||pp := sup
s>0

sp
∑

n∈Z

2n|{x ∈ R : |

̂

hn(x)| > s}| < ∞. (3.9)

Then Γ(h) ∈ Sp,∞ and

‖Γ(h)‖Sp,∞ ≤ Cp|||h|||p.

In the discrete case (see Theorem 4.4 below), this theorem is proven in
[7, Theorem 6.4.4]. In the continuous case, the proof is exactly the same, up to
trivial changes in notation. For a given p one chooses some p0 and p1 such that
p0 < p < p1 and uses the estimate (3.8) with p = p0 and with p = p1. Then
one applies the real interpolation method to these two estimates, choosing
the interpolation parameters θ, q such that 1/p = (1 − θ)/p0 + θ/p0 and
q = ∞.

The results of [7] also show that if Γ(h) ∈ Sp (resp. if Γ(h) ∈ Sp,∞),
then the r.h.s. of (3.8) (resp. of (3.9)) is necessary finite, although we will
not need these facts.

Our goal is to check that under the assumptions of Theorem 2.6 the
expression (3.9) is finite.

Lemma 3.5. Assume the hypothesis of Theorem 2.6. Then for any q > 1/M
and for all n ∈ Z the functions (3.7) satisfy the estimates

‖

̂

hn‖L∞ ≤
∫ 2n+1

2n−1
|h(t)|dt, (3.10)

2n‖

̂

hn‖q
Lq ≤ Cq

(
M∑

m=0

∫ 2n+1

2n−1
tm|h(m)(t)|dt

)q

(3.11)

with a constant Cq independent of n.

Proof. The first bound is a direct consequence of the definition (3.7) of

̂

hn

and of the properties 0 ≤ wn ≤ 1 and suppwn = [2n−1, 2n+1]. In order to
obtain the second bound, we write

2n‖

̂

hn‖q
Lq = 2n

∫

|x|≤2−n

|

̂

hn(x)|qdx + 2n

∫

|x|≥2−n

|

̂

hn(x)|qdx (3.12)

and estimate the two terms in the r.h.s. separately. For the first term, we use
(3.10):

2n

∫

|x|≤2−n

|

̂

hn(x)|qdx ≤ 2‖

̂

hn‖q
L∞ ≤ 2

(∫ 2n+1

2n−1
|h(t)|dt

)q

. (3.13)
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In order to estimate the second term in the r.h.s. of (3.12), we integrate by

parts M times in the definition (3.7) of

̂

hn:̂

hn(x) = (ix)−M

∫ ∞

0

h(t)wn(t)(d/dt)Meixtdt

= (−ix)−M

∫ ∞

0

(h(t)wn(t))(M)eixtdt. (3.14)

Since

|w(k)
n (t)| = 2−nk|w(k)(t/2n)| ≤ Ck2−nk, k ≥ 0, n ∈ Z, (3.15)

we get
∣∣∣∣∣∣

∞∫

0

(h(t)wn(t))(M)eixtdt

∣∣∣∣∣∣
≤ CM

M∑

m=0

2−n(M−m)

∫ 2n+1

2n−1
|h(m)(t)|dt

≤ 2MCM2−nM
M∑

m=0

∫ 2n+1

2n−1
tm|h(m)(t)|dt. (3.16)

Combining (3.14) and (3.16), we see that

|

̂

hn(x)| ≤ C ′
M |x|−M2−nM

M∑

m=0

∫ 2n+1

2n−1
tm|h(m)(t)|dt

whence

2n

∫

|x|≥2−n

|
̂

hn(x)|qdx

≤ C ′′
M

(
2n−nMq

∫

|x|≥2−n

|x|−Mqdx

)⎛

⎜⎝
M∑

m=0

2n+1∫

2n−1

tm|h(m)(t)|dt

⎞

⎟⎠

q

.

Since Mq > 1, the first factor here equals 2/(Mq − 1). Putting together the
last estimate with (3.13) and using (3.12), we get (3.11). �
Proof of Theorem 2.6 for α ≥ 1/2. Under the assumption (2.12) for all m =
0, . . . ,M we have

∫ 2n+1

2n−1
tm|h(m)(t)|dt ≤ Am

∫ 2n+1

2n−1
t−1〈log t〉−αdt

= Am

∫ n+1

n−1

〈x〉−αdx ≤ cAm〈n〉−α;

here we assume that log is the base 2 logarithm, log = log2. Fix some q ∈
(M−1, α−1); then it follows from (3.10), (3.11) that

‖

̂

hn‖L∞ ≤ CA0〈n〉−α, n ∈ Z, (3.17)

2n‖

̂

hn‖q
Lq ≤ CAq〈n〉−αq, n ∈ Z, (3.18)

with some constant C and A = A0 + · · · + AM .
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Let us now estimate the functional |||h|||p in (3.9). It follows from (3.17)
that, for every s > 0 and all n ∈ Z such that

〈n〉 > (CA0)ps−p =: N(s), (3.19)

the inequality ‖

̂

hn‖L∞ < s holds. Therefore

sp
∑

n∈Z

2n|{x ∈ R : |

̂

hn(x)| > s}| = sp
∑

〈n〉≤N(s)

2n|{x ∈ R : |

̂

hn(x)| > s}|.

(3.20)
Using the obvious inequality

sq|{x ∈ R : |

̂

hn(x)| > s}| ≤ ‖

̂

hn‖q
Lq

and the bound (3.18), we can estimate the expression (3.20) by

sp−q
∑

〈n〉≤N(s)

2n‖

̂

hn‖q
Lq ≤ sp−qCAq

∑

〈n〉≤N(s)

〈n〉−αq ≤ sp−qC ′AqN(s)1−αq

(we have taken into account here that αq < 1). By virtue of (3.19) this
expression is bounded by C ′′Aq with a constant C ′′ that does not depend on
s. Therefore it follows from (3.18) that |||h|||pp ≤ C ′′Ap. In view Theorem 3.4,
this yields the required result. �

Proof of Theorem 2.7. Suppose first that h(t) = 0 for all small and for all
large t > 0. Then according to Theorem 2.6 we have sn(Γ(h)) = O(n−β) for
all β such that M(β) ≤ M(α). Inspecting the formula (2.3) for M(α), we
find that we can always choose β > α with M(β) = M(α). Thus, we have
sn(Γ(h)) = O(n−β) = o(n−α) as n → ∞.

Now let us consider the general case. Let χ0, χ∞ ∈ C∞(R+) be such
that

χ0(t) =

{
1 for t ≤ 1/4,
0 for t ≥ 1/2,

χ∞(t) =

{
0 for t ≤ 2,
1 for t ≥ 4.

(3.21)

Put

ζN (t) = χ0(t/N)χ∞(Nt), N ∈ N,

and hN = hζN . As shown by the first step of the proof, Γ(hN ) ∈ S0
p,∞. It

remains to prove that

‖Γ(h) − Γ(hN )‖Sp,∞ → 0, N → ∞. (3.22)

According to Theorem 2.6, we need to check that

sup
t>0

t1+m〈log t〉1/p
∣∣∣
(
h(t)(1 − ζN (t)

)(m)
∣∣∣ → 0 N → ∞, (3.23)

for all m = 0, . . . ,M . By the construction of ζN , we have

sup
t>0

tm|(1 − ζN (t)
)(m)| ≤ Cm and (1 − ζN (t)

)(m) = 0 if t ∈ (4/N,N/4)

for all m ≥ 0. Therefore our assumption (2.14) on h implies (3.23) and hence
(3.22). �
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Remark 3.6. By the result of [4, Theorem 4.9] (see also [10, Example 6.1]),
one can construct a bounded kernel h(t) with one jump discontinuity at
some t = t0 > 0 (and vanishing identically for all sufficiently small and all
sufficiently large t > 0) such that Γ(h) ∈ S1,∞ but Γ(h) /∈ S0

1,∞. Similarly,
for every α ∈ N, α ≥ 2, there exist kernels h ∈ Cα−2, h /∈ Cα−1, such that
Γ(h) ∈ S1/α,∞ but Γ(h) /∈ S0

1/α,∞. This shows that, at least for α ∈ N,
α ≥ 2, the condition h ∈ CM with M = α−2 is not sufficient for the validity
of estimate (2.13).

4. Discrete Representation

Recall that the Hankel operator Γ(h) is defined by formula (1.1) in the space
�2(Z+). Here we prove Theorems 2.1, 2.2 and 2.3. The calculations follow
closely those of Sect. 3, so we will be brief in places where there is a complete
analogy and concentrate only on the points of difference.

4.1. The Case α < 1/2
We introduce the weighted �p class with the weight v(j) = (j + 1)−1:

g ∈ �p
v ⇔ ‖g‖p

�p
v

=
∞∑

j=0

|g(j)|pv(j) < ∞, v(j) =
1

j + 1
,

and the corresponding weak class

g ∈ �p,∞
v ⇔ ‖g‖p

�p,∞
v

= sup
s>0

sp
∑

j:|g(j)|>s

v(j) < ∞.

For a sequence h, we denote by h/v the sequence {(j + 1)h(j)}∞
j=0.

Lemma 4.1. Let h be a sequence of complex numbers such that h/v ∈ �p,∞
v

for some p > 2. Then Γ(h) ∈ Sp,∞ and

‖Γ(h)‖Sp,∞ ≤ C‖h/v‖�p,∞
v

.

Proof. As in the continuous case, the result follows by real interpolation
between the estimates

‖Γ(h)‖ ≤ π‖h/v‖�∞ = π‖h/v‖�∞
v

(which corresponds to the bound ‖Γ(h)‖ ≤ π for the Hilbert matrix (1.7)),
and the Hilbert-Schmidt relation (1.9). �

Proof of Theorem 2.1. As |h(j)/v(j)| ≤ C(log(j + 2))−α, the required state-
ment follows from the elementary fact that the sequence {(log(j +2))−α}∞

j=0

belongs to the class �p,∞
v for p = 1/α. �

Similarly to Theorem 3.2, we also have

Theorem 4.2. For all p ≥ 2, one has

‖Γ(h)‖p
Sp

≤ πp−2
∞∑

j=0

(j + 1)p−1|h(j)|p.
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4.2. The Case α ≥ 1/2

Here we prove Theorem 2.2 for 0 < p ≤ 2. Let w ∈ C∞
0 (R+) be a function

with the properties w ≥ 0, suppw = [1/2, 2] and
∞∑

n=0

w(t/2n) = 1, ∀t ≥ 1.

Observe that the summation is over n ∈ Z+ here, while it is over all n ∈
Z in (3.6). Denote wn(j) = w(j/2n) for n ≥ 1 and let w0 be defined by
w0(0) = w0(1) = 1, w0(j) = 0 for j ≥ 2. For a sequence of complex numbers

h = {h(j)}j≥0, denote by

̂

hn the polynomial

̂

hn(μ) =
∞∑

j=0

wn(j)h(j)μj , μ ∈ T, n ≥ 0. (4.1)

Let us recall two results due to V. Peller. The first one follows from
Theorems 6.1.1, 6.2.1 and 6.3.1 in [7].

Theorem 4.3. The estimate

‖Γ(h)‖p
Sp

≤ Cp

∞∑

n=0

2n

∫ π

−π

|

̂

hn(eiθ)|pdθ, p > 0, (4.2)

holds, so that Γ(h) ∈ Sp if the r.h.s. in (4.2) is finite.

The next result is deduced from Theorem 4.3 by the real interpolation
method using the retract arguments (see, e.g., the book [1, Sect. 6.4]).

Theorem 4.4. [7, Theorem 6.4.4] Let

|||h|||pp = sup
s>0

sp
∞∑

n=0

2n|{θ ∈ [−π, π) : |

̂

hn(eiθ)| > s}|. (4.3)

Then Γ(h) ∈ Sp,∞ and

‖Γ(h)‖Sp,∞ ≤ Cp|||h|||p. (4.4)

Remark 4.5. The results of [7] also show that if Γ(h) ∈ Sp (resp. Γ(h) ∈
Sp,∞), then the r.h.s. of (4.2) (resp. of (4.3)) is necessary finite.

Our goal is to show that under the assumptions of Theorem 2.2 the
expression (4.3) is finite. Note that, for the sequence h(j) = j−1(log j)−α,
j ≥ 2, the symbol (1.2) is singular at the point μ = 1. Therefore this point
requires a special treatment.

Let us display two elementary identities. The first one is the “summation
by parts formula”:

∞∑

j=0

u(j)v(M)(j) = (−1)M
∞∑

j=0

u(M)(j)v(j + M) (4.5)
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where it is assumed that at least one of the sequences u or v vanishes for
j = 0, . . . ,M − 1 and for all large j. The second one is the variant of the
Leibniz rule for the product (uv)(j) = u(j)v(j):

(uv)(M)(j) =
M∑

m=0

(
M

m

)
u(M−m)(j + m)v(m)(j). (4.6)

Lemma 4.6. Assume the hypothesis of Theorem 2.2. Then for any q > 1/M
and for all n ∈ N such that 2n−1 ≥ M one has the estimates

‖

̂

hn‖L∞ ≤
2n+1∑

j=2n−1

|h(j)|, (4.7)

2n‖

̂

hn‖q
Lq ≤ Cq

⎛

⎝
M∑

m=0

2n+1∑

j=2n−1−M

(1 + j)m|h(m)(j)|
⎞

⎠
q

. (4.8)

Proof. The first estimate follows from the fact that 0 ≤ wn(j) ≤ 1 for all j
and wn(j) = 0 for j ≤ 2n−1 and for j ≥ 2n+1. To estimate the Lq norm, we
write

2n(2π)‖

̂

hn‖q
Lq = 2n

∫

|θ|<2−n

|

̂

hn(eiθ)|qdθ + 2n

∫

|θ|≥2−n

|

̂

hn(eiθ)|qdθ (4.9)

and estimate each term separately. For the first term, we use the estimate
(4.7):

2n

∫

|θ|<2−n

|

̂

hn(eiθ)|qdθ ≤ 2‖

̂

hn‖q
L∞ ≤ 2

⎛

⎝
2n+1∑

j=2n−1

|h(j)|
⎞

⎠
q

. (4.10)

In order to estimate the second integral in (4.9), we need to perform a sum-
mation by parts calculation. Let us set μ(j) = μj , then the iterated difference

is μ(M)(j) = (μ − 1)Mμ(j). Using the definition (4.1) of

̂

hn and the summa-
tion by parts formula (4.5) for the sequences u(j) = μ(j), v(j) = wn(j)h(j),
we obtain that

̂

hn(μ) = (μ − 1)−M
∞∑

j=0

wn(j)h(j)μ(M)(j)

= (1 − μ)−M
∞∑

j=0

(wnh)(M)(j)μ(j + M). (4.11)

Since (cf. (3.15))

|w(k)
n (j)| ≤ Ck2−nk, n ≥ 2, k ≥ 0,

it follows from the Leibniz rule (4.6) that

|(wnh)(M)(j)| ≤ CM

M∑

m=0

2−n(M−m)|h(m)(j)|.
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Substituting this into (4.11) and using the fact that w
(k)
n (j) = 0 for j ≤

2n−1 − k and for j ≥ 2n+1, we obtain the estimate

|

̂

hn(μ)| ≤ |1 − μ|−M
2n+1∑

j=2n−1−M

|(wnh)(M)(j)|

≤ CM |1 − μ|−M
M∑

m=0

2−n(M−m)
2n+1∑

j=2n−1−M

|h(m)(j)|

≤ CM |1 − μ|−M2−nM
M∑

m=0

2n+1∑

j=2n−1−M

(1 + j)m|h(m)(j)|.

From here we get

2n

∫

|θ|≥2−n

|

̂

hn(eiθ)|qdθ ≤
(

2n−nMq

∫

|θ|≥2−n

|1 − eiθ|−Mqdθ

)

×
⎛

⎝CM

M∑

m=0

2n+1∑

j=2n−1−M

(1 + j)m|h(m)(j)|
⎞

⎠
q

.

Since Mq > 1, the first factor here can be estimated by a constant indepen-
dent of n. Combining this with (4.10), we arrive at (4.8). �

Proof of Theorem 2.2 for α ≥ 1/2. Denote

Am = sup
j≥0

(j + 1)1+m(log(j + 2))α|h(m)(j)|, m = 0, . . . ,M.

Substituting these bounds into the estimates (4.7) and (4.8), we obtain

‖

̂

hn‖L∞ ≤ CA0〈n〉−α,

2n‖

̂

hn‖q
Lq ≤ C(A0 + · · · + AM )q〈n〉−qα,

if 2n−1 ≥ M . Using these estimates and arguing exactly as in the proof of
Theorem 2.6, we find that

|||h|||p ≤ C(A0 + · · · + AM ),

and so by (4.4) we are done. �

Proof of Theorem 2.3. Let χ0 ∈ C∞(R+) be as in (3.21). Define ζN (j) =
χ0(j/N) and consider the truncated sequence hN = hζN . Then Γ(hN ) is a
finite rank operator. Let us show that Γ(hN ) converges to Γ(h) in the quasi-
norm of Sp,∞. Note that

sup
j≥0

(j + 1)m|ζ(m)
N (j)| ≤ Cm, m ≥ 0,
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with constants Cm not depending on N . Therefore it follows from estimate
(2.5) and the Leibniz rule (4.6) that

‖Γ(h) − Γ(hN )‖Sp,∞ ≤ C(α)
M∑

m=0

sup
j≥N/4

(1 + j)1+m(log(j + 2))α|h(m)(j)|,

where p = 1/α. Under the assumptions of Theorem 2.3 the r.h.s. here tends
to zero as N → ∞. �

Let us finally show that the condition M(α) = [α] + 1 in Theorem 2.2
cannot be significantly relaxed.

Example 4.7. Let α ≥ 2. We will construct a sequence h(j) satisfying condi-
tion (2.4) for all m ≤ [α] − 2 but such that estimate (2.2) is violated. For an
arbitrary γ ∈ ([α] − 1, α), consider the lacunary sequence

h(j) =

{
2−γn, if j = 2n, n ∈ N,
0, otherwise.

In this case the iterated differences h(m) do not decay faster than the sequence
h itself. So for all m, we only have

h(m)(j) = O(j−γ), j → ∞.

Thus the hypothesis (2.4) of Theorem 2.2 is satisfied for all m < γ − 1
and hence for all m ≤ [α] − 2. On the other hand, for our sequence h the

polynomial (4.1) is

̂
hn(z) = 2−γnz2

n

. So |
̂

hn(eiθ)| = 2−γn and the series in
the r.h.s. of (4.2) becomes

∞∑

n=0

2n2−γpn.

This series diverges for p = 1/γ. Therefore according to Remark 4.5 (the
necessity part of [7, Theorem 6.2.1]), we have Γ(h) /∈ S1/γ . Since S1/α,∞ ⊂
S1/γ for γ < α, it follows that Γ(h) /∈ S1/α,∞. Thus, one cannot take M(α) =
[α] − 2 in Theorem 2.2.

The same construction shows that one cannot take M(α) = 0 for 1 <
α < 2 (and 1 < γ < α).
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