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Wavenumber-Explicit Continuity
and Coercivity Estimates in Acoustic
Scattering by Planar Screens
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Abstract. We study the classical first-kind boundary integral equation
reformulations of time-harmonic acoustic scattering by planar sound-
soft (Dirichlet) and sound-hard (Neumann) screens. We prove conti-
nuity and coercivity of the relevant boundary integral operators (the
acoustic single-layer and hypersingular operators respectively) in ap-
propriate fractional Sobolev spaces, with wavenumber-explicit bounds
on the continuity and coercivity constants. Our analysis, which requires
no regularity assumptions on the boundary of the screen (other than
that the screen is a relatively open bounded subset of the plane), is
based on spectral representations for the boundary integral operators,
and builds on results of Ha-Duong (Jpn J Ind Appl Math 7:489–513,
1990; Integr Equ Oper Theory 15:427–453, 1992).
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1. Introduction

This paper concerns the mathematical analysis of a class of time-harmonic
acoustic scattering problems modelled by the Helmholtz equation

Δu + k2u = 0, (1)

where u is a complex scalar function and k > 0 is the wavenumber. We
study the reformulation of such scattering problems in terms of boundary
integral equations (BIEs), proving continuity and coercivity estimates for
the associated boundary integral operators (BIOs) which are explicit in their
k-dependence.

Our focus is on scattering by a thin planar screen occupying some
bounded and relatively open set Γ ⊂ Γ∞ := {x = (x1, . . . , xn) ∈ R

n : xn = 0}

http://crossmark.crossref.org/dialog/?doi=10.1007/s00020-015-2233-6&domain=pdf
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(we assume throughout that n = 2 or 3), with (1) assumed to hold in the do-
main D := R

n \Γ. We consider both the Dirichlet (sound-soft) and Neumann
(sound-hard) boundary value problems (BVPs), which we now state. The
function space notation in the following definitions, and the precise sense in
which the boundary conditions are to be understood, is explained in Sect. 2.

Definition 1.1. (Problem D) Given gD ∈ H1/2(Γ), find u ∈ C2 (D) ∩ W 1
loc(D)

such that

Δu + k2u = 0, in D, (2)
u = gD, on Γ, (3)

and u satisfies the Sommerfeld radiation condition at infinity.

Definition 1.2. (Problem N) Given gN ∈ H−1/2(Γ), find u ∈ C2 (D)∩W 1
loc(D)

such that
Δu + k2u = 0, in D, (4)

∂u

∂n
= gN, on Γ, (5)

and u satisfies the Sommerfeld radiation condition at infinity.

Example 1.3. Consider the problem of scattering by Γ of an incident plane
wave

ui(x) := eikx·d, x ∈ R
n, (6)

where d ∈ R
n is a unit direction vector. A ‘sound-soft’ and a ‘sound-hard’

screen are modelled respectively by problem D (with gD = −ui|Γ) and prob-
lem N (with gN = −∂ui/∂n|Γ). In both cases u represents the scattered field,
the total field being given by ui + u.

Such scattering problems have been well-studied, both theoretically [16,
17,22,28,29,31] and in applications [11,12]. It is well known (see, e.g., [22,
28,29,31]) that problems D and N are uniquely solvable for all gD ∈ H1/2(Γ)
and gN ∈ H−1/2(Γ), provided that Γ ⊂ Γ∞ is sufficiently smooth. Many
of the references cited above assume Γ ⊂ Γ∞ is C∞ smooth, or do not
explicitly specify the regularity of Γ, but, as has been clarified recently in
[6], unique solvability holds whenever Γ is Lipschitz (in the sense considered
e.g. in [25, p. 90]). The case of non-Lipschitz Γ can also be considered (for
details see [6]), but in general requires problems D and N to be supplemented
with additional assumptions in order to guarantee uniqueness. For simplicity
of presentation we do not consider such generalisations here, and restrict
our discussion of the BVPs D and N to the case of Lipschitz Γ. However,
our results on the associated BIOs (which are the main focus of this paper)
are valid for arbitrary relatively open Γ, as will be clarified at the start of
Sect. 1.1.

The solutions of problems D and N can be represented respectively in
terms of the single and double layer potentials (for notation and definitions
see Sect. 2)

Sk : H̃−1/2(Γ) → C2(D) ∩ W 1
loc(D), Dk : H̃1/2(Γ) → C2(D) ∩ W 1

loc(D),
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which for φ ∈ D(Γ) and x ∈ D have the following integral representations:

Skφ(x) =
∫

Γ

Φ(x,y)φ(y) ds(y), Dkφ(x) =
∫

Γ

∂Φ(x,y)
∂n(y)

φ(y) ds(y), (7)

where Φ(x,y) denotes the fundamental solution of (1),

Φ(x,y) :=

⎧⎪⎨
⎪⎩

eik|x−y|

4π|x − y| , n = 3,

i
4
H

(1)
0 (k|x − y|), n = 2,

x,y ∈ R
n. (8)

The densities of the potentials satisfy certain first-kind BIEs involving the
single-layer and hypersingular BIOs (again, for definitions see Sect. 2)

Sk : H̃−1/2(Γ) → H1/2(Γ) ∼= (H̃−1/2(Γ))∗,

Tk : H̃1/2(Γ) → H−1/2(Γ) ∼= (H̃1/2(Γ))∗,

which for φ ∈ D(Γ) and x ∈ Γ have the following integral representations:

Skφ(x) =
∫

Γ

Φ(x,y)φ(y) ds(y), Tkφ(x) =
∂

∂n(x)

∫
Γ

∂Φ(x,y)
∂n(y)

φ(y) ds(y).

(9)

These standard statements are summarised in the following two theorems.
Here [u] and [∂u/∂n] represent the jump across Γ of u and of its normal
derivative respectively.

Theorem 1.4. For Lipschitz Γ, problem D has a unique solution u satisfying

u(x) = −Sk [∂u/∂n] (x), x ∈ D, (10)

where [∂u/∂n] ∈ H̃−1/2(Γ) is the unique solution of the BIE

− Sk[∂u/∂n] = gD. (11)

Theorem 1.5. For Lipschitz Γ, problem N has a unique solution satisfying

u(x) = Dk[u](x), x ∈ D, (12)

where [u] ∈ H̃1/2(Γ) is the unique solution of the BIE

Tk[u] = gN. (13)

1.1. Main Results and Outline of the Paper

In this paper we present new k-explicit continuity and coercivity estimates
for the operators Sk and Tk appearing in (11) and (13). Our main results are
contained in Theorems 1.6–1.9 below. We emphasize that Theorems 1.6–1.9
hold for any relatively open subset Γ ⊂ Γ∞, without any regularity assump-
tion on Γ. (The Lipschitz regularity assumption in Theorems 1.4–1.5 ensures
equivalence between the relevant BVPs and the BIEs, but is not necessary for
continuity and coercivity of the BIOs.) For the definitions of the k-dependent
norms appearing in Theorems 1.6–1.9 see Sect. 2.1.
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Theorem 1.6. For any s ∈ R, the single-layer operator Sk defines a bounded
linear operator Sk : H̃s(Γ) → Hs+1(Γ), and there exists a constant C > 0,
independent of k and Γ, such that, for all φ ∈ H̃s(Γ), and with L := diam Γ,

‖Skφ‖Hs+1
k (Γ)

≤
{

C(1 + (kL)1/2) ‖φ‖H̃s
k(Γ) , n = 3,

C log (2 + (kL)−1)(1 + (kL)1/2) ‖φ‖H̃s
k(Γ) , n = 2,

k > 0.

(14)

Theorem 1.7. The sesquilinear form on H̃−1/2(Γ) × H̃−1/2(Γ) defined by

aD(φ, ψ) := 〈Skφ, ψ〉H1/2(Γ)×H̃−1/2(Γ), φ, ψ ∈ H̃−1/2(Γ),

satisfies the coercivity estimate

|aD(φ, φ)| ≥ 1
2
√

2
‖φ‖2

H̃
−1/2
k (Γ)

, φ ∈ H̃−1/2(Γ), k > 0. (15)

Theorem 1.8. For any s ∈ R, the hypersingular operator Tk defines a bounded
linear operator Tk : H̃s(Γ) → Hs−1(Γ), and

‖Tkφ‖Hs−1
k (Γ) ≤ 1

2
‖φ‖H̃s

k(Γ) , φ ∈ H̃s(Γ), k > 0. (16)

Theorem 1.9. The sesquilinear form on H̃1/2(Γ) × H̃1/2(Γ) defined by

aN(φ, ψ) := 〈Tkφ, ψ〉H−1/2(Γ)×H̃1/2(Γ), φ, ψ ∈ H̃1/2(Γ),

satisfies, for any c0 > 0, the coercivity estimate

|aN(φ, φ)| ≥ C(kL)β ‖φ‖2

H̃
1/2
k (Γ)

, φ ∈ H̃1/2(Γ), kL ≥ c0, (17)

where L := diam Γ, C > 0 is a constant depending only on c0, and

β =

{
− 2

3 , n = 3,

− 1
2 , n = 2.

(18)

Our proofs of these theorems are given in Sects. 4 and 5 below. In
Remarks 4.2, 4.4, 5.1, and 5.2, we show that the estimates in Theorems 1.6–
1.9 are sharp in their dependence on k in the high frequency limit k → ∞,
with one exception: we suspect that Theorem 1.9 may be true in the case
n = 3 with the same value β = −1/2 as in the 2D case, this conjecture
consistent with Remark 5.1 below.

The implications of these results for the analysis of high frequency
acoustic scattering problems will be discussed in Sect. 1.2 below. But first
we provide a brief overview of the structure of the rest of the paper and a
comparison with related literature.

The technical definitions and notation for the function spaces, norms,
trace and jump operators, layer potentials and BIOs that we study are pre-
sented in Sect. 2. Our assumption that the screen Γ is planar means that
Sobolev spaces on Γ can be defined concretely for all orders of Sobolev reg-
ularity in terms of Fourier transforms on the hyperplane Γ∞, which we nat-
urally associate with R

n−1. Furthermore, the planarity of Γ also allows us
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to derive explicit Fourier transform representations for the layer potentials
and BIOs, which we present in Sect. 3. These representations facilitate our
wavenumber-explicit continuity and coercivity analysis, which is presented
in Sects. 4 and 5. In this respect our wavenumber-explicit analysis extends
that carried out using similar arguments by Ha-Duong in [16,17]1. Indeed,
a wavenumber-explicit coercivity estimate for the hypersingular operator Tk

of the form (17) is proved in [17, Theorem 2], but only for the case n = 3
and with β = 1 (although the methodology in [17] can be modified to deal
with the case n = 2, also giving β = 1). We have been able to improve this
to β = 2/3 in the case n = 3 and β = 1/2 in the case n = 2. To the best of
our knowledge, wavenumber-explicit coercivity estimates for the single-layer
operator Sk have not been published before; the fact that Sk is coercive is
stated without proof in [10, Prop. 2.3], with a reference to [16], but in [16]
coercivity is only proved for complex wavenumber, the real case being men-
tioned only in passing (see [16, p. 502]). Finally, in Sect. 6 we collect some
useful norm estimates in the space H1/2(Γ), of relevance in the numerical
analysis of Galerkin boundary element methods (BEMs) based on the BIE
reformulation (11) of the Dirichlet screen problem (see [20] for an application
of these results).

We remark that some of the results in this paper were stated without
proof in the conference paper [19].

1.2. Motivation

The wavenumber-explicit analysis presented in this paper forms part of a
wider effort in the rigorous mathematical analysis of BIE methods for high
frequency acoustic scattering problems (for a recent review of this area see e.g.
[5]). Typically (and this is the approach we adopt here) one reformulates the
scattering problem as an integral equation, which may be written in operator
form as

Aφ = f, (19)
where φ and f are complex-valued functions defined on the boundary Γ of
the scatterer. A standard and appropriate functional analysis framework is
that the solution φ is sought in some Hilbert space V , with f ∈ V ∗, the dual
space of V (the space of continuous antilinear functionals), and A : V → V ∗ a
bounded linear BIO.2 Equation (19) can be restated in weak (or variational)
form as

a(φ, ϕ) = f(ϕ), for all ϕ ∈ V, (21)

in terms of the sesquilinear form

a(φ, ϕ) := (Aφ)(ϕ), φ, ϕ ∈ V.

1 The authors are grateful to M. Costabel for drawing references [16,17] to their attention.
2 A concrete example is the standard Brakhage–Werner formulation [3,5] of sound-soft
acoustic scattering by a bounded, Lipschitz obstacle, in which case V = V ∗ = L2(Γ), and

A =
1

2
I + Dk − iηSk, (20)

with Sk and Dk the standard acoustic single- and double-layer BIOs, I the identity oper-
ator, and η ∈ R \ {0} a coupling parameter.
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The Galerkin method for approximating (21) seeks a solution φN ∈ VN ⊂ V ,
where VN is a finite-dimensional subspace, requiring that

a(φN , ϕN ) = f(ϕN ), for all ϕN ∈ VN . (22)

The sesquilinear form a is clearly bounded with continuity constant
equal to ‖A‖V →V ∗ . We say that a (and the associated bounded linear opera-
tor A) is coercive if, for some γ > 0 (called the coercivity constant), it holds
that

|a(φ, φ)| ≥ γ‖φ‖2
V , for all φ ∈ V.

In this case, the Lax–Milgram lemma implies that (21) (and hence (19)) has
exactly one solution φ ∈ V , and that ‖φ‖V ≤ γ−1‖f‖V ∗ , i.e. ‖A−1‖V ∗→V ≤
γ−1. Furthermore, by Céa’s lemma, the existence and uniqueness of the
Galerkin solution φN of (22) is then also guaranteed for any finite-dimensional
approximation space VN , and there holds the quasi-optimality estimate

‖φ − φN‖V ≤ ‖A‖V →V ∗

γ
inf

ϕN∈VN

‖φ − ϕN‖V . (23)

One major thrust of recent work (for a review see [5]) has been to
attempt to prove wavenumber-explicit continuity and coercivity estimates
for BIE formulations of scattering problems, which, by the above discussion,
lead to wavenumber-explicit bounds on the condition number
‖A‖V →V ∗‖A−1‖V ∗→V and the quasi-optimality constant γ−1‖A‖V →V ∗ .3 This
effort is motivated by the fact that these problems are computationally chal-
lenging when the wavenumber k > 0 (proportional to the frequency) is large,
and that such wavenumber-explicit estimates are useful for answering certain
key numerical analysis questions, for instance:
(a) Understanding the behaviour of iterative solvers (combined with ma-

trix compression techniques such as the fast multipole method) at high
frequencies, in particular understanding the dependence of iteration
counts on parameters related to the wavenumber. This behaviour de-
pends, to a crude first approximation, on the condition number of the
associated matrices, which is in part related to the wavenumber depen-
dence of the norms of the BIOs and their inverses at the continuous
level [2,27].

(b) Understanding the accuracy of conventional BEMs (based on piecewise
polynomial approximation spaces) at high frequencies by undertaking a
rigorous numerical analysis which teases out the joint dependence of the
error on the number of degrees of freedom and the wavenumber k. For
example, is it enough to increase the degrees of freedom in proportion
to kd−1 in order to maintain accuracy, maintaining a fixed number of
degrees of freedom per wavelength in each coordinate direction? See
e.g. [15,24] for some recent results in this area.

3 Such estimates have recently been proved [27] for the operator (20) for the case where
the scatterer is strictly convex and Γ is sufficiently smooth. We also note that in [26] a new

formulation for sound-soft acoustic scattering, the so-called ‘star-combined’ formulation,

has been shown to be coercive on L2(Γ) for all star-like Lipschitz scatterers.
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(c) Developing, and justifying by a complete numerical analysis, novel
BEMs for high frequency scattering problems based on the so-called
‘hybrid numerical-asymptotic’ (HNA) approach, the idea of which is to
use an approximation space enriched with oscillatory basis functions,
carefully chosen to capture the high frequency solution behaviour. The
aim is to develop algorithms for which the number of degrees of free-
dom N required to achieve any desired accuracy be fixed or increase
only very mildly as k → ∞. This aim is provably achieved in cer-
tain cases, mainly 2D so far; see, e.g., [7,21] and the recent review [5].
For 2D screen and aperture problems we recently proposed in [20] an
HNA BEM which provably achieves a fixed accuracy of approximation
with N growing at worst like log2 k as k → ∞, our numerical analysis
using the wavenumber-explicit estimates of the current paper. Numeri-
cal experiments demonstrating the effectiveness of HNA approximation
spaces for a 3D screen problem have been presented in [5, §7.6].

Clearly the results in this paper are a contribution to this endeavour. In
particular, Theorems 1.6 and 1.8 provide upper bounds on ‖Sk‖H̃−1/2(Γ)→H1/2(Γ)

and ‖Tk‖H̃1/2(Γ)→H−1/2(Γ) (with H̃±1/2(Γ) and H±1/2(Γ) equipped with the
wavenumber-dependent norms specified in Sect. 2). Further, as noted gener-
ically above, through providing lower bounds on the coercivity constant γ,
Theorems 1.7 and 1.9 bound the inverses of these operators. Thus our results
also provide bounds on condition numbers: in particular, for every c0 > 0,
our results show that, for kL ≥ c0,

cond Sk := ‖Sk‖H̃−1/2(Γ)→H1/2(Γ)‖Sk‖H1/2(Γ)→H̃−1/2(Γ) ≤ C(kL)1/2, (24)

cond Tk := ‖Tk‖H̃1/2(Γ)→H−1/2(Γ)‖Tk‖H−1/2(Γ)→H̃1/2(Γ) ≤ C(kL)−β , (25)

where β is given by (18) and C > 0 is a constant that depends only on c0.
Further, Remarks 4.2, 4.4, 5.1 and 5.2 below suggest that these upper bounds
on condSk and, in the case n = 2, also the upper bound on condTk, are sharp
in their dependence on k.

2. Preliminaries

In this section we define the Sobolev spaces, trace and jump operators, layer
potentials and boundary integral operators studied in the paper.

2.1. Sobolev Spaces

Our analysis is in the context of the Sobolev spaces Hs(Γ) and H̃s(Γ) for
s ∈ R. We set out here our notation and the basic definitions; for more de-
tail (especially when Γ is non-regular) see [8] and [6, §2]. Given n ∈ N, let
D(Rn) := C∞

0 (Rn) denote the space of compactly supported smooth test
functions on R

n, and let S(Rn) denote the Schwartz space of rapidly decay-
ing smooth test functions. For s ∈ R let Hs(Rn) denote the Bessel potential
space of those tempered distributions u ∈ S∗(Rn) (continuous antilinear func-
tionals on S(Rn)) whose Fourier transforms are locally integrable and satisfy
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∫
Rn(1 + |ξ|2)s |û(ξ)|2 dξ < ∞. (For s ≥ 0 these spaces can be defined equiv-

alently in terms of integrability of weak partial derivatives, the link between
the two definitions relying on Plancherel’s theorem—see e.g. [25, Theorem
3.16] and Eq. (28) below.) Our convention for the Fourier transform is that
û(ξ) := (2π)−n/2

∫
Rn e−iξ·xu(x) dx, for u ∈ S(Rn) and ξ ∈ R

n. In line with
many other analyses of high frequency scattering, e.g., [23], we work with
wavenumber-dependent norms. Specifically, we use the norm on Hs(Rn) de-
fined by

‖u‖2
Hs

k(Rn) :=
∫
Rn

(k2 + |ξ|2)s |û(ξ)|2 dξ. (26)

We emphasize that ‖·‖Hs(Rn) := ‖·‖Hs
1 (Rn) is the standard norm on Hs(Rn),

and that, for k > 0, ‖·‖Hs
k(Rn) is another, equivalent, norm on Hs(Rn). Ex-

plicitly,

min{1, ks} ‖u‖Hs(Rn) ≤ ‖u‖Hs
k(Rn) ≤ max{1, ks} ‖u‖Hs(Rn) , for u ∈ Hs(Rn).

(27)
The use of ‖·‖Hs

k(Rn) instead of ‖·‖Hs
1 (Rn) in high frequency scattering applica-

tions is natural because solutions u of (1) typically oscillate with a wavelength
inversely proportional to k. Thus, when k is large, mth partial derivatives of
u are generically O (km) times larger in absolute value than u itself, which,
for s > 0, leads to ‖·‖Hs

1 (Rn) being dominated by the behaviour of the higher
derivatives of u, which is usually undesirable. The k2 appearing in the defini-
tion of ‖·‖Hs

k(Rn) redresses the balance between lower and higher derivatives.
Concretely, in the case s = 1 it holds by Plancherel’s theorem that

‖u‖2
H1

k(Rn) = k2

∫
Rn

|u(x)|2 dx +
∫
Rn

|∇u(x)|2 dx, u ∈ H1(Rn). (28)

If k is large, with u = O (1) and ∇u = O (k−1
)
, then the two terms on the

right-hand side of (28) will be approximately in balance. In light of (28), the
use of k-dependent norms is also natural from a physical point of view: for a
solution u of (1) representing an acoustic wave field and a bounded open set
Ω ⊂ R

n the quantity

k2

∫
Ω

|u(x)|2 dx +
∫

Ω

|∇u(x)|2 dx

is proportional to the (time-averaged) acoustic energy contained in Ω.
It is standard that D(Rn) is dense in Hs(Rn). It is also standard (see,

e.g., [25]) that H−s(Rn) is a natural isometric realisation of (Hs(Rn))∗, the
dual space of bounded antilinear functionals on Hs(Rn), in the sense that
the mapping u �→ u∗ from H−s(Rn) to (Hs(Rn))∗, defined by

u∗(v) := 〈u, v〉H−s(Rn)×Hs(Rn) :=
∫
Rn

û(ξ)v̂(ξ) dξ, v ∈ Hs(Rn), (29)

is a unitary isomorphism. The duality pairing 〈·, ·〉H−s(Rn)×Hs(Rn) defined
in (29) represents a natural extension of the L2(Rn) inner product in the
sense that if uj , vj ∈ L2(Rn) for each j and uj → u and vj → v as j →
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∞, with respect to the norms on H−s(Rn) and Hs(Rn) respectively, then
〈u, v〉H−s(Rn)×Hs(Rn) = limj→∞ (uj , vj)L2(Rn).

We define two Sobolev spaces on Ω when Ω is a non-empty open subset
of R

n. First, let D(Ω) := C∞
0 (Ω) = {u ∈ D(Rn) : suppU ⊂ Ω}, and let D∗(Ω)

denote the associated space of distributions (continuous antilinear functionals
on D(Ω)). We set

Hs(Ω) := {u ∈ D∗(Ω) : u = U |Ω for some U ∈ Hs(Rn)},

where U |Ω denotes the restriction of the distribution U to Ω (cf. [25, p. 66]),
with norm

‖u‖Hs
k(Ω) := inf

U∈Hs(Rn), U |Ω=u
‖U‖Hs

k(Rn).

Then D(Ω) := {u ∈ C∞(Ω) : u = U |Ω for some U ∈ D(Rn)} is dense in
Hs(Ω). Second, let

H̃s(Ω) := D(Ω)
Hs(Rn)

denote the closure of D(Ω) in the space Hs(Rn), equipped with the norm
‖ · ‖H̃s

k(Ω):= ‖ · ‖Hs
k(Rn). When Ω is sufficiently regular (e.g. when Ω is C0, cf.

[25, Theorm 3.29]) we have that H̃s(Ω) = Hs
Ω

:= {u ∈ Hs(Rn) : suppu ⊂ Ω}.
(But for non-regular Ω H̃s(Ω) may be a proper subset of Hs

Ω
, see [8].)

For s ∈ R and Ω any open, non-empty subset of R
n it holds that

H−s(Ω) = (H̃s(Ω))∗ and H̃s(Ω) = (H−s(Ω))∗, (30)

in the sense that the natural embeddings I : H−s(Ω) → (H̃s(Ω))∗ and I∗ :
H̃s(Ω) → (H−s(Ω))∗,

(Iu)(v) := 〈u, v〉H−s(Ω)×H̃s(Ω) := 〈U, v〉H−s(Rn)×Hs(Rn),

(I∗v)(u) := 〈v, u〉H̃s(Ω)×H−s(Ω) := 〈v, U〉Hs(Rn)×H−s(Rn),

where U ∈ H−s(Rn) is any extension of u ∈ H−s(Ω) with U |Ω = u, are
unitary isomorphisms. We remark that the representations (30) for the dual
spaces are well known when Ω is sufficiently regular. However, it does not
appear to be widely appreciated, at least in the numerical analysis for PDEs
community, that (30) holds without constraint on the geometry of Ω, proof
of this given recently in [6, Theorem 2.1].

As alluded to above, Sobolev spaces can also be defined, for s ≥ 0, as
subspaces of L2(Rn) satisfying constraints on weak derivatives. In particular,
given a non-empty open subset Ω of R

n, let

W 1(Ω) := {u ∈ L2(Ω) : ∇u ∈ L2(Ω)},

where ∇u is the weak gradient. An obvious consequence of (28) is that
W 1(Rn) = H1(Rn). Further [25, Theorem 3.30], W 1(Ω) = H1(Ω) whenever
Ω is a Lipschitz open set. It is convenient to define

W 1
loc(Ω) := {u ∈ L2

loc(Ω) : ∇u ∈ L2
loc(Ω)},

where L2
loc(Ω) denotes the set of locally integrable functions u on Ω for which∫

G
|u(x)|2dx < ∞ for every bounded measurable G ⊂ Ω.
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To define Sobolev spaces on the screen Γ ⊂ Γ∞ := {x = (x1, . . . , xn) ∈
R

n : xn = 0} we make the natural associations of Γ∞ with R
n−1 and of Γ

with Γ̃ := {x̃ ∈ R
n−1 : (x̃, 0) ∈ Γ} and set Hs(Γ∞) := Hs(Rn−1), Hs(Γ) :=

Hs(Γ̃) and H̃s(Γ) := H̃s(Γ̃) (with C∞(Γ∞), D(Γ∞), D(Γ) and D(Γ) defined
analogously).

2.2. Traces, Jumps and Boundary Conditions

Letting U+ := {x ∈ R
n : xn > 0} and U− := R

n \ U+ denote the upper
and lower half-spaces, respectively, we define trace operators γ± : D(U±) →
D(Γ∞) by γ±u := u|Γ∞ . It is well known that these extend to bounded linear
operators γ± : W 1(U±) → H1/2(Γ∞). Similarly, we define normal derivative
operators ∂±

n : D(U±) → D(Γ∞) by ∂±
n u = ∂u/∂xn|Γ∞ (so the normal

points into U+), which extend (see, e.g., [5]) to bounded linear operators
∂±
n : W 1(U±;Δ) → H−1/2(Γ∞) = (H1/2(Γ∞))∗, where W 1(U±;Δ) := {u ∈

H1(U±) : Δu ∈ L2(U±)} and Δu is the weak Laplacian.
To define jumps across Γ, let u ∈ L2

loc(R
n) be such that u|U± ∈ W 1

loc(U
±;

Δ) with

γ+(χu)|Γ∞\Γ − γ+(χu)|Γ∞\Γ = 0 and ∂+
n (χu)|Γ∞\Γ − ∂+

n (χu)|Γ∞\Γ = 0

for all χ ∈ D(Rn). We then define

[u] := γ+(χu) − γ−(χu) ∈ H̃1/2(Γ)

[∂u/∂n] := ∂+
n (χu) − ∂−

n (χu) ∈ H̃−1/2(Γ),

where χ is any element of D1,Γ(Rn) := {φ ∈ D(Rn): φ = 1 in some neigh-
bourhood of Γ}.

The boundary conditions (3) and (5) can now be stated more precisely:
by (3) and (5) we mean that

γ±(χu)|Γ = gD, and ∂±
n (χu)|Γ = gN, for every χ ∈ D1,Γ(Rn).

2.3. Layer Potentials and Boundary Integral Operators

We can now give precise definitions for the single and double layer potentials

Sk : H̃−1/2(Γ) → C2(D) ∩ W 1
loc(D), Dk : H̃1/2(Γ) → C2(D) ∩ W 1

loc(D),

namely

Skφ(x) :=
〈
γ±(ρΦ(x, ·))|Γ, φ

〉
H1/2(Γ)×H̃−1/2(Γ)

=
〈
γ±(ρΦ(x, ·)), φ〉

H1/2(Γ∞)×H−1/2(Γ∞)
, x ∈ D, φ ∈ H̃−1/2(Γ),

Dkψ(x) :=
〈
ψ, ∂±

n (ρΦ(x, ·))|Γ
〉

H̃1/2(Γ)×H−1/2(Γ)

=
〈
ψ, ∂±

n (ρΦ(x, ·))
〉

H1/2(Γ∞)×H−1/2(Γ∞)
, x ∈ D, ψ ∈ H̃1/2(Γ),

where ρ is any element of D1,Γ(Rn) with x �∈ supp ρ. The single-layer and
hypersingular boundary integral operators

Sk : H̃−1/2(Γ) → H1/2(Γ), Tk : H̃1/2(Γ) → H−1/2(Γ),
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are then defined by

Skφ := γ±(χSkφ)|Γ, φ ∈ H̃−1/2(Γ), Tkφ := ∂±
n (χDkψ)|Γ, ψ ∈ H̃1/2(Γ),

where χ is any element of D1,Γ(Rn), and either of the ± traces may be taken.
When φ, ψ ∈ D(Γ), it follows from [25, p. 202] and [9, Theorems 2.12 and
2.23] that Skφ, Dkψ, Skφ, and Tkψ are given explicitly by (7) and (9).

3. Fourier Representations for Layer Potentials and BIOs

Our approach to proving the k-explicit continuity and coercivity results in
Theorems 1.6–1.9 is to make use of the fact that, because the screen is planar,
the single and double layer potentials and the single-layer and hypersingular
BIOs can be expressed in terms of Fourier transforms, this observation cap-
tured in the following Theorem 3.1. We note that the parts of this theorem
relating to Tk were stated and proved for the case n = 3 in [17, Theorems 1
and 2]. For completeness we include below a short direct proof of the whole
theorem, which introduces notation and formulae which prove useful in later
sections. We remark that an alternative method of proving (31) and (32)
would be to observe, using elementary arguments and standard properties of
single- and double-layer potentials [9], that the left and right hand sides of
each equation satisfy the same boundary value problems for the Helmholtz
equation in D, with the same Neumann data on Γ in the case of (31), the
same Dirichlet data on Γ in the case of (32), so that the right and left hand
sides must coincide. (This argument is most easily done for k replaced by
k + iε, with ε > 0, and then the result for real wavenumber obtained by
taking the limit ε → 0+, using the dominated convergence theorem.)

Theorem 3.1. Let φ ∈ D(Γ). Then

Skφ(x) =
i

2(2π)(n−1)/2

∫
Rn−1

ei(ξ·x̃+|xn|Z(ξ))

Z(ξ)
ϕ̂(ξ) dξ, x = (x̃, xn) ∈ D,

(31)

Dkφ(x) =
sgn xn

2(2π)(n−1)/2

∫
Rn−1

ei(ξ·x̃+|xn|Z(ξ))ϕ̂(ξ) dξ, x = (x̃, xn) ∈ D,

(32)

whereˆrepresents the Fourier transform with respect to x̃ ∈ R
n−1 and

Z(ξ) :=

{√
k2 − |ξ|2, |ξ| ≤ k

i
√|ξ|2 − k2, |ξ| > k,

ξ ∈ R
n−1. (33)

The operators Sk, Tk : D(Γ) → D(Γ) satisfy Skφ = (S∞
k φ)|Γ and Tkφ =

(T∞
k φ)|Γ, where S∞

k , T∞
k : D(Rn−1) → C∞(Rn−1) are the pseudodifferential

operators defined for ϕ ∈ D(Rn−1) by

S∞
k ϕ(x̃) =

i
2(2π)(n−1)/2

∫
Rn−1

eiξ·x̃

Z(ξ)
ϕ̂(ξ) dξ, x̃ ∈ R

n−1, (34)

T∞
k ϕ(x̃) =

i
2(2π)(n−1)/2

∫
Rn−1

Z(ξ)eiξ·x̃ϕ̂(ξ) dξ, x̃ ∈ R
n−1. (35)
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Furthermore, for φ, ψ ∈ D(Γ) we have that

(Skφ, ψ)L2(Γ) = i
2

∫
Rn−1

1
Z(ξ) φ̂(ξ)ψ̂(ξ) dξ, (36)

(Tkφ, ψ)L2(Γ) = i
2

∫
Rn−1 Z(ξ)φ̂(ξ)ψ̂(ξ) dξ. (37)

Proof. Using (7), we see that, for φ ∈ D(Γ),

Skφ(x) = (Φc(·, xn) ∗ φ)(x̃), (38)

where ∗ indicates a convolution over R
n−1 (with xn treated as a parameter)

and

Φc(x̃, xn) := Φ((x̃, xn),0)=

⎧⎪⎪⎨
⎪⎪⎩

eik
√

r2+x2
n

4π
√

r2 + x2
n

, n = 3,

i

4
H

(1)
0 (k

√
r2 + x2

n), n = 2,

r = |x̃|, x̃ ∈ R
n−1.

Hence the Fourier transform (with respect to x̃ ∈ R
n−1) of Skφ is given by

the product

Ŝkφ(ξ, xn) = (2π)(n−1)/2 Φ̂c(ξ, xn)ϕ̂(ξ).

To evaluate Φ̂c we note that for a function f(x) = F (r), where r = |x| for
x ∈ R

d, d = 1, 2, the Fourier transform of f is given by (cf. [14, §B.5])4

f̂(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0

F (r)J0(|ξ|r)r dr, d = 2,√
2
π

∫ ∞

0

F (r) cos(ξr) dr, d = 1.

(39)

This result, combined with the identities [13, (6.677), (6.737)] and
[1, (10.16.1), (10.39.2)], gives

Φ̂c(ξ, xn) =
i ei|xn|Z(ξ)

2(2π)(n−1)/2Z(ξ)
,

where Z(ξ) is defined as in (33). The representation (34) is then obtained by
Fourier inversion.

The representation (32) for Dkφ can be then obtained from (31) by
noting that

∂Φ(x,y)
∂n(y)

=
∂Φ(x,y)

∂yn
= −∂Φ(x,y)

∂xn
, x ∈ D, y ∈ Γ,

and the representations for Sk and Tk follow from taking the appropriate
traces of (31) and (32).

Finally, (36) and (37) follow from viewing S∞
k φ and T∞

k φ as elements of
C∞(Rn−1) ∩ S∗(Rn−1) and recalling the definition of the Fourier transform
of a distribution, e.g., for Sk,

4 Strictly speaking, [14, §B.5] only provides (39) for f ∈ L1(Rd). But for the functions
f = Φc(·, xn) one can check using the dominated convergence theorem that (39) holds.
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(Skφ, ψ)L2(Γ) =
∫
Rn−1

S∞
k φ(x̃)ψ(x̃) dx̃ =

∫
Rn−1

Ŝ∞
k φ(ξ)ψ̂(ξ) dξ

=
i
2

∫
Rn−1

1
Z(ξ)

φ̂(ξ)ψ̂(ξ) dξ. �

4. k-Explicit Analysis of Sk

Our k-explicit analysis of the single-layer operator Sk makes use of the fol-
lowing lemma.

Lemma 4.1. Given L > 0 let

ΦL(x̃, xn) :=

{
Φc(x̃, xn), |x̃| ≤ L,

0, |x̃| > L,
(40)

where Φc is defined as in the proof of Theorem 3.1. Then there exists a
constant C > 0, independent of k, L, ξ and xn, such that, for all k > 0,
ξ ∈ R

n−1, and xn ∈ R,

|Φ̂L(ξ, xn)|
√

k2 + |ξ|2 ≤
{

C(1 + (kL)1/2), n = 3,

C
(
log(2 + (kL)−1) + (kL)1/2

)
, n = 2.

(41)

Proof. It is convenient to introduce the notation ξ := |ξ|, and by C > 0 we
denote an arbitrary constant, independent of k, L, ξ, and xn, which may
change from occurrence to occurrence. To prove (41) we proceed by estimat-
ing |Φ̂L(ξ, xn)| directly, using the formula (39). We treat the cases n = 3 and
n = 2 separately. We will make use of the following well-known properties of
the Bessel functions (cf. [1, Sections 10.6, 10.14, 10.17]), where Bn represents
either Jn or H

(1)
n :

|Jn(z)| ≤ 1, n ∈ N, z > 0, (42)

|H(1)
0 (z)| ≤ C(1 + | log z|), 0 < z ≤ 1 (43)

|H(1)
1 (z)| ≤ Cz−1, 0 < z ≤ 1 (44)∣∣∣∣H(1)

1 (z) +
2i
πz

∣∣∣∣ ≤ Cz−1/2, z > 0, (45)

|Bn(z)| ≤ Cz−1/2, n = 0, 1, z > 1, (46)
B′

0(z) = −B1(z), z > 0, (47)
d

dz
(zB1(z)) = zB0(z), z > 0. (48)

(i) In the case n = 3, |Φ̂L(ξ, x3)| ≤ |I(L)|/(4π), where

I(L) :=
∫ L

0

eik
√

r2+x2
3√

r2 + x2
3

J0(ξr) r dr, for L > 0.
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Using (42), we see that |I(L)| ≤ 1/ξ, if L ≤ 1/ξ. If L > 1/ξ then, integrating
by parts using the relation (48),

I(L) − I(1/ξ) =
1
ξ

[
reik

√
r2+x2

3√
r2 + x2

3

J1(ξr)

]L

1/ξ

−1
ξ

∫ L

1/ξ

r2eik
√

r2+x2
3

(
ik

r2 + x2
3

− 1
(r2 + x2

3)3/2

)
J1(ξr) dr,

so that, substituting t = ξr and using (42),

|I(L)| ≤ |I(1/ξ)| + |I(L) − I(1/ξ)| ≤ 3
ξ

+
1
ξ

∫ ξL

1

(
k

ξ
+ t−1

)
|J1(t)|dt. (49)

Using the bound (46) in (49), it follows that

|I(L)| ≤ 3
ξ

+
C

ξ

(
kL1/2

ξ1/2
+ 1
)

, L > 0,

so that

|Φ̂L(ξ, x3)|
√

k2 + ξ2 ≤ C(1 + (kL)1/2), for 0 < k < ξ. (50)

On the other hand, integrating by parts using the relation (47),

I(L) =
1
k

[
−ieik

√
r2+x2

3J0(ξr)
]L
0

− iξ
k

∫ L

0

eik
√

r2+x2
3J1(ξr) dr,

so that, substituting t = ξr and using (42),

|I(L)| ≤ 2
k

+
1
k

∫ kL

0

|J1(t)|dt.

Using (42) and (46) we see that (50) holds also for 0 ≤ ξ ≤ k, establishing
(41) in the case n = 3.

(ii) In the case n = 2, |Φ̂L(ξ, x2)| ≤ |I(L)|/(2
√

2π), where now

I(L) :=
∫ L

0

H
(1)
0 (k

√
r2 + x2

2) cos(ξr) dr.

Using the monotonicity of |H(1)
0 (z)| for z > 0 [30, p. 487], we see that

|I(L)| ≤
∫ L

0

|H(1)
0 (kr)|dr =

1
k

∫ kL

0

|H(1)
0 (t)|dt, L > 0. (51)

Using (43) and (46), we deduce that

|Φ̂L(ξ, x2)|
√

k2 + ξ2 ≤ C
(
log(2 + (kL)−1) + (kL)1/2

)
, for 0 ≤ ξ ≤ k.

(52)
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Further, integrating by parts using the relation (47) gives

I(L) =
1
ξ

[
H

(1)
0 (k

√
r2 + x2

2) sin ξr

]L

0

+
k

ξ

∫ L

0

r√
r2 + x2

2

H
(1)
1 (k

√
r2 + x2

2) sin ξr dr

=
1
ξ
H

(1)
0 (k

√
L2 + x2

2) sin ξL

+
k

ξ

∫ L

0

r√
r2 + x2

2

F1(k
√

r2 + x2
2) sin ξr dr + I0(L),

where c0 := −2i/π, F1(z) := H
(1)
1 (z) − c0/z, and

I0(L) :=
c0

ξ

∫ L

0

r sin ξr

r2 + x2
2

dr =
c0

ξ

∫ ξL

0

t sin t

t2 + ξ2x2
2

dt.

Now |I0(L)| ≤ |c0|/ξ = 2/(πξ), for L ≤ 1/ξ. For L > 1/ξ, integrating by
parts,

I0(L) − I0(1/ξ) =
c0

ξ

([ −t cos t

t2 + ξ2x2
2

]ξL

1

+
∫ ξL

1

(ξ2x2
2 − t2) cos t

(t2 + ξ2x2
2)2

dt

)
,

so that

|I0(L)| ≤ 2
πξ

(
3 +

∫ ξL

1

1
t2

dt

)
<

8
πξ

.

Using these bounds on I0(L) and the bound (45) on F1(z), we see that

|I(L)| ≤ 1
ξ
|H(1)

0 (kL)| +
Ck1/2

ξ

∫ L

0

r−1/2dr +
8
πξ

=
1
ξ

(
|H(1)

0 (kL)| + 2C(kL)1/2 +
8
π

)
,

for L > 0. Using the bounds (43) and (46), we conclude that (52) holds also
for 0 < k < ξ, establishing (41) in the case n = 2. �

Using this result we can now prove Theorem 1.6.

Proof of Theorem 1.6. By the density of D(Γ) in H̃s(Γ) it suffices to prove
(14) for φ ∈ D(Γ). For φ ∈ D(Γ) we first note that Skφ = (SL

k φ)|Γ, where
SL

k : D(Rn−1) → D(Rn−1) is the convolution operator defined by SL
k ϕ :=

(ΦL(·, 0)∗ϕ), for ϕ ∈ D(Rn−1), where ΦL is defined as in (40). While S∞
k ϕ ∈

C∞(Rn−1) for ϕ ∈ D(Rn−1), the fact that ΦL has compact support means
that SL

k ϕ ∈ D(Rn−1) ⊂ Hs+1(Rn−1) (cf. [32, Corollary 5.4-2a]). Therefore,
for φ ∈ D(Γ) we can estimate ‖Skφ‖Hs+1

k (Γ) ≤ ‖SL
k φ‖Hs+1

k (Rn−1), and since

ŜL
k ϕ(ξ) = ̂(ΦL(·, 0) ∗ ϕ)(ξ) = (2π)(n−1)/2Φ̂L(ξ, 0)ϕ̂(ξ) for any ϕ ∈ D(Rn−1),

the bound (14) follows from Lemma 4.1. �
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Proof of Theorem 1.7. By the density of D(Γ) in H̃−1/2(Γ) it suffices to
prove (15) for φ ∈ D(Γ). For such a φ, noting that Re [exp(iπ/4)/Z(ξ)] =
|√k2 − |ξ|2 |/√

2, formula (36) from Theorem 3.1 gives the desired result:

|aD(φ, φ)| = |(Skφ, φ)L2(Γ)| ≥ 1
2
√

2

∫
Rn−1

|φ̂(ξ)|2√
|k2−|ξ|2| dξ

≥ 1
2
√

2

∫
Rn−1

|φ̂(ξ)|2√
k2+|ξ|2 dξ. (53)

�

Remark 4.2. We can show that the bounds established in Theorem 1.6 are
sharp in their dependence on k as k → ∞. For simplicity of presentation we
assume that diam Γ = 1 and k > 1. Let φ(x̃) := eikd̃·x̃ψ(x̃) for x̃ ∈ R

n−1,
where d̃ ∈ R

n−1 is a unit vector and 0 �= ψ ∈ D(Γ) is independent of
k. Then φ̂(ξ) = ψ̂(η), where η = ξ − kd̃. Thus, for any η∗ ≥ 1, where
I(η∗) :=

∫
|η|≤η∗

|ψ̂(η)|2 dη, substituting ξ = η + kd̃, the first inequality in
(53) gives that

|(Skφ, φ)L2(Γ)| ≥ 1
2
√

2

∫
Rn−1

|ψ̂(η)|2√|k2 − |ξ|2| dη ≥ I(η∗)
2
√

6η∗k1/2
, (54)

since |k2 − |ξ|2| ≤ 2k|η|+ |η|2 ≤ 3kη2
∗, for |η| ≤ η∗. Also, for the same choice

of φ and all t ≥ 0,

‖φ‖2
H̃−t

k (Γ) ≤ 1
k2t

∫
Rn−1

|φ̂(ξ)|2 dξ =
1

k2t

∫
Rn−1

|ψ̂(η)|2 dη ≤ 2k−2tI(η∗),

(55)

for η∗ sufficiently large. Further, for η∗ sufficiently large and k > 1,

I(η∗) ≥
∫

|η|>η∗
(2 + 2|η| + |η|2)t|ψ̂(η)|2 dη

≥
∫

|η|>η∗

(
1 +

∣∣∣η
k

+ d̃
∣∣∣2
)t

|ψ̂(η)|2 dη,

so that, since k2 + |η + kd̃|2 ≤ k2 + (η∗ + k)2 ≤ 5k2η2
∗ for |η| ≤ η∗,

‖φ‖2
H̃t

k(Γ) =
∫
Rn−1

(
k2 +

∣∣∣η + kd̃
∣∣∣2
)t

|ψ̂(η)|2 dη ≤ 6k2tη2t
∗ I(η∗). (56)

Combining (54), (55) and (56) we see that, for every s ∈ R, if η∗ ≥ 1 is
sufficiently large, there exists C > 0, depending on η∗ and s but independent
of k, such that

|(Skφ, φ)L2(Γ)| ≥ Ck1/2 ‖φ‖
H̃

−(s+1)
k (Γ)

‖φ‖H̃s
k(Γ) .

But, on the other hand,

|(Skφ, φ)L2(Γ)| = |〈Skφ, φ〉Hs+1(Γ)×H̃−(s+1)(Γ)| ≤ ‖Skφ‖Hs+1
k (Γ) ‖φ‖

H̃
−(s+1)
k (Γ)

,

so that, for this particular choice of φ,
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‖Skφ‖Hs+1
k (Γ) ≥ Ck1/2 ‖φ‖H̃s

k(Γ) ,

which demonstrates the sharpness of (14) in the limit k → ∞.

Remark 4.3. Theorem 1.6 bounds Sk : H̃s(Γ) → Hs+1(Γ). We can also bound
Sk as a mapping Sk : H̃s(Γ) → Hs(Γ). Since ‖φ‖H̃s−1

k (Γ) ≤ k−1 ‖φ‖H̃s
k(Γ) for

φ ∈ H̃s(Γ), it follows from Theorem 1.6 that, for kL ≥ 1,

‖Skφ‖Hs
k(Γ) ≤ C

(
L

k

)1/2

‖φ‖H̃s
k(Γ) , for φ ∈ H̃s(Γ). (57)

Arguing as in Remark 4.2 above, and with the same choice of φ and again
with L = diam(Γ) = 1 and assuming k > 1, we easily see that for every s ∈ R

there exists C > 0 such that

‖Skφ‖Hs
k(Γ) ‖φ‖H̃−s

k (Γ) ≥ |(Skφ, φ)L2(Γ)| ≥ Ck−1/2 ‖φ‖H̃−s
k (Γ) ‖φ‖H̃s

k(Γ) ,

so that

‖Skφ‖Hs
k(Γ) ≥ Ck−1/2 ‖φ‖H̃s

k(Γ) , (58)

which demonstrates the sharpness of (57) in the limit k → ∞.
We note that in the case s = 0, when Hs(Γ) = H̃−s(Γ) = L2(Γ), (57)

and (58) provide upper and lower bounds on the norm of Sk as an operator
on L2(Γ), these bounds shown previously in the 2D case in [4] and, in the
multidimensional case, very recently in [18].

Remark 4.4. We can also show that the bound in Theorem 1.7 is sharp in its
dependence on k as k → ∞. Let 0 �= φ ∈ D(Γ) be independent of k. Then,
by (36), and since φ̂(ξ) is rapidly decreasing as k → ∞,

|aD(φ, φ)| ≤ 1
2

∫
Rn−1

|φ̂(ξ)|2√|k2 − |ξ|2| dξ ∼ 1
2k

∫
Rn−1 |φ̂(ξ)|2 dξ, (59)

as k → ∞. Further,

‖φ‖2

H̃
−1/2
k (Γ)

∼ 1
k

∫
Rn−1

|φ̂(ξ)|2 dξ (60)

as k → ∞. Thus, for every C > 1/2,

|aD(φ, φ)| ≤ C ‖φ‖2

H̃
−1/2
k (Γ)

, (61)

for all sufficiently large k.

5. k-Explicit Analysis of Tk

Proof of Theorem 1.8. By the density of D(Γ) in H̃s(Γ) it suffices to prove
(16) for φ ∈ D(Γ). For such a φ we first note from Theorem 3.1 that Tkφ =
(T∞

k φ)|Γ, where T̂∞
k ϕ(ξ) = (i/2)Z(ξ)ϕ̂(ξ), for ϕ ∈ D(Rn−1). Clearly, for any

ϕ ∈ D(Rn−1) and any s ∈ R, the integral∫
Rn−1

(k2 + |ξ|2)s−1|T̂∞
k ϕ(ξ)|2 dξ
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is finite, and hence T∞
k ϕ ∈ Hs−1(Rn−1). As a result, given φ ∈ D(Γ) we can

estimate

‖Tkφ‖Hs−1
k (Γ) ≤ ‖T∞

k φ‖Hs−1
k (Rn−1)

=
1
2

√∫
Rn−1

(k2 + |ξ|2)s−1|Z(ξ)|2|φ̂(ξ)|2 dξ

≤ 1
2

√∫
Rn−1

(k2 + |ξ|2)s|φ̂(ξ)|2 dξ, (62)

as required. �

Proof of Theorem 1.9. We assume throughout that L = diam Γ = 1, noting
that a simple rescaling deals with the general case. By the density of D(Γ)
in H̃1/2(Γ) it suffices to prove (17) for φ ∈ D(Γ). For such a φ, Eq. (37) from
Theorem 3.1 gives that

|aN(φ, φ)| =
1
2

∣∣∣∣
∫
Rn−1

Z(ξ)|φ̂(ξ)|2 dξ

∣∣∣∣ ≥ I

2
√

2
, (63)

where

I :=
∫
Rn−1

|Z(ξ)||φ̂(ξ)|2 dξ.

Defining

J := ‖φ‖2

H̃
1/2
k (Γ)

=
∫
Rn−1

(k2 + |ξ|2)1/2|φ̂(ξ)|2 dξ,

the problem of proving (17) reduces to that of proving

I ≥ CkβJ, k ≥ k0, (64)

for some C > 0 depending only on k0.
The difficulty in proving (64) is that the factor |Z(ξ)| in I vanishes when

|ξ| = k. To deal with this, we write the integrals I and J as

I = I1 + I2 + I3 + I4, J = J1 + J2 + J3 + J4,

corresponding to the decomposition∫
Rn−1

=
∫

0<|ξ|<k−ε

+
∫

k−ε<|ξ|<k

+
∫

k<|ξ|<k+ε

+
∫

|ξ|>k+ε

,

where 0 < ε ≤ k is to be specified later. We then proceed to estimate the
integrals J1, . . . , J4 separately. Throughout the remainder of the proof c > 0
denotes an absolute constant whose value may change from occurrence to
occurrence.

We first observe that, for 0 < |ξ| < k − ε,

k2 + |ξ|2
k2 − |ξ|2 ≤ k2 + (k − ε)2

k2 − (k − ε)2
≤ 2k2

ε(2k − ε)
≤ 2k

ε
,
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so that

J1 :=
∫

0<|ξ|<k−ε

(k2 + |ξ|2)1/2|φ̂(ξ)|2 dξ

=
∫

0<|ξ|<k−ε

(k2 + |ξ|2)1/2

(k2 − |ξ|2)1/2
|Z(ξ)| |φ̂(ξ)|2 dξ

≤ c

√
k

ε
I1.

Similarly, for |ξ| > k + ε,

k2 + |ξ|2
|ξ|2 − k2

≤ k2 + (k + ε)2

(k + ε)2 − k2
≤ 5k

2ε
,

so that

J4 :=
∫

|ξ|>k+ε

(k2 + |ξ|2)1/2|φ̂(ξ)|2 dξ

=
∫

|ξ|>k+ε

(k2 + |ξ|2)1/2

(|ξ|2 − k2)1/2
|Z(ξ)| |φ̂(ξ)|2 dξ

≤ c

√
k

ε
I4.

To estimate J2 and J3, we first derive a pointwise estimate on the
Fourier transform of φ. To do this, we note first that, for t ∈ R, |eit − 1|2 =
4 sin2 (t/2) ≤ t2, so that, for ξ1, ξ2 ∈ R

n−1 and recalling our assumption that
diam Γ = 1,

|φ̂(ξ1) − φ̂(ξ2)| ≤ 1

(2π)
n−1

2

∣∣∣∣
∫

Γ

e−iξ2·x
(
e−i(ξ1−ξ2)·x − 1

)
φ(x) dx

∣∣∣∣
≤ |ξ1 − ξ2|

(2π)
n−1

2

∫
Γ

|x||φ(x)|dx

≤ |ξ1 − ξ2|
(2π)

n−1
2

(∫
Γ

|x|2 dx
)1/2(∫

Γ

|φ(x)|2 dx
)1/2

.

= c|ξ1 − ξ2|
(∫

Rn−1
|φ̂(ξ)|2 dξ

)1/2

,

≤ c|ξ1 − ξ2|k−1/2J.

As a result, we can estimate, with ξ̂ := ξ/|ξ|,

|φ̂(ξ)|2 ≤ 2
(
|φ̂(ξ ± εξ̂)|2 + |φ̂(ξ ± εξ̂)−φ̂(ξ)|2

)
≤ 2

(
|φ̂(ξ ± εξ̂)|2+

cε2J

k

)
,

(65)

which then implies that
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J2 :=
∫

k−ε<|ξ|<k

(k2 + |ξ|2)1/2|φ̂(ξ)|2 dξ

≤ 2
√

2k

(∫
k−ε<|ξ|<k

|φ̂(ξ − εξ̂)|2 dξ + cε3kn−3J

)
. (66)

We now note that, for 0 < ε < c < d,

∫
c<|ξ|<d

f(ξ ± εξ̂) dξ =

⎧⎨
⎩
∫

c±ε<|ξ|<d±ε
f(ξ)

(
1 ∓ ε

|ξ|
)

dξ, n = 3,∫
c±ε<|ξ|<d±ε

f(ξ) dξ, n = 2.
(67)

Assume that 0 < ε < k/3. Then for k−2ε < |ξ| < k−ε, we have 1+ε/|ξ| ≤ 2,
so that, using (67),∫

k−ε<|ξ|<k

|φ̂(ξ − εξ̂)|2 dξ ≤ 2
∫

k−2ε<|ξ|<k−ε

|φ̂(ξ)|2 dξ

≤ 2
(k2 − (k − ε)2)1/2

∫
k−2ε<|ξ|<k−ε

(k2 − |ξ|2)1/2|φ̂(ξ)|2 dξ

≤ 2
(εk)1/2

I1.

Inserting this estimate into (66), we find that

J2 ≤ c

√
k

ε
I1 + cε3kn−2J.

Arguing similarly, again assuming that 0 < ε < k/3, but using (65) and (67)
with the plus rather than the minus sign, gives

J3 : =
∫

k<|ξ|<k+ε
(k2 + |ξ|2)1/2|φ̂(ξ)|2 dξ ≤ c

√
k
ε I4 + cε3kn−2J.

Combining the above estimates we see that, for 0 < ε < k/3,

J = J1 + J2 + J3 + J4 ≤ c
√

k
ε (I1 + I4) + cε3kn−2J,

which implies that

J
(
1 − cε3kn−2

) ≤ c

√
k

ε
I. (68)

Now, given k0 > 0, choose c̃ > 0 such that c̃ < 1/(2c) and c̃k−(n−2)/3 ≤ k/3,
for k ≥ k0. Then, for k ≥ k0, setting ε = c̃k−(n−2)/3 in (68), it follows from
(68) that

J ≤ c c̃−1/2 k−βI,

where β = −1/2− (n−2)/6. Thus (64) holds, which completes the proof. �

Remark 5.1. We can show that the bounds established in Theorem 1.8 are
sharp in their dependence on k as k → ∞. Let 0 �= φ ∈ D(Γ) be independent
of k. Then, by (63), and since aN(φ, φ) = (Tkφ, φ)L2(Γ) and φ̂(ξ) is rapidly
decreasing,
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|(Tkφ, φ)L2(Γ)| ≥ 1
2
√

2

∫
Rn−1

√
|k2 − |ξ|2||φ̂(ξ)|2 dξ

∼ k

2
√

2

∫
Rn−1

|φ̂(ξ)|2 dξ, (69)

as k → ∞. Also, for every s ∈ R, |(Tkφ, φ)L2(Γ)| ≤ ‖Tkφ‖Hs−1
k (Γ) ‖φ‖H̃1−s

k (Γ)

and

‖φ‖2
H̃s

k(Γ) =
∫
Rn−1

(k2 + |ξ|2)s|φ̂(ξ)|2 dξ ∼ k2s

∫
Rn−1

|φ̂(ξ)|2 dξ, (70)

as k → ∞. Combining (69) and (70) we see that, for every s ∈ R and
C < 1/(2

√
2), it holds for all sufficiently large k that |(Tkφ, φ)L2(Γ)| ≥

C ‖φ‖H̃1−s
k (Γ) ‖φ‖H̃s

k(Γ), so that

‖Tkφ‖Hs−1
k (Γ) ≥ C ‖φ‖H̃s

k(Γ) ,

for all k sufficiently large, which demonstrates the sharpness of (16) in the
limit k → ∞.

Remark 5.2. We can also show that the bound established in Theorem 1.9 is
sharp in its dependence on k as k → ∞, in the case n = 2. As in Remark 4.2,
let φ(x̃) := eikd̃·x̃ψ(x̃), where d̃ ∈ R

n−1 is a unit vector and 0 �= ψ ∈ D(Γ) is
independent of k, so that φ̂(ξ) = ψ̂(η), where η = ξ − kd̃. Since |k2 − |ξ|2| ≤
2k|η| + |η|2, and since φ̂(ξ) is rapidly decreasing,

|aN(φ, φ)| ≤ 1
2

∫
Rn−1

√
2k|η| + |η|2 |ψ̂(η)|2 dη

∼ k1/2

√
2

∫
Rn−1

|η|1/2 |ψ̂(η)|2 dη, (71)

as k → ∞. Further,

‖φ‖2

H̃
1/2
k (Γ)

=
∫
Rn−1

(
2k2 + 2kη · d̃ + |η|2

)1/2

|ψ̂(η)|2 dη

∼
√

2 k

∫
Rn−1

|ψ̂(η)|2 dη, (72)

as k → ∞. Combining (71) and (72) we see that, for some constant C > 0
independent of k,

|aN(φ, φ)| ≤ Ck−1/2 ‖φ‖2

H̃
1/2
k (Γ)

,

for all sufficiently large k. This demonstrates the sharpness of (17) in the
limit k → ∞, for the case n = 2. In the case n = 3 it may be that (17) holds
with the value of β increased from −2/3 to −1/2, i.e., to its value for n = 2.

6. Norm Estimates in H1/2(Γ)

In this section we derive k-explicit estimates of the norms of certain functions
in H1/2(Γ), which are of relevance to the numerical solution of the Dirich-
let boundary value problem D, when it is solved via the integral equation
formulation (11). For an application of the results presented here see [20].
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The motivation for the estimates we prove in Lemma 6.1 below comes
from the need to estimate integrals (strictly speaking, duality pairings) of the
form

I :=
∫

Γ

w(y)v(y) ds(y) := 〈w, v〉H1/2(Γ)×H̃−1/2(Γ), (73)

where w ∈ H1/2(Γ) and v ∈ H̃−1/2(Γ).
One situation in which such integrals arise is when solving (11) using a

Galerkin BEM. In order to derive error estimates for the resulting solution in
the domain D, and for the far-field pattern (defined e.g. as in [20, Eqn (52)]),
we need to estimate duality pairings of the form (73) where v ∈ H̃−1/2(Γ)
represents the error in our Galerkin solution, and w ∈ H1/2(Γ) is a known
function, possibly depending on a parameter. For the far-field pattern, w(y) =
eikx̂·y for some observation direction x̂ ∈ R

n with |x̂| = 1, and, for the solution
evaluated at x ∈ D, w(y) = Φ(x,y).

One also encounters integrals of the form (73) when attempting to esti-
mate the magnitude of the solution of the continuous problem at a point x in
the domain, using a bound on the boundary data (an example is Corollary 6.2
below, which is applied in [20]). In this case w(y) = Φ(x,y) and v = [∂u/∂n]
is the exact solution of (11).

Given an estimate of ‖v‖
H̃

−1/2
k (Γ)

, an estimate of |I| follows from

|I| = |〈w, v〉H1/2(Γ)×H̃−1/2(Γ)| ≤ ‖w‖
H

1/2
k (Γ)

‖v‖
H̃

−1/2
k (Γ)

,

provided we can bound ‖w‖
H

1/2
k (Γ)

. We now do this for the choices of w noted
above.

Lemma 6.1. Let k > 0, let Γ be an arbitrary nonempty relatively open subset
of Γ∞, and let L := diam Γ.

(i) Let d ∈ R
n with |d| ≤ 1. Then, for s ≥ 0, there exists Cs > 0,

dependent only on s, such that

‖eikd·(·)‖Hs
k(Γ) ≤ CsL

(n−1−2s)/2(1 + kL)s. (74)

(ii) Let x ∈ D := R
n \ Γ. Then there exists C > 0, independent of k, Γ,

and x, such that

‖Φ(x, ·)‖
H

1/2
k (Γ)

≤

⎧⎪⎪⎨
⎪⎪⎩

C
√

k

(
1
kd

+ P3(L/d)
)

, n = 3,

C

(
1√
kd

(
1√
kL

+ log
(

2 +
1
kd

))
+ P2(L/d)

)
, n = 2,

(75)

where d := dist(x,Γ) and Pn(t) := min(t(n−1)/2, log1/2(2 + t)).

Proof. Choose χ ∈ C∞(R) such that χ(t) = 0, for t ≥ 2, χ(t) = 1, for t ≤ 1.
In both parts (i) and (ii) we wish to estimate ‖u‖H1/2(Γ), where u ∈ H1/2(Γ)
is such that u = ũ|Γ for some ũ ∈ L1

loc(R
n−1) with ũ|Γ ∈ D(Γ).
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Consider first part (i), in which, for some d ∈ R
n with |d| ≤ 1, ũ(ỹ) =

eikd·y, for ỹ ∈ R
n−1, where y = (ỹ, 0) ∈ Γ∞. Suppose without loss of gen-

erality that the origin lies within Γ, and define χL ∈ D(Rn−1) by χL(ỹ) =
χ(|ỹ|/L), for ỹ ∈ R

n−1. Then, for any s ∈ R, since (χLũ)|Γ = u,

‖u‖Hs
k(Γ) ≤ ‖χLũ‖Hs

k(Rn−1). (76)

Moreover, the standard shift and scaling theorems for the Fourier transform
imply that χ̂Lũ(ξ) = Ln−1χ̂(L(ξ − kd)). Thus, for s ≥ 0, substituting η =
L(ξ − kd),

‖χLũ‖2
Hs

k(Rn−1) = L2(n−1)

∫
Rn−1

(k2 + |ξ|2)s|χ̂(L(ξ − kd))|2 dξ

= Ln−1−2s

∫
Rn−1

((kL)2 + |η + kLd|2)s|χ̂(η)|2 dη

≤ Ln−1−2s(1 + kL)2s

∫
Rn−1

(2 + |η|)2s|χ̂(η)|2 dη

since 2(kL)2 + 2|η|kL + |η|2 ≤ (1 + kL)2(2 + |η|)2.
For part (ii), where, for some x ∈ D, ũ(ỹ) = Φ(x, (ỹ, 0)), for ỹ ∈ R

n−1,
and u = ũ|Γ, such a direct approach is not possible. Instead, noting that
u ∈ H1(Γ), we will bound ‖u‖

H
1/2
k (Γ)

using the simple estimate that

‖u‖
H

1/2
k (Γ)

≤ k−1/2‖u‖H1
k(Γ). (77)

Now, for ỹ ∈ R
n−1, ũ(ỹ) = kn−2F (kr(ỹ)), where r(ỹ) =

√|ỹ − x̃|2 + x2
n

and, for t > 0, F (t) := i
4H

(1)
0 (t) when n = 2, while F (t) := eit/(4πt) when

n = 3. Further, |∇ũ(ỹ)| ≤ kn−1|F ′(kr(ỹ))|. Recalling (43)–(47), we see that

|F (t)| ≤ Ct−(n−1)/2, |F ′(t)| ≤ C
(
t−(n−1)/2 + t−(n−1)

)
, for t > 0, (78)

where C > 0 is an absolute constant, not necessarily the same at each occur-
rence.

Suppose first that d = dist(x,Γ) ≥ 4L. Then, where χL is defined as
above,

‖u‖2
H1

k(Γ) ≤ ‖χLũ‖2
H1

k(Rn−1) = k2‖χLũ‖2
L2(Rn−1) + ‖∇(χLũ)‖2

L2(Rn−1). (79)

Note that r(ỹ) ≥ d − 2L ≥ d/2 and |∇χL(y)| ≤ C/L for ỹ ∈ suppχL, and
that suppχL has measure ≤ CLn−1. Thus, and using (78) and (79), and
recalling that |F (z)| is monotonically decreasing on z > 0, we see that

‖u‖H1
k(Γ) ≤ CL(n−1)/2

(
L−1kn−2|F (kd/2)| + (k/d)(n−1)/2 + d1−n

)
. (80)

Now consider the case that d < 4L. Write x as x = (x̃, xn) with
x̃ ∈ R

n−1, and set SR := {ỹ ∈ R
n−1 : |x̃ − ỹ| < R}, for R > 0. Modify

the definition of χL, setting χL(ỹ) = χ(|ỹ|/L)(1 − χ(2r(ỹ)/d)). With this
definition it still holds that χL = 1 on the closure of Γ, so (χLũ)|Γ = u.
Also |∇χL(ỹ)| ≤ C/d; in fact |∇χL(ỹ)| ≤ C/L, for |ỹ − x̃| ≥ d. Again (79)
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holds. Recalling that |∇ũ(y)| ≤ kn−1|F ′(kr(ỹ))|, and using (78) and that
r(ỹ) ≥ |ỹ − x̃|, and r(ỹ) ≥ d/2 on the support of χL, we see that

‖χL∇ũ‖2
L2(Rn−1)

≤ k2n−2

(∫
Sd

χ2
L(ỹ)|F ′(kr(ỹ))|2dỹ + C

∫
S5L\Sd

|F ′(kr(ỹ))|2dỹ
)

≤ Ckn−1 + Cd1−n + C

∫ 5L

d

(
kn−1

t
+

1
tn

)
dt

≤ Ckn−1 log(5L/d) + Cd1−n. (81)

Similarly,

k2‖χLũ‖2
L2(Rn−1)

≤ k2n−2

(∫
Sd

χ2
L(ỹ)|F (kr(ỹ))|2dỹ + C

∫
S5L\Sd

|F (kr(ỹ))|2dỹ
)

≤ Ckn−1

(
1 +

∫ 5L

d

t−1 dt

)
≤ Ckn−1 log(5L/d) (82)

and, using that |F (z)| is monotonic for z > 0,

‖ũ∇χL‖2
L2(Rn−1) ≤ Ck2n−4

(
dn−3|F (kd/2)|2 + L−2

∫
S5L\Sd

|F (kr(ỹ))|2dỹ
)

≤ Ck2n−4dn−3|F (kd/2)|2 + Ckn−3L−2 log(5L/d). (83)

Combining (79) and (81)–(83), we see that, for d < 4L,

‖u‖H1
k(Γ) ≤ Ck(n−3)/2(k + L−1) log1/2(5L/d)

+Cd(1−n)/2 + Ckn−2d(n−3)/2|F (kd/2)|. (84)

Now, in the case n = 3, for which |F (kd/2)| ≤ C/(kd), it follows from
(80) and (84), and noting that log1/2(5L/d) ≤ CP3(L/d) ≤ CL/d for 4L > d,
that

‖u‖H1
k(Γ) ≤ C

d

(
1 + kdP3(L/d)

)
. (85)

For n = 2, F (kd/2) ≤ C log(2+(kd)−1)(1+kd)−1/2 ≤ C(kd)−1/2, by (43) and
(46). Hence, and by (80) and (84) and as log1/2(5L/d) ≤ CP2(L/d) ≤ CL/d
for 4L > d,

‖u‖H1
k(Γ) ≤ C

d1/2

(
(kL)−1/2 + log(2 + (kd)−1) + (kd)1/2 P2(L/d)

)
. (86)

Part (ii) of the lemma then follows from (77), (85), and (86). �

As an application we use Lemma 6.1 to prove a k-explicit pointwise
bound on the solution of the sound-soft screen scattering problem considered
in Example 1.3.
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Corollary 6.2. The solution u of problem D, with gD = −ui|Γ, satisfies the
pointwise bound

|u(x)| ≤

⎧⎪⎪⎨
⎪⎪⎩

C
√

kL
√

1 + kL

(
1
kd

+ P3(L/d)
)

, n = 3,

C
√

1 + kL

(
1√
kd

(
1√
kL

+ log
(

2 +
1
kd

))
+ P2(L/d)

)
, n = 2,

where x ∈ D, d := dist(x,Γ), L := diam Γ, and C > 0 is independent of k, Γ
and x.

Proof. Using Theorem 1.4 we can estimate

|u(x)| = |Sk [∂u/∂n] (x)|
=
∣∣∣〈Φ(x, ·), [∂u/∂n]〉H1/2(Γ)×H̃−1/2(Γ)

∣∣∣
≤ ‖Φ(x, ·)‖H1/2(Γ)

∥∥S−1
k

∥∥
H1/2(Γ)→H̃−1/2(Γ)

∥∥ui|Γ
∥∥

H1/2(Γ)
,

and the result follows from applying Lemma 6.1 to estimate the first and
third factors, and using Theorem 1.7 (and the Lax Milgram lemma) which
give the bound

∥∥S−1
k

∥∥
H1/2(Γ)→H̃−1/2(Γ)

≤ 2
√

2. �
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