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Abstract. It is known that radial Toeplitz operators acting on a weighted
Bergman space of the analytic functions on the unit ball generate a
commutative C*-algebra. This algebra has been explicitly described via
its identification with the C*-algebra VSO(N) of bounded very slowly
oscillating sequences (these sequences was used by R. Schmidt and
other authors in Tauberian theory). On the other hand, it was re-
cently proved that the C*-algebra generated by Toeplitz operators with
bounded measurable vertical symbols is unitarily isomorphic to the C*-
algebra VSO(R+) of “very slowly oscillating functions”, i.e. the bounded
functions that are uniformly continuous with respect to the logarithmic
distance ρ(x, y) = | ln(x)− ln(y)|. In this note we show that the results
for the radial case can be easily deduced from the results for the vertical
one.
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1. Introduction

Two classes of Toeplitz operators, radial and vertical, are discussed in the
paper. Radial Toeplitz operators Ta, acting on the weighted Bergman space
on the unit disk, or unit ball, are those whose bounded measurable symbols
depend only on the radial part of the argument, i.e., a(z) = a(|z|). Vertical
Toeplitz operators Tb, acting on the weighted Bergman space on the upper
half-plane, are those whose bounded measurable symbols depend only on the
imaginary part of the argument, i.e., b(z) = b(y), z = x + iy.

For the case of the unit disk (upper half-plane) they constitute two of
the three model classes that generate commutative C∗-algebras of Toeplitz
operators (see [17] for further details). In all cases the corresponding Toeplitz
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operators can be diagonalized. To be more precise we introduce necessary
definitions.

For each λ ∈ (−1,∞) denote by A2
λ(Bn) the weighted Bergman space

consisting of the functions that are analytic on the unit ball B
n and square

integrable with respect to the measure dvn,λ(z) = cn,λ(1−|z|2)λ dv, where dv
is the standard Lebesgue measure on C

n and cn,λ is the normalizing constant
such that dvn,λ(Bn) = 1. The canonical basis of the space A2

λ(Bn) consists of
the normalized monomials

eα = cαzα, α ∈ Z
n
+,

where Z+ = {0} ∪ N.
Let Ta,n,λ be the Toeplitz operator with radial generating symbol a

acting on A2
λ(Bn). It is well known (see [10] for the one-dimensional case

and [6] for the general case) that Ta,n,λ is diagonal with respect to the basis
(eα)α∈Zn

+
:

Ta,n,λeα = βa,n,λ(|α| + 1)eα, α ∈ Z
n
+,

where the corresponding eigenvalues depend only on the norm of the multi-
indices and are of the form

βa,n,λ(k) =
1

B(n + k − 1, λ + 1)

∫ 1

0

a(
√

r)rk+n−2(1 − r)λ dr, k ∈ N.

(1.1)

Let Bn,λ stand for the set of all eigenvalue sequences βa,n,λ for generating
symbols a ∈ L∞([0, 1)):

Bn,λ :=
{
βa,n,λ : a ∈ L∞([0, 1))

}
,

and let An,λ denote the C∗-subalgebra of l∞(N) generated by Bn,λ. The C∗-
algebra generated by the operators Ta,n,λ, with a ∈ L∞([0, 1)), is obviously
isometrically isomorphic to An,λ.

As for the vertical Toeplitz operators on the upper half-plane, it was
proved by Vasilevski [16], for the non-weighted case, and by Grudsky, Kara-
petyants, Vasilevski [4], for the weighted case, that such operators can be
diagonalized via an appropriate unitary operator. The corresponding “spec-
tral function” (an analogue of the sequence of eigenvalues) is given by

γb,λ(x) =
xλ+1

Γ(λ + 1)

∫ +∞

0

b(v/2) e−xv vλ dv, x ∈ R+. (1.2)

At this stage an important question emerges: Find an intrinsic (inde-
pendent on Toeplitz operators) description of the C∗-algebra An,λ generated
by spectral sequences (1.1) and of the C∗-algebra generated by the spectral
functions (1.2).

Surprisingly the answer returns us to the notions of the classical analysis
of the beginning of the 20th century, in particular, to the notions of slowly
oscillating sequences and functions.

The class of sequences satisfying σj − σk → 0 as j/k → 1 plays an
important role in Tauberian theory and appeared in the literature since the
article by Schmidt [13, §9, Definition 10]; a similar condition for functions
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[1,∞) → R+ can be found in Landau [11, Satz X]. Note that Schmidt used the
term slowly oscillating sequences (langsam oszillierenden Folgen in German).
We prefer to call them very slowly oscillating sequences or functions as the
term slowly oscillating is frequently used in other senses. We will denote such
classes by VSO(N) and VSO(R+), respectively.

The complete answer for the radial case took about ten years and was
based on a number of rather deep results. The principal step was made by
Suárez. He constructed a powerful tool, the so-called n-Berezin transform [14],
to approximate operators (satisfying some conditions) by Toeplitz operators.
Using this technique he proved [15] that A1,0 coincides with the closure in
�∞(N) of the class d1(N) consisting of all bounded sequences σ such that

sup
n∈N

n|σn+1 − σn| < +∞.

Grudsky, Maximenko and Vasilevski [7] identified the closure of d1(N) with
the class of very slowly oscillating sequences VSO(N) and deduced from [15]
that the set Bn,0 is dense in VSO(N); therefore An,0 = VSO(N), i.e., the
C*-algebra generated by radial Toeplitz operators on the unit ball B

n is
isometrically isomorphic to VSO(N).

Inspired by Nam et al. [12], Bauer et al. [1,2] introduced the (m,λ)-
Berezin transform and generalized the above result to the weighted case. In
particular, they proved that the set Bn,λ is dense in VSO(N), and therefore
An,λ = VSO(N), obtaining thus a characterization of An,λ for every n ∈ N

and λ > −1.
The results for the vertical case are more recent. As was proved (in [8]

for the non-weighted case and in [9] for the weighted case), the set {γb,λ : b ∈
L∞(R+)} is dense in VSO(R+). The main idea was to express the integral
transform (1.2) through the Mellin convolution and then apply an approxi-
mate identity.

The aim of this paper is to show that the results for the radial case can
be easily deduced from the results for the vertical case, not involving heavy
artillery of [1,2,7,14,15].

The paper is organized as follows. Section 2 contains auxiliary material.
Here we define the classes VSO(R+) and VSO(N) of very slowly oscillating
functions and sequences as the classes of functions and sequences that are
uniformly continuous with respect to the logarithmic metric, and describe
the interrelations between these classes. The core of the paper is Sect. 3.
We recall here briefly the results for the vertical Toeplitz operators, and
deduce from them the corresponding results for the radial Toeplitz opera-
tors. The main result is Theorem 3.6 which states that the set Bn,λ is dense
in VSO(N).

2. Very Slowly Oscillating Functions and Sequences

We denote by R+ the positive half-line {x ∈ R : x > 0} and denote by ρ the
logarithmic metric on R+:
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ρ(x, y) := | ln(x) − ln(y)| =
∣∣∣∣ln

(
x

y

)∣∣∣∣ = ln
max(x, y)
min(x, y)

, x, y > 0.

We will use as well the restriction ρN of the metric ρ to N:

ρN(j, k) := ρ(j, k), j, k ∈ N.

Given a sequence σ : N → C, let ωρ,σ be its modulus of continuity with respect
to ρN:

ωρ,σ(δ) := sup{|σ(j) − σ(k)| : j, k ∈ N, ρ(j, k) ≤ δ}.

Denote by VSO(N) the set of all bounded sequences σ : N → C that are
uniformly continuous with respect to ρN, i.e.,

lim
δ→0

ωρ,σ(δ) = 0.

The set VSO(N) is obviously a C∗-subalgebra of �∞(N).
Analogously, given a function f : R+ → C, we denote by Ωρ,f its modulus

of continuity with respect to the metric ρ:

Ωρ,f (δ) := sup{|f(x) − f(y)| : x, y ∈ R+, ρ(x, y) ≤ δ};

and denote by VSO(R+) the set of all bounded functions f : R+ → C that
are uniformly continuous with respect to ρ, i.e.,

lim
δ→0

Ωρ,f (δ) = 0.

It is easy to see [8] that VSO(R+) is a C∗-subalgebra of Cb(R+), the algebra
of bounded continuous functions on R+, equipped with the sup-norm.

Introduce as well

ρ1(x, y) :=
|x − y|

max(x, y)
= 1 − min(x, y)

max(x, y)
, x, y ∈ R+.

Proposition 2.1. The expression ρ1 is a metric on R+, which is uniformly
equivalent to ρ. More precisely, for every x, y ∈ R+

ρ1(x, y) ≤ ρ(x, y) (2.1)

and for every x, y ∈ R+, if ρ1(x, y) ≤ 1/2, then

ρ(x, y) ≤ 2 ln(2)ρ1(x, y). (2.2)

Proof. Direct calculations, considering various arrangements of three points
(see [7, Propositions 5]), prove the triangular inequality.

Setting u = max(x, y)/min(x, y) in the equality 1 − 1
u ≤ ln(u) justifies

(2.1). On the other hand, the function t �→ − ln(1−t)
t increases on [0, 1/2],

therefore for every t ∈ [0, 1/2]

ln
1

1 − t
≤ 2 ln(2)t.

Substituting t by ρ1(x, y) we obtain (2.2). �
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To describe the relations between VSO(N) and VSO(R+), we introduce
the piecewise-linear extensions of sequences as follows.

Let σ : N → C. Consider the function f : R+ → C obtained from σ by
the piecewise-linear interpolation:

f(x) :=

{
σ1, x ∈ (0, 1);
(j + 1 − x)σj + (x − j)σj+1, x ∈ [j, j + 1), j ∈ N.

(2.3)

In what follows 	x
 stands for the integer part of x ∈ R+.

Lemma 2.2. Given σ : N → C, we define f by (2.3). Then ‖f‖∞ = ‖σ‖∞,

|f(x) − f(y)| ≤ (y − x)ωρ,σ(1), 0 < x < y (2.4)

and

|f(x) − f(y)| ≤ 2ωρ,σ(ρ(	x
, 	y
 + 1)), 1 ≤ x < y. (2.5)

Proof. Put σ0 = σ1. Then (2.3) can be rewritten as

f(x) = (	x
 + 1 − x)σ�x� + (x − 	x
)σ�x�+1.

Since the value of f at every point x > 0 is a convex combination of two
values of the original sequence σ, the inequality ‖f‖∞ ≤ ‖σ‖∞ holds. On the
other hand, f is an extension of σ, therefore the inverse inequality is also
true.

An elementary computation shows that if s, t > 0 and s, t belong to the
same interval [j, j + 1] for some j ∈ {0, 1, 2, . . .}, then

|f(s) − f(t)| = |t − s| |σj − σj+1|.
Since |σj − σj+1| ≤ ωρ,σ(ρ(j, j + 1)) ≤ ωρ,σ(1) for every j ∈ N and σ0 = σ1,

|f(s) − f(t)| ≤ |t − s|ωρ,σ(1), 	t
 = 	s
 = j ∈ Z+. (2.6)

To prove (2.4), assume that 0 < x < y. The case 	x
 = 	y
 is already covered
by (2.6). If 	x
 < 	y
, then insert intermediate integer points between x and
y and apply (2.6) in each segment of this division:

|f(x) − f(y)| ≤ |f(x) − σ�x�+1| +
�y�−1∑

j=�x�+1

|σj − σj+1| + |σ�y� − f(y)|

≤ (	x
 + 1 − x)ωρ,σ(1) + (	y
 − 	x
 − 1)ωρ,σ(1)

+ (y − 	y
)ωρ,σ(1)

= (y − x)ωρ,σ(1).

To prove (2.5), suppose that 1 ≤ x < y. Then

|f(x) − f(y)| = |(1 − u)σj + uσj+1 − (1 − v)σk − vσk+1|
≤ (1 − u)|σj − σk| + u|σj+1 − σk+1| + |u − v| |σk − σk+1|
≤ 2ωρ,σ(ρ(j, k + 1)). �
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For every function f ∈ VSO(R+) we denote by R(f) its restriction onto
N, and for every sequence σ ∈ VSO(N) we denote by E(σ) its piecewise-linear
extension defined in (2.3). Note that R(E(σ)) = σ for every σ ∈ VSO(N).

Theorem 2.3. The mapping R : VSO(R+) → VSO(N) is an epimorphism of
C∗-algebras. In particular, the set VSO(N) of sequences coincides with the
set of the restrictions of functions from VSO(R+):

VSO(N) = {R(f) : f ∈ VSO(R+)}.

Proof. It is easy to see that R(VSO(R+)) ⊆ VSO(N) and that R is a homo-
morphism. In order to prove that R is surjective, we start with σ ∈ VSO(N)
and construct f = E(σ), then ‖f‖∞ = ‖σ‖∞. Considering two cases: y −x <√

δ and y − x ≥ √
δ, we prove first that for every δ ∈ (0, 1/4)

Ωρ,f (δ) ≤ max
(√

δ ωρ,σ(1), 2ωρ,σ(6
√

δ)
)

. (2.7)

Let y − x <
√

δ, then by (2.4)

|f(x) − f(y)| ≤
√

δ ωρ,σ(1). (2.8)

If y − x ≥ √
δ, then

δ ≥ ρ(x, y) = ln
y

x
≥ y − x

y
and y ≥ y − x

δ
≥ 1√

δ
.

Moreover

x ≥ y − yδ ≥ 3y

4
≥ 3

4
√

δ
.

Therefore

x − 1 ≥ 3
4
√

δ
− 1 =

3 − 4
√

δ

4
√

δ
≥ 1

4
√

δ
.

Finally

ρ(	x
, 	y
 + 1) = ln
	y
 + 1

	x
 ≤ ln
y + 1
x − 1

= ln
y

x
+ ln

y + 1
y

+ ln
x

x − 1

≤ δ +
√

δ + 4
√

δ ≤ 6
√

δ.

Applying (2.5) we conclude that if y − x >
√

δ, then

|f(x) − f(y)| ≤ ωρ,σ(6
√

δ). (2.9)

Combining both cases y − x <
√

δ and y − x ≥ √
δ, we obtain from (2.8) and

(2.9) that

|f(x) − f(y)| ≤ max
(√

δ ωρ,σ(1), 2ωρ,σ(6
√

δ)
)
,

which implies (2.7). Inequality (2.7) guarantees that limδ→0 Ωρ,f (δ) = 0. �

Remark 2.4. Theorem 2.3 was stated for the algebras of bounded very slowly
oscillating sequences and functions, but the proof of (2.7) does not use
the condition of boundedness. Therefore a result analogous to VSO(N) =
{R(f) : f ∈ VSO(R+)} holds also for the corresponding classes of sequences
and functions without the condition of boundedness.
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We finish this section with a brief description of the algebras VSO(R+)
and VSO(N) via their respective compact sets M(R+) and M(N) of max-
imal ideals (multiplicative functionals). We leave details and proofs to the
interested reader.

First of all, the following disjoint union representations hold:

M(R+) = M0(R+) ∪ R+ ∪ M∞(R+) and M(N) = N ∪ M∞(N),

where the points of R+ and N are identified with the corresponding point
evaluation functionals, and the compact sets M0(R+), M∞(R+), and M∞(N)
are defined as

M0(R+) =
{

ϕ ∈ M(R+) : ϕ(f) = 0 for f ∈ VSO(R+) with lim
x→0

f(x) = 0
}

,

M∞(R+) =
{

ϕ ∈ M(R+) : ϕ(f) = 0 for f ∈ VSO(R+) with lim
x→∞ f(x) = 0

}
,

M∞(N) =
{

ϕ ∈ M(N) : ϕ(σ) = 0 for σ ∈ VSO(N) with lim
j→∞

σj = 0
}

.

The sets M0(R+) and M∞(R+) can be identified via the following homeo-
morphism of M(R+):

[Ĵ(ϕ)](f) = ϕ(J(f)), with [J(f)](x) = f(1/x).

It is easy to check that if a function f ∈ VSO(R+) satisfies the condition
f(j) = 0 for all j ∈ N, then limx→∞ f(x) = 0. This implies in turn that each
point of M∞(R+) can be reached by a N-valued net. Such nets thus identify
the points of M∞(R+) and M∞(N).

3. From Vertical to Radial Case

For the reader’s convenience we recall briefly the results of [8,9] for the ver-
tical Toeplitz operators.

We denote by Γλ the set of all spectral functions (1.2) for b ∈ L∞(R+).

Theorem 3.1. Γλ is a dense subset of VSO(R+).

Proof. We prove first that for each b ∈ L∞(R+) the corresponding function
γb,λ belongs to VSO(R+). The proof given here is different from the original
one of [9].

Separating the real and imaginary parts of a symbol it is sufficient to
consider the case of the real-valued b. For every 0 < x < y, by Cauchy’s mean
value theorem, there exists ζ ∈ (x, y) such that

γb,λ(x) − γb,λ(y)
ln(x) − ln(y)

=
γ′

b,λ(ζ)
1/ζ

. (3.1)
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Let us estimate from above the derivative of γb,λ:

|γ′
b,λ(ζ)| =

∣∣∣∣ (λ + 1)xλ

Γ(λ + 1)

∫ ∞

0

b(v)vλe−ζvdv − λ + 1
Γ(λ + 1)

∫ ∞

0

b(v)vλ+1e−ζvdv

∣∣∣∣
=

∣∣∣∣ (λ + 1)
ζ

γb,λ(ζ) − (λ + 1)
ζ

γb,λ+1(ζ)
∣∣∣∣

≤ (λ + 1)2‖b‖∞
ζ

.

Combining this upper estimate with Eq. (3.1) we obtain

|γb,λ(x) − γb,λ(y)| ≤ 2(λ + 1)‖b‖∞| ln(x) − ln(y)|,
which means that the function γb,λ is Lipschitz continuous with respect to ρ.
Thus Γλ is a subset of VSO(R+).

Recall that R+ is a locally compact group; dx/x is a Haar measure
on R+, and the uniform structure of R+ can be induced by the logarithmic
metric ρ. Given two functions f ∈ L∞(R+) and g ∈ L1(R+), their Mellin
convolution (multiplicative convolution) is defined by

(f 
 g)(x) =
∫ ∞

0

f(y) g

(
x

y

)
dy

y
, x ∈ R+.

Given a function f : R+ → C, set f̃(x) = f(1/x). Then the mapping f �→ f̃

is an involution, and f̃ 
 g = f̃ 
 g̃, for every f ∈ L∞(R+) and g ∈ L1(R+).
For a generating symbol b ∈ L∞(R+), the function γb,λ can be written

in the form of a Mellin convolution as follows:

γb,λ(x) =
1

Γ(λ + 1)

∫ ∞

0

b(v)(2xv)λ+1 e−2xv dv

v
=

(
b̃ 
 Kλ

)
(x),

where the function Kλ is defined on R+ by

Kλ(z) =
(2z)λ+1 e−2z

Γ(λ + 1)
.

It is a general fact that the convolution of an integrable function (on a locally
compact group) with a bounded function is a uniformly continuous function;
in our settings it means that, for every function γ from the set Γλ, the com-
position γ ◦ exp is uniformly continuous on R, i.e. γ ∈ VSO(R+). Moreover,
as was already proved, every function from Γλ is Lipschitz continuous with
respect to the metric ρ.

In order to prove the density we note that the sequence of functions

ψk,λ(x) =
1

B(k + λ, k + λ)
xk+λ

(1 + x)2(k+λ)
,

where B is the Euler Beta function, is a Dirac sequence on the multiplicative
group R+ (see [8, Proposition 5.1] for the non-weighted case; the proof for
the weighted case is quite similar). Moreover, every ψk,λ can be represented
as ϕ̃k,λ 
 Kλ, where

ϕk,λ(x) =
Γ(λ + 1) (2x)−λ

(Γ(n + λ))2
dn−1

dxn−1
(e−xx2(n+λ)−1);
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it is easy to see that ϕk,λ ∈ L1(R+, dx/x).
Now we are ready to finish the proof of density. Given a function γ ∈

VSO(R+), we define a sequence of functions bk,λ = γ̃ 
 ϕk,λ. Since ϕk,λ ∈
L1(R+, dx/x), we have that bk,λ ∈ L∞(R+), thus γbk,λ

∈ Γλ and

b̃n,λ 
 Kλ = γ 
 ϕ̃k,λ 
 Kλ = γ 
 ψk,λ.

Finally, since γ is uniformly continuous on the locally compact group R+ and
the functions ψk,λ form a Dirac sequence, γ 
 ψk,λ tends to γ uniformly on
R+ as k → ∞. �

Passing to the radial case, we observe that in the non-weighted one-
dimensional case (λ = 0, n = 1) the sequence βa,0 is just the restriction to
N of the function γb,0, where a and b are related by a(r) = b(− ln(r)). In
the weighted case the situation is a bit more complicated: in addition to the
variable change v = − ln(r), two “correcting factors”, an inner factor ξλ and
an outer factor ηn,λ are needed.

Lemma 3.2. Let b ∈ L∞(R+). Define

a(
√

r) = ξn,λ(r) b

(− ln(r)
2

)
, 0 < r < 1, (3.2)

where

ξn,λ(r) =
(− ln(r)

1 − r

)λ 1
rn−1

, 0 < r < 1. (3.3)

Then

βa,n,λ(k) = ηn,λ(k)γb,λ(k), k ∈ N, (3.4)

where

ηn,λ(k) =
Γ(k + n + λ)

kλ+1 Γ(k + n − 1)
. (3.5)

Proof. Direct computation. We start with (1.1), substitute (3.2), and make
change of variables v = − ln(r):

βa,n,λ(k) =
1

B(k + n − 1, λ + 1)

∫ 1

0

a(
√

r)rk+n−2(1 − r)λ dr

=
Γ(k + n + λ)

Γ(k + n − 1)Γ(λ + 1)

∫ 1

0

b

(
− ln(r)

2

)
(− ln(r))λrk−1 dr

=
Γ(k + n + λ)

kλ+1 Γ(k + n − 1)
kλ+1

Γ(λ + 1)

∫
R+

b
(v

2

)
vλ e−kv dv

= ηn,λ(k)γb,λ(k). �

Note that the function a defined by (3.2) can be unbounded, in general.
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Lemma 3.3. Let b ∈ L∞(R+). For every L > 0 denote by χ(0,L) the charac-
teristic function of (0, L). Then

lim
L→+∞

sup
x≥1

|γb,λ(x) − γbχ(0,L),λ(x)| = 0.

Proof. For every x ≥ 1,

|γb,λ(x) − γbχ(0,L),λ(x)| ≤ ‖b‖∞ xλ+1

Γ(λ + 1)

∫ +∞

L

e−xv vλ dv

=
‖b‖∞

Γ(λ + 1)

∫ +∞

Lx

e−t tλ dt≤ ‖b‖∞
Γ(λ + 1)

∫ +∞

L

e−t tλ dt.

The integrability of the function t �→ e−t tλ ensures that the last expression
tends to 0 as L → +∞. �
Lemma 3.4. The sequence ηn,λ = (ηn,λ(k))k∈N defined by (3.5) tends to 1 as
k → ∞, and, in particular, it is bounded.

Proof. We write

ηn,λ(k) =
(

k + n − 1
k

)λ+1 Γ(k + n − 1 + λ + 1)
Γ(k + n − 1)(k + n − 1)λ+1

,

then using [3, Formula 8.328.2] we obtain required

lim
k→∞

ηn,λ(k) = 1. �
As was already proved, the set Γλ is dense in VSO(R+). Now we are

going to deduce from this fact that Bn,λ is a dense subset of VSO(N).

Theorem 3.5. For each a ∈ L∞([0, 1)), βa,n,λ belongs to VSO(N).

Proof. We start from a function a ∈ L∞([0, 1)), and introduce a1 = a · χ[ 12 ,1)

and a2 = a − a1 = a · χ[0, 12 )
. We have that βa2,n,λ ∈ c0 ⊂ VSO(N). Thus it is

sufficient to show that βa1,n,λ ∈ VSO(N). Inverting (3.2) we define

b(v
2 ) : = a1

(
e− v

2
) (

1 − e−v

v

)λ

e−v(n−1).

As limv→0(1 − e−v)/v = 1, the function b is bounded, thus γb,λ ∈ VSO(R+)
and γb,λ|N ∈ VSO(N).

By (3.4), we have βa1,n,λ(k) = ηn,λ(k)γb,λ(k), k ∈ N, and thus βa1,n,λ ∈
VSO(N) as a product of two VSO(N)-sequences. �
Theorem 3.6. The set Bn,λ is dense in VSO(N).

Proof. We start from a sequence ν ∈ VSO(N) and define the sequence σ as

σ(k) :=
ν(k)

ηn,λ(k)
, k ∈ N.

By Lemma 3.4, σ ∈ VSO(N). Using Theorem 2.3 we construct a function f
in VSO(R+) such that σ is the restriction of f to N. Since f ∈ VSO(R+), by
Theorem 3.1, for each ε > 0 there exists g ∈ L∞(R+) such that

‖f − γg,λ‖∞ <
ε

2‖ηn,λ‖∞
.
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By Lemma 3.3, we take L > 0 such that

sup
x≥1

|γg,λ(x) − γgχ(0,L),λ(x)| <
ε

2‖ηn,λ‖∞
.

Define

a(
√

r) = χ(0,L)

(− ln r

2

)
ξn,λ(r)g

(− ln r

2

)
, 0 < r < 1.

The factor χ(0,L) insures that the function a vanishes near zero and is bounded.
By Lemma 3.2

βa,n,λ(k) = ηn,λ(k)γgχ(0,L),λ(k).

Therefore for every k ∈ N

|ν(k) − βa,n,λ(k)| = ηn,λ(k)|σ(k) − γgχ(0,L),λ(k)|

≤ ‖ηn,λ‖∞

(
‖f − γg,λ‖∞ + sup

x≥1
|γg,λ(x) − γgχ(0,L),λ(x)|

)
< ε. �

Corollary 3.7. For every n ∈ N and λ > −1 the C∗-algebra generated by
Toeplitz operators Ta,n,λ with bounded measurable radial symbols a is isomet-
rically isomorphic to the algebra VSO(N). The isomorphism is generated by
the assignment Ta,n,λ �−→ βa,n,λ.
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