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Abstract. We study direct first-kind boundary integral equations arising
from transmission problems for the Helmholtz equation with piecewise
constant coefficients and Dirichlet boundary conditions imposed on a
closed surface. We identify necessary and sufficient conditions for the
occurrence of so-called spurious resonances, that is, the failure of the
boundary integral equations to possess unique solutions.
Following [A. Buffa and R. Hiptmair, Numer Math, 100, 1–19 (2005)]
we propose a modified version of the boundary integral equations that
is immune to spurious resonances. Via a gap construction it will serve
as the basis for a universally well-posed stabilized global multi-trace for-
mulation that generalizes the method of [X. Claeys and R. Hiptmair,
Commun Pure and Appl Math, 66, 1163–1201 ( 2013)] to situations with
Dirichlet boundary conditions.
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List of notations
Ωi Material sub-domains ⊂ R

d, Ω0 unbounded,
see Fig. 1

n Number of (bounded) sub-domains with penetrable
medium

Σ := ∂ΩΣ Boundary where homogeneous Dirichlet boundary
conditions are imposed
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Γ Union of interfaces (skeleton), see (2.1)
γj
d, γj

n Dirichlet and Neumann trace operators on ∂Ωj ,
see (2.4)

γj Cauchy trace operator defined in (2.5)
H(∂Ωj) Cauchy trace space associated with ∂Ωj , see (3.1)
H(Γ) Multi-trace space as defined in (3.1)
〈·, ·〉j Duality pairing between Dirichlet and Neumann

traces on ∂Ωj

[·, ·] Self-duality pairing on H(Γ)
X

± 1
2 (Γ), X(Γ) Single trace Dirichlet/Neumann/Cauchy spaces,

see (3.5), (3.6)
Td, Tn, T Restriction of single trace functions onto Σ,

See Propositions (3.1), (3.2)
SLj

κ Single layer potential defined on ∂Ωj

DLj
κ Double layer potential defined on ∂Ωj

Gj
κ Total potential defined on ∂Ωj

Cκ(∂Ωj) Space of Cauchy data on ∂Ωj

Aj
κj

Boundary integral operator on ∂Ωj

Bi,j Non-local “remote” coupling boundary
integral operators

X0(Γ) Single trace space with vanishing Dirichlet
data on Σ, see (4.1)

1. Introduction

We are concerned with boundary integral equations (BIE) describing the
propagation of acoustic waves in so-called composite media composed of parts
with linear and spatially homogenous material properties. Such media are
rather common in mathematical models in engineering and well-posed BIE
are important as foundation for boundary element methods (BEM), a well
established and widely used technique for computational acoustics.

The bulk of mathematical investigations on BIE has addressed the case
of only two different homogeneous media, with one occupying a bounded vol-
ume in space, see, for instance, [16], [26, Ch. 9], [32, Sect. 3.9], and the
monographs [15,27]. Apparently, the first profound mathematical deriva-
tion and analysis of particular direct BIEs for acoustics with composite
media was given in [37]. Of course, boundary element methods for compos-
ite scattering had been devised before in computational engineering, notably
the so-called Poggio-Miller-Chew-Harrington-Wu-Tsai (PMCHWT) integral
equations [7,18,31,39] for electromagnetic scattering.

The BIEs proposed in [37] may be dubbed a single trace formulation
(STF), because they involve a single pair of Cauchy data on each inter-
face as unknowns. They can legitimately be regarded as the standard direct
BIEs for transmission problems, because they immediately arise from fun-
damental Calderón identities and the transmission conditions are imposed



Vol. 81 (2015) Partially Impenetrable Objects 153

strongly through the trial trace spaces. If all participating media are pen-
etrable, the BIEs of STF are well-posed in natural trace spaces, see [12,
Sect. 3.2], [11, Prop. A.1]. However, if impenetrable media are admitted, the
standard STF may be affected by the notorious spurious resonance phenom-
enon, that is, for particular combinations of wave numbers the BIE may fail
to possess unique solutions. This has not been properly addressed in [37] and
in Sect. 4 we provide a detailed analysis of when the STF becomes vulnerable
to spurious resonances. In short, spurious resonances can occur, if an impen-
etrable part is completely surrounded by another homogeneous medium, see
Theorem 4.8.

To restore unconditional well-posedness of the STF, we adapt the classi-
cal idea of combined field integral equations (CFIE), both in its indirect and
direct version, cf. [1,24,28] for the former, and [6] for the latter. Sloppily
speaking, CFIEs exploit the capacity of (approximate) absorbing bound-
ary conditions to ensure unique solvability of time-harmonic wave propa-
gation problems even on bounded domains, whereas a discrete set of res-
onant frequencies will always haunt pure Dirichlet or Neumann boundary
conditions. The simplest choice of approximate absorbing boundary condi-
tions is plain impedance or Robin boundary conditions with non-zero purely
imaginary impedance, see [32, Sect. 3.4.9]. Yet, in this work, we rely on
regularized or modified versions of CFIEs from [3,36], which are compati-
ble with variational formulations in natural trace spaces. The correspond-
ing extensions of the single trace boundary integral equations are studied in
Sect. 5.

Another drawback of the classical STF-BIEs, when used as the founda-
tion for low-order Galerkin boundary element discretization, is their failure
to be amenable to the powerful and popular Calderón preconditioning tech-
niques [8,19,34]. For lucid explanations refer to [12, Sect. 4]. Lately, this
shortcoming of the STF has prompted the development of so-called multi-
trace formulations (MTF) for scattering at composite objects. They feature
four unknown traces at (some) material interfaces and come in two flavors:
global MTFs as introduced in [9–12] and [12, Sect. 5], and local MTFs pre-
sented in [20,21]. They all have in common that they enforce the transmission
conditions only weakly, in contrast to the STF. Thus, trial and test spaces
can neatly be split into contributions of different sub-domains, and, in the
spirit of domain decomposition, this paves the way for local preconditioning.

Thus far, all mathematical analyses of MTFs eschew non-penetrable
media, except for [13], which is confined to pure diffusion problems. Only in
computational engineering some recent variants of local MTF for computa-
tional electromagnetics [29,30] include CFIE ideas in order to treat impen-
etrable, that is, perfectly electrically conducting, bodies. In this article, in
Sect. 5, we propose a CFIE-type extension of the global MTF introduced
in [11]. It naturally emerges from single trace CFIEs appealing to the “gap
idea” described in [11, Sect. 5] and [12, Sect. 5.2]. The new global multi-trace
CFIEs inherit unconditional stability and turn out to be a compact pertur-
bation of the previously known global MTF. Thus, the customary Calderón
preconditioning technique [12, Sect. 4] can be applied to them.
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Discretization, for instance, by Galerkin boundary element methods,
will not be addressed in this article. However, coercivity of variational for-
mulations in spaces of Cauchy traces together with uniqueness of solutions,
immediately allows to conclude quasi-optimality of conforming Galerkin BEM,
see [17,38], and [32, Sect 4.2.3]. Hence, our theory paves the way for predicting
the convergence of all varieties of Galerkin BEM for both single- and multi-
trace CFIE provided that the smoothness of Cauchy traces of the exact field
solution is known.

2. Setting of the Problem

In the present article, we consider a partition R
d = ∪n

j=0Ωj ∪ ΩΣ where ΩΣ

and the Ωj for j �= 0 are open, bounded, and mutually disjoint, and each ΩΣ,
Ωj is a Lipschitz domain [26, Def. 3.28].

In addition, we assume that ΩΣ, R
d\ΩΣ, and each Ωj are connected.

An important consequence of these assumptions is that ΩΣ does not contain
any hole which rules out the presence of an internal resonant cavity. We set

Γ := ∪n
j=0∂Ωj (the “skeleton”) and Σ := ∂ΩΣ. (2.1)

As in Fig. 1 there may exist points where three or more sub-domains abut,
which is precisely the situation that we wish to tackle. We consider the follow-
ing transmission problem for the Helmholtz equation: Find U ∈ H1

loc(R
d\ΩΣ)

1such that {−ΔU − κ2
jU = 0 in Ωj

U − Uinc isκ0-outgoing in Ω0
(2.2a)

{
U |∂Ωj

− U |∂Ωk
= 0

∂nj
U |∂Ωj

− ∂nk
U |∂Ωk

= 0 on ∂Ωj ∩ ∂Ωk (2.2b)

{U |Σ = 0 . (2.2c)

In Eq. (2.2a), the outgoing condition refers to Sommerfeld’s radiation con-
dition, i.e. if ω ⊂ R

d is any bounded open subset, we shall say that V ∈
H1

loc(Δ,R
d\ω) is κ-outgoing if

lim
ρ→∞

∫
∂Bρ

|∂rV − iκV |2dσρ = 0

where Bρ is the ball of center 0 and radius ρ, dσρ is the surface measure
on ∂Bρ, and ∂r refers to the radial derivative. Sommerfeld’s radiation is
presented in detail for example in [27, §.2.6.5] or [25, §.4.4]. For the sake of
simplicity and clarity, we asume that all wave numbers are positive

κj > 0, j = 0, . . . , n. (2.3)

Then Problem (2.2) admits a unique solution U , as proved in [37, Sect. 2].

1 We follow the usual notations; given some open subset ω ⊂ R
d, we define H1(ω) :=

{v ∈ L2(ω) | ∇v ∈ L2(ω)} with ‖v‖2
L2(ω)

:= ‖v‖2
L2(ω)

+ ‖∇v‖2
L2(ω)

, and H1(Δ, ω) := {v ∈
H1(ω) | Δv ∈ L2(ω)}. If H(ω) is any one of these spaces, Hloc(ω) := {v | ϕ v ∈ H(ω) ∀ϕ ∈
C ∞

K (Rd)}, where C ∞
K (Rd) refers to the space of C∞ function with compact support.
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Figure 1. Geometric setting for the Helmholtz transmis-
sion problem for composite media with impenetrable ΩΣ.

As it involves transmission conditions, and since we will be interested
in the derivation of boundary integral equations adapted to this problem, we
need to introduce suitable trace operators. According to [32, Thm. 2.6.8 and
Thm. 2.7.7], for every subdomain Ωj , j = 0, . . . , n, there exist continuous trace
operators γj

d : H1
loc(Ωj) → H1/2(∂Ωj) and γj

n : H1
loc(Δ,Ωj) → H−1/2(∂Ωj)

(so-called Dirichlet and Neumann traces) by density defined through

γj
d(ϕ) := ϕ|∂Ωj

and γj
n(ϕ) := nj · ∇ϕ|∂Ωj

∀ϕ ∈ C ∞(Ωj). (2.4)

We use similar notations for traces on Σ with nΣ fixing the orientation of
the Neumann trace, see Fig. 1. Both traces can be merged into the interior
Cauchy trace operators

γj(v) :=
[
γj
d(v)
γj
n(v)

]
∀v ∈ H1

loc(Δ,Ωj). (2.5)

Traces from the exterior of Ωj spawn the exterior Cauchy trace operators
γj

c : H1
loc(Δ,R

d\Ωj) → H1/2(∂Ωj)×H−1/2(∂Ωj), whose Neumann trace is still
based on the normal nj .

Remark 2.1. Forgoing generality in favor of clarity and brevity, we focus on
the rather simple problem (2.2) as typical specimen of transmission problem
describing acoustic scattering. Straightforward extensions of the approach in
this article can cope with the following situations:
• several impenetrable subdomains (not just one),
• Neumann (instead of Dirichlet) boundary conditions imposed on Σ,
• wave-numbers κj with non-vanishing imaginary part,
• piecewise constant coefficients in the second-order part of the differential

operator as in [12],
• more general source terms (for example, general inhomogeneous transmis-

sion and boundary conditions).
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These points would entail only minor adjustments in our analysis. We refer
the reader to [11,12] for more details on how to deal with more complex
situations. In [12] electromagnetic scattering problems are treated alongside
their acoustic counterparts in a unified setting. Following this policy and the
CFIE ideas of [2], the considerations of this article could also be generalized
to electromagnetic wave propagation.

3. Trace Spaces

We want to recast Problem (2.2) into variational boundary integral equations,
so that these are immune to spurious resonances. We aim for BIE set in
natural trace spaces. The most fundamental trace space we can introduce
consist is the multi-trace space [11, Sect. 2.1], the Cartesian product of local
traces:

H(Γ) := H(∂Ω0) × · · · × H(∂Ωn)

where H(∂Ωj) := H+ 1
2 (∂Ωj) × H− 1

2 (∂Ωj).
(3.1)

We endow each H(∂Ωj) with the norm given by ‖(v, q)‖
H(∂Ωj)

:= (‖v‖2
H1/2(∂Ωj)

+‖q‖2
H−1/2(∂Ωj)

)1/2, and equip H(Γ) with the norm naturally associated with
the cartesian product

‖u‖
H(Γ) :=

(
‖u0‖2

H(∂Ω0)
+ · · · + ‖un‖2

H(∂Ωn)

)1/2

for u = (u0, . . . , un) ∈ H(Γ).2. We write 〈·, ·〉j for the duality pairing between
H+ 1

2 (∂Ωj) and H− 1
2 (∂Ωj). We also need a bilinear duality pairing for H(∂Ωj)

and H(Γ); we opt for the skew-symmetric version

[u, v] :=
n∑

j=0

[uj , vj ]j

where
[(

uj

pj

)
,

(
vj

qj

)]
j

:= 〈uj , qj〉j − 〈vj , pj〉j .

(3.2)

This particular choice of a duality pairing is well adapted to the forthcom-
ing analysis. Note that under the duality pairing [ , ], the space H(Γ) is
its own topological dual, and it is easy to show, using the duality between
H1/2(∂Ωj) and H−1/2(∂Ωj), that the pairing [ , ] induces an isometric isomor-
phism between H(Γ) and its dual H(Γ)′, equivalent to the inf-sup condition

inf
v∈H(Γ)

sup
u∈H(Γ)

| [u, v] |
‖u‖H(Γ)‖v‖H(Γ)

= 1. (3.3)

We also write H(Σ) := H1/2(Σ) × H−1/2(Σ) and equip this space of Cauchy
traces with the norm ‖(v, q)‖2

H(Σ) := ‖v‖2
H1/2(Σ)

+ ‖q‖2
H−1/2(Σ)

. Analogous to

2 Functions in Dirichlet trace spaces like H+ 1
2 (∂Ωj) will be denoted by u, v, w, whereas we

use p, q, r for Neumann traces. Small fraktur font symbols u, v, w are reseved for Cauchy
traces, with an integer subscript indicating restriction to a subdomain boundary. Capital
letters will be used to designate scalar functions on domains, whereas small bold letters
will be used for vector fields.
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(3.2), on this space we shall consider the following skew-symmetric duality
pairing [(

u
p

)(
v
q

)]
Σ

= 〈u, q〉Σ − 〈v, p〉Σ . (3.4)

3.1. Single-Trace Spaces

Next, as in [11, Sect. 2.2], [12, Sect. 3.1], we introduce subspaces of traces that
respect the transmission conditions (2.2b) across interfaces. We first focus on
traces of Dirichlet/Neumann type introducing

X
+ 1

2 (Γ) :=
{

(uj)n
j=0 ∈ Πn

j=0H
1
2 (∂Ωj)

∣∣
∃V ∈ H1(Rd) s.t. V |∂Ωj

= uj ∀j
}
,

X
− 1

2 (Γ) :=
{

(pj)n
j=0 ∈ Πn

j=0H
− 1

2 (∂Ωj)
∣∣

∃q ∈ H(div,Rd) s.t. nj · q|∂Ωj
= pj ∀j

}
.

(3.5)

The Cartesian product (up to some permutation of indices) X
1/2(Γ) × X

−1/2

(Γ) yields the single-trace space X(Γ) ⊂ H(Γ) defined by

X(Γ) :=

{
u =

(
uj

pj

)n

j=0

∣∣∣

(uj)n
j=0 ∈ X

+ 1
2 (Γ), (pj)n

j=0 ∈ X
− 1

2 (Γ)

}
. (3.6)

Observe that a function U ∈ H1(Δ,Ω0) × · · · × H1(Δ,Ωn) satisfies the trans-
mission conditions (2.2b), if and only if (γj(U))n

j=0 ∈ X(Γ). In particular, if
U ∈ H1(Δ,Rd\ΩΣ) then (γj(U))n

j=0 ∈ X(Γ). Indeed, from an intuitive point
of view, the space X(Γ) can be viewed as the space of traces of functions that
satisfy the transmission conditions (2.2b). Thus, in the sequel, we will use
this space to enforce transmission conditions.

Since every x ∈ Σ also belongs to some ∂Ωj , j = 0, . . . , n, functions in
X

±1/2(Γ) can be expected to induce traces in H±1/2(Σ). This is made precise
in the following proposition.

Proposition 3.1. For every element (uj)n
j=0 ∈ X

+1/2(Γ), there exists a unique
uΣ ∈ H1/2(Σ) such that V |Σ = uΣ for any V ∈ H1(Rd) that satisfies V |∂Ωj

=
uj, j = 0, . . . , n. Moreover the linear operator Td : X(Γ) → H1/2(Σ) defined
by Td( (uj , pj)n

j=0 ) := uΣ is continuous and surjective.
Similarly, for every element (pj)n

j=0 ∈ X
−1/2(Γ), there exists a unique

pΣ ∈ H−1/2(Σ) such that nΣ · p|Σ = pΣ for any p ∈ H(div,Rd) that satisfies
nj · p|∂Ωj

= pj, j = 0, . . . , n . Moreover the linear mapping Tn : X(Γ) →
H−1/2(Σ) defined by Tn( (uj , pj)n

j=0 ) := pΣ is continuous and surjective.

Proof We prove only the first part of the proposition, as the proof of the
second part follows along the same lines. Assume that uΣ ∈ H−1/2(Σ) satisfies
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V |Σ = uΣ for one particular V ∈ H1(Rd) such that V |∂Ωj
= uj , ∀j = 0, . . . , n.

If V ′ ∈ H1(Rd) also satisfies V |∂Ωj
= uj , j = 0, . . . , n, then V and V ′ coincide

on Σ since Σ ⊂ ∪n
j=0∂Ωj . Hence uΣ = V ′|Σ. This proves the uniqueness of

uΣ.
Let us construct the map Td explicitely. First, for every subdomain Ωj

we consider a continuous lifting operator Ej : H1/2(∂Ωj) → H1(Ωj) satisfying
γj
d · Ej(vj) = vj . Then define E : X

1/2(Γ) → L2(Rd\ΩΣ) by combining the Ej

according to E( (uj)n
j=0)|Ωj

:= Ej(uj), j = 0, . . . , n.

Actually E(X1/2(Γ)) ⊂ H1(Rd\ΩΣ). Indeed, note that γk
d ·E( (uj)n

j=0) =
uk for all k = 0, . . . , n and for any choice of the uj ’s. Choose u := (uj)n

j=0

arbitrarily in X
1/2(Γ). There exists V ∈ H1(Rd) such that γj

d(V ) = uj =
γj
d(E(u)), which implies γj

d(V −E(u)) = 0. From this we conclude E(u)−V ∈
H1(Rd\ΩΣ) and finally E(u) ∈ V + H1(Rd\ΩΣ) = H1(Rd\ΩΣ).

Now consider any continuous extension operator Ẽ : H1(Rd\ΩΣ) →
H1(Rd) such that Ẽ(V )|

Rd\ΩΣ
= V . Whenever u = (uj , pj)n

j=0 belongs to
X(Γ), we have in particular (uj)n

j=0 ∈ X
1/2(Γ), so we can define

Td(U) :=
(
γΣ
d ◦ Ẽ ◦ E

)(
(uj)n

j=0

)
for any u = (uj , pj)n

j=0 ∈ X(Γ).

With this definition, Td is clearly continuous. In addition, it fulfills the other
requirements: setting V = Ẽ ◦E

(
(uj)n

j=0

)
we have V ∈ H1(Rd) and V |∂Ωj

=
uj , j = 0, . . . , n, by construction. In particular, this implies that uΣ = V |Σ =
Td(U). �

The following elementary result generalizes [11, Eq. (2.2)] and [12, The-
orem 3.1] and it will be crucial for many manipulations.

Proposition 3.2. Define the continuous operator T : X(Γ) → H(Σ) by the
formula T(u) = (Td(u),Tn(u)). Then we have

[u, v] = − [T(u),T(v)]Σ ∀u, v ∈ X(Γ).

Proof According to the explicit expression of [ , ] and [ , ]Σ given by (3.2)
and (3.4), it suffices to show that, whenever u = (uj , pj)n

j=0 ∈ X(Γ) and
v = (vj , qj)n

j=0 ∈ X(Γ), we have

n∑
j=0

〈uj , qj〉j = −〈Td(u),Tn(v)〉Σ and
n∑

j=0

〈vj , pj〉j = −〈Tn(u),Td(v)〉Σ .

We will prove only the first identity above, as the second can be shown
in exactly the same manner, exchanging the roles of u and v. First of all
note that (uj)n

j=0 ∈ X
1/2(Γ) since u ∈ X(Γ), and (qj)n

j=0 ∈ X
−1/2(Γ) since

v ∈ X(Γ). In addition, according to Proposition 3.1, there exist G ∈ H1(Rd)
and h ∈ H(div,Rd) such that

G|∂Ωj
= uj , G|Σ = Td(u) and nj · h|∂Ωj

= qj , nΣ · h|Σ = Tn(v).
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As a consequence, applying Green’s formula in each Ωj , ΩΣ and then in R
d,

we obtain

〈Td(u),Tn(v)〉Σ +
n∑

j=0

〈uj , qj〉j

=
∫

ΩΣ

div(h)G+ h · ∇Gdx +
n∑

j=0

∫
Ωj

div(h)G+ h · ∇Gdx

=
∫

Rd

div(h)G+ h · ∇Gdx = 0.
�

3.2. Review of Potential Operators

In this paragraph we recapitulate well-known results concerning the integral
representation of solutions of the homogeneous Helmholtz equation in Lip-
schitz domains. Detailed proofs can be found, for example, in [32, Chap.3].

Let the function Gκ(x) designate the κ-outgoing fundamental solution
for the Helmholtz operator −Δ − κ2. For each subdomain Ωj , for any u =
(u, p) ∈ H(∂Ωj) and any x ∈ R

d\∂Ωj , define the single/double layer potential
operators by3

SLj
κ(p)(x) :=

∫
∂Ωj

p(y)Gκ(x − y) dσ(y),

DLj
κ(u)(x) := −

∫
∂Ωj

u(y)nj(y) · ∇y

(
Gκ(x − y)

)
dσ(y), (3.7)

Gj
κ(u)(x) := DLj

κ(u)(x) + SLj
κ(p)(x), x �∈ ∂Ωj .

The operator Gj
κ defined above maps continuously H(∂Ωj) into H1

loc(Δ,Ωj)×
H1

loc(Δ,R
d\Ωj), see [32, Thm 3.1.16]. In particular Gj

κ can be applied to a
pair of traces, i.e. Cauchy traces, of the form u = γj(V ). This potential
operator can be used to write a representation formula for solutions of the
homogeneous Helmholtz equation, see [32, Thm 3.1.6].

Proposition 3.3. Let U ∈ H1
loc(Ωj) satisfy ΔU + κ2

jU = 0 in Ωj. In addition,
assume that U is κj-outgoing, if j = 0. Then we have the representation
formula

Gj
κj

(γj(U))(x) =

{
U(x) for x ∈ Ωj ,

0 for x ∈ R
d\Ωj .

Similarly, if V ∈ H1
loc(R

d\Ωj) satisfies ΔV +κ2
jV = 0 in R

d\Ωj, as well as a
radiation condition in the case j �= 0, then we have Gj

κj
(γj(V ))(x) = −V (x)

for x ∈ R
d\Ωj, and Gj

κj
(γj(V ))(x) = 0 for x ∈ Ωj.

3 We point out that in order to maintain symmetry of formulas our choice of signs differs
from what is commonly adopted in the literature.
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The potential operator Gj
κ also satisfies a remarkable identity, known as jump

relations, describing the relationship of traces of Gj
κj

(u) from both sides of
∂Ωj . Using the jump operator for Cauchy traces [γj ] := γj − γj

c , they can
concisely be expressed as

[γj ] · Gj
κj

(uj) = uj ∀uj ∈ H(∂Ωj), j = 0, . . . , n. (3.8)

We refer the reader to [32, Thm.3.3.1] (the jump formulas are often given in
the form of four equations in literature). Proposition 3.3 shows that, if U is
solution to a homogeneous Helmholtz equation in Ωj (and is κj-outgoing, if
j = 0) then

(
γj ◦ Gj

κj

)
(γj(U)) = γj(U). This actually provides a caracteriza-

tion of solutions of the homogeneous Helmholtz equation, cf. [11, Prop. 3.2],
[27, Thm. 3.1.3], [32, Sect. 3.6].

Proposition 3.4. Define the space of Cauchy data

Cκ(∂Ωj) :=
{
γj(U) | U ∈ H1

loc(Ωj) and ΔU + κ2U = 0 in Ωj ,

U κj-outgoing, if j = 0
}
.

Then γj◦Gj
κ : H(∂Ωj) → H(∂Ωj) is a continuous projector, called the interior

Calderón projector of Ωj, whose range coincides with Cκ(∂Ωj), i.e. for any
uj ∈ H(∂Ωj)

γj · Gj
κ(uj) = uj ⇐⇒ uj ∈ Cκ(∂Ωj).

For a detailed proof of this proposition, see [32, Prop. 3.6.2]. This characteri-
zation of Cauchy traces of (outgoing) Helmholtz solutions is instrumental for
deriving direct boundary integral equations for the subdomains Ωj . The next
lemma gives another caracterization of the space of Cauchy data, which was
established in [11, Lemma 6.2].

Lemma 3.5. Consider any j = 0, . . . , n, and any κ > 0. Then for any uj ∈
H(∂Ωj) we have

uj ∈ Cκ(∂Ωj) ⇐⇒ [uj , vj ]j = 0 ∀vj ∈ Cκ(∂Ωj). (3.9)

Applying traces to potentials yields boundary integral operators. In our com-
pact notation, the crucial local boundary integral operators are

Aj
κj

:= {γj} ◦ Gj
κj

:= 1
2 (γj + γj

c ) ◦ Gj
κj

=
(−Kj Vj

Wj K′
j

)
, j = 0, . . . , n.

(3.10)
We adopted the notations of [32, Sect. 3.1] for the atomic boundary integral
operators, the double layer operators Kj , the single layer operators Vj , the
adjoint double layer operators K′

j , and the hypersingular boundary integral
operators Wj .

The operators Aj
κj

satisfy an intriguing symmetry property, which seems
to be well known in literature, see for example [4, Thm 3.9] (that concerns
the Maxwell case, though). Since, apparently, the proof for acoustic waves is
not published, we give it for the sake of completeness.
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Lemma 3.6. For any j = 0, . . . , n, and any wave number κj we have,
[
Aj

κj
(uj), vj

]
j

=
[
Aj

κj
(vj), uj

]
j

∀uj , vj ∈ H(∂Ωj).

Proof This result is just a consequence of the jump formulas (3.8), as well as
of Lemma 3.5 applied repeatedly in Ωj and R

d\Ωj :
[
Aj

κj
uj , vj

]
j

(3.10)
=

[
{γj}Gj

κj
uj , vj

]
j

(3.8)
=

[
{γj}Gj

κj
uj , [γj ]Gj

κj
vj

]
j

(3.9)
= −

[
γj Gj

κj
uj , γ

j
c Gj

κj
vj

]
j
+

[
γj

c Gj
κj

uj , γ
j Gj

κj
vj

]
j

(3.9)
= −

[
[γj ]Gj

κj
uj , {γj}Gj

κj
vj

]
j

(3.8)
=

[
{γj}Gj

κj
vj , uj

]
j

(3.10)
=

[
Aj

κj
vj , uj

]
j
.

�

Another symmetry of potentials and their traces applies to the coupling
between different subdomains:

Lemma 3.7. Take two arbitrary subdomains Ωj ,Ωk with j �= k, any wave
number κ0. We have[
γj Gk

κ0
(vk), vj

]
j

=
[
γk Gj

κ0
(vj), vk

]
k

∀vj ∈ H(∂Ωj), ∀ vk ∈ H(∂Ωk).

Proof First of all, applying Lemma in 3.5 in Ωj yields
[
γj Gk

κ0
(vk), vj

]
j

=
[
γj Gk

κ0
(vk), [γj ]Gj

κ0
(vj)

]
j

= −
[
γj Gk

κ0
(Vk), γj

c Gj
κ0

(Vj)
]

j
.

Consider two Cauchy traces wj = (wj
q)

n
q=0, wk = (wk

q )n
q=0, defined by the

following formulas (with α = j, k)

wα
q := γq Gα

κ0
(vα) for q �= α, wα

α := γα
c Gα

κ0
(vα).

With these notations[
γj Gk

κ0
(uk), γj

c Gj
κ0

(vj)
]

j
=

[
wk

j ,w
j
j

]
j
.

Observe that wj ,wk ∈ X(Γ). As a consequence, we can apply Proposition 3.2
and obtain [

wk
j ,w

j
j

]
j

= − [
T(wk),T(wj)

]
Σ

−
∑

q=0,...,n
q �=j

[
wk

q ,w
q
j

]
q
.

In addition, note that wj
q,w

k
q ∈ Cκ0(∂Ωq) for q �= j, k, and similarly T(wj),

T(wk) ∈ Cκ0(∂ΩΣ). Now we apply Lemma 3.5 on ∂Ωq for q �= j, k and on ∂ΩΣ,
which shows that all the terms vanish on the right hand side of (3.2), except
the one associated to q = k. This yields

[
wk

j ,w
j
j

]
j

=
[
wk

k,w
j
k

]
k
. Finally we
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conclude the proof by applying Lemma 3.5 once more in Ωk to obtain[
wk

k,w
j
k

]
k

=
[
γk

c Gk
κ0

(vk), γk Gj
κ0

(vj)
]

k

= −
[
[γk]Gk

κ0
(vk), γk Gj

κ0
(vj)

]
k

=
[
γk Gj

κ0
(vj), vk

]
k
. �

Since we will also use potential operators SLΣ
κ , DLΣ

κ and GΣ
κ that are

defined by (3.7) with Ωj replaced by ΩΣ, we would like to mention that all
the above results also hold for the subdomain ΩΣ.

4. Classical Single-Trace Formulation of the First Kind

Now we present a first direct boundary integral formulation for Problem
(2.2). This first formulation was already introduced and analysed in [37].
Since it is pivotal for our later developments, we recall its derivation and
main properties.

4.1. Boundary and Transmission Conditions

The classical single-trace formulation takes into account the homogenous
Dirichlet boundary conditions (2.2c) on Σ by incorporating them into the
variational space. Set u := (γj(U))n

j=0 where U is the unique solution to
Problem (2.2). To arrive at an integral equation formulation, one first enforces
the transmission conditions across the interfaces, and the Dirichlet boundary
conditions on Σ by demanding that u ∈ X0(Γ) where

X0(Γ) := {u ∈ X(Γ) | Td(u) = 0}. (4.1)

Note that in the case n = 0 where R
d = Ω0 ∪ ΩΣ and Γ = Σ, this space is

simply given by X0(Γ) = {0} × H−1/2(Σ). Thanks to the continuity of Td :
X(Γ) → H1/2(Σ), the space X0(Γ) is a closed subspace of X(Γ). In addition,
the function U ∈ H1

loc(Δ,R
d\ΩΣ) satisfies the boundary and transmission

conditions in (2.2), if and only if (γj(U))n
j=0 ∈ X0(Γ). In order to impose these

conditions in a variational manner, one may rely on the following elementary
characterization of X0(Γ).

Lemma 4.1. For any u ∈ H(Γ), we have,

u ∈ X0(Γ) ⇐⇒ [u, v] = 0 ∀v ∈ X0(Γ).

Proof Let u ∈ X0(Γ). Take any element v ∈ X0(Γ). Denote by u, v ∈ H1/2(Σ)
and p, q ∈ H−1/2(Σ) the traces such that T(u) = (u, p) and T(v) = (v, q).
According to the definition of X0(Γ) we must have u = v = 0. Applying
Proposition 3.2, we obtain

[u, v] = − [T(u),T(v)]Σ = 〈0, q〉Σ − 〈0, p〉Σ = 0.

Now assume that u ∈ H(Γ) satisfies [u, v] = 0, for all v ∈ X0(Γ). It is a direct
consequence of Proposition 7.1 in [11] that actually u ∈ X(Γ) (note that
notations are different in [11]). Let u ∈ H1/2(Σ) and p ∈ H−1/2(Σ) satisfy



Vol. 81 (2015) Partially Impenetrable Objects 163

T(u) = (u, p). Take any trace q ∈ H−1/2(Σ) and consider q ∈ H(div,Rd) such
that nΣ ·q|Σ = q. Finally denote qj := nj ·q|∂Ωj

and set v = (0, qj)n
j=0. Clearly

v ∈ X(Γ) since q ∈ H(div,Rd), and Td(v) = 0,Tn(v) = q by construction, so
v ∈ X0(Γ). Finally we obtain

0 = [u, v] = − [T(u),T(v)]Σ = −〈u, q〉Σ .
Since this holds for every q ∈ H−1/2(Σ), we finally conclude that u = Td(u) =
0, which implies u ∈ X0(Γ). �

4.2. Integral Formulation

Define uinc := (γ0(Uinc), 0, . . . , 0). According to the characterization of
Cauchy data given by Proposition 3.4, the trace u := (γ0U, . . . , γnU) of a
solution U of the boundary transmission problem (2.2) satisfies

(−Id/2 + A)(u − uinc) = 0,

where the operator A : H(Γ) → H(Γ) is defined subdomain-wise by

A(u) :=
(

Aj
κj

(uj)
)n

j=0
=

(
{γj} · Gj

κj
(uj)

)n

j=0

=

⎡
⎢⎢⎢⎢⎣

A0
κ0

0 · · · 0

0 A1
κ1

. . .
...

...
. . . . . . 0

0 · · · 0 An
κn

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

u0

...

...
un

⎤
⎥⎥⎥⎥⎦ , (4.2)

for u = (u0, . . . , un) ∈ H(Γ). Summing up, Problem (2.2) spawns the boundary
integral equations

u ∈ X0(Γ) such that (−Id/2 + A)(u − uinc) = 0. (4.3)

To cast Eq. (4.3) into a variational form, one must first test it with suitable
traces. Choosing test traces v ∈ X0(Γ), and taking into account Lemma
4.1, we see that if u satisfies (4.3), then it also solves the STF variational
formulation [12, Eq. (3.19)]

⎧⎨
⎩

find u ∈ X0(Γ) such that

[A(u), v] = − [
uinc, v

] ∀v ∈ X0(Γ).
(4.4)

It was established, in [37, §4.1], that the bilinear form (u, v) �→ [A(u), v] sati-
fies a generalized G̊arding inequality, see also [13, Thm. 3.4], [11, Thm. 10.4],
[12, Thm. 3.3].

Proposition 4.2. Let the isometric isomorphism Θ : H(Γ) → H(Γ) be defined
by4 Θ(v) := (−vj , qj)n

j=0 for v = (vj , qj)n
j=0 ∈ H(Γ). There exists a compact

operator K : H(Γ) → H(Γ), and a constant β > 0 such that

| [(A +K)v,Θ(v)] | ≥ β‖v‖2
H(Γ) ∀v ∈ H(Γ).

4 We use overbars to designate complex conjugation.
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A direct consequence of this proposition is that the operator A : X0(Γ) →
X0(Γ) is of Fredholm type with index 0. As a consequence, dim(ker(A)) is
finite and will depend on the wave numbers κ0, κ1, . . . , κn. Fredholm alterna-
tive arguments [32, Sect. 2.1.4] bear out that injectivity of A already ensures
stability of the variational problem (4.4).

Corollary 4.3. If ker(A) = {0} then there is α > 0 such that

inf
u∈X0(Γ)

sup
v∈X0(Γ)

| [A(u), v] |
‖u‖H(Γ)‖v‖H(Γ)

> α and

inf
v∈X0(Γ)

sup
u∈X0(Γ)

| [A(u), v] |
‖u‖H(Γ)‖v‖H(Γ)

> 0. (4.5)

The link between the STF variational formulation (4.4) and the transmission
boundary value problem (2.2) has been established in [37, §4.1]:

Proposition 4.4. Provided that ker(A) = {0}, the traces u = (γj(U))N
j=0 solve

(4.4), if and only if U ∈ L2
loc(R

d\ΩΣ) is solution to (2.2), where U(x) is
defined by

U(x) := Uinc(x) + G0
κ0

(u0)(x) for x ∈ Ω0,

U(x) := Gj
κj

(uj)(x) for x ∈ Ωj , j = 1, . . . , n.
(4.6)

4.3. Spurious Resonances

As mentioned in the introduction, an important drawback of Formulation
(4.4), is the possibility that ker(A) �= {0}, which is commonly referred to as
“spurious resonance phenomenon” in literature. Of course, this is highly unde-
sirable, because, in case ker(A) �= {0}, then (4.4) is not well posed, whereas
Problem (2.2) always has a unique solution. In this section, we examine in
what situations spurious resonances can occur. First of all, we need to estab-
lish an auxiliary result.

Lemma 4.5. Let u = (u0, . . . , un) ∈ X0(Γ) satisfy [A(u), v] = 0 for all v ∈
X0(Γ), and set Wj(x) = Gj

κj
(uj)(x), x ∈ R

d\Ωj Then, for each j = 0, . . . , n,
we have Wj ≡ 0 on any connected component of R

d\Ωj that does not coin-
cide with ΩΣ.

Proof The proof takes the cue from [37, Sect. 2] and combines elements of
the proofs of [12, Lemma 3.4], [11, Prop. A.1]. We split it into three steps.

➊ Let u satisfy the assumptions of the lemma and define Wj as above.
By the definition of A and Lemma 4.1 (⇒) we conclude

[A(u), v] =
n∑

j=0

[
γj

c (Wj), vj

]
j

= 0 ∀v ∈ X0(Γ).

Appealing to Lemma 4.1 (⇐), this implies that

w :=
(
γj

c (Wj)
)n

j=0
∈ X0(Γ). (4.7)

➋ Next we establish that Wj ≡ 0 in any unbounded connected com-
ponent of R

d\Ωj . To see this, note that for any j = 0, . . . , n, we have
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ΔWj + κ2
jWj = 0 in R

d\Ωj and Wj is κj-outgoing (radiating). Take ρ > 0
large enough to ensure that R

d\Ω0 ⊂ Bρ, where Bρ ⊂ R
d denotes the ball cen-

tered at 0 with radius ρ. Applying Green’s formula in Bρ\Ωj for j = 0, . . . , n
yields∫

∂Bρ

Wj∂rW j dσ =
∫

Bρ\Ωj

|∇Wj |2 − κ2
j |Wj |2 dx +

∫
∂Ωj

γj
d,c(Wj)γ

j
n,c(W j) dσ

0 =
∫

Bρ\Ω0

|∇W0|2 − κ2
0|W0|2 dx +

∫
∂Ω0

γ0
d,c(W0)γ0

n,c(W 0) dσ

In the equations above, ∂r refers to the radial derivative. Take the imaginary
part of the identity above, and sum over j = 0, . . . , n, taking into account
that w := (γj

c (Wj))0≤j≤n ∈ X(Γ). This yields

n∑
j=1

Im

{∫
∂Bρ

Wj∂rW jdσ

}
= Im

{
n∑

j=0

∫
∂Ωj

γj
d,c(Wj)γ

j
n,c(W j) dσ

}

=
1
2

Im{ [w,w] } = 0.

In the last equality above we used Lemma 4.1. By construction, the functions
Wj are κj-outgoing radiating, so that 0 = limr→∞

∫
∂Bρ

|∂rWj − iκjWj |2dσ.
As a consequence we obtain

n∑
j=1

1
κj

∫
∂Bρ

|∂rWj |2 + κ2
j |Wj |2 dσ

=
n∑

j=1

1
κj

∫
∂Bρ

|∂rWj − iκjWj |2dσ − 2
n∑

j=1

Im

{∫
∂Bρ

Wj∂rW j dσ

}

=
n∑

j=1

1
κj

∫
∂Bρ

|∂rWj − iκjWj |2dσ −→
ρ→+∞ 0.

This shows in particular that limρ→∞
∫

∂Bρ
|Wj |2dσ = 0 for all j = 1, . . . , n.

As a consequence, we can apply Rellich Lemma, see Lemma 2.11 in [14], which
implies that Wj = 0 in the unbounded component of R

d\Ωj , j = 1, . . . , n.
➌ Consider an arbitrary j ∈ {0, . . . , n}, and let Oj be a bounded con-

nected component of R
d\Ωj with Oj �= ΩΣ. Since (i) ΩΣ,Ω0, . . . ,Ωn form

a partition of R
d, (ii) all these domains are connected, and (iii) R

d\ΩΣ is
connected, we find that

• Σ �= ∂Oj ,
• there is a � ∈ {1, . . . , n}, � �= j, such that Ωl ⊂ Oj and |∂Ω� ∩ ∂Ωj | > 0.

A typical situation is depicted in Fig. 2. Hence, there exists xj ∈ ∂Oj ∩ ∂Ω�

and an open ball D = B(xj , ρj), ρj > 0, such that

D ∩ ∂Oj = D ∩ ∂Ω� �= ∅.
Since both Oj and Ωj are connected and bounded, the set R

d\Oj is unboun-
ded and connected. Thus, it is entirely contained in the unbounded connected
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Ω2

Ω3

Ω1 ΩΣ

D

Figure 2. Geometrical situation for part ➌ of the proof of
Lemma 4.5. Here j = 1, O1 = ΩΣ ∪ Ω2 ∪ Ω3 and � = 3

component of R
d\Ω� that we denote by U�. From part ➋ of the proof we know

that W� = 0 in U�.
Obviously, ∂U� ⊂ ∂Ω� as well as ∂Oj ⊂ ∂Ωj . Moreover we know that

D ∩ ∂Oj = D ∩ ∂U� has positive measure. Since w =
(
γk

c (Wk)
)n

k=0
∈ X0(Γ)

according to (4.7) from Part ➊ of the proof, we deduce that onD∩∂Oj∩∂U� ⊂
∂Ωj ∩ ∂Ω� holds

γj
d,c(Wj) = γ�

d,c(W�) = 0

γj
n,c(Wj) = −γ�

n,c(W�) = 0 on D ∩ ∂Oj ∩ ∂U�.

This means that γj
c (Wj) = 0 on ∂Oj ∩ D. As ΔWj + κ2

jWj = 0 in Oj , by
analytic continuation this implies Wj = 0 in Oj according to Lemma 2.2 in
[37]. �

Our final goal is to find sufficient and necessary conditions, under which
the assumptions of Lemma 4.5 imply u = 0. The next result teaches that we
need to examine the functions Wj outside Ωj .

Lemma 4.6. Let u ∈ X0(Γ) satisfy [A u, v] = 0 for all v ∈ X0(Γ). Set Wj(x) :=
Gj

κj
(uj)(x), x �∈ ∂Ωj, and assume that γj

c (Wj) = 0 for all j = 0, . . . , n. Then
u = 0.

Proof We have γj(Wj) = [γj(Wj)] = [γj ]·Gj
κj

(uj) = uj so (γj(Wj))n
j=0 = u ∈

X0(Γ). Moreover, by construction ΔWj +κ2
jWj = 0 in Ωj for all j = 0, . . . , n.

We conclude that V ∈ H1
loc(R

d\ΩΣ) defined by V |Ωj
= Wj |Ωj

satisfies all
the equations of Problem (2.2) without incident field, Uinc = 0. Since this
transmission problem is well-posed V must vanish. Hence γj(Wj) = 0 for all
j = 0, . . . , n, and finally uj = [γj(Wj)] = 0 for all j = 0, . . . , n, i.e. u = 0. �

The previous lemma together with Lemma 4.5 sends the message that
ker(A) �= {0} can occur only if ΩΣ agrees with a connected component of the
complement of some subdomain. Now we describe a simple setting in which
this is the case.
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ΩΣ Ω0

Figure 3. Homogeneous impenetrable scatterer giving rise
to an exterior Dirichlet problem for the Helmholtz equation

Ω1ΩΣ Ω0

Figure 4. Situation without spurious resonances, cf. Corollary 4.7

Example ([33, Sect. 3.1]). Consider the case where n = 0, so that the scatterer
reduces to a single impenetrable part R

d = Ω0 ∪ ΩΣ, and Γ = ∂Ω0 = Σ, see
Fig. 3. In this geometrical setting we have X0(Γ) = {0} × H−1/2(Σ).

Choose κ0 ∈ R+ such that there exists V ∈ H1(Δ,ΩΣ)\{0} that satisfies
ΔV + κ2

0V = 0 in ΩΣ, and V = 0 on ∂ΩΣ. The existence of such non-trivial
functions V is a classical consequence of spectral theory. Formulation (4.4)
then reduces to the well-known single-layer integral formulation of the first
kind: seek p ∈ H− 1

2 (Γ) such that〈
q, ({γ0

d} ◦ SL0
κ0

)(p)
〉
0

= − 〈
q, γ0

d(Uinc)
〉
0

∀q ∈ H− 1
2 (Γ). (4.8)

Note that [γ0
d] · SL0

κ0
= 0 according to (3.8), so we have {γ0

d} · SL0
κ0

= γ0
d,c ·

SLκ0 . Coming back to the function V considered above, we have γ0
d,c(V ) = 0

and γ0
n,c(V ) �= 0. In addition, a direct application of Proposition 3.3 yields

V (x) = −SL0
κ0

( γ0
n,c(V ) )(x) for x ∈ ΩΣ, so {γ0

d} · SL0
κ0

( γ0
n,c(V ) ) = γ0

d,c ·
SL0

κ0
( γ0

n,c(V ) ) = 0, which means that p := γ0
n,c(V ) �= 0 solves (4.8), although

Uinc = 0.

We have assumed that R
d\ΩΣ is connected. Therefore it is evident, that, if

ΩΣ coincides with a bounded component of R
d\Ωj , the boundary Σ of ΩΣ

must be contained in ∂Ωj .

Corollary 4.7. Assume that Σ �⊂ ∂Ωj for all j = 0, . . . , n. Then, for any
choice of wave numbers satisfying (2.3), we have ker(A) = {0}.

The insights we have gained so far are not exactly intuitive as demon-
strated by the following example.

Example. Consider Problem (2.2) where n = 1, so that R
d = Ω0 ∪ Ω1 ∪ ΩΣ.

Assume that κ0 = κ1 so that the interface ∂Ω0 ∩ ∂Ω1 is “artificial”. In fact,
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we face the very same scattering problem as in Example 4.3 above. Suppose
that mes(Σ∩∂Ω0) > 0 and mes(Σ∩∂Ω1) > 0 like in Fig. 4. Then, no matter
what the value of κ0 (even if κ0 ∈ S(Δ,ΩΣ)), there is no spurious resonance!

The following lemma generalizes the observation made in Example 4.3.
In the interest of a concise statement we introduce the (discrete) set of interior
Dirichlet eigenvalues of −Δ on ΩΣ:

S(Δ,ΩΣ) :=
{
κ > 0 | ∃V ∈ H1(Δ,ΩΣ)\{0} :

−ΔV = κ2V in ΩΣ,
V = 0 on ∂ΩΣ

}
.

(4.9)

Theorem 4.8. For Problem (2.2), for any choice of wave numbers satisfying
(2.3), we have the equivalence

ker(A) �= {0} ⇐⇒

⎧⎪⎨
⎪⎩

Σ ⊂ ∂Ωj for a j ∈ {0, . . . , n}
and

κj ∈ S(Δ,ΩΣ)

⎫⎪⎬
⎪⎭ .

Proof Without loss of generality assume that Σ ⊂ ∂Ω0 (the proof below can
easily be adapted to the case Σ ⊂ ∂Ωj for j �= 0).

➊ There exists a connected component O0 of R
d\Ω0 such that Σ ⊂ ∂O0.

We necessarily have Σ = ∂O0, otherwise Σ would admit a boundary as a
Lipschitz manifold of dimension d−1, and this is not possible since Σ = ∂ΩΣ.
The set R

d\O0 is connected, it is contained in R
d\ΩΣ, and it is maximal

as a connected subset of R
d\ΩΣ. As a consequence R

d\O0 = R
d\ΩΣ since

R
d\ΩΣ is assumed to be connected. In conclusion, ΩΣ is exactly one bounded

connected component of R
d\Ω0. In particular, ΩΣ is separated from the other

subdomains Ωj , j = 1, . . . , n:

ΩΣ ∩ ∪n
j=1Ωj = ∅. (4.10)

➋ Assume first that κ0 ∈ S(Δ,ΩΣ). As in Example 4.3, consider a
function V ∈ H1(ΩΣ)\{0} such that ΔV + κ2

0V = 0 in ΩΣ, and V = 0
on Σ. Consider u0 = (u0, p0) ∈ H(∂Ω0) with u0 = 0, p0 = 0 on ∂Ω0\Σ,
and p0 = γΣ

n (V ) �= 0 on Σ. Applying Proposition 3.3 to V , we see that
G0

κ0
(u0)(x) = SLΣ

κ0
(p0)(x) = 0 for x ∈ Ω0 ⊂ R

d\ΩΣ, so that γ0
d SLΣ

κ0
(p0) = 0.

Now set u = (u0, 0, . . . , 0) ∈ X0(Γ)\{0}. For any v = (v0, . . . , vn) ∈ X0(Γ) we
have

[A(u), v] =
[
γ0 SL0

κ0
(p0), v0

]
0

=
〈
γ0
d SL0

κ0
(p0), q0

〉
0

= 0,

where v0 = (0, q0) on Σ. Hence, u ∈ Ker(A)\{0}.
➌ Now assume that κ0 /∈ S(Δ,ΩΣ). We have to confirm that necessarily

u = 0. Thanks to Lemma 4.5 Wj = 0 in R
d\Ωj for j = 1, . . . , n, and W0 = 0

in R
d\(Ω0 ∪ ΩΣ), which implies

γj
c (Wj) = 0 for j = 1, . . . , n, and γ0

c (W0)|∂Ω0\Σ = 0.

Now let us show that γ0
c (W0) = 0 on Σ as well, i.e. γΣ(W0) = 0. We already

know that, with w from (4.7), Td(w) = γΣ
d (W0) = 0 since w ∈ X0(Γ).
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According to Proposition 3.3, we have

W0(x) = −G0
κ0

(γ0
c (W0))(x) = GΣ

κ0
(T(w))(x) = SLΣ

κ0
(Tn(w) )(x)

for all x ∈ ΩΣ ⊂ R
d\Ω0. So we conclude that 0 = γΣ

d (W0) = γΣ
d ·SLΣ

κ0
(Tn(w) ).

It is well known, see for example [32, Thm. 3.9.1], that
Ker(γΣ

d SLκ0) = {0}, if κ0 /∈ S(Δ,ΩΣ), hence we finally conclude that
Tn(w) = γ0

n,cW0 = 0, which means γ0
c (W0) = 0. To finish the proof we

apply Lemma 4.6. �

5. Single-Trace combined Field Integral Equation

We have discovered that the STF (4.4) is free of spurious resonnance except
for the situation Σ ⊂ ∂Ωj . As a remedy we are going to devise an aug-
mented STF taking the cue from the CFIE approach already mentioned in
the Introduction. We will not restrict ourselves to geometries that allow spu-
rious resonances because, if Σ is largely contained in ∂Ωj with the exception
of a small section, discretizations of the STF may already suffer from poor
conditioning. Thus, even when spurious resonances cannot occur, the CFIE
augmentation may enhance numerical stability!

The classical CFIEs resort to simple complex combinations of Dirichlet
and Neumann traces, ignoring the fact that they belong to different function
spaces. This compounds the difficulties of a rigorous analysis of the resulting
boundary integral equations. We refer to the discussion in [3, Sect. 3.1 ]. This
problem can be overcome by using regularized CFIE that rely on compact
operators which map between Dirichlet and Neumann traces. This was first
employed for theoretical investigations [28] and, more recently, used for the
design of stable Galerkin boundary element methods [2,3,5,22,23,35]. Our
approach is inspired by [3].

5.1. Transformed Traces

The principle of regularized CFIE boils down to enforcing generalized
impedance (Robin type) boundary conditions for potentials on Σ. As in [3,
Sect. 3.2], these impedance boundary conditions rely on a regularizing linear
operator M : H−1/2(Σ) → H+1/2(Σ) that satisfies

(i) M is compact , (5.1a)

(ii) Im{〈ϕ,Mϕ〉Σ} > 0 ∀ϕ ∈ H−1/2(Σ)\{0}. (5.1b)

There exist many operators satisfying (i)–(ii). Indeed if M̃ is any second order
strongly coercive real symmetric surface differential operator on Σ, then M =
−ı M̃ matches these conditions. The particular choice M = −ı (ΔΣ + Id)−1

will be further commented in §5.4. Based on M we define the space of traces
complying with generalized impedance boundary conditions

XM(Γ) :=
{
u ∈ X(Γ) | Td(u) = M Tn(u)

}
. (5.2)

Appealing to the duality of the trace spaces H−1/2(Σ) and H+1/2(Σ) we can
define the adjoint regularizing operator M∗ : H−1/2(Σ) → H+1/2(Σ) by the
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formula

〈q,M∗ p〉Σ := 〈p,M q〉Σ ∀p, q ∈ H−1/2(Σ). (5.3)

It is immediate that M∗ satisfies (5.1), if and only if M does. As a consequence,
we can define the space XM∗(Γ) analogously to (5.2). It can be used to obtain
a weak characterization of XM(Γ):

Lemma 5.1. For any u ∈ H(Γ), we have u ∈ XM(Γ) ⇐⇒ [u, v] = 0 ∀v ∈
XM∗(Γ).

Proof ➊(⇒) From Proposition (3.2) and (3.4) we obtain the identity

[u, v] = 〈Tn(u),Td(v)〉Σ − 〈Td(u),Tn(v)〉Σ , u, v ∈ X(Γ). (5.4)

For u ∈ XM(Γ) we infer

[u, v] = 〈Tn(u),Td(v)〉Σ − 〈M Tn(u),Tn(v)〉Σ
=

〈
Tn(u), (Td(v) − M∗ Tn(v))︸ ︷︷ ︸

=0

〉

Σ

= 0 ∀v ∈ XM∗(Γ).

➋(⇐) To begin with, as in the proof of [12, Thm. 3.1], we conclude with
(5.4) that u ∈ X(Γ). Then, for v ∈ XM∗(Γ), (5.4) becomes

[u, v] = 〈Tn(u),M∗ Tn(v)〉Σ − 〈Td(u),Tn(v)〉Σ = 〈(Td(u) − M Tn(u)),Tn(v)〉Σ .
As Tn is surjective, the second assertion of the lemma follows. �
The regularizing operator will enter the definition of a trace transforma-
tion R : X(Γ) → X(Γ) that realizes an isomorphism of the form “iden-
tity + compact”. Its definition involves a continuous extension operator
EΣ : H+ 1

2 (Σ) → H1(Rd) that furnishes a right inverse of the trace γΣ
d . Then

we define

R = Id + C, C :=
((
γj
d ◦ EΣ ◦M ◦Tn, 0

))n

j=0
, (5.5)

where C : X(Γ) → X(Γ) inherits compactness from M.

Lemma 5.2. R is an isomorphism and we have R( X0(Γ) ) = XM(Γ).

Proof Observe that C2 = 0, so that R−1 = Id − C, which proves the first
statement. Now let γd : H1(Rd) → X(Γ) refer to the global trace operator

defined by γd(u) =
(
γj
d(u)

)n

j=0
. Since Td ◦γd ◦ EΣ = Id and Tn(C u) = 0, we

easily see that for u ∈ X0(Γ)

Td(R u) − M Tn(R u) = Td(u)︸ ︷︷ ︸
=0

+M Tn(u) − M Tn(u) = 0.

this shows that R( X0(Γ) ) ⊂ XM(Γ). We show in the same manner that
(Id − C)( XM(Γ) ) ⊂ X0(Γ), which finishes the proof. �

Remark 5.3. If Σ ⊂ ∂Ωj for some j ∈ {0, . . . , n}, we can pick an extension
EΣ that is local in the sense that

supp(Eu) ⊂ ΩΣ ∪ Σ ∪ Ωj , u ∈ H+1/2(Σ). (5.6)
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5.2. Direct Single Trace CFIE

The STF (4.4) is a direct BIE in the sense that its unknowns are Cauchy
traces of the solution of the transmission problem (2.2). This property is
preserved by the CFIE augmentation proposed in this section.

As in Sect. 4.2 let u = (uj)n
j=0 ∈ X0(Γ) denote the Cauchy traces of the

solution U of Problem (2.2) i.e. uj = γj(u), j = 0, . . . , n. We have seen that
it satisfies the integral Eq. (4.3). The derivation of a direct combined field
integral equation starts from this identity and, as before, casts it into a weak
form similar to (4.4). However, this time we employ test functions ṽ ∈ XM(Γ)
instead of taking v ∈ X0(Γ)! We end up with: seek u ∈ X0(Γ) such that

[
(−Id/2 + A)u, ṽ

]
=

n∑
j=0

[
γj

c Gj
κj

(uj), ṽj

]
j

= − [
uinc, ṽ

] ∀ṽ ∈ XM(Γ). (5.7)

Thanks to Lemmas 5.2 and 4.1, an equivalent reformulation of (5.7) is

[(−Id/2 + A)u, (Id + C)v] = [A u, v] + c(u, v)

= − [
uinc, (Id + C)v

] ∀v ∈ X0(Γ), (5.8)

where we define the compact bilinear form c : X(Γ) × X(Γ) → C according to

c(w, v) := [(−Id/2 + A)w,C v] , w, v ∈ X(Γ). (5.9)

Compactness of c is an immediate consequence of the compactness of C :
X(Γ) → X(Γ). We may also introduce the unique element ũinc ∈ H(Γ) such
that [ũinc, v] = − [

uinc, (Id + C)v
]
. This makes it possible to write the direct

single trace CFIE in variational form:{
seek u ∈ X0(Γ) such that

[A u, v] + c(u, v) = − [ũinc, v] ∀v ∈ X0(Γ).
(5.10)

Below we write aM for the bilinear form from (5.10). Obviously, ((5.10))
amounts to a compact perturbation of (4.4) so that it preserves many key
properties. In particular, it satisfies a generalized G̊arding inequality analo-
gous to Proposition 4.2.

Corollary 5.4. Recall the isomorphism Θ : H(Γ) → H(Γ) from Proposi-
tion 4.2, defined by Θ(v) = (−vj , qj)n

j=0 for v = (vj , qj)n
j=0 ∈ H(Γ). The

bilinear form aM on the left side of (5.10) satisfies

| aM(v,Θ(v)) + k(v,Θ(v))| ≥ β ‖v‖2
H(Γ) ∀v ∈ X0(Γ),

with a compact sesqui-linear form k : X(Γ) × X(Γ) → C.

Denote AM : X0(Γ) → X0(Γ)′ the operator induced by aM. The previous
proposition shows that AM is of Fredholm type with index 0. Thanks to
Fredholm alternative arguments injectivity of AM is sufficient for stability of
the variational problem (5.10) [in the sense of an inf-sup condition like (4.5)].

Lemma 5.5. For any choice of the wave numbers κ0, . . . , κn satisfying (2.3),
Ker(AM) is trivial.
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Proof By and large, the proof runs parallel to that of Lemma 4.5 and The-
orem 4.8. Thus, some parts will only be sketched and for details the reader
may refer to Sect. 4.3.

➊ Pick u = (u0, u1, . . . , un) ∈ X0(Γ) such that it solves (5.7)/(5.8) with
uinc = 0. As in Sect. 4.3 we set Wj(x) = Gj

κj
(uj)(x) and w :=

(
γj

cWj

)n

j=0
∈

H(Γ), cf. (4.7). Since (5.7) with uinc = 0 implies
[
w, ṽ

]
= 0 for all ṽ ∈ XM(Γ),

Lemma 5.1 confirms w ∈ XM∗(Γ).
➋ We exploit (5.1b) and exactly as in Step ➋ of the proof of Lemma 4.5

we show that Wj ≡ 0 in any unbounded connected component of R
d\Ωj .

➌ The arguments employed in Step ➌ of the proof of Lemma 4.5 com-
pletely carry over to the present situation and confirm that Wj ≡ 0 in any
connected component of R

d\Ωj that does not coincide with ΩΣ. This is the
counterpart of the statement of Lemma 4.5 for (5.10).

➍ If Σ �⊂ ∂Ωj for every j = 0, . . . , n, we find w = 0 as explained when
justifying Corollary 4.7. Then apply Lemma 4.6 and the proof is finished.

➎ Assume Σ ⊂ ∂Ωj for some j = 0, . . . , n. By above arguments all Wk,
k �= j, vanish on R

d\Ωk. However, Wj may not vanish on ΩΣ, recall Step ➋
of the proof of Theorem 4.8. However, from w ∈ XM∗(Γ) we conclude

γΣ
d (Wj) = M∗ γΣ

n (Wj).

Thus, In ΩΣ the function Wj satisfies ΔWj +κ2
jWj = 0 in ΩΣ and γΣ

d (Wj) =
M∗ γΣ

n (Wj). By Green’s formula, we obtain as in [3]

0 = Im
{∫

ΩΣ

|∇Wj |2 − κ2
j |Wj |2dx

}
= Im

{∫
Σ

γΣ
n (W j) · M∗ ·γΣ

n (Wj) dσ
}
.

According to property (5.1b) of M∗, this implies γΣ
n (Wj) = 0, hence γΣ

d (Wj) =
M∗ γΣ

n (Wj) = 0. Finally this yields γj
c (Wj) = 0 and Wj ≡ 0 in ΩΣ, so that

we know w = 0. Appealing to Lemma 4.6 finishes the proof. �
As in Sect. 4.2, via Fredholm theory, from this lemma we conclude that (5.10)
always possesses a unique solution.

Remark 5.6. In the case n = 0 of a single impenetrable scatterer the spaces
and operators reduce to

X0(Γ) = {0} × H+ 1
2 (Σ), A

(4.2)
= A0

κ0
, C

(5.5)
=

(
M ◦Tn

0

)
. (5.11)

As a consequence, with (3.10) the variational equation (5.8) becomes: seek
u = (0, p0) ∈ X0(Γ)

[(
− Id

2
+

(−K0 V0

W0 K′
0

))(
0
p0

)
,

(
Id −

(
0 M
0 0

))(
0
q0

)]

= −
[(
uinc

pinc

)
,

(
Id −

(
0 M
0 0

))(
0
q0

)]
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for all q0 ∈ H− 1
2 (Σ). Owing to (3.2) and with uinc = (uinc, pinc) this is equiv-

alent to finding p0 ∈ H− 1
2 (Σ) such that

〈V0 p0, q0〉 +
〈
(−Id/2 + K′

0)p0,M q0
〉

= 〈uinc, q0〉 + 〈pinc,M q0〉
�〈(

V0 +M∗(−Id/2 + K′
0)
)
p0, q0

〉
= 〈uinc + M∗ pinc, q0〉 ,

for all q0 ∈ H− 1
2 (Σ). This agrees with the regularized CFIE from [3, Sect. 4].

5.3. Indirect CFIE

Both the STF (4.4) and the regularized CFIE (5.10) are direct BIE, since
their unique solutions provide true Cauchy traces of the solution U of (2.2).
If the solution of a BIE does not agree with traces of the solution of the
related boundary value problem, it is classified as indirect. In [3, Sect. 3] a
regularized indirect CFIE was devised for the simple situation n = 0. In this
section we adapt this approach to the STF. We obtain a variational equation
that is dual to the direct CFIE introduced in the previous section.

The indirect CFIE stems from a representation of the solution to Prob-
lem (2.2) in the following form

U(x) = G0
κ0

(ũ0)(x) + Uinc(x) for x ∈ Ω0,

U(x) = Gj
κj

(ũj)(x) for x ∈ Ωj , j = 1, . . . , n,

where ũ = (ũj)n
j=0 ∈ XM(Γ).

(5.12)

Admittedly, existence of such a representation of U is not obvious at first
glance. Assume for a moment that such a representation can be found. Then
the boundary and transmission conditions of Problem (2.2) can be expressed
as (γj(U))n

j=0 ∈ X0(Γ). Using Lemma 4.1 and representation (5.12) yields

[
γ0(Uinc), v0

]
0
+

n∑
j=0

[
γj Gj

κj
(ũj), vj

]
j

= 0 ∀v = (vj)n
j=0 ∈ X0(Γ). (5.13)

Definition (3.10) together with the jump relations (3.8) give the equivalent
statement[

(
1
2
Id + A)ũ, v

]
= − [

γ0(Uinc), v0

]
0

∀v = (vj)n
j=0 ∈ X0(Γ). (5.14)

Thanks to Lemma 5.2 there exists u = (u0, . . . , un) ∈ X0(Γ) such that ũ =
R u = (Id+C)u. Plugging this into (5.14), and taking account of the definition
of uinc and Lemma 4.1, we obtain

[A(u), v] +
[
(A +

1
2
Id)C u, v

]
= − [

uinc, v
] ∀v ∈ X0(Γ). (5.15)

Clearly, this equation is a perturbed version of Formulation (4.4). Introduce
the bilinear form

c′(w, v) :=
[
(A +

1
2
Id)C w, v

]
, (5.16)
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the variational problem of the indirect single trace CFIE can be stated as:{
seek u ∈ X0(Γ) such that

[A u, v] + c′(u, v) = − [uinc, v] ∀v ∈ X0(Γ).
(5.17)

Lemma 5.7. We have c′(w, v) = c(v,w) for all v,w ∈ X0(Γ).

Proof This is an immediate consequence of the definitions (5.9), (5.16), of
Lemma 3.6, and of the skew-symmetry of the pairing [·, ·]. �
Corollary 5.8. For any choice of the wave numbers κ0, . . . , κn satisfying (2.3),
the indirect single trace CFIE (5.17) has a unique solution.

Proof Lemma 5.7 tells us that the bilinear forms of (5.17) and (5.10) are
adjoint to each other. As a consequence, Corollary 5.4 and Lemma 5.5 carry
over to (5.17) verbatim. A Fredholm alternative argument clinches the case.
. �

The previous proposition makes clear that Formulation (5.17) is always
well posed. Now, assume that u is defined as the solution to Formulation
(5.17). Undo the substitution made above by setting ũ = R−1 u = (Id − C)u.
Then, by construction, the function U defined by (5.12) solves Problem (2.2)
and coincides with its unique solution. Ultimately, this proves that a repre-
sentation according to (5.12) can always be found for a solution of Problem
(2.2). In addition, by means of (5.12) the field can be recovered.

Remark 5.9. In the case n = 0 already discussed in Remark 5.6 the variational
problem (5.17) boils down to the indirect CFIE derived in [3, Sect. 3].

5.4. Mixed Variational Formulations

A convenient concrete choice for an operator M satisfying (5.1a) and (5.1b)
was proposed in [3, Sect. 4], namely M = (ΔΣ + Id)−1 : H−1(Σ) → H1(Σ),
where ΔΣ stands for the Laplace-Beltrami operator on the closed surface Σ.
The variational definition of this operator reads:

Mϕ ∈ H1(Σ) : dΣ(Mϕ, vΣ) = −ı 〈ϕ, vΣ〉Σ ∀vΣ ∈ H1(Σ), ϕ ∈ H−1(Σ),
(5.18)

with sesqui-linear form (gradΣ is the surface gradient on Σ)

dΣ(z, v) :=
∫

Σ

gradΣ z · gradΣ v + z v dS, z, v ∈ H1(Σ). (5.19)

Compactness of M : H−1/2(Σ) → H+1/2(Σ) is immediate from the continuity
M : H−1(Σ) → H1(Σ) and the compact embeddings H−1/2(Σ) ⊂ H−1(Σ) and
H1(Σ) ⊂ H+1/2(Σ). This operator is also symmetric in the sense that

〈Mϕ,ψ〉Σ = 〈Mψ,ϕ〉Σ, ϕ, ψ ∈ H−1(Σ). (5.20)

The bilinear forms of the variational formulations (5.10) and (5.15) of
single-trace CFIEs involve evaluations of M. With Galerkin boundary element
discretization in mind, it is desirable to avoid these and rely on the variational
definition of M instead. As in [3, Sects. 4.2 and Sect. 3.2], this can be achieved
by introducing auxiliary variables. In light of Lemma 5.7 we will restrict the
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discussion to the direct formulation (5.8). Using (4.2), the bilinear form c
from (5.9) can be rewritten as (w, v ∈ X0(Γ))

c(w, v)=
n∑

j=0

[(−Id/2+Aj
κj

)
wj ,

(
C v

)
j

]
j
=− 1

2 [w,C v]+
n∑

j=0

[
Aj

κj
wj ,

(
C v

)
j

]
j

➀= 1
2 [T w,T(C v)]Σ −

n∑
j=0

〈(
Aj

κj
wj

)
n
, γj

d EΣ M(Tn v)
〉

j

➁= −1
2

〈Tn(w),M(Tn v)〉Σ −
n∑

j=0

〈
(γj

d EΣ)′(Aj
κj

wj

)
n
,M(Tn v)

〉
Σ

➂=
〈

M
(
− 1

2 Tn(w) −
n∑

j=0

(γj
d EΣ)′(Aj

κj
wj

)
n

)
,Tn(v)

〉
Σ

In step ➀ we appeal to Proposition 3.2 for the first term and use the notation
(·)n to extract the Neumann component of Cauchy traces. We also exploit
that C v has vanishing Neumann component and the definition (5.5) of C.
The step ➁ uses that Td ◦EΣ = Id and the adjoint operator (γj

d EΣ)′ :
H−1/2(∂Ωj) → H−1/2(Σ). In ➂ we apply (5.20). These manipulations suggest
that we introduce the new unknown

zΣ := M
(
− 1

2 Tn(w) −
n∑

j=0

(γj
d EΣ)′(Aj

κj
wj

)
n

)
∈ H1(Σ), (5.21)

which satisfies

dΣ(zΣ, vΣ) =

〈
− 1

2 Tn w −
n∑

j=0

(γj
d EΣ)′(Aj

κj
wj

)
n
, vΣ

〉

Σ

= − 1
2 〈Tn w, vΣ〉Σ −

n∑
j=0

〈(
Aj

κj
wj

)
n
, γj

d EΣ(vΣ)
〉

j
∀vΣ ∈ H1(Σ).

(5.22)

By means of zΣ we can express c(w, v) = 〈zΣ,Tn v〉Σ, which converts the
variational problem (5.10) of the direct single-trace CFIE into mixed form:
seek u ∈ X0(Γ), zΣ ∈ H1(Γ) such that, ∀v ∈ X0(Γ), ∀vΣ ∈ H1(Σ),

[A u, v] + 〈zΣ,Tn v〉Σ = − [ũinc, v] ,〈
1
2 Tn(u) +

n∑
j=0

(Aj
κj

uj)n, γ
j
d EΣ(vΣ)

〉

Σ

+ dΣ(zΣ, vΣ) = 0. (5.23)

This variational problem inherits coercivity from (5.10), because the com-
pact embedding H1(Σ) ⊂ H+1/2(Σ) renders the off-diagonal operators of
(5.23) compact. Uniqueness also carries over from (5.10). Moreover, (5.23)
is amenable to Galerkin discretization by means of standard boundary ele-
ments, for instance, piecewise linear continuous functions on a triangular
surface mesh of Σ for the approximation of zΣ.
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Ω1
Ω2

ΩΣ
Ω0

Ω1
Ω2

ΩΣ
Ω0

Figure 5. Illustration of the gap idea (gap highlighted)

6. Multi-Trace Combined Field Integral Equations

As pointed out in the Introduction, a shortcoming of the classical single-
trace formulation (4.4) and also of its stabilized versions(5.10) and (5.17)
is the tight coupling between subdomains implicit in the use of the single
trace variational space X0(Γ), which contains the transmission conditions “in
strong form”. This limits flexibility in using Galerkin trial spaces locally on
the subdomains. More severely, it turned out to be a big obstacle to the
use of operator preconditioning techniques. We skip a detailed explanation
here and recommend that the reader study [12, Sect. 4]. We only quote the
conclusion drawn in [12] and [13] that switching to variational formulations
posed on decoupled local trace spaces will pave the way for effective operator
preconditioning.

This has been the main motivation behind the development of so-called
multi-trace formulations (MTFs). Here the expression “multi-trace” refers
to a family of BIE where the unknowns are doubled on each interface that
separates two (bounded) subdomains. In [11] and [12, Sect. 5] a global MTF
was devised based on the classical STF (4.4). In this section we are going to
derive and study its CFIE counterpart related to the formulations that we
have established in Sects. 4 and 5.

6.1. The Gap Idea

The global MTF was discovered through a heuristic geometric limit process,
which is elucidated and justified in [11, Sect. 5], [12, Sect. 5.2], and [13,
Sect. 4.2]. Tersely speaking, we imagine an (infinitely) narrow gap between
bounded subdomains Ωj , j = 1, . . . , N , including ΩΣ. This gap is filled with
the same ambient medium as Ω0, see Fig. 5 for an illustration. For this
arrangement where all bounded subdomains are isolated from each other we
consider variational single trace formulations. Sloppily speaking, the corre-
sponding global MTFs then boil down to STFs applied to gap configurations
with vanishing gap.
Recalling Theorem 4.8, the alert reader will have noticed that the gap config-
uration as in Fig. 5 (right) is exactly the situation, in which spurious reso-
nances may afflict the classical STF (4.4), because Σ ⊂ ∂Ω0. More precisely,
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uniqueness of solutions will be lost, if κ0 ∈ S(Δ,ΩΣ), where the latter set
comprises the interior Dirichlet eigenvalues for −Δ on ΩΣ, see (4.9). Thus,

(E1). we expect that the standard global MTF will suffer from spurious
resonances whenever κ0 ∈ S(Δ,ΩΣ).

On the other hand,

(E2). we also expect that the MTFs we obtain from pursuing the gap
construction for CFIE extensions of the STF, will be stable for all com-
binations of wave numbers.

This hope relies on Lemmas 5.5 and Corollary 5.8. In the sequel we give rig-
orous justifications of our conjectures. We are not going to employ vanishing
gap arguments, which entail difficult geometric limit processes, but directly
scrutinize the variational formulations as in [11].

In the gap setting (Fig. 5, right) we face a partitioning ∂Ω0 = ∪n
j=1∂Ωj∪

Σ so that, in this special case, the variational space X0(Γ) from (4.1) for the
STF variational formulations is clearly isomorphic to a product of Cauchy
trace spaces on the subdomain boundary and Neumann traces on Σ:

Ĥ(Γ) := H(∂Ω1) × · · · × H(∂Ωn) × H− 1
2 (Σ). (6.1)

This space will supply the functional framework for the global MTF, including
for general configurations (such as in Fig. 5, left). The main difference between
Ĥ(Γ) and the space H(Γ) introduced in (3.1) is that the former does not
contain any contribution from ∂Ω0. Instead, it comprises contributions from
Σ, via a trace chosen in H−1/2(Σ). We equip the new space Ĥ(Γ) with a norm
defined by

‖û‖2
Ĥ(Γ)

:= ‖û1‖2
H(∂Ω1)

+ · · · + ‖ûn‖2
H(∂Ωn) + ‖pΣ‖2

H−1/2(Σ)

for all û = (û1, . . . , ûn, pΣ). Clearly, the dual space of Ĥ(Γ) with respect to

local L2-type duality pairings is

̂

H(Γ) := H(∂Ω1)×· · ·×H(∂Ωn)×H1/2(Σ). In

concrete terms, for û = (û1, . . . , ûn, uΣ) ∈

̂

H(Γ), and v̂ = (v̂1, . . . , v̂n, qΣ) ∈
Ĥ(Γ) the underlying duality pairing between Ĥ(Γ) and

̂

H(Γ) is defined by
the bilinear form

�
û, v̂

�
:=

n∑
j=1

[
ûj , v̂j

]
j
+ 〈uΣ, qΣ〉Σ .

Routine verifications show that this bilinear form is non-degenerate and sat-
isfies inf-sup conditions. We will use it to derive variational formulations.

6.2. Multi-Trace Formulations (MTFs)

Guided by the gap idea, and the STF (4.4) in gap settings, we can embark
on the lengthy manipulations elaborated in [11, Sect. 8] and [12, Eq. (5.8)].
Since no new complications arise in the presence of essential boundary condi-
tions, we omit the details. In the end we arrive at a multi-trace formulation for
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the transmission boundary value problem with Dirichlet boundary conditions
on Σ: ⎧⎪⎨

⎪⎩
find û ∈ Ĥ(Γ) such that
�
Â(û), v̂

�
=

�
f̂, v̂

�
∀v̂ ∈ Ĥ(Γ),

(6.2)

where f̂ = (̂f1, . . . , f̂n, fΣ) ∈

̂

H(Γ) is defined by f̂j = γj(Uinc) and fΣ =

γΣ
d (Uinc), and Â : Ĥ(Γ) →

̂

H(Γ) is a continuous linear operator defined by

Â :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
κ1

+A1
κ0

γ1 G2
κ0

· · · γ1 Gn
κ0

γ1 SLΣ
κ0

γ2 G1
κ0

A2
κ2

+A2
κ0

· · · γ2 Gn
κ0

γ2 SLΣ
κ0

...
...

. . .
...

...

γn G1
κ0

γn G2
κ0

· · · An
κn

+An
κ0

γn SLΣ
κ0

γΣ
d G1

κ0
γΣ
d G2

κ0
· · · γΣ

d Gn
κ0

VΣ
κ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.3)

Definitions of the potentials SLΣ
κ and Gj

κ0
can be found in (3.7), and VΣ

κ0
:=

γΣ
d SLΣ

κ0
is a single layer boundary integral operator on Σ. Hence, with û =

(û1, . . . , ûn, pΣ), v̂ = (v̂1, . . . , v̂n, qΣ), the bilinear form of (6.2) boils down to
�
Â(û), v̂

�
=

n∑
j=1

[
(Aj

κj
+Aj

κ0
)(ûj), v̂j

]
j
+

n∑
j=1

∑
i=1
i�=j

[
γj Gi(ûi), v̂j

]
j

×
n∑

j=1

+
[
γj SLΣ

κ0
(pΣ), v̂j

]
j
+

n∑
j=1

〈
γΣ
d Gj

κ0
(ûj), qΣ

〉
Σ

+
〈
γΣ
d SLΣ

κ0
(pΣ), qΣ

〉
Σ

(6.4)

Remark 6.1. The key observation is that all building blocks of Â and the
terms in (6.4) remain well defined, even if we dispense with a gap between
the subdomains Ωj , j ≥ 1 and ΩΣ. Thus, Â and the multi-trace variational
problem (6.2) remain meaningful in the generic setting with junction points
depicted in Fig. 5, left, and introduced in Sect. 2. The gap idea instills confi-
dence that (6.2) will inherit all properties of the single-trace problem (4.4) on
isolated subdomains. In the next section, we are going to provide a rigorous
foundation for this intuition.

6.3. Analysis of Standard MTF

We consider the standard global MTF variational problem (6.2)/(6.4) in the
general “non-gap” setting with possible junction points (Fig. 5, left). Obvi-
ously, the bilinear form (û, v̂) → �Â(û), v̂� is continuous on Ĥ(Γ). Also let us
point out a symmetry property of this bilinear form that will be useful later.



Vol. 81 (2015) Partially Impenetrable Objects 179

Due to the definition of Â from (6.3), the next result is a direct consequence
of Lemma 3.6 and Lemma 3.7:�

Â(û), v̂
�

=
�
Â(v̂), û

�
∀ û, v̂ ∈ Ĥ(Γ). (6.5)

Now, extending Proposition 4.4 to the standard global MTF, the following
proposition exhibits the precise relationship between Formulation (6.2) and
Problem (2.2). Corresponding results for the pure transmission problem can
be found in [11, Sect. 9].

Proposition 6.2. If û = (û1, . . . , ûn, pΣ) ∈ Ĥ(Γ) solves (6.2) then U ∈ L2
loc(R

d

\ΩΣ) defined by

U(x) = Gj
κj

(ûj)(x)for x ∈ Ωj , j = 1, . . . , n

U(x) = Uinc(x) − SLΣ
κ0

(pΣ)(x) −
n∑

j=1

Gj
κ0

(ûj)(x)for x ∈ Ω0 (6.6)

is the unique solution of Problem (2.2).

Proof By construction, the function U defined by (6.6) satisfies ΔU+κ2
jU =

0 in Ωj for j = 0, . . . , n, and the radiation conditions at ∞ (with respect
to κ0). The only property we have to verify is the transmission conditions
(2.2b), that is, (γj(U))n

j=0 ∈ X0(Γ). Owing to Lemma 4.1 this is equivalent
to showing that for all v = (vj)n

j=0 ∈ X0(Γ) we have
∑n

j=0

[
γj(U), vj

]
j

= 0
which, see (6.6), is equivalent to⎡
⎣γ0Uinc − γ0 SLΣ

κ0
(pΣ) −

n∑
j=1

γ0 Gj
κ0

(ûj), v̂0

⎤
⎦

0

+
n∑

j=1

[
γj Gj

κ0
(ûj), vj

]
j

= 0.

(6.7)

We fix some v ∈ X0(Γ), and denote v� := (v1, . . . , vn,Tn(v)) ∈ Ĥ(Γ). For the
remainder of the proof it is important to remember that Td(v) = 0. From the
jump relations (3.8) and (3.10) we can conclude Aj

κj
+Aj

κ0
= γj Gj

κj
+γj

c Gj
κ0

.
We use this identity and infer from (6.2) and (6.4) with v̂ = v�

0 =
�
Âû, v�

�
−

�
f̂, v�

�
=

n∑
j=1

([
γj Gj

κj
(ûj), vj

]
j
+

[
γj

c Gj
κ0

(ûj), vj

]
j

+
n∑

i=1
i�=j

[
γj Gi

κ0
(ûi), vj

]
j
+

〈
γΣ

D Gj
κ0

(ûj),Tn(v)
〉
Σ

)
(6.8a)

+
n∑

j=1

[
γj SLΣ

κ0
(pΣ), vj

]
j
+

〈
γΣ
d SLΣ

κ0
(pΣ),Tn(v)

〉
Σ

(6.8b)

−
n∑

j=1

[
γjUinc, vj

]
j
− 〈

γΣ
d Uinc,Tn(v)

〉
Σ
. (6.8c)

For j = 1, . . . , n, evidently Gj
κ0

(ûj) ∈ H1
loc(Δ,R

d\Ωj). As a consequence,
when we take the trace on ∂Ωj from outside, we have z :=

(
γ0 Gj

κ0
(ûj), . . . ,
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γj
c Gj

κ0
(ûj), . . . , γn Gj

κ0
(ûj)

) ∈ X(Γ). Thus, we can invoke Proposition 3.2, and
find [z, v] = − [T(z),T(v)]Σ, which means

[
γj

c Gj
κ0

(ûj), vj

]
j
+

n∑
i=1
i�=j

[
γi Gj

κ0
ûj , vi

]
i
+

〈
γΣ
d Gj

κ0
(ûj),Tn(v)

〉
Σ

= − [
γ0 Gj

κ0
ûj , v0

]
0
. (6.9)

In the same vein, we can set y :=
(
γ0 SLΣ

κ0
(pΣ), . . . , γn SLΣ

κ0
(pΣ)

) ∈ X(Γ),
which, again by Proposition 3.2, satisfies [y, v] = − [T(y),T(v)]Σ, equivalent
to

n∑
j=1

[
γj SLΣ

κ0
(pΣ), vj

]
j
+

〈
γΣ
d SLΣ

κ0
(pΣ),Tn(v)

〉
Σ

= −
[
γ0 SLΣ

κ0
(pΣ), v0

]
0
.

(6.10)

Similarly, since ΔUinc + κ2
0Uinc = 0 everywhere, Proposition 3.2 yields

∑n
j=0[

γjUinc, vj

]
j

= − [
γΣUinc,T v

]
Σ

= − 〈
γΣ
d Uinc,Tn v

〉
Σ
. Obviously, we aim to

use this last identity to tackle (6.8c), (6.9) (summed over j = 1, . . . , n) to
simplify (6.8a), and (6.10) to replace (6.8b). Thus we arrive at

0 =
n∑

j=1

[
γj Gj

κ0
(ûj), vj

]
j
−

n∑
j=1

[
γ0 Gj

κ0
(ûj), v0

]
0

−
[
γ0 SLΣ

κ0
(pΣ), v0

]
0

+
[
γ0Uinc, v0

]
Σ
, (6.11)

which agrees the equation (6.7)! Since v was chosen arbitrarily in X0(Γ), this
finishes the proof. �
The gap construction hints that the operators Â defined in (6.3) will enjoy
coercivity analogous to the assertions of Theorem 4.2. This is confirmed by
the next result, which generalizes [11, Thm. 10.4].

Proposition 6.3. Define the operators θj : H(∂Ωj) → H(∂Ωj) by θj(v, qΣ) =
(−v, qΣ), and let Φ : Ĥ(Γ) → Ĥ(Γ) denote the operator Φ(v̂) = (θ1(v̂1),
. . . , θn(v̂n), q) for v̂ = (v̂1, . . . , v̂n, q). There exists a compact operator K :

Ĥ(Γ) →

̂

H(Γ), and a constant β > 0 such that∣∣∣�(Â + K)v̂,Φ(v̂)
�∣∣∣ ≥ β‖v̂‖2

Ĥ(Γ)
for all v̂ ∈ Ĥ(Γ).

Proof Since a change of the wave numbers κ0, κ1, . . . , κn only induces a com-
pact perturbation of Â [32, Lemma 3.9.8], it suffices to prove the result
for the case where κ0 = · · · = κn = ı where ı =

√−1. Take any v̂ =
(v̂1, . . . , v̂n, qΣ) ∈ Ĥ(Γ). Denote Wj(x) := Gj

κ0
(v̂j)(x) for j = 1, . . . , n, and

Wn+1(x) := GΣ
κ0

(v̂n+1) where v̂n+1 := (0, qΣ) ∈ H(Σ).
For the sake of concise notations, in the remainder of this proof, we will

write [·, ·]n+1 := [·, ·]Σ, Gn+1
κ0

:= GΣ
κ0

, An+1
κ0

:= {γΣ}GΣ
κ0

and Ωn+1 := ΩΣ.
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Then we have

Re
�
Â(v̂),Φ(v̂)

�
= Re

[
An+1

κ0
(v̂n+1), θn+1(v̂n+1)

]
n+1

+
n∑

j=1

2 Re
[
Aj

κ0
(v̂j), θj(v̂j)

]
j

+
n+1∑
j=1

n+1∑
q=1
q �=j

Re
[
γq Gj

κ0
(v̂j), θq(v̂q)

]
q
.

Proceeding exactly as in the proof of Proposition 10.3 in [11], and in particular
applying Proposition 10.1 and 10.2 of [11], we have

Re
�
Â(v̂),Φ(v̂)

�
=

n+1∑
q=0

n∑
j=1

∫
Ωq

|∇Wj |2 + |Wj |2dx

+
n+1∑
q=0

∫
Ωq

∣∣∣∇( n+1∑
j=1

Wj

)∣∣∣2 +
∣∣∣

n+1∑
j=1

Wj

∣∣∣2 dx

≥
n+1∑
q=0

n∑
j=1

‖Wj‖2
H1(Ωq). (6.12)

Note that (a1 + · · · + ak)2 ≤ k (a2
1 + · · · a2

k) for any a1, . . . ak ∈ R. Applying
this elementary identity to (6.12) allows to conclude that

2(n+ 1)Re
�
Â(v̂),Φ(v̂)

�

≥ 2n
n+1∑
q=0

n∑
j=1

‖Wj‖2
H1(Ωq) + 2

n+1∑
q=0

∥∥∥
n+1∑
j=1

Wj

∥∥∥2

H1(Ωq)

≥
n+1∑
q=0

‖Wn+1‖2
H1(Ωq). (6.13)

Now, since −ΔWj+Wj = 0 in Ωq for any j, q, and since, by the jump relations
(3.8), v̂j = [γj(Wj)], the continuity of trace operations yields ‖v̂j‖H(∂Ωj) ≤
C

∑n+1
q=0 ‖Wj‖H1(Ωq). Combining this with (6.12) and (6.13) concludes the

proof. �
A direct consequence of the previous proposition is that the operator Â is
Fredholm with index 0. Hence it is an isomorphism if it is injective, which
can fail only in case of spurious resonnance, since Problem (2.2) is well posed.
Recalling the gap idea and the characterization of the kernel of A from The-
orem 4.8, the following result about spurious resonances of the global MTF
is not surprising, cf. Section 6.1.

Proposition 6.4. Ker(Â) = { (0, . . . , 0, p) | p ∈ Ker(γΣ
d SLΣ

κ0
) }. As a conse-

quence, for any choice of wave numbers κj, the operator Â is a bijection if
and only if κ0 /∈ S(Δ,ΩΣ).
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Proof Since Â is Fredholm with index 0, it is a bijection, if and only if it
is injective. Assume that û = (û1, . . . , ûn, pΣ) ∈ Ĥ(Γ) satisfies Â(û) = 0. In
this case Proposition 6.2 applies with Uinc = 0. Since Problem (2.2) is well
posed this shows that, in Formula (6.6), U = 0 as well, so we conclude that
Gj

κj
(ûj)(x) = 0 for x ∈ Ωj , and finally

γj Gj
κj

(ûj) = 0 ∀j = 1, . . . , n. (6.14)

Now pick an arbitrary l = 1 . . . n, and an arbitrary vl ∈ Cκl
(∂Ωl) from the

space of Cauchy data defined in (3.4). We have v̂ := (0, . . . , 0, vl, 0 . . . , 0) ∈
Ĥ(Γ). We can apply (6.2) in the form

�
Â(û), v̂

�
= 0, take into account the

definition of Â, see (6.4), use (6.14), which yields

0 =
[
γl SLΣ

κ0
(p), vl

]
l
+

n∑
j=1

[
γl Gj

κ0
(ûj), vl

]
l
+

[
γl

c Gl
κl

(ûl), vl

]
l
. (6.15)

In the computations above, we used the identity Al
κl

+Al
κ0

= γl
c Gl

κl
+γl Gl

κ0
.

Next, as vl ∈ Cκl
(∂Ωl), Lemma 3.5 show that the following terms vanish[
γl Gl

κ0
(ûl), vl

]
l
= 0,

[
γl SLΣ

κ0
(p), vl

]
l
= 0. (6.16)

In addition, we have H(∂Ωl) = Im(γl
c Gl

κl
)⊕Cκ0(∂Ωl) according to [11, Lemma

A.2]. Combining (6.15) and (6.16) we obtain that[
γl

c Gl
κl

(ûl), vl

]
l
= 0 for all vl ∈ H(∂Ωl). (6.17)

Finally, we conclude that γl
c Gl

κl
(ûl) = 0 for all l = 1, . . . , n. As a consequence,

we obtain from the jump relations

ûj = [γj ]Gj
κj

(ûj) = γj Gj
κj

(ûj) − γj
c Gj

κj
(ûj) = 0.

Since Â(û) = 0, from the bottom row of 6.3 we finally obtain that γΣ
d

SLΣ
κ0

(pΣ) = 0. Hence pΣ ∈ Ker(γΣ
d SLΣ

κ0
). Recall that the single layer operator

γΣ
d SLΣ

κ0
is a Fredholm operator with index 0, and it is an ismorphism (i.e.

admits a trivial kernel) if and only if κ0 /∈ S(Δ,ΩΣ), see [32, Thm 3.9.1]. From
this we conclude that, if κ0 /∈ S(Δ,ΩΣ), then pΣ = 0, and Ker(Â) = {0}.
In case κ0 ∈ S(Δ,ΩΣ), then SLΣ

κ0
(pΣ)(x) = 0 for all x ∈ R

d\ΩΣ, so that
γl SLΣ

κ0
(pΣ) = 0 ∀l = 1, . . . , n, hence (0, . . . , 0, pΣ) ∈ Ker(Â). �

Comparing Proposition 4.8, Proposition 4.7 and Proposition 6.4, we see that
if Formulation (4.4) suffers spurious resonnances, then so does Formulation
(6.2). On the other hand, we point out that for any geometric arrangement
with ΩΣ �= ∅, there are certain κ0 where Formulation (6.2) breaks down,
while Formulation (4.4) remains well posed.

6.4. Direct Multi-Trace CFIE

Since we expect spurious resonances for (6.2), recall (E1), we also study
multi-trace counterparts of CFIE formulations. The focus will be first on the
direct single-trace CFIE proposed in Sect.5.2 and its variational formulation
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on Ĥ(Γ). By the structure of (5.10), we need only elaborate how to adapt
the compact bilinear form c from (5.9).

Again we take inspiration from geometrical configurations involving a
gap between the different scatterers (Fig. 5, left). In gap configurations there
exists a natural isomorphism Ĥ(Γ) ∼= X0(Γ), we look for ĉ : Ĥ(Γ)×Ĥ(Γ) → C

such that ĉ(û, v̂) = c(u, v), where we have the correspondences û ↔ u and
v̂ ↔ v in the isomorphism mapping Ĥ(Γ) onto X0(Γ). Observe that c defined
by (5.9) can be re-written as

c(u, v) =
n∑

j=0

[
γj

c Gj
κj

(uj),C(vj)
]

j
, u, v ∈ X0(Γ). (6.18)

In the gap situation (i.e. the situation of disjoint subdomains), the extension
operator EΣ can be chosen to map into functions, whose support is inside Ω0,
which means that γj

d ◦ EΣ = 0 for j �= 0, and that, essentially, C maps into
H1/2(Σ). This brings about a substantial simplification of the operator C and
leads to

c(u, v) =
[
γ0

c G0
κ0

(u0), (C v)0
]
0

=
〈
γΣ
n G0

κ0
(u0),M Tn(v)

〉
Σ
, u, v ∈ X0(Γ).

(6.19)

For any (v, q) ∈ H1/2(∂Ωj) × H−1/2(∂Ωj), denote θj(v, q) := (v,−q). Since
(uj)n

j=0 ∈ X0(Γ) and ∂Ω0 = Σ ∪ ∂Ω1 ∪ · · · ∪ ∂Ωn, the trace u0 is equal to
θj(uj) on each ∂Ωj , j = 1, . . . , n, and equal to (0,−pΣ) on Σ. This yields
G0

κ0
(u0) = −SLΣ

κ0
(pΣ) − ∑n

j=0 Gj
κ0

(uj). Hence

ĉ(û, v̂) = −
〈
M∗(γΣ

n SLΣ
κ0

(pΣ)
)
, qΣ

〉
Σ

−
n∑

j=1

〈
M∗(γΣ

n Gj
κ0

(uj)
)
, qΣ

〉
Σ
, (6.20)

for û = (u1, . . . , un, pΣ) ∈ Ĥ(Γ), v̂ = (v1, . . . , vn, qΣ) ∈ Ĥ(Γ). From (5.10),

6.3, and (6.20) we deduce the operator ÂM : Ĥ(Γ) →

̂

H(Γ) defined as

ÂM

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
κ1

+A1
κ0

· · · γ1 Gn
κ0

γ1 SLΣ
κ0

γ2 G1
κ0

· · · γ2 Gn
κ0

γ2 SLΣ
κ0

...
. . .

...
...

γn G1
κ0

· · · An
κn

+An
κ0

γn SLΣ
κ0(

γΣ
d − M∗ γΣ

n

)
G1

κ0
· · · (

γΣ
d − M∗ γΣ

n

)
Gn

κ0

(
γΣ
d − M∗ γΣ

n

)
SLΣ

κ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.21)
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Similar considerations yield an expression in

̂

H(Γ) for the right hand side of
the direct single trace CFIE in the gap setting; we find

f̂M :=
(
γ1Uinc, . . . , γ

nUinc, γ
Σ
d Uinc − M∗(γΣ

n Uinc)
) ∈

̂

H(Γ). (6.22)

Then the direct multi-trace CFIE in variational form and in the gap setting
reads: ⎧⎪⎨

⎪⎩
find û ∈ Ĥ(Γ) such that
�
ÂM(û), v̂

�
=

�
f̂M, v̂

�
∀v̂ ∈ Ĥ(Γ),

(6.23)

Although we have derived Formulation (6.23) in a gap setting where all scat-
terers were distant from each other, this formulation still makes sense in a
general geometric configuration (such as in Figure 5, left). We justifies in the
next paragraph the validity of (6.23) for a general setting. In addition, we give
rigorous arguments for conjecture (E2) on Page 27, where we claimed that
the direct global multi-trace CFIE (6.23) is immune to spurious resonances
for any choice of wave numbers κj .

Obviously, thanks to the compactness of M, see (5.1), the operator ÂM

from (6.21) is a compact perturbation of Â from 6.3, and the bilinear form of
(6.2) is a compact perturbation of that of (6.23). The next result exhibits the
precise relationship between the solution to (6.23) and the solution to (6.2).

Proposition 6.5. A solution of the global multi-trace CFIE (6.23) is also a
solution of the standard global MTF (6.2).

Proof Take a solution û = (û1, . . . , ûn, pΣ) ∈ Ĥ(Γ) of (6.23). Consider the
function W (x) := Uinc(x)−SLΣ

κ0
(pΣ)(x)−∑n

j=1 Gj
κ0

(ûj)(x). Take test traces
v̂ ∈ Ĥ(Γ) of the form v̂ = (0, . . . , 0, qΣ), where qΣ ∈ H−1/2(Σ) is arbitrary.
Formulation (6.23) yields∫

Σ

q
(
γΣ
d (W ) − M∗ γΣ

n (W )
)
dσ = 0 ∀q ∈ H− 1

2 (Γ),

which implies γΣ
d (W ) = M∗ γΣ

n (W ). Since we have ΔW + κ2
0W = 0 in ΩΣ,

applying Green’s formula provides

0 = Im

{∫
ΩΣ

|∇W |2 − κ2
0|W |2dx

}
= 2 Im

{∫
Σ

γΣ
n (W )M γΣ

n (W )dσ

}
,

hence γΣ
n (ψ) = 0. We conclude that γΣ

d (ψ) = M∗ γΣ
n (ψ) = 0. This corresponds

to the equation of (6.2) associated with the last line of (6.3). Since the only
difference between (6.23) and (6.2) is this equation, we are done with the
proof. �

A corollary of the previous result is that, if U solves (6.23), then the
unique solution to Problem (2.2) is given by (6.6). This justifies considering
(6.23) for general geometric configurations. Now, since ĉ is compact, Propo-
sition 6.3 implies that the bilinear form of (6.23) also satisfies a generalized
Garding inequality.
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Corollary 6.6. The assertion of Proposition 6.3 holds with Â replaced with
ÂM.

A consequence of the above proposition is that the operator ÂM is of
Fredholm type with index 0. One advantage of Formulation (6.23) over For-
mulation (6.2) is the absence of spurious resonnances, which is proved by the
following result.

Proposition 6.7. For any choice of wave numbers κj > 0, the global multi-
trace CFIE (6.23) possesses a unique solution.

Proof Pick an element û ∈ Ker(ÂM). This means that û is a solution of (6.23)
where f̂M = 0. As a consequence of Proposition 6.5, we have û ∈ Ker(Â), so
that, by Proposition 6.4, û = (0, . . . , 0, pΣ) for some pΣ ∈ H−1/2(Σ). Coming
back to (6.23), and choosing v̂ ∈ Ĥ(Γ) of the form v̂ = (0, . . . , 0, qΣ) with
some qΣ ∈ H−1/2(Σ), we obtain∫

Σ

qΣ
(
γΣ
d SLΣ

κ0
(pΣ) − M∗(γΣ

n SLΣ
κ0

(pΣ)
) )
dσ = 0.

It was established in [3, Lemma 4.1] that the operator γΣ
d SLΣ

κ0
−M∗ γΣ

n SLΣ
κ0

is injective for all κ0 > 0. So we conclude that pΣ = 0 which finishes the
proof. �

Corollary 6.8. For any choice of the wave numbers κ0, . . . , κn satisfying (2.3),

Formulation 6.23) is well posed i.e. ÂM : Ĥ(Γ) →
̂

H(Γ) is an isomorphism.

Proof Since ÂM is a Fredholm operator with index 0, this holds true if and
only if it is injective, which is the statement of Proposition 6.7. �

6.5. Indirect Multi-Trace CFIE

Of course, there is a multi-trace version also of the indirect CFIE presented in
Sect. 5.3. Since developments are largely parallel to that for the direct CFIE,
we do not give details. As is clear from (5.17), which serves as the starting
point, the operator of the indirect multi-trace CFIE will be a perturbed
version of Â. More precisely, the potential operator SLΣ

κ0
is replaced with

SLΣ
κ0

+DLΣ
κ0

·M. As in Sect. 6.2 the perturbation is encoded in a bilinear
form ĉ∗ : Ĥ(Γ) × Ĥ(Γ) → C, defined by

ĉ∗(û, v̂) :=
n∑

j=1

[
γj DLΣ

κ0
(M pΣ), vj

]
j
+

〈
γΣ
d DLΣ

κ0
(M pΣ), qΣ

〉
Σ
, (6.24)

for û = (u1, . . . , un, pΣ) ∈ Ĥ(Γ) and v̂ = (v1, . . . , vn, qΣ) ∈ Ĥ(Γ). This bilinear
form inherits compactness from M is. It can be used to state the indirect global
multi-trace CFIE in variational form⎧⎪⎨

⎪⎩
Find û ∈ Ĥ(Γ) such that
�
Â(û), v̂

�
+ ĉ∗(û, v̂) =

�
f̂, v̂

�
∀v̂ ∈ Ĥ(Γ).

(6.25)
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Compared to Formulation (6.2), this variational problem features an addi-
tional compact term. The next proposition gives a precise description of the
relation between the solutions of (6.25) and the solutions to (2.2).

Proposition 6.9. If û = (û1, . . . , ûn, pΣ) ∈ Ĥ(Γ) is a solution of (6.25), then
U ∈ L2

loc(R
d\ΩΣ) defined by (for j = 1, . . . , n)

U(x) = Gj
κj

(ûj)(x), x ∈ Ωj

U(x) = Uinc(x) − SLΣ
κ0

(pΣ)(x) − DLΣ
κ0

(M∗ pΣ)(x)

−
n∑

j=1

Gj
κ0

(ûj)(x), x ∈ Ω0, (6.26)

is the unique solution of the transmission boundary value problem (2.2).

We do not give the proof of this result as it is identical to the proof of
Proposition 6.2. The only difference is that SLΣ

κ0
(pΣ) has to be replaced by

SLΣ
κ0

(pΣ) + DLΣ
κ0

(M pΣ). Now let us underline the close relationship between
(6.25) and (6.23), that are dual to each other in the sense of the following
lemma.

Lemma 6.10. The bilinear forms of the direct global multi-trace CFIE (6.23)
and its indirect counterpart (6.25) are adjoint to each other:

�
Â(û), v̂

�
+ ĉ(û, v̂) =

�
Â(v̂), û

�
+ ĉ∗(v̂, û) ∀û, v̂ ∈ Ĥ(Γ).

Proof We already know that �Â(û), v̂� = �Â(v̂), û�, according to (6.5), so we
have to show that ĉ(û, v̂) = ĉ∗(v̂, û). Take two elements û = (u1, . . . , un, pΣ)
and v̂ = (v1, . . . , vn, qΣ) in Ĥ(Γ). We have

ĉ(û, v̂) = −
〈
M∗ γΣ

n SLΣ
κ0

(pΣ), qΣ
〉

Σ
−

n∑
j=1

〈
M∗ γΣ

n Gj
κ0

(uj), qΣ
〉
Σ

(6.27)

We examine successively each term in the sum above. vΣ = (M q, 0) ∈ H(Σ)
and uΣ = (0, p) ∈ H(Σ). Applying symmetry property given by Lemma 3.6
in ΩΣ yields

− 〈γΣ
n SLΣ

κ0
(p),M q〉Σ = 〈γΣ

d,c DLΣ
κ0

(Mq), p〉Σ. (6.28)

Similarly we have −〈M∗ γΣ
n Gj

κ0
(uj), q〉Σ = [γΣ Gj

κ0
(uj), vΣ]Σ. We can apply

Lemma 3.7 (taking ΩΣ as one of the subdomains) to obtain [γΣ Gj
κ0

(uj),
vΣ]Σ = [γj GΣ

κ0
(vΣ), uj ]j which can be written in the present case

− 〈M∗ γΣ
n Gj

κ0
(uj), q〉Σ = [γj DLΣ

κ0
(M q), uj ]j (6.29)

according to the explicit expression of vΣ. Plugging (6.28) and (6.29) into the
explicit expression of ĉ given by (6.27), and comparing with the definition of
ĉ∗, this concludes the proof. �

Let Â′
M : Ĥ(Γ) →

̂

H(Γ) refer to the continuous operator associated to the
bilinear form in the left-hand side of (6.25). The previous lemma, combined
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with the inf-sup conditions satisfied by Â, shows that Â′
M is bijective if and

only if ÂM is bijective, which is systematically true according to Proposition
6.6. In addition, since Â and Â′

M only differ by a compact contribution, Propo-
sition 6.3 implies that the bilinear form associated to Formulation (6.25) sat-
isfies a generalized Garding inequality. We sum up all these results in the
next proposition.

Proposition 6.11. The assertion of Proposition 6.3 holds with Â replaced by
Â′

M. In addition, for any choice of the wave numbers κ0, . . . κn satisfying
(2.3), Formulation (6.25) is well posed i.e. it admits a unique solution and

Â′
M : Ĥ(Γ) →

̂

H(Γ) is an isomorphism.
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