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Abstract. A boundary Nevanlinna–Pick interpolation problem is posed
and solved in the quaternionic setting. Given nonnegative real numbers
κ1, . . . , κN , quaternions p1, . . . , pN all of modulus 1, so that the 2-spheres
determined by each point do not intersect and pu �= 1 for u = 1, . . . , N ,
and quaternions s1, . . . , sN , we wish to find a slice hyperholomorphic
Schur function s so that

lim
r→1

r∈(0,1)

s(rpu) = su for u = 1, . . . , N,

and

lim
r→1

r∈(0,1)

1 − s(rpu)su
1 − r

≤ κu, for u = 1, . . . , N.

Our arguments rely on the theory of slice hyperholomorphic functions
and reproducing kernel Hilbert spaces.

Mathematics Subject Classification. 30E05, 47B32, 30G35.

Keywords. Nevanlinna–Pick interpolation, Schur functions, Reproduc-
ing kernels, Slice hyperholomorphic functions, S-resolvent operators.

1. Introduction

In the paper [1] the Nevanlinna–Pick interpolation problem for slice hyper-
holomorphic Schur functions has been solved using the FMI (fundamental
matrix inequality) method (see [20] for details). By a Schur function we mean
a function f which is slice hyperholomorphic on the open unit ball B1 of the
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quaternions and is bounded in modulus by 1, i.e., supp∈B1
|f(p)| ≤ 1. In the

present paper we solve a boundary interpolation problem for slice hyperholo-
morphic functions using the reproducing kernel Hilbert space method based
on de Branges–Rovnyak spaces. We refer the reader to [2,3,17] for more in-
formation on the reproducing kernel Hilbert space approach to interpolation
problems.

We state the problem we will solve in this paper and introduce some
notation and definitions. Let us denote by B1 and H1, the open unit ball and
the unit sphere of H, respectively. For a given element p ∈ H we denote by
[p] the associated 2-sphere:

[p] =
{
qpq−1 : q ∈ H \ {0}}

.

Recall that two quaternions belong to the same sphere if and only if they
have the same modulus and the same real part.

Problem 1.1. Given p1, . . . , pN ∈ H1 \ {1} such that [pu] ∩ [pv] = ∅ for u �= v
(the interpolation nodes), s1, . . . , sN ∈ H1, and κ1, . . . , κN ∈ [0,∞), find a
necessary and sufficient condition for a slice hyperholomorphic Schur function
s to exist such that the conditions

lim
r→1

r∈(0,1)

s(rpu) = su, (1.1)

lim
r→1

r∈(0,1)

1 − s(rpu)su

1 − r
≤ κu (1.2)

hold for u = 1, . . . N , and describe the set of all Schur functions satisfying
(1.1), (1.2) when this condition is in force.

We note that (1.1), (1.2) imply that

lim
r→1

r∈(0,1)

1 − |s(rpu)|2
1 − r2

≤ κu, u = 1, . . . , N, (1.3)

since

1 − |s(rpu)|2
1 − r2

=
1 − s(rpu)su

(1 − r)(1 + r)
+ (s(rpu)su)

1 − sus(rpu)
(1 − r)(1 + r)

. (1.4)

We also note that the fact that the limits (1.3) will be part of the require-
ment in the interpolation problem (in the complex case, the corresponding
limit is well-known to be non-negative).

As it appears from the statement of Problem 1.1, there is a major dif-
ference with the complex case. Here we have to require that not only the
interpolation points are distinct, but also the spheres they determine. The
fact that this hypothesis is necessary, and cannot be avoided, can be intu-
itively justified by the fact that the S-spectrum of a matrix, or in general of
an operator (see Definition 2.6), consists of spheres (which may reduce to real
points). It is important to note that the notion of S-spectrum of a matrix T
coincides with the set of right eigenvalues of T , i.e., the set of λ ∈ H so that
Tx = xλ for a nonzero vector x.
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Another major difference is the lack of a Carathéodory theorem (see
e.g. [22, p. 48]) in the quaternionic setting.

Part of the arguments follow the classical case, taking into account the
noncommutativity of the quaternions. As we shall see, even though the struc-
ture of the proof follows the the arguments from [9], it is necessary to suitably
adapt the argument to the quaternionic setting and often the needed modi-
fications are not immediate.

The paper consists of five sections, besides the introduction. In Sect. 2,
we recall some basic material on slice hyperholomorphic functions which will
be needed in the sequel. Section 3 illustrates the strategy and the various
steps we will follow to solve Problem 1.1. Section 4 contains detailed proofs
of these steps and Sect. 5 deals with the degenerate case. Section 6 contains
an analogue of Carathéodory’s theorem in the quaternionic setting.

2. Some Preliminaries

In this section we collect some basic results, which will be used in the sequel.
Let H be the real associative algebra of quaternions with respect to the basis
{1, i, j, k} satisfying the relations i2 = j2 = k2 = −1, ij = −ji = k, jk =
−kj = i, ki = −ik = j. A quaternion p is denoted by p = x0 + ix1 + jx2 +
kx3, x� ∈ R, � = 0, . . . , 3, its conjugate is p̄ = x0 − ix1 − jx2 − kx3, and the
norm of a quaternion is such that |p|2 = pp. A quaternion p can be written
as p = Re(p)+p where the real part Re(p) is x0 and p = ix1 +jx2 +kx3. The
symbol S denotes the 2-sphere of purely imaginary unit quaternions, i.e.,

S = {p = ix1 + jx2 + kx3 | x2
1 + x2

2 + x2
3 = 1}.

Note that if I ∈ S then I2 = −1. Any nonreal quaternion p = x0+ix1+jx2+
kx3 uniquely determines an element Ip = (ix1+jx2+kx3)/|ix1+jx2+kx3| ∈
S. If p = x0 ∈ R then p = x0 + I0 for all I ∈ S. Given p ∈ H we can write
p = p0 + Ipp1 and the 2-sphere [p] coincides with the set of all elements of
the form p0 + Jp1 when J varies in S. The set [p] is reduces to the point p if
and only if p ∈ R.
We now recall the definition of a slice hyperholomorphic function, for more
details see [15].

Definition 2.1. Let Ω ⊆ H be an open set and let f : Ω → H be a real
differentiable function. Let I ∈ S and let fI be the restriction of f to the
complex plane CI := R + IR passing through 1 and I and denote by x + Iy
an element on CI . We say that f is a left slice hyperholomorphic (or slice
hyperholomorphic, for short) function in Ω if, for every I ∈ S, we have

1
2

(
∂

∂x
+ I

∂

∂y

)
fI(x + Iy) = 0.

We say that f is a right slice hyperholomorphic function in Ω if, for every
I ∈ S, we have

1
2

(
∂

∂x
fI(x + Iy) +

∂

∂y
fI(x + Iy)I

)
= 0.
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Slice hyperholomorphic functions have nice properties on some partic-
ular open sets which are defined below.

Definition 2.2. Let Ω be a domain in H. We say that Ω is a slice domain
(s-domain for short) if Ω ∩ R is non empty and if Ω ∩ CI is a domain in CI

for all I ∈ S. We say that Ω is axially symmetric if, for all p ∈ Ω, the sphere
[p] is contained in Ω.

On an axially symmetric s-domain Ω, a slice hyperholomorphic function
satisfies the following formula, which is called the Structure formula or the
Representation formula (see [15, Theorem 4.3.2]):

f(x + Jy) =
1
2

[f(x + Iy) + f(x − Iy) + JI(f(x − Iy) − f(x + Iy))] . (2.1)

Formula (2.1) is useful as it allows one to extend a holomorphic map h : U ⊆
C ∼= CI → H to a slice hyperholomorphic function. Let ΩU be the axially
symmetric completion of U , i.e.,

ΩU =
⋃

J∈S, x+Iy∈U

{x + Jy}.

The left slice hyperholomorphic extension ext(h) : ΩU ⊆ H → H of h is the
function defined as (see [15]):

ext(h)(x + Jy) =
1
2

[h(x + Iy) + h(x − Iy) + JI(h(x − Iy) − h(x + Iy))].

(2.2)

It is immediate that ext(h+g) = ext(h)+ext(g) and that if h(z) =
∑∞

n=0 hn(z)
then ext(h)(z) =

∑∞
n=0 ext(hn)(z).

Two left (resp. right) slice hyperholomorphic functions can be multi-
plied, on an axially symmetric s-domain, using the so called �-product (resp.
�r-product) in order to obtain another left (resp. right) slice hyperholomor-
phic function.
Let f, g : Ω ⊆ H be slice hyperholomorphic functions. Their restrictions
to the complex plane CI can be written as fI(z) = F (z) + G(z)J, gI(z) =
H(z) + L(z)J where J ∈ S, J ⊥ I, i.e. IJ = −JI. The functions F, G, H, L
are holomorphic functions of the variable z ∈ Ω ∩CI . We have the following:

Definition 2.3. Let f and g be slice hyperholomorphic functions defined on
an axially symmetric s-domain Ω ⊆ H. The �-product of f and g is defined
as the unique left slice hyperholomorphic function on Ω whose restriction to
the complex plane CI is given by

(f � g)I(z) = (F (z) + G(z)J) � (H(z) + L(z)J)

= (F (z)H(z) − G(z)L(z̄)) + (G(z)H(z̄) + F (z)L(z))J. (2.3)

If f and g are slice hyperholomorphic on a ball with center at the ori-
gin, they can be expressed in a power series, i.e. f(p) =

∑∞
n=0 pnan and

g(p) =
∑∞

n=0 pnbn. Thus (f � g)(p) =
∑∞

n=0 pncn, where cn =
∑n

r=0 arbn−r

is obtained by convolution on the coefficients. For the construction of the �-
product of right slice hyperholomorphic functions and for more information
on the �-product, we refer the reader to [7,15].
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Given a slice hyperholomorphic function, it is possible to define its slice hy-
perholomorphic reciprocal, see [15]. Here we limit ourselves to the case in
which f admits the power series expansion f(p) =

∑∞
n=0 pnan. In this case

we set

fc(p) =
∞∑

n=0

pnān, fs(p) = (fc � f)(p) =
∞∑

n=0

pncn, cn =
n∑

r=0

arān−r,

so that the left slice hyperholomorphic reciprocal of f is defined, outside the
zeros of fs, as

f−� := (fs)−1fc.

In the general case, this formula is still valid when fs and fc are suitably
defined.

Remark 2.4. Let k(p, q) be a function left slice hyperholomorphic in p and
right slice hyperholomorphic in q̄. When taking the �-product of a function
f(p) slice hyperholomorphic in the variable p with a function k(p, q), we
will write f(p) � k(p, q) meaning that the �-product is taken with respect to
the variable p; similarly, the �r-product of k(p, q) with functions right slice
hyperholomorphic in the variable q̄ is always taken with respect to q̄.

The following proposition is taken from [7, Proposition 4.3], where a
proof can be found.

Proposition 2.5. Let H(K1) and H(K2) be two reproducing kernel Hilbert
spaces of Hm and H

n-valued slice hyperholomorphic functions in Ω, with re-
producing kernels K1 and K2, respectively. Let R be an H

n×m-valued function
slice-hyperholomorphic in Ω. Then the operator of left �-multiplication

MR : f �→ R � f

is continuous from H(K1) into H(K2) if and only if the kernel

K2(p, q) − R(p) � K1(q, p) �r R(q)∗

is positive definite in Ω. Furthermore

M∗
R(K2(·, q)d) = K1(·, q) �r R(q)∗d, d ∈ H

n. (2.4)

Let us recall a few facts on the S-spectrum and on the S-resolvent
operator.

Definition 2.6. Let A be a bounded quaternionic linear right operator acting
on a quaternionic, two sided, Banach space V . We define the S-spectrum
σS(A) of A as:

σS(A) = {s ∈ H : A2 − 2Re (s)A + |s|2I is not invertible},

where I denotes the identity operator on V . The S-resolvent set ρS(A) is
defined as ρS(A) = H \ σS(A).

From Definition 2.6 it follows that the S-spectrum consists of spheres
(which may reduce to real points).
The definition of S-spectrum arises from the following:
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Proposition 2.7. Let A be a bounded quaternionic right linear operator acting
on a quaternionic, two sided, Banach space V. Then, for ‖A‖ < |p|, we have

∞∑

n=0

p−1−nAn = −(A − p̄I)(A2 − 2Re(p)A + |p|2I)−1. (2.5)

Definition 2.8. The operator

S−1
R (p,A) := −(A − p̄I)(A2 − 2Re(p)A + |p|2I)−1, (2.6)

is called the right S-resolvent operator.

The right S-resolvent operator is obviously defined for p ∈ ρS(A).
In the sequel we will be in need of the result below:

Proposition 2.9. Let V be a two sided quaternionic Banach space and let A
be a bounded right linear operator from V into itself. Then, for |p| ‖A‖ < 1
we have

∞∑

n=0

pnAn = (I − p̄A)(|p|2A2 − 2Re(p)A + I)−1. (2.7)

Another way to write the operator on the right hand side of (2.7) is to
observe that it corresponds to the function one obtains by constructing the
right �-reciprocal of the function f(q) = (1 − pq). Upon computing f−�(A)
using the quaternionic functional calculus, see [15], one can write:

(I − pA)−� =
∞∑

n=0

pnAn. (2.8)

Finally, we mention a result which is a restatement of [4, Proposition
2.22] and which contains an identity that will be crucial in the sequel.

Proposition 2.10. Let p ∈ H, 1/p ∈ ρS(A) and (G,A) ∈ H
n×m × H

m×m.
Then

∞∑

t=0

ptGAt = (G − pGA)(Im − 2Re(p)A + |p|2A2)−1, (2.9)

where Im denotes the m × m identity matrix.

Remark 2.11. We note that if m = 1 then A is a quaternion a and the
condition 1/p ∈ ρS(A) translates to the condition 1/p �∈ [a].

3. The Main Result and the Strategy

For the convenience of the reader we recall the main steps of the reproducing
kernel method. We first introduce some notation. We set

A = diag (p1, . . . , pN ) ∈ H
N×N , C =

(
1 · · · 1
s1 · · · sN

)
∈ H

2×N , (3.1)

and

J =
(

1 0
0 −1

)
∈ R

2×2.
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Consider the matrix equation

P − A∗PA = C∗J C, (3.2)

where the unknown is P ∈ H
N×N . The off diagonal entries of the matrix

equation are uniquely determined by the equation

Puv − puPuvpv = 1 − susv, (3.3)

but, in view of the following lemma the diagonal entries can be arbitrary:

Lemma 3.1. Let p and q be quaternions of modulus 1. Then, the equation

ph − hq = 0, (3.4)

where h ∈ H, has the only solution h = 0 if and only if Re(p) �= Re(q), that
is, if and only if [p] ∩ [q] = ∅.

Proof. If (3.4) has a solution h �= 0, then p = hqh−1 and so p and q are in the
same sphere. So a necessary condition for (3.4) to have only h = 0 as solution
is that [p] ∩ [q] = ∅. We now show that this condition is also sufficient. Let
p = z1 + z2j and q = w1 +w2j, where z1, z2, w1, w2 ∈ C. Since Re(p) �= Re(q)
we have

Re(z1) ± i
√

1 − (Re(z1))2 �= Re(w1) ± i
√

1 − (Re(w1))2. (3.5)

We now introduce the injective ring homomorphism χ : H → C
2×2 given by

χ(p) =
(

z1 z2

−z2 z1

)
. (3.6)

Using the map χ, Eq. (3.4) becomes

χ(p)χ(h) − χ(h)χ(q) = 0. (3.7)

The eigenvalues of χ(p) are the solutions of

λ2 − 2(Re(z1))λ + 1 = 0,

that is, λ = Re(z1) ± i
√

1 − (Re(z1))2, and similarly for χ(q). By a well
known result on matrix equations (see e.g., Corollary 4.4.7 in [19]), Eq. (3.7)
has only the solution χ(h) = 0 if and only if λ−μ �= 0 for all possible choices
of eigenvalues of χ(p) and χ(q), and this condition holds in view of (3.5). So
the only solution of (3.7) is h = 0. �

We denote by P the N ×N Hermitian matrix with entries Puv given by
(3.3) for u �= v and with diagonal entries equal to Puu = κu, u, v = 1, . . . , N .
When P is invertible we define

Θ(p) = I2 − (1 − p) � C � (IN − pA)−�P−1(IN − A)−∗C∗J
=

(
a(p) b(p)
c(p) d(p)

)
. (3.8)

Note that Θ is well defined in B1 since we assumed that the interpolation
nodes pu are all different from 1. Finally we denote by M the span of the
columns of the function

F (p) = C � (IN − pA)−� =
∞∑

t=0

ptCAt, (3.9)
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and endow M with the Hermitian form

[F (p)c, F (p)d]M = d∗Pc, c, d ∈ H
N . (3.10)

We prove the following theorem.

Theorem 3.2. (1) There always exists a Schur function so that (1.1) holds.
(2) Fix κ1, . . . , κN ≥ 0 and assume P > 0. Any solution of Problem 1.1 is of
the form

s(p) = (a(p) � e(p) + b(p)) � (c(p) � e(p) + d(p))−�, (3.11)

where a, b, c, d are as in (3.8) and e is a slice hyperholomorphic Schur func-
tion.
(3) Conversely, any function of the form (3.11) satisfies (1.1). If

lim
r→1

r∈(0,1)

1 − s(rpu)su

1 − r
, u = 1, . . . , N, (3.12)

exists and is real, then s satisfies (1.2).
(4) If e is a unitary constant, then the limit (3.12) exists (but are not neces-
sarily real) and satisfies

|βu − puβupu|2
|1 − pu

2| ≤ (Re βu)κu, u = 1, . . . , N. (3.13)

The strategy of the proof is as follows:
STEP 1: The condition P ≥ 0 is necessary for Problem 1.1 to have a

solution.

STEP 2: Assume that s is a solution of Problem 1.1. Then the map
M(

1 −s
) of left �-multiplication by

(
1 −s(p)

)
is a contraction from M into

H(s), where H(s) denotes the reproducing kernel Hilbert space of quater-
nionic valued functions which are hyperholomorphic in the ball B1 and with
reproducing kernel

Ks(p, q) =
∞∑

t=0

pt(1 − s(p)s(q))q̄t.

STEP 3: Assume that s is a solution of Problem 1.1 and that P > 0.
Then, s is of the form (3.11).

STEP 4: Assume that P > 0. Then any function of the form (3.11)
satisfies the interpolation condition (1.1) and if, in addition, (3.12) is in force,
then s satisfies (1.2).

STEP 5: Assume e is a unitary constant. Then the claims in (4) hold.

The proofs of Steps 1–5 are given in Sect. 4. The degenerate case is
considered in Sect. 5.
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4. Proofs of Steps 1–5

Proof of Step 1. Assume a solution s exists. Since s is a Schur function the
kernel Ks(p, q) is positive definite and so for every r ∈ (0, 1) the N × N
matrix P (r) with (u, v) entry equal to

Puv(r) = Ks(rpu, rpv) =
∞∑

t=0

r2tpt
u(1 − s(rpu)s(rpv))pt

v, u, v = 1, . . . N,

is positive. Setting

G = (1 − s(rpu)s(rpv)), p = r2pu, and A = pv

in formula (2.9) we have

Puv(r) =
(
(1 − s(rpu)s(rpv)) − r2pu(1 − s(rpu)s(rpv))pv

)

· (1 − 2r2Re(pu)pv + r4pv
2)−1.

Furthermore, we note that P (r) is a solution of the matrix equation

P (r) − r2A∗P (r)A = C(r)∗J C(r),

where

C(r) =
(

1 · · · 1
s(rp1) · · · s(rpN )

)
,

and A is as in (3.1). In fact, with the above notation, the (u, v) element of
the matrix P (r) − r2A∗P (r)A can be computed as follows:

Puv(r) − r2puPuv(r)pv

=
((

G − r2puGpv

) − r2pu

(
G − r2puGpv

)
pv

)
(1−2r2Re(pu)pv + r4pv

2)−1

=
(
G − r2puGpv − r2puGpv + r4Gpv

2
)
(1 − 2r2Re(pu)pv + r4pv

2)−1

= G
(
1 − 2r2Re(pu)pv + r4pv

2
)
(1 − 2r2Re(pu)pv + r4pv

2)−1

= (1 − s(rpu)s(rpv))

and so the (u, v) element in the matrix P (r) − r2A∗P (r)A equals the (u, v)
element in C(r)∗J C(r) as stated. We now let r tend to 1. Since s is assumed
to be a solution of Problem 1.1, we have

lim
r→1

r∈(0,1)

Ks(rpu, rpu) = lim
r→1

r∈(0,1)

1 − |s(rpu)|2
1 − r2

≤ κu, u = 1, . . . N,

and

lim
r→1

r∈(0,1)

C(r) = C,

where C is as in (3.1). Furthermore we note that 1 − 2Re(pu)pv + pv
2 �= 0

since 1 − 2Re(pu)x + x2 is the so-called minimal (or companion) polynomial
associated with the sphere [pu] which vanishes exactly at points on the sphere
[pu] and pv �∈ [pu]. This fact can also be obtained directly using Lemma 3.1.
Indeed, for indices u �= v, we have

1 − 2Re(pu)pv + pv
2 = pu(pu − pv) − (pu − pv)pv �= 0, (4.1)
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since pu and pv (and hence pu and pv) are assumed on different spheres for
u �= v. It follows that lim r→1

r∈(0,1)
Puv(r) exists and is in fact equal to Puv for

u �= v by uniqueness of the solution of the equation

x − puxpv = 0. (4.2)

Hence P ≥ 0 since P (r) ≥ 0 for all r ∈ (0, 1).
Proof of Step 2. Let s be a solution (if any) of Problem 1.1, let u ∈ {1, . . . , N},
and let r ∈ (0, 1). The functions

gu,r(p) = Ks(p, rpu) =
∞∑

t=0

pt(1 − s(p)s(rpu))rpu
t

belong to H(s) and have uniformly bounded norms since

lim
r→1

r∈(0,1)

‖gu,r(rpu)‖2
H(s) = lim

r→1
r∈(0,1)

Ks(rpu, rpu) ≤ κu.

Thus there is a sequence of numbers r0, r1, . . . ∈ (0, 1) which tends to 1
(without loss of generality we may assume that the sequence is the same
for p1, . . . , pN ) and an element gu ∈ H(s) such that the functions gu,rn

tend
weakly to gu. In a reproducing kernel Hilbert space weak convergence implies
pointwise convergence, and so

gu(p) = lim
n−→∞ gu,rn

(p)

= lim
n−→∞

∞∑

t=0

rt
npt(1 − s(p)s(rnpu))pu

t

=
∞∑

t=0

pt(1 − s(p)su)pu
t

=
(
1 −s(p)

)
� fu(p), ∀p ∈ B1,

where

fu(p) =
∞∑

t=0

pt

⎛

⎝
1

su

⎞

⎠ pu
t (4.3)

denotes the u-th column of the matrix-function F (p) and where the inter-
change of summation and limit is justified since |p| < 1. Hence M(

1 −s
) sends

M into H(s). Note that for Y = (yu,v)N
u,v=1 and Z = (zu,v)N

u,v=1 we define
Y � Z to be the N × N matrix whose (u, v) entry is given by

∑N
t=1 yu,t � zt,v.

To show that this operator is a contraction we first compute the inner prod-
uct 〈gv, gu〉H(s) for u �= v. By the definition of the weak limit and of the
reproducing kernel, we can write

〈gv, gu〉H(s) = lim
n−→∞〈gv, gu,rn

〉H(s)

= lim
n−→∞ gv(rnpu)

= lim
n−→∞

∞∑

t=0

rt
npt

u(1 − s(rnpu)sv)pv
t
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= lim
n−→∞ ((1 − s(rnpu)sv) − rnpu(1 − s(rnpu)sv)pv)

·(1 − 2rnRe(pu)pv + r2
npv

2)−1

= ((1 − susv) − pu(1 − susv)pv) (1 − 2Re(pu)pv + pv
2)−1,

where we have used formula (2.9) and, as in the proof of Step 1 (see (4.1)),
the fact that [pu] ∩ [pv] = ∅ (recall that we assume here u �= v). We claim
that

Puv = ((1 − susv) − pu(1 − susv)pv) (1 − 2Re(pu)pv + pv
2)−1. (4.4)

The proof is similar to the argument in the proof of Step 1, and is as follows.
Set hn = 〈gv, gu,rn

〉H(s). Then

hn − rnpuhnpv = 1 − s(rnpu)sv.

Letting n → ∞ we see that h = limn→∞ hn satisfies Eq. (3.3). By the unique-
ness of the solution of this equation we have h = Puv. Furthermore, by the
property of the weak limit versus the norm,

‖gu‖2
H(s) ≤ lim

n→∞ ‖gu,rn
‖2

H(s) ≤ κu. (4.5)

We can now show that ‖M(
1 −s

)‖ ≤ 1. Let c ∈ H
N . Then,

(
M(

1 −s
)Fc

)
(p) =

N∑

u=1

gu(p)cu

and we have

‖(M(
1 −s

)Fc‖2
H(s) =

N∑

u,v=1

cu

(〈gv, gu〉H(s)

)
cv

=
N∑

u=1

|cu|2‖gu‖2
H(s) +

N∑

u,v=1
u�=v

cu

(〈gv, gu〉H(s)

)
cv

=
N∑

u=1

|cu|2‖gu‖2
H(s) +

N∑

u,v=1
u�=v

cuPuvcv

≤
N∑

u=1

|cu|2κu +
N∑

u,v=1
u�=v

cuPuvcv

= c∗Pc

= ‖Fc‖2
M,

where we have used (4.4) and (4.5). Thus the �-multiplication by (1 − s(p))
is a contraction from M into H(s).
Proof of Step 3. Let Θ be defined by (3.8), and

KΘ(p, q) =
∞∑

t=0

pt (J − Θ(p)J Θ(q)∗) qt. (4.6)
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The formula

F (p)P−1F (q)∗ = KΘ(p, q) (4.7)

is proved as in the complex case when p and q are real, and is then extended
to p, q ∈ B1 by a slice hyperholomorphic extension. Using (2.4) we have

(
M∗(

1 − s
)Ks(·, q)

)
(p)

=
∞∑

t=0

pn

⎛

⎝

⎛

⎝
1

−s(q)

⎞

⎠ − Θ(p)J Θ(q)∗ �r

⎛

⎝
1

−s(q)

⎞

⎠

⎞

⎠ qt,

and so
(M(

1 −s
)M∗(

1 −s
)Ks(·, q))(p)

= Ks(p, q) −
∞∑

t=0

pt

⎛

⎝
(
1 −s(p)

)
� Θ(p)J Θ(q)∗ �r

⎛

⎝
1

−s(q)

⎞

⎠

⎞

⎠ qt

≤ Ks(p, q),

and therefore the kernel

∞∑

t=0

pt

⎛

⎝
(
1 −s(p)

)
� Θ(p)J Θ(q)∗ �r

⎛

⎝
1

−s(q)

⎞

⎠

⎞

⎠ qt

=
∞∑

t=0

pt
(
A(p)A(q) − B(p)B(q)

)
qt

is positive definite in B1, where

A(p) = (a − s � c)(p) and B(p) = (b − s � d)(p).

The point p = 1 is not an interpolation node, and so Θ is well defined at
p = 1. From (3.8) we have

Θ(1) = I2 (4.8)

and so (ca−1)(1) = 0. Since s is bounded by 1 in modulus in B1 it follows that
(a−s�c) �≡ 0, in fact by restricting the the real axis we have a(x)−s(x)c(x) =
(1−s(x)c(x)a(x)−1)a(x) which is nonzero at least in a real left neighborhood
of 1. Thus e = −(a − s � c)−� � (b − s � d) is defined in B1, with the possible
exception of spheres of poles. Since
∞∑

t=0

pt
(
A(p)A(q) − B(p)B(q)

)
qt = A(p) �

{ ∞∑

t=0

pt(1 − e(p)e(q))qt

}

�r A(q),

we have from [5, Proposition 5.3] that the kernel

Ke(p, q) =
∞∑

t=0

pt(1 − e(p)e(q))qt
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is positive definite in its domain of definition, and thus e extends to a Schur
function (see [6] for the latter assertion). From

e = −(a − s � c)−� � (b − s � d)

we get s � (c � e + d) = a � e + b. To conclude we remark that (4.8) implies
that

(d−1c)(1) = 0.

Thus, as just above c � e + d �≡ 0 and we get that s is of the form (3.11).
Proof of Step 4. Assume that s is of the form (3.11). Then the formula

Ks(p, q) =
(
1 −s(p)

)
� KΘ(p, q) �r

(
1

−s(q)

)

+(a − s � c)(p) � Ke(p, q) �r (a − s � c)(q) (4.9)

implies that M(
1 −s

) is a contraction from H(Θ) into H(s). In particular,

gu(p) =
(
1 −s(p)

)
� fu(p) =

∞∑

t=0

pt(1 − s(p)su)pu
t ∈ H(s) (4.10)

and

‖gu‖2
H(s) ≤ κu.

We want to infer from these facts that s satisfies the interpolation conditions
(1.1). We have

|gu(rpu)|2 = |〈gu(·),Ks(·, rpu)〉H(s)|2

≤
(
‖gu‖2

H(s)

)
· Ks(rpu, rpu)

≤ κu · 1 − |s(rpu)|2
1 − r2

≤ 2κu

1 − r
. (4.11)

In view of (2.9), we get

gu(rpu)

=
∞∑

t=0

rtpt
u(1 − s(rpu)su)pu

t

= ((1 − s(rpu)su) − rpu(1 − s(rpu)su)pu) (1 − 2rRe(pu)pu + r2pu
2)−1

= ((1 − s(rpu)su) − rpu(1 − s(rpu)su)pu) ((1 − r)(1 − rpu
2))−1, (4.12)

and so we have
|(1 − s(rpu)su) − rpu(1 − s(rpu)su)pu|

|1 − rpu
2| ≤ √

2κu · √
1 − r.

Let σu be a limit, via a subsequence, of s(rpu) as r → 1, and set Xu =
1 − σusu. The above inequality implies that Xu = puXupu, and so

Xupu = puXu. (4.13)
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The conjugate of (4.13) is

Xupu = puXu. (4.14)

Adding (4.13) and (4.14) we obtain

Re(Xu)pu = puRe(Xu).

Since pu is not real we get that Re(Xu) = 0. Let Xu = αi + βj + γk, where
α, β, γ ∈ R. From σusu = 1 − Xu we have

|σusu|2 = 1 + α2 + β2 + γ2.

Since σu ∈ B1 we have |σusu| ≤ 1 and so α = β = γ = 0. Thus, Xu = 0 and
σusu = 1. Hence σu = su and the limit lim r→1

r∈(0,1)
s(rpu) exists and is equal

to su, and hence (1.1) is satisfied.
To prove that (1.2) is met we proceed as follows. From (4.11) we have

in particular

|gu(rpu)|2 ≤ κu · 1 − |s(rpu)|2
1 − r2

,

and using (4.12) we obtain:

|X(r) − rpuX(r)pu|2
(1 − r)2|1 − rpu

2|2 ≤ κu · 1 − |s(rpu)|2
1 − r2

, (4.15)

where we have set X(r) = 1 − s(rpu)su. Assume now that (3.12) is in force
and let

lim
r→1

r∈(0,1)

1 − s(rpu)su

1 − r
= βu ∈ R. (4.16)

Then (4.15) together with (1.4) imply that

β2
u ≤ βuκu,

from which we get that βu ≥ 0 and

lim
r→1

r∈(0,1)

1 − s(rpu)su

1 − r
≤ κu.

Proof of Step 5. We first note that the limits (1.1) hold in view of the previous
step. Since |e| = 1, equality (4.9) implies that the multiplication operator
M(

1 −s
) is unitary and so the space H(s) is finite dimensional. Using [6] we

see that s can be written in the form

s(p) = H + pG � (I − pT )−�F, (4.17)

where the block matrix
(

T F
G H

)

is such that
(

T F
G H

)(
P−1 0

0 1

) (
T F
G H

)∗
=

(
P−1 0

0 1

)
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for a uniquely determined positive matrix P ∈ H
v×v, where v = dimH(s).

The formula (see [5, formula (8.11)])
∞∑

u=0

pu(1 − s(p)s(q))qu = G � (I − pT )−�P−1 �r (I − T ∗q)−�r �r G∗ (4.18)

implies then that s is unitary on the unit sphere. Equation (4.17) implies that
for every p on the unit sphere the function r �→ s(rp) is real analytic for r
in a neighborhood of the origin, and so lim r→1

r∈(0,1)
s(rp) exists and is unitary.

For p = pu it follows that the limits (1.2) exist. Then (1.4) leads to

lim
r→1

r∈(0,1)

1 − |s(rpu)|2
1 − r2

= Re βu

and the conclusion follows then from (4.15).

5. The Degenerate Case

We now consider the case when P is singular. We need first a definition. A
finite Blaschke product is a finite �-product of terms of the form

ba(p) = (1 − pā)−� � (a − p)
ā

|a| , (5.1)

where a ∈ H, |a| < 1 (see [7]).
The purpose of this section is to prove the following theorem. We denote

by r the rank of P and assume that the main r × r minor of P is invertible.
This can be done by rearranging the interpolation points.

Theorem 5.1. Assume that P is singular. Then Problem 1.1 has at most one
solution, and the latter is then a finite Blaschke product. It has a unique
solution satisfying (3.13) for u = 1, . . . , r.

We begin with some preliminary results and definitions.

Definition 5.2. Let f be a slice hyperholomorphic function in a neighborhood
Ω of p = 1, and let f(p) =

∑∞
t=0(p − 1)tft be its power series expansion at

p = 1. We define

R1f(p) =
∞∑

t=1

(p − 1)t−1ft. (5.2)

Denoting by ext the slice hyperholomorphic extension, see (2.2), we have

R1f(p) = ext (R1f |p=x) . (5.3)

Lemma 5.3. Let f(p) = F (p)ξ where F (p) = C � (IN − pA)−�. Then

R1f(p) = F (p)A(IN − A)−1ξ. (5.4)
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Proof. First of all, recall that

F (p) = C � (IN − pA)−� = (C − p̄CA)(In − 2Re(p)A + |p|2A2)−1,

and so

F (1) = (C − CA)(IN − 2A + A2)−1 = C(IN − A)−1.

Let us compute

R1f(p) = (p − 1)−1(f(p) − f(1))

= (p − 1)−1(C � (IN − pA)−�ξ − C(IN − A)−1ξ)

= C � (p − 1)−1((IN − pA)−� − (IN − A)−1)ξ

= C � (p − 1)−1 � (IN − pA)−� � ((IN − A)

− (IN − pA))(IN − A)−1ξ

= C � (p − 1)−1 � (IN − pA)−� � (p − 1)A(IN − A)−1ξ

= C � (IN − pA)−�A(IN − A)−1ξ

= F (p)A(IN − A)−1ξ. �

Recalling (3.10), we now prove the following:

Lemma 5.4. Let f, g ∈ M. Then

[f, g]M + [R1f, g]M + [f,R1g]M = g(1)∗J f(1). (5.5)

Proof. Let f(p) = F (p)ξ and g(p) = F (p)η with ξ, η ∈ H
N . We have

f(1) = C(IN − A)−1ξ and g(1) = C(IN − A)−1η.

These equations together with (5.4) show that (5.5) is equivalent to

P + P (IN − A)−1A + A∗(IN − A)−∗P = (IN − A)−∗C∗J C(IN − A)−1.

Multiplying this equation by IN −A∗ on the left and by IN −A on the right
we get the equivalent equation (3.2). �

Remark 5.5. Equation (5.5) corresponds to a special case of a structural iden-
tity which characterizes H(Θ) spaces in the complex setting. A corresponding
identity in the half place case was first introduced by de Branges, see [16],
and improved by Rovnyak [21]. Ball introduced the corresponding identity
in the setting of the open unit disk and proved the corresponding structure
theorem (see [13]). In addition, see e.g., [11, p. 17] for further discussions on
this topic.

Proposition 5.6. Let a and b be slice hyperholomorphic functions defined in
an axially symmetric s-domain containing p = 1. Then

R1(a � b)(p) = (R1a(p)) b(1) + (a � R1b)(p). (5.6)

Proof. By the Identity Principle, see [15, Theorem 4.2.4] the equality holds
if and only if it holds for the restrictions to a complex plane CI i.e., using
the notation in Sect. 2, if and only if

(R1(a � b))I(z) = (R1a(z))I b(1) + (a � R1b)I(z), z ∈ CI . (5.7)
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Let J ∈ S be such that J is orthogonal to I and assume that

aI(z) = F (z) + G(z)J, bI(z) = H(z) + L(z)J.

Let us compute the left-hand side of (5.7), using the fact that (R1(a�b))I(z) =
R1((a � b)I) and formula (2.3):

R1((a � b)I) = R1

(
F (z)H(z) − G(z)L(z̄) + (G(z)H(z̄) + F (z)L(z))J

)

= (z − 1)−1
(
F (z)H(z) − G(z)L(z̄) + (G(z)H(z̄) + F (z)L(z))J

−F (1)H(1) + G(1)L(1) − (G(1)H(1) + F (1)L(1))J)
)

.

On the right hand side of (5.7) we have (R1a(z))I b(1) = (R1aI(z)) b(1) which
can be written as

(R1aI(z)) b(1)
=

(
(z − 1)−1(F (z) + G(z)J − F (1) − G(1)J)

)
(H(1) + L(1)J)

= (z − 1)−1
(
F (z)H(1) + F (z)L(1)J + G(z)H(1)J − G(z)L(1)

−F (1)H(1) − F (1)L(1)J − G(1)H(1)J + G(1)L(1)
)
,

and moreover,

(a � R1b)I(z)
= (F (z) + G(z)J) �

(
(z − 1)−1(H(z) + L(z)J − H(1) − L(1)J)

)

= (z − 1)−1(F (z) + G(z)J) � (H(z) + L(z)J − H(1) − L(1)J)

= (z − 1)−1(F (z)H(z) − G(z)L(z̄) + (G(z)H(z̄) + F (z)L(z))J)

−F (z)H(1) + G(z)L(1) − (G(z)H(1) + F (z)L(1))J

from which the equality follows. �

We will also need the following result, well known in the complex case.
We refer to [12,24] for more information and to [18] for connections with
operator ranges.

Theorem 5.7. Let K1(p, q) and K2(p, q) be two H-valued functions positive
definite in a set Ω and assume that the corresponding reproducing kernel
Hilbert spaces have a zero intersection. Then the sum

H(K1 + K2) = H(K1) + H(K2)

is orthogonal.

Proof. Let K = K1 + K2. The linear relation in H(K) × (H(K1) × H(K2))
spanned by the pairs

(K(p, q), (K1(p, q),K2(p, q))), q ∈ Ω,

is densely defined and isometric. It therefore extends to the graph of an
everywhere defined isometry, which we will call T . See [7, Theorem 7.2].
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From
(T ∗(f1, f2))(q) = 〈T ∗(f1, f2),K(p, q)〉H(K)

= 〈(f1, f2), TK(p, q)〉H(K1)×H(K2)

= 〈f1,K1(p, q)〉H(K1) + 〈f2,K2(p, q)〉H(K2)

= f1(q) + f2(q), q ∈ Ω,

we see that ker T ∗ = {0} since H(K1)∩H(K2) = {0}. Thus T is unitary and
the result follows easily. �
Proof of Theorem 5.1. We proceed in a number of steps. Recall that r =
rankP .

STEP 1: Assume r = 0. Then s1 = · · · = sN and Problem 1.1 is solvable
with the unique solution s, where s ≡ s1 is the constant unitary function.

The matrix P = 0, and Eq. (3.2) imply that C∗J C = 0, and so
1 − susv = 0 for u �= v ∈ {1, . . . , N}. Thus s1 = · · · = sN and the function
s ≡ s1 is clearly a solution. Assume that s is a (possibly different) solution of
Problem 1.1. The map M(

1 −s
) of slice multiplication by

(
1 −s(p)

)
is a con-

traction from M into H(s) (see the second step in the proof of Theorem 3.2).
Thus

(
1 −s(p)

)
� fu(p) ≡ 0, u = 1, . . . , N,

that is gu ≡ 0, where fu and gu have been defined in (4.3) and (4.10) respec-
tively. From (2.9) we have (for |p| < 1)

gu(p) = ((1 − s(p)su) − p(1 − s(p)su)pu) (1 − 2Re(p)pu + |p|2p2
u)−1,

since

1 − 2Re(p)pu + |p|2p2
u �= 0

for |p| < 1. Hence

(1 − s(p)su) = p(1 − s(p)su)pu, ∀p ∈ H1.

Taking absolute values of both sides of this equality we get (1 − s(p)su) ≡ 0,
and so s(p) ≡ su. This ends the proof of Step 1.

In the rest of the proof we assume r > 0. By reindexing the interpolating
nodes we can also assume that the principal minor of order r of the matrix
P is invertible. Thus the corresponding space is a H(Θr) space, and we can
write

M = H(Θr) ⊕ Θr � N ,

since Θr is �-invertible.
STEP 2: The elements of N are slice hyperholomorphic in a neighbor-

hood of p = 1 and R1N ⊂ N .
We follow the argument in Step 1 in the proof of Theorem 3.1 in [10]

(see p. 153). From (5.6) we have

(R1(Θr � n))(p) = (R1Θr)(p)n(1) + (Θr � R1n)(p). (5.8)

To prove that R1n ∈ N we show that

[(R1(Θr � n))(p) − (R1Θr)(p)n(1), g]M = 0, ∀g ∈ H(Θr). (5.9)
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Using (5.5) we have

[(R1(Θr � n))(p), g]M = g(1)∗J (R1(Θr � n))(1) − [Θr � n, g]M
− [Θr � n,R1g]M

= g(1)∗J (R1(Θr � n))(1)

since

[Θr � n, g]M = 0 and [Θr � n,R1g]M = 0,

where the second equality follows from R1g ∈ M. Moreover, for real p = x
we have the equality of real analytic functions

(R1Θr)(x) = −KΘr
(x, 1)J Θr(1)∗,

and so, by slice hyperholomorphic extension, see [4, Remark 2.18], in a suit-
able neighborhood of p = 1 we have

(R1Θr)(p) = −KΘr
(p, 1)J Θr(1)∗.

Note that Θr(1) is the identity. Thus

[(R1Θr)(p)n(1), g]M = −[KΘr
(p, 1)J Θr(1)∗n(1), g]M

= −(n(1)∗Θr(1)∗g(1)∗)

= −g(1)∗Θr(1)J n(1),

and so (5.9) is in force. This ends the proof of the second step.
Endow now N with the Hermitian form

[n1, n2]N = [Θr � n1,Θr � n2]M.

STEP 3: There exist matrices (G,T ) ∈ H
2×(N−r) ×H

(N−r)×(N−r) such
that N is spanned by the columns of the function FN (p) = G�(IN−r −pT )−�

and moreover for ξ ∈ H
N−r,

FN ξ ≡ 0 =⇒ ξ = 0.

Indeed, we first note that the elements of N are well defined at p = 1
since Θr is invertible at p = 1 (see also the formulas in [10, Theorem 3.3 (2)]).
Let FN (p) be built from the columns of a basis of N and note that there exists
B ∈ H

(N−r)×(N−r) such that

R1FN = FN B.

Restricting to p = x, where x is real, we have

F (x) − F (1)
x − 1

= F (x)B,

and so

F (x)(IN−r + B − xB) = F (1). (5.10)

We claim that IN−r + B is invertible. Let ξ ∈ H
N−r be such that Bξ = −ξ.

Then, (5.10) implies that

xF (x)ξ = F (1)ξ, x ∈ (−1, 1).
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Thus F (1)ξ = 0 (by setting x = 0) and so F (x)ξ = 0 and so ξ = 0. Hence

F (x) = F (1)(IN−r + B)−1(IN−r − xB(IN−r + B)−1)−1,

and the result follows.
The following step is [10, Step 2 of proof of Theorem 3.1, p. 154]. The

proof uses (5.9) and is similar to the above arguments.
STEP 4: The space N is neutral and G∗J G = 0.
N is neutral by construction since r = rankP . We first show that the

inner product in N satisfies (5.5). We may proceed as in [10, p. 154] and
using (5.5) and (5.8) we have for n1, n2 ∈ M:

[R1n1, n2]N = [Θr � R1n1,Θr � n2]M
= [R1(Θr � n1),Θr � n2]M − [(R1Θr)(n1(1)),Θr � n2]M
= [R1(Θr � n1),Θr � n2]M

since (R1Θr)(n1(1)) ∈ H(Θr), and so [(R1Θr)(n1(1)),Θr � n2]M = 0.
Similarly,

[n1, R1n2]N = [Θr � n1,Θr � R1n2]M
= [Θr � n1, R1(Θr � n2)]M − [Θr � n1, (R1Θr)(n2(1))]M
= [Θr � n1, R1(Θr � n2)]M.

Thus, with m1 = Θr � n1 and m2 = Θr � n2, and using again (5.5)

[n1, n2]N + [R1n1, n2]N + [n1, R1n2]N
= [m1,m2]M + [R1m1,m2]M + [m1, R1m2]M
= m2(1)∗J m1(1)

= n2(1)J n1(1)

since mv(1) = (Θr�nv)(1) = Θr(1)nv(1) for v = 1, 2 and Θr(1)∗J Θr(1) = J .
Proceeding as in Lemma 5.4 it follows that

PN − T ∗PN T = G∗J G,

and so G∗J G = 0.
STEP 5: Problem 1.1 has at most one solution.
Let

Θr(p) =
(

ar(p) br(p)
cr(p) dr(p)

)
.

From the study of the nondegenerate case, we know that, under the assump-
tions that ensure the existence of a solution, any solution is of the form

s(p) = (ar(p) � e(p) + br(p)) � (cr(p) � e(p) + dr(p))−�, (5.11)

for some Schur function e. Furthermore as in Step 1, for every n ∈ N we have
(
1 −s

)
� Θr � n ≡ 0.

Thus

(ar − s � cr) �
(
1 −e

)
� n ≡ 0,
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and so
(
1 −e

)
� n ≡ 0.

Since G∗J G = 0 we conclude in the way as in step 1. Indeed, let

G =
(

h1 . . . hN−r

k1 . . . kN−r

)
.

At least one of the hu or ku is different from 0 and G∗J G = 0 implies that

huhv = kukv, ∀u, v = 1, . . . , N − r,

and so e is a unitary constant.
We now show that the solution, when it exists, is a finite Blaschke

product.
STEP 6: Let s be given by (5.11). Then the associated space H(s) is

finite dimensional.

This follows from

Ks(p, q) =
(
1 −s(p)

)
� KΘr

(p, q) �r

⎛

⎝
1

s(q)

⎞

⎠

+
(
1 −s(p)

)
� Θr(p)J Θr(q)∗ �r

⎛

⎝
1

s(q)

⎞

⎠

︸ ︷︷ ︸
is equal to 0 since |e| = 1

,

where KΘr
is defined as in (4.6) (with Θr in place of Θ). See the proof of

step 3 in Theorem 3.2.
STEP 7: The space H(s) contains an element of the form

f(p) = d � (1 − pa)−�, (5.12)

where d ∈ H and a ∈ B1.

We first recall that (see [5, Theorem 7.1])

‖R0f‖2
H(s) ≤ ‖f‖2

H(s) − |f(0)|2, ∀f ∈ H(s). (5.13)

Here, the space H(s) is finite dimensional and R0 invariant. Thus R0 has a
right eigenvector f with eigenvalue a; see [25, p. 36]. Any eigenvector of R0

is of the form (5.12), and equation (5.13) implies that

‖f‖2 ≤ |f(0)|2
1 − |a|2 . (5.14)

We will see at the end of the proof of Step 8 that equality in fact holds in
(5.14).

STEP 8: It holds that s(a) = 0.
From [6, p. 282-283] it follows that the span of f endowed with the

norm ‖f‖2 = |f(0)|2
1−|a|2 is equal to H(ba), where ba is a Blaschke factor, see
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(5.1). From (5.14) we get that H(ba) is contractively included in H(s) and
from [6, Lemma 5.1] we then have that the kernel

Ks(p, q) − Kba(p, q) =
∞∑

t=0

pt(ba(p)ba(q) − s(p)s(q))qt (5.15)

is positive definite in B1. But ba(a) = 0. Thus, setting p = q = a in (5.15)
leads to s(a) = 0.

STEP 9: We can write s = ba � σ1, where σ1 is a Schur function.
In the argument we make use of the Hardy space H2(B1) which is the

reproducing kernel Hilbert space with reproducing kernel

(1 − pq)−� =
∞∑

t=0

ptqt.

Note that this is the kernel ks with s ≡ 0. For more information on this space
we refer to [1,6].

Since a Schur function is bounded in modulus and thus belongs to the
space H2(B1) (see [1]), the representation s = ba � σ1 with σ1 ∈ H2(B1),
follows from [7, Proof of Theorem 6.2, p. 109]. To see that σ1 is a Schur
multiplier we note that

Ks(p, q) − Kba(p, q) = ba(p) � Kσ1(p, q) �r ba(q) (5.16)

implies that ba(p) � Kσ1(p, q) �r ba(q) is positive definite in B1 and hence
Kσ1(p, q) is as well by [5, Proposition 5.3].

STEP 10: It holds that dim (H(σ1)) = dim (H(s)) − 1.
The decomposition (5.16) gives the decomposition

Ks(p, q) = Kba(p, q) + ba(p) � Kσ1(p, q) �r ba(q).

The corresponding reproducing kernel spaces do not intersect. Indeed, all
elements in the reproducing kernel Hilbert space with reproducing kernel
ba(p)�Kσ1(p, q)�rba(q) vanish at the point a while non zero elements in H(ba)
do not vanish. So the decomposition is orthogonal in H(s) by Theorem 5.7,
and equality holds in (5.14). The claim on the dimensions follows.

After a finite number of iterations, this procedure leads to a constant
σ�, for some positive integer �. This constant has to be unitary since the
corresponding space H(σ�) reduces to {0}.

STEP 11: Problem 1.1 has a unique solution satisfying (3.13).
To see this it suffices to use item (4) of Theorem 3.2 with Θr instead of

Θ and e = σ�.
From the previous arguments we know that s is of the form (5.11) for

a uniquely determined unitary constant e. This s does satisfy the first set of
interpolation conditions, but need not satisfy the second set. By Theorem 3.2
point (4), s satisfies (3.13). �

We conclude with two remarks and a corollary.

Remark 5.8. Given a Blaschke factor, the operator of multiplication by ba is
an isometry from H2(B1) into itself (see [7, Theorem 5.17, p. 106]), and so
is the operator of multiplication by a finite Blaschke product B. The degree
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of the Blaschke product is the dimension of the space H2(B1) � BH2(B1).
Thus the previous argument shows in fact that H(s) is isometrically included
inside H2(B1) and that H(s) = H2(B1) � MsH2(B1).

One can plug a unitary constant e also in the linear fractional transfor-
mation (3.11) and the same arguments lead to:

Corollary 5.9. If Problem 1.1 has a solution, it is a Blaschke product of degree
rankP .

Remark 5.10. The arguments in Steps 5–7 take only into account the fact
that the space H(Θ) is finite dimensional and that e is a unitary constant.
In particular, they also apply in the setting of [1], and in that paper too, the
solution of the interpolation problem is a Blaschke product of degree rankP
when the Pick matrix is degenerate.

6. An Analogue of Carathéodory’s Theorem in the
Quaternionic Setting

Recall first that Carathéodory’s theorem states the following (see for instance
[14, pp. 203-205], [22, p. 48]). We write the result for a radial limit, but the
result holds in fact for a non tangential limit.

Theorem 6.1. Let s be a Schur function and let eit0 be a point on the unit
circle such that

lim inf
r→1

r∈(0,1)

1 − |s(reit0)|
1 − r

< ∞.

Then, the limits

c = lim
r→1

r∈(0,1)

s(reit0) and lim
r→1

r∈(0,1)

1 − s(reit0)c
1 − r

exist, and the second one is positive.

This result plays an important role in the classical boundary interpola-
tion problem for Schur functions. See for instance [8,23].

We prove a related result in the setting of slice-hyperholomorphic func-
tions. The condition (6.2) will hold particular for rational functions s, as is
proved using a realization of s (see [6] for the latter).

Theorem 6.2. Let s be a slice hyperholomorphic Schur function, and assume
that at some point pu of modulus 1 we have

sup
r∈(0,1)

1 − |s(rpu)|2
1 − r2

< ∞. (6.1)

Assume moreover that the function r �→ s(rpu) has a development in series
with respect to the real variable r at r = 1:

s(rpu) = su + (r − 1)au + O(r − 1)2. (6.2)
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Then

lim
r→1

r∈(0,1)

∞∑

t=0

rtpt
u(1 − s(rnpu)su)pu

t = (ausu − puausu pu)(1 − pu
2)−1 ≥ 0.

Proof. In view of (6.1), the family of functions Ks(·, rpu) has a weakly con-
vergent subsequence. Since weak convergence implies pointwise convergence
the weak limit is readily seen to be the function gu. Thus

0 ≤ 〈gu, gu〉H(s) = lim
n→∞〈gu,Ks(·, rnpu)〉H(s) = lim

n→∞ gu(rnpu),

where (rn)n∈N is a sequence of numbers in (0, 1) with limit equal to 1. Hence
we have that

lim
n→∞

∞∑

t=0

rt
npt

u(1 − s(rnpu)su)pu
t ≥ 0,

and thus

lim
r→1

r∈(0,1)

∞∑

t=0

rtpt
u(1 − s(rpu)su)pu

t ≥ 0.

Using (6.2) and (2.9) we have:

∞∑

t=0

rtpt
u(1 − s(rpu)su)pu

t =
∞∑

t=0

rtpt
u((r − 1)ausu + O(r − 1)2)pu

t

= ((r − 1)ausu − rpu(r − 1)ausu pu)(1 − r)−1(1 − rpu
2)−1

+
∞∑

t=0

rtpt
uO(r − 1)2pu

t

= (ausu − rpuausu pu)(1 − rpu
2)−1

+
∞∑

t=0

rtpt
uO(r − 1)2pu

t.

This expression tends to

(ausu − puausu pu)(1 − pu
2)−1, (6.3)

as r → 1. �

Remark 6.3. The example s(p) = 1+pa
2 , where a ∈ B1 is such that apu �= pua,

shows that (6.3) is different, in general, from ausu.
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