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Abstract. A theorem of Godefroy and Shapiro states that non-trivial con-
volution operators on the space of entire functions on C

n are hypercyclic.
Moreover, it was shown by Bonilla and Grosse-Erdmann that they have
frequently hypercyclic functions of exponential growth. On the other
hand, in the infinite dimensional setting, the Godefroy–Shapiro theo-
rem has been extended to several spaces of entire functions defined on
Banach spaces. We prove that on all these spaces, non-trivial convolu-
tion operators are strongly mixing with respect to a gaussian probability
measure of full support. For the proof we combine the results previously
mentioned and we use techniques recently developed by Bayart and
Matheron. We also obtain the existence of frequently hypercyclic entire
functions of exponential growth.
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Introduction

If T is a continuous linear operator acting on some topological vector space
X, the T -orbit of a vector x ∈ X is the set Orb(x, T ) := {x, Tx, T 2x, . . . }.
The operator T is said to be hypercyclic if there exist some vector x ∈ X,
called hypercyclic vector, whose T -orbit is dense in X. Other forms of hyper-
cyclicity where defined and studied in the literature. Specially, T is frequently
hypercyclic if there exist a vector x ∈ X, called frequently hypercyclic vector,
whose T -orbit visits each non-empty open set along a set of integers having
positive lower density.

Several criteria to determine if an operator is hypercyclic have been
studied. It is known that a large supply of eigenvectors implies hypercyclic-
ity. In particular, if the eigenvectors associated to eigenvalues of modulus less
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than 1 and the eigenvectors associated to eigenvalues of modulus greater than
1 span dense subspaces, then the operator is hypercyclic. This result is due to
Godefroy and Shapiro [21]. They also prove there that non-trivial convolution
operators, i.e. operators that commute with translations and which are not
multiples of the identity, on the space of entire functions on C

n are hyper-
cyclic. This result has also been extended to some spaces of entire functions
on infinite dimensional Banach spaces (see [2,5,10,27,28]). The Godefroy–
Shapiro theorem has been improved by Bonilla and Grosse-Erdmann. They
showed that non-trivial convolution operators are even frequently hypercyclic,
and have frequently hypercyclic entire functions satisfying some exponential
growth condition (see [7]).

Recent work developed by Bayart and Matheron [4] provides some other
eigenvector criteria to determine whether a given continuous map T : X → X
acting on a topological space X admits an ergodic probability measure, or
a strong mixing one. When the measure is strictly positive on any non void
open set of X, ergodic properties on T imply topological counterparts. In
particular, if a continuous map T : X → X happens to be ergodic with
respect to some Borel probability measure μ with full support, then almost
every x ∈ X (relative to μ) has a dense T -orbit. Moreover, from Birkhoff’s
ergodic theorem, we can obtain frequent hypercyclicity.

In this article we study convolution operators on spaces of entire func-
tions defined on Banach spaces. We show that under suitable conditions,
non-trivial convolution operators are strongly mixing, and in particular, fre-
quently hypercyclic. In the same spirit as Bonilla and Grosse-Erdmann, we
also obtain the existence of frequently hypercyclic entire functions of expo-
nential growth associated to these operators. We also prove the existence of
frequently hypercyclic subspaces for a given non-trivial convolution operator,
that is, the existence of closed infinite-dimensional subspaces in which every
non-zero vector is a frequently hypercyclic function. Finally, we study partic-
ular cases of non-trivial convolution operators such as translations and partial
differentiation operators. In this cases we obtain bounds of the exponential
growth of the frequently hypercyclic entire functions.

1. Holomorphic Functions of A-Bounded Type

In this section we recall the basic properties of holomorphic functions on
Banach spaces, the best general reference here is [15]. We also introduce the
spaces of entire functions HbA(E) and convolution operators therein.

Throughout this article E is a complex Banach space. A mapping P :
E → C is a continuous k-homogeneous polynomial if there exists a (neces-
sarily unique) continuous and symmetric k-linear form L : Ek → C such
that P (z) = L(z, . . . , z) for all z ∈ E. For example, given γ ∈ E′, the
function P (z) = γ(z)k is a k−homogeneous polynomial. The space of all con-
tinuous k-homogeneous polynomials from E to C, endowed with the norm
‖P‖P(kE) = sup‖z‖E=1 |P (z)| is a Banach space and it will be denoted by
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P(kE). The space P(0E) is just C. The space of finite type polynomials,
denoted by Pf (kE), is the subspace of P(kE) spanned by {γ(·)k}γ∈E′ .

The space of holomorphic functions from E to C is denoted by H(E).
If f =

∑
k≥0 fk is the Taylor series expansion of such a function, then it

converges uniformly in some neighborhood around the point of expansion.
The space of holomorphic functions whose Taylor series have infinite radius
of uniform convergence is denoted Hb(E). Such functions are bounded on
bounded sets, and are said to be of bounded type. The space Hb(E) is a
Fréchet space when considered with the topology of uniform convergence on
bounded sets of E.

Given P ∈ P(kE), a ∈ E and 0 ≤ j ≤ k, let Paj ∈ Pk−j(E) be the
polynomial defined by

Paj (x) =
∨
P (aj , xk−j) =

∨
P (a, . . . , a

︸ ︷︷ ︸
j

, x, . . . , x
︸ ︷︷ ︸

k−j

),

where
∨
P is the unique symmetric k-linear form associated to P . We write Pa

instead of Pa1 .
Let us recall the definition of a polynomial ideal [19,20].

Definition 1.1. A Banach ideal of scalar-valued continuous k-homogeneous
polynomials, k ≥ 0, is a pair (Ak, ‖ · ‖Ak

) such that:
(i) For every Banach space E, Ak(E) = Ak ∩ P(kE) is a linear subspace of

P(kE) and ‖ · ‖Ak(E) is a norm on it. Moreover, (Ak(E), ‖ · ‖Ak(E)) is a
Banach space.

(ii) If T ∈ L(E1, E) and P ∈ Ak(E), then P ◦ T ∈ Ak(E1) with

‖P ◦ T‖Ak(E1) ≤ ‖P‖Ak(E)‖T‖k.

(iii) z 	→ zk belongs to Ak(C) and has norm 1.

The concept of holomorphy type was introduced by Nachbin [26]. We
will use it in the following slightly modified version (see [25]).

Definition 1.2. Consider the sequence A = {Ak}∞
k=0, where for each k, Ak

is a Banach ideal of k-homogeneous polynomials. We say that {Ak}k is a
holomorphy type if there exists constants c, ck,l such that ck,l ≤ ck for every
0 ≤ l ≤ k and such that for every Banach space E, P ∈ Ak(E) and a ∈ E,

Pal belongs to Ak−l(E) and ‖Pal‖Ak−l(E) ≤ ck,l‖P‖Ak(E)‖a‖l. (1.1)

There is a natural way to associate to a holomorphy type A a class of
entire functions of bounded type on a Banach space E, as the set of entire
functions with infinite A-radius of convergence at zero, and hence at every
point (see [10,18]).

Definition 1.3. Let A = {Ak}k be a holomorphy type and E be a Banach
space. The space of entire functions of A-bounded type on E, HbA(E) is the
set of all entire functions f ∈ H(E) such that dkf(0) ∈ Ak(E) for every k

and limk→∞
∥
∥
∥

dkf(0)
k!

∥
∥
∥

1/k

Ak

= 0.



456 S. Muro et al. IEOT

We consider in HbA(E) the family of seminorms {ps}s>0, given by

ps(f) =
∞∑

k=0

sk

∥
∥
∥
∥

dkf(0)
k!

∥
∥
∥
∥

Ak

,

for all f ∈ HbA(E). It is easy to check that (HbA(E), {ps}s>0) is a Fréchet
space.

Example 1. This example collects some of the spaces of entire functions of
bounded type that may be constructed in this way. See the references given
in each case for the definition and details.

(i) If we let Ak = Pk, the ideal of all k-homogeneous continuous polynomi-
als, then the topology induced on HbA(E) by {ps}s>0 is equivalent to
the usual topology of uniform convergence on bounded sets. Therefore
HbA(E) = Hb(E).

(ii) If A is the sequence of ideals of nuclear polynomials then HbA(E) is the
space of holomorphic functions of nuclear bounded type HNb(E) defined
by Gupta and Nachbin (see [24]).

(iii) If E is a Hilbert space and A is the sequence of ideals of Hilbert-Schmidt
polynomials, then HbA(E) is the space Hhs(E) of entire functions of
Hilbert-Schmidt type (see [17,27]).

(iv) If A is the sequence of ideals of approximable polynomials, then HbA(E)
is the space Hbc(E) of entire functions of compact bounded type (see
for example [1,2]).

(v) If A is the sequence of ideals of weakly continuous on bounded sets
polynomials, then HbA(E) is the space Hwu(E) of weakly uniformly
continuous holomorphic functions on bounded sets defined by Aron [1].

(vi) If A is the sequence of ideals of extendible polynomials, then HbA(E) is
the space of extendible functions of bounded type defined in [9].

(vii) If A is the sequence of ideals of integral polynomials, then HbA(BE) is
the space of integral holomorphic functions of bounded type HbI(BE)
defined in [13].

Given A = {Ak}k a holomorphy type, the Borel transform is the oper-
ator β : HbA(E)′ → H(E′) which assigns to each element ϕ ∈ HbA(E)′ the
holomorphic function β(ϕ) ∈ H(E′), given by β(ϕ)(γ) = ϕ(eγ). The following
proposition is well-known (see for example [14, p.264] or [18, p.915]).

Proposition 1.4. Let A = {Ak}k be a holomorphy type and E be a Banach
space such that finite type polynomials are dense in Ak(E) for every k. Then
the Borel transform is an injective linear transformation.

Finite type polynomials are dense in Ak(E) in many cases. For example,
finite type polynomials are dense in the spaces of nuclear, Hilbert-Schmidt
and approximable polynomials. They are also dense in P(kE) if E is c0 or
the Tsirelson space and in the spaces of integral and extendible polynomials
if E is Asplund [12]. On the other hand, separability is a necessary condition
to deal with hypercyclicity issues on HbA(E) and, up to our knowledge, on
every example of separable space of polynomials, finite type polynomials are
dense.
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We also note that a holomorphy type such that finite type polynomials
are dense is essentially what is called an α-β-holomorphy type in [14] and a
π1-holomorphy type in [5,18].

We denote by τx(f) := f(x + ·) the translation operator by x, which
is a continuous linear operator on HbA(E) (see [10,18]). The following is the
usual definition of convolution operator.

Definition 1.5. Let A = {Ak}k be a holomorphy type and E be a Banach
space. A linear continuous operator T defined on HbA(E) is a convolution
operator, if for every x ∈ E we have T ◦ τx = τx ◦ T . We say that T is trivial
if it is a multiple of the identity.

The following proposition provides a description of convolution opera-
tors on HbA(E). Its proof follows as [10, Proposition 4.7].

Proposition 1.6. Let A = {Ak}k be a holomorphy type and E be a Banach
space. Then for each convolution operator T : HbA(E) → HbA(E) there exists
a linear functional ϕ ∈ HbA(E)′ such that

T (f) = ϕ ∗ f,

for every f ∈ HbA(E), where ϕ ∗ f(x) := ϕ(τxf) = ϕ(f(x + ·)).
Proof. Let ϕ = δ0◦T , i.e. ϕ(f) = T (f)(0) for f ∈ HbA(E). Then ϕ ∈ HbA(E)′

and

T (f)(x) = [τxT (f)] (0) = T (τxf)(0) = ϕ(τxf) = ϕ ∗ f(x),

for every f ∈ HbA(E) and x ∈ E. �

2. Strongly Mixing Convolution Operators

In this section we prove our first main theorem, which states that under some
fairly general conditions on the space E and the holomorphy type A, non-
trivial convolution operators on HbA(E) are strongly mixing in the gaussian
sense. First we recall the following definitions.

Definition 2.1. A Borel probability measure on X is gaussian if and only if it
is the distribution of an almost surely convergent random series of the form
ξ =

∑∞
n=0 gnxn, where (xn) ⊂ X and (gn) is a sequence of independent,

standard complex gaussian variables.

Recall that for an operator T : X → X we say that μ is a T -invariant
ergodic measure if μ(A) = μ(T−1A) for all measurable sets A ⊂ X and if
given A, B measurable sets of positive measure then one can find an integer
n ≥ 0 such that Tn(A) ∩ B �= ∅. When the measure μ is strictly positive on
all non void open sets, ergodicity implies that T is topologically transitive,
hence hypercyclic. Additionally, Birkhoff’s ergodic theorem implies that T is
frequently hypercyclic.

We are specially interested in a condition stronger that ergodicity, na-
mely strongly mixing with respect to some gaussian probability measure.
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Definition 2.2. We say that an operator T ∈ L(X) is strongly mixing in the
gaussian sense if there exists some gaussian T -invariant probability measure
μ on X with full support such that for any measurable sets A, B ⊂ X we
have

lim
n→∞ μ(A ∩ T−n(B)) = μ(A)μ(B).

We will use the following theorem due to Bayart and Matheron, which
is a corollary of [4, Theorem 1.1].

Theorem 2.3. (Bayart–Matheron) Let X be a complex separable Fréchet space,
and let T ∈ L(X). Assume that for any D ⊂ T such that T\D is dense in T,
the linear span of

⋃
λ∈T\D ker(T −λ) is dense in X. Then T is strongly mixing

in the gaussian sense. In particular, T is a frequently hypercyclic operator.

The next lemma is the key to prove that convolution operators are
strongly mixing and it we will be used throughout the article.

Lemma 2.4. Let E be a Banach space with separable dual and let A be a
holomorphy type such that finite type polynomials are dense in Ak(E) for
every k. Let φ ∈ H(E′) not constant and B ⊂ C. Suppose that there exist
γ0 ∈ E′ such that φ(γ0) is an accumulation point of B. Then span{eγ :
φ(γ) ∈ B} is dense in HbA(E).

Proof. Let Φ ∈ HbA(E)′ be a functional vanishing on {eγ : φ(γ) ∈ B}. Note
that this means that β(Φ) vanishes on φ−1(B). By Proposition 1.4, it suffices
to show that β(Φ) = 0.

Fix γ0 ∈ E′ such that φ(γ0) is an accumulation point of B. We claim
that there exist a sequence of complex lines Lk, k ∈ N, through γ0 such that
φ is not constant on each Lk and

⋃
k Lk is dense in E′. Indeed, let {Uk}k∈N,

be open sets that form a basis of the topology of E′. Since φ is not constant,
there exists, for each k, a complex line Lk through γ0 that meets Uk and on
which φ is not constant.

Now let k ∈ N. Since φ is not constant on Lk, φ|Lk
is an open mapping,

and hence γ0 is an accumulation point of φ−1(B) ∩ Lk. But, β(Φ) vanishes
on φ−1(B). Thus, β(Φ) also vanishes on Lk. Since

⋃
k Lk is dense in E′,

β(Φ) = 0. �
We are now able to prove that convolution operators on HbA(E) are

strongly mixing in the gaussian sense.

Theorem 2.5. Let A = {Ak}k be a holomorphy type and E a Banach space
with separable dual such that the finite type polynomials are dense in Ak(E)
for every k. If T : HbA(E) → HbA(E) is a non-trivial convolution operator,
then T is strongly mixing in the gaussian sense.

Proof. Let ϕ ∈ HbA(E)′ be the linear functional defined in the proof of
Proposition 1.6. Since T is not a multiple of the identity it follows that ϕ
is not a multiple of δ0. Also, the fact that ϕ is not a multiple of δ0 implies
that β(ϕ) is not a constant function. Indeed, if β(ϕ) were constant then
λ := ϕ(1) = β(ϕ)(0) = β(ϕ)(γ) = ϕ(eγ) for all γ ∈ E′. But, on the other
hand, λ = λδ0(eγ) for all γ ∈ E′ and we would have that ϕ = λδ0.
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It is rather easy to find eigenvalues and eigenvectors for T . Given γ ∈ E′,

T (eγ) = ϕ ∗ eγ = [x 	→ ϕ(τxeγ)] = ϕ(eγ)
[
x 	→ eγ(x)

]
= β(ϕ)(γ)eγ .

By Theorem 2.3, it suffices to prove that the set of unimodular eigenvectors
{eγ ∈ HbA(E) : |β(ϕ)(γ)| = 1} is big enough. Let us first prove that it is not
empty. Define

V = {γ ∈ E′ : |β(ϕ)(γ)| < 1} and W = {γ ∈ E′ : |β(ϕ)(γ)| > 1}.

Let us check that V,W ⊂ E′ are non void open sets. Indeed, if V = ∅, or
W = ∅, then 1

β(ϕ) , or β(ϕ), would be a nonconstant bounded entire function.
Since β(ϕ)(E′) is arcwise connected, we can deduce the existence of γ0 ∈ E′

such that |β(ϕ)(γ0)| = 1.
Let D ⊂ T such that T \ D is dense in T. Then, β(ϕ)(γ0) is an accu-

mulation point of T \ D and by Lemma 2.4 we get that the linear span of⋃
λ∈T\D ker(T − λ) is dense in HbA(E). By Theorem 2.3, it follows that T is

strongly mixing in the gaussian sense, as we wanted to prove. �

3. Exponential Growth Conditions for Frequently Hypercyclic
Entire Functions

In this section we show that for every convolution operator there exists a
frequently hypercyclic entire function satisfying a certain exponential growth
condition. First, we define and study a family of Fréchet subspaces of HbA(E)
consisting of functions of exponential type; and then we show that every
convolution operator on HbA(E) defines a frequently hypercyclic operator on
these spaces.

Definition 3.1. A function f ∈ H(E) is said to be of M -exponential type if for
each ε > 0 there exists some constant C > 0 such that |f(x)| ≤ Ce(M+ε)‖x‖,
for all x ∈ E. We say that f is of exponential type if it is of M -exponential
type for some M > 0.

Now we define the subspaces of HbA(E) consisting of functions of expo-
nential type.

Definition 3.2. For p > 0, let us define the space

Expp
A(E) =

{

f ∈ HbA(E) : lim sup
k→∞

‖dkf(0)‖1/k
Ak

≤ p

}

,

endowed with the family of seminorms defined by

qr(f) =
∞∑

k=0

rk‖dkf(0)‖Ak
for 0 < r < 1/p.

Below we collect some basic properties of the spaces Expp
A(E). Their

proof is standard.

Proposition 3.3. Let p be a positive number and A = {Ak}k a holomorphy
type.
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(a) A function f ∈ H(E) belongs to Expp
A(E) if and only if dkf(0) ∈ Ak for

all k ∈ N and qr(f) < ∞, for all 0 < r < 1/p.
(b) The space (Expp

A(E), {qr}r<1/p) is a Fréchet space that is continuously
and densely embedded in HbA(E).

(c) If E′ is separable and finite type polynomials are dense in Ak(E) for
every k, then Expp

A(E) is separable.
(d) Every function f ∈ Expp

A(E) satisfies the following growth condition: for
each ε > 0, there exists Cε > 0 such that

|f(x)| ≤ Cεe
(p+ε)‖x‖, x ∈ E,

that is, f is of exponential type p.

In order to prove frequent hypercyclicity of convolution operators on
Expp

A(E), we need to introduce some structure on the sequence of polynomial
ideals.

Definition 3.4. Let A = {Ak}k a holomorphy type and let E be a Banach
space. We say that A is weakly differentiable at E if there exist constants
ck,l > 0 such that, for 0 ≤ l ≤ k, P ∈ Ak(E) and ϕ ∈ Ak−l(E)′, the mapping
x 	→ ϕ(Pxl) belongs to Al(E) and

∥
∥
∥x 	→ ϕ

(
Pxl

)∥∥
∥

Al(E)
≤ ck,l‖ϕ‖Ak−l(E)′‖P‖Ak(E).

Remark 3.5. In the following, we will assume that

ck,l ≤ (k + l)k+l

(k + l)!
k!
kk

l!
ll

for every k, l. (3.1)

Stirling’s Formula states that e−1nn+1/2 ≤ en−1n! ≤ nn+1/2 for every n ≥ 1,
so given ε > 0, there exists a positive constant cε, such that

ck,l ≤ e2
( kl

k + l

)1/2

≤ cε(1 + ε)k,

for every 0 ≤ l ≤ k.

Remark 3.6. Weak differentiability is a condition that is stronger than being
a holomorphy type and was defined in [11]. All the spaces of entire functions
appearing in Example 1 are constructed with weakly differentiable holomor-
phy types satisfying (3.1), see [11,25]. The concept of weak differentiability
is closely related to that of α-β-γ-holomorphy types in [14] and that of π1-
π2-holomorphy types in [5,18].

Proposition 3.7. Let p be a positive number, A = {Ak}k a holomorphy type
and let E be a Banach space. Suppose that A is weakly differentiable with
constants ck,l satisfying (3.1). Then every convolution operator on HbA(E),
restricts to a convolution operator on Expp

A(E).

Proof. Let T : HbA(E) → HbA(E) be a convolution operator and ϕ ∈
HbA(E)′ such that Tf = ϕ ∗ f . Suppose that f =

∑
k∈N0

Pk is in Expp
A(E).

We need to prove that for r < 1/p

qr(ϕ ∗ f) =
∞∑

l=0

rl‖dl(ϕ ∗ f)(0)‖Al
< ∞.
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Note that

ϕ ∗ f(x) = ϕ(τxf) = ϕ

( ∞∑

k=0

k∑

l=0

(
k

l

)

(Pk)xl

)

=
∞∑

l=0

∞∑

k=l

(
k

l

)

ϕ ((Pk)xl) .

This implies that

dl(ϕ ∗ f)(0)(x) = l!
∞∑

k=l

(
k

l

)

ϕ((Pk)xl).

Since ϕ is a continuous linear functional, there are positive constants c
and M such that ‖ϕ‖A′

k−l
≤ cMk−l. Thus, given ε > 0 such that r(1 + ε) <

1/p, by the above remark,

qr(ϕ ∗ f) =
∞∑

l=0

rl‖dl(ϕ ∗ f)(0)‖Al

≤
∞∑

l=0

rll!
∞∑

k=l

(
k

l

)

‖x 	→ ϕ((Pk)xl)‖Ak

≤
∞∑

l=0

rll!
∞∑

k=l

(
k

l

)

ck, l‖ϕ‖A′
k−l

‖Pk‖Ak

≤ c

∞∑

k=0

‖dkf(0)‖Ak

k!

k∑

l=0

(
k

l

)

ck, l rl l!Mk−l

≤ c
∞∑

k=0

‖dkf(0)‖Ak
rkcε(1 + ε)k

k∑

l=0

(
M
r

)k−l

(k − l)!

≤ c cε e(M/r)
∞∑

k=0

‖dkf(0)‖Ak
(r(1 + ε))k

= c cε e(M/r) qr(1+ε)(f) < ∞. �

Remark 3.8. For γ ∈ E′, we have dk(eγ)(0)=γk, and then, as ‖γk‖Ak
=‖γ‖k,

lim sup
k→∞

‖dkeγ(0)‖1/k
Ak

= ‖γ‖E′ .

This implies that eγ ∈ Expp
A(E) if and only if ‖γ‖ ≤ p. Thus, for ϕ ∈

Expp
A(E)′, we can define the Borel transform β(ϕ)(γ) = ϕ(eγ), for all γ ∈ E′

with ‖γ‖ ≤ p. Moreover, the function β(ϕ) is holomorphic on the set p BE ′ .

The next proposition is the analogue of Proposition 1.4 for the Borel
transform restricted to Expp

A(E).

Proposition 3.9. Let A = {Ak}k be a holomorphy type and E a Banach
space such that finite type polynomials are dense in Ak(E) for every k.
Then the Borel transform β : Expp

A(E)′ → H(pBE′) is an injective linear
transformation.
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Now, we can restate Lemma 2.4, for the space Expp
A(E). Its proof is

similar.

Lemma 3.10. Let p be a positive number, let E be a Banach space with sep-
arable dual and let A be a holomorphy type such that finite type polynomials
are dense in Ak(E) for every k. Let φ ∈ H(pBE′) not constant and B ⊂ C.
Suppose that there exist γ0 ∈ p BE′ such that φ(γ0) is an accumulation point
of B. Then span{eγ : ‖γ‖ < p, φ(γ) ∈ B} is dense in Expp

A(E).

Now we are able to prove that for non-trivial convolution operators on
HbA(E) there exist frequently hypercyclic entire function satisfying certain
exponential growth conditions.

Given a non-trivial convolution operator T defined on HbA(E), let us
define

αT = inf{‖γ‖, γ ∈ E′ such that |T (eγ)(0)| = 1}.

Theorem 3.11. Let A = {Ak}k be a holomorphy type and let E be a Ba-
nach space with separable dual such that finite type polynomials are dense
in Ak(E) for every k. Suppose that A is weakly differentiable with constants
ck,l satisfying (3.1). Let T : HbA(E) → HbA(E) be a non-trivial convolu-
tion operator. Then, for any ε > 0, T admits a frequent hypercyclic function
f ∈ ExpαT +ε

A (E).

Proof. Fix γ0 ∈ E′ such that αT ≤ ‖γ0‖ < αT + ε and |T (eγ0)(0)| = 1.
Consider p = αT + ε. It is enough to prove that T is frequently hypercyclic
on Expp

A(E).
The Proposition 3.7 allows us to restrict the operator T to the space

Expp
A(E). Since eγ is an eigenvector of T with eigenvalue T (eγ)(0), it is

enough to show, by Theorem 2.3, that for every Borel set D ⊂ T, such that
T \ D is dense in T, the linear span of {eγ : ‖γ‖ < p, T (eγ)(0) ∈ T \ D} is
dense in Expp

A(E).
We see as in Proposition 1.6 that there exists ϕ ∈ Expp

A(E)′ such that
Tf = ϕ ∗ f for every f ∈ Expp

A(E). Then β(ϕ) ∈ H(p BE′) is not constant.
Since T \ D is dense in T, T (eγ0)(0) = β(ϕ)(γ0) is an accumulation point of
T \ D. Thus, an application of Lemma 3.10 proves that the linear span of
{eγ : ‖γ‖ < p, β(ϕ)(γ) ∈ T \ D} is dense in Expp

A(E). �

4. Frequently Hypercyclic Subspaces and Examples

Finally, we study the existence of frequently hypercyclic subspaces for a given
non-trivial convolution operator, that is, the existence of closed infinite-
dimensional subspaces in which every non-zero vector is frequently hyper-
cyclic. We prove that there exists a frequently hypercyclic subspace for each
non-trivial convolution operator on HbA(E), if the dimension of E is bigger
than 1.

Lastly, we study exponential growth conditions for special cases of con-
volution operators such as translation and partially differentiation ones.
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4.1. Frequently Hypercyclic Subspaces

Given a frequently hypercyclic operator T on a Fréchet space X with fre-
quently hypercyclic vector x ∈ X, we can consider the linear subspace K[T ]x,
whose elements are the evaluations at x of every polynomial on T . It turns
out that K[T ]x\{0} is contained on FHC(T ), the set of all frequently hyper-
cyclic vectors of T , but in general K[T ]x is not closed in X. Then, it is natural
to ask if there exists a closed subspace M ⊂ X such that M \{0} ⊂ FHC(T ).
Bonilla and Grosse-Erdmann, in [8], gave sufficient conditions for this situa-
tion to hold. First we state the Frequent Hypercyclicity Criterion.

Theorem 4.1. (Frequent Hypercyclicity Criterion) Let T be an operator on a
separable F-space X. Suppose that there exists a dense subset X0 of X and a
map S : X0 → X0 such that, for all x ∈ X0,

1.
∑∞

n=1 Tnx converges unconditionally,
2.

∑∞
n=1 Snx converges unconditionally,

3. TSx = x.

Then T is frequently hypercyclic.

The Bonilla and Grosse-Erdmann theorem for the existence of a fre-
quently hypercyclic subspace states that if an operator T satisfies the Fre-
quent Hypercyclicity Criterion and admits an infinite number of linearly in-
dependent eigenvectors, associated to an eigenvalue of modulus less than one
then there exists a frequently hypercyclic subspace for T . Since we cannot as-
sure that non-trivial convolution operators satisfy the Frequent Hypercyclic-
ity Criterion, Theorem 4.1, we need the following modified version which may
be found in [23, Remark 9.10].

Proposition 4.2. Let T be an operator on a separable F-space X. Suppose that
there exists a dense subset X0 of X and for any x ∈ X0 there is a sequence
(un(x))n≥0 ⊂ X such that,

1.
∑∞

n=1 Tnx converges unconditionally,
2.

∑∞
n=1 un(x) converges unconditionally,

3. u0(x) = x and T jun(x) = un−j(x), for j ≤ n.

Then T is frequently hypercyclic.

Now, we can state the modified version of the Bonilla and Grosse-
Erdmann theorem which will be used for the proof of Theorem 4.4.

Theorem 4.3. Let X be a separable F-space with a continuous norm and T an
operator on X that satisfies the hypotheses of Proposition 4.2. If dim ker(T −
λ) = ∞ for some scalar λ with |λ| < 1 then T has a frequently hypercyclic
subspace.

The proof of the previous theorem follows the same lines as the proof
of [8, Theorem 3], but replacing Snyj by un(yj), for each yj ∈ X0, in their
key Lemma 1. Next, we prove the existence of frequent hypercyclic subspaces
for every non-trivial convolution operator, if dim(E) > 1. The corresponding
problem for dim(E) = 1 is open, up to our knowledge.
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Theorem 4.4. Let A = {Ak}k be a holomorphy type and E a Banach space
with dim(E) > 1 and separable dual such that the finite type polynomials
are dense in Ak(E) for every k. If T : HbA(E) → HbA(E) is a non-trivial
convolution operator, then T has a frequently hypercyclic subspace.

Proof. Let us see that both hypotheses of Theorem 4.3 are fulfilled by every
non-trivial convolution operator on HbA(E). Recall that if T : HbA(E) →
HbA(E) is a non-trivial convolution operator then β(ϕ)(γ) = T (eγ)(0) is
holomorphic as a function of γ ∈ E′, and that T (eγ) = [T (eγ)(0)]eγ . We have
that {eγ : γ ∈ E′} is a linearly independent set in HbA(E), see [2, Lemma
2.3]. We will prove that there exists some scalar λ with |λ| < 1 such that
dim ker(T − λ) = ∞. We follow the ideas of the proof of [28, Theorem 5].
If the set of zeros of β(ϕ), denoted by Z(β(ϕ)) = {γ ∈ E′ : β(ϕ)(γ) = 0},
is infinite then we take λ = 0, because ker(T ) ⊃ {eγ : γ ∈ Z(β(ϕ))}. If
Z(β(ϕ)) is not infinite, then it is empty since dim(E) > 1. Now, fix γ ∈ E′

and consider fγ(w) = β(ϕ)(wγ) for w ∈ C. From the continuity of T and of
δ0, we get that there exist positive constants M and s such that

|fγ(w)| = |T (ewγ)(0)| ≤ Mps(ewγ) = M
∑

k≥0

sk

k!
‖dk(ewγ)(0)‖Ak

= M
∑

k≥0

sk

k!
‖wγ‖k = Mes‖γ‖|w|.

Thus, fγ : C → C is a holomorphic function of exponential type without
zeros. Then there exist complex constants C(γ) and p(γ) such that fγ(w) =
C(γ)ep(γ)w.

Note that C = C(γ) is independent of γ because

C(γ) = fγ(0) = β(ϕ)(0) = T (1)(0).

We also have that f ′
γ(0) = Cp(γ) = T (γ)(0). Thus we get that p(γ) =

1
C T (γ)(0) is a linear continuous functional. Finally, we get that β(ϕ)(γ) =
Cep(γ) with p ∈ E′′ and C �= 0. This implies that Z(β(ϕ) − λ) is infinite for
every λ �= 0, as we wanted to prove.

To prove that T satisfies the hypotheses of Proposition 4.2 we follow the
ideas of the second proof of [7, Theorem 1.3]. Parametrizing the eigenvectors
eγ it is possible to construct a family of C2-functions Ck : T → HbA(E) such
that T (Ck(λ)) = λCk(λ) and such that, for every Borel set of full Lebesgue
measure, B ⊂ T, the linear span of {Ck(λ) : λ ∈ B, k ∈ N} is dense in
HbA(E). For j ∈ Z and k ∈ N set

xk,j =
∫

T

λjCk(λ)dλ,

where the integral is in the sense of Riemann and X0 = span{xk,j ; j ∈ Z, k ∈
N}. It follows from the proof of [3, Théorème 2.2.] that X0 is dense in HbA(E)
and that for n ≥ 0, j ∈ Z, k ∈ N we get

Tnxk,j =
∫

T

λj+nCk(λ)dλ.
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For every y ∈ X0, there exists a linear combination y =
∑my

l=1 alxkl,jl
. So, we

define

un(y) =
my∑

l=1

alxkl,jl−n.

Finally, we have that u0(y) = y and that T iun(y) = un−i(y) if i ≤ n, for
every y ∈ X0. Since each Ck is a C2-function, by [23, Lemma 9.23 (b)], we
obtain that the series

∑∞
n=1 Tnxk,j ,

∑∞
n=1 un(xk,j) converge unconditionally

for all j ∈ Z, k ∈ N. As we claimed, T satisfies the hypotheses of Proposition
4.2, and so there exists a frequently hypercyclic subspace. �

4.2. Translation Operators

Suppose that τz0 : HbA(E) → HbA(E) is the translation operator defined
by τz0(f)(z) = f(z + z0). The next proposition is similar to [23, Theorem
9.26], but in this case for translation operators in HbA(E), which gives sharp
exponential growth conditions for frequently hypercyclic functions.

Proposition 4.5. Let A = {Ak}k be a holomorphy type and let E be a Ba-
nach space with separable dual such that finite type polynomials are dense in
Ak(E) for every k. Suppose that A is weakly differentiable with constants ck,l

satisfying (3.1). Let τz0 : HbA(E) → HbA(E) be the translation operator by a
non-zero vector z0 ∈ E. Then,

(a) Given ε > 0, then there exists C > 0 and an entire function f ∈ HbA(E)
which is frequently hypercyclic for τz0 and satisfies

|f(z)| ≤ Ceε‖z‖.

(b) Let ε : R+ → R+ be a function such that lim inf
r→∞ ε(r) = 0 and C any

positive number. Then there is no frequently hypercyclic entire function
f ∈ HbA(E) for τz0 , satisfying

|f(z)| ≤ Ceε(‖z‖)‖z‖, for all z.

Proof. (a) Note that τz0(e
γ) = eγ(z0)eγ , thus

inf{‖γ‖, γ ∈ E′ such that |τz0(e
γ)(0)| = 1} = 0.

It follows from Theorem 3.11 that for any ε > 0, there exist a frequently
hypercyclic function f ∈ HbA(E) such that

|f(z)| ≤ Ceε‖z‖,

for some positive constant C.
(b) Suppose that there exist a frequently hypercyclic function f for τz0

such that |f(z)| ≤ Ceε(‖z‖)‖z‖. Consider the complex line L = {λz0, λ ∈ C}
and the restriction map given by

HbA(E) −→ H(C)

g 	→ g|L(λ) = g(λz0).
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Consider the following diagram

HbA(E)
τz0 ��

��

HbA(E)

��
H(C)

τ1
�� H(C)

Note that is a commutative diagram, for g ∈ HbA(E)

(τz0g)|L(λ) = τz0g(λz0) = g((λ + 1)z0) = (g|L)(λ + 1) = τ1(g|L)(λ).

Also the restriction map has dense range: take γ ∈ E′ such that γ(z0) = 1,
then γk|L(λ) = γk(λz0) = λk. Thus, all polynomials belong to the range of
the restriction map.

Applying the hypercyclic comparison principle we get that τ1 is frequent
hypercyclic and that f |L ∈ H(C) is a frequently hypercyclic function that
satisfies

|f |L(z)| = |f(λz0)| ≤ Ceε(‖λz0‖)‖λz0‖.

But this bound contradicts [23, Theorem 9.26], which states that there is no
such a function in H(C). �

Remark 4.6. As we mentioned in the proof of the last proposition, in [6,23]
it is proved that, given ε such that lim inf

λ→∞
ε(|λ|) = 0, there are no frequently

hypercyclic functions for the translation operator in H(C) satisfying that
|f(λ)| ≤ Ceε(|λ|)|λ|. In contrast, there are hypercyclic functions of arbitrary
slow growth (see [16]). The corresponding result in the Banach space setting
has not been studied, up to our knowledge.

4.3. Differentiation Operators

For the differentiation operator on HbA(E), Da : HbA(E) → HbA(E), Da(f) =
d1f(·)(a), we can estimate the exponential type for the frequent hypercyclic
functions. Since Da(eγ)(0) = d1(eγ)(0)(a) = γ(a), we get that

inf{‖γ‖, γ ∈ E′ such that |Da(eγ)(0)| = 1} = ‖a‖.

Thus given ε > 0 there exist a frequently hypercyclic function f such
that

|f(x)| ≤ Ce(‖a‖+ε)‖x‖,

for some C > 0. It is not difficult to see that the best exponential type of a
hypercyclic function for Da is ‖a‖. To prove this fact it suffices to conjugate
Da by the one dimensional differentiation operator (as we did in the proof of
Proposition 4.5) and apply [23, Theorem 4.22] (see also [22] and [29]).
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