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Abstract. We derive bounds on the location of non-embedded eigenvalues
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1. Introduction

The aim of this paper is to obtain estimates for eigenvalues of the Dirac
operator

D0 :=

(
mc2 −c d

dx

c d
dx −mc2

)
(1.1)

on L2(R+,C
2) subject to separated boundary conditions at zero,

ψ1(0) cos(α) − ψ2(0) sin(α) = 0, α ∈ [0, π/2], 1 (1.2)

and perturbed by a matrix-valued (not necessarily Hermitian) potential

V ∈ L1(R+,Mat(2,C)), ‖V ‖1 :=

∞∫
0

‖V (x)‖dx,
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through the postdoc stipend PBBEP2 136596. He would also like to thank the Institut
Mittag-Leffler for the kind hospitality within the RIP (Research in Peace) programme 2013,
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discussions. Finally, the author thanks an anonymous referee for helpful comments.
1 We exclude the case α ∈ (π/2, π) since D0 has an eigenvalue in the gap (−mc2, mc2) in
this case, see [11, p.137]).
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where the norm in the integral is the operator norm in C
2 (with respect to

the Euclidean norm on C
2). Here, we are only concerned with eigenvalues

that are not embedded in the spectrum of D0,

σ(D0) = (−∞,−mc2] ∪ [mc2,∞).

For the purpose of investigating the non-relativistic limit, we have made the
dependence on c (the speed of light) explicit, whereas the reduced Planck
constant � is set to unity.

This work is a continuation of [2] where corresponding eigenvalue esti-
mates for Dirac operators on the whole line were established. More precisely,
it was shown there that if v := ‖V ‖1/c < 1, then any eigenvalue z ∈ C\σ(D0)
of D0 + V is contained in the union of two closed disks in the left and right
half plane with centres ±mc2x0 and radii mc2r0, where x0 and r0 depend
non-linearly on v and diverge as v → ∞ in such a way that the disks cover the
entire complex plane minus the imaginary axis. In the non-relativistic limit
(c → ∞), the Dirac operator D0 + V − mc2 converges to the Schrödinger
operator − 1

2m
d2

dx2 + V (say, for V a multiple of the identity matrix) in the
norm-resolvent sense, and the spectral estimate reduces to the bound in [1]:
Any eigenvalue λ ∈ C \ [0,∞) of the Schrödinger operator −d2/dx2 + V
satisfies

|λ|1/2 ≤ 1
2

∞∫
−∞

|V (x)| dx. (1.3)

Similar estimates for Schrödinger operators on the half-line were established
in [4]: Any eigenvalue λ ∈ C\[0,∞) of −d2/dx2+V , with boundary condition
ψ′(0) = σψ(0), σ ≥ 0, satisfies (1.3) if the constant 1/2 is replaced by 1; in
the case of Dirichlet boundary conditions ψ(0) = 0, the sharp estimate

|λ|1/2 ≤ 1
2
g(cot(θ/2))

∞∫
0

|V (x)| dx (1.4)

holds, where λ = |λ|eiθ and

g(b) := sup
y≥0

|eiby − e−y| ∈ [1, 2]. (1.5)

Note in particular that (1.3) and (1.4) have the correct semiclassical expo-
nents.

The aim of this note is to obtain corresponding results for the Dirac
operator on the half-line. As in [2], an interesting distinction between the
massive (m 	= 0) and the massless (m = 0) Dirac operator occurs: The former
behaves like the Schrödinger operator in the non-relativistic limit c → ∞,
while the latter (m = 0 may be regarded as the “ultra-relativistic” limit) has
no complex eigenvalues for sufficiently small L1-norm of the potential (see
[2] for the case of the whole line and Theorem 2.1 for the half-line case).
This fact may be expressed by saying that the whole spectrum (which is R

in this case) is non-resonant. This is quite remarkable, considering that the
point zero is resonant for the (scalar) relativistic operator |p| on the real line,
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i.e. there are eigenvalues for arbitrarily small perturbations, even for real-
valued potentials. In that case, the absence of eigenvalues for small L1-norm
of the potential would be equivalent (by the variational characterization of
eigenvalues and Hölder’s inequality)2 to the boundedness of the resolvent of
|p| from L1 to L∞, which in turn would be equivalent to the boundedness of
the Fourier transform of its symbol; however, the Fourier transform of p.v. 1

|p|
diverges logarithmically. In contrast, the symbol of the resolvent of the Dirac
operator on the line behaves like p.v. 1p (the Hilbert transform), which has a
bounded Fourier transform due to cancellations.

The second crucial point is the behaviour of the resolvent (D0 − z)−1

when the spectral parameter z is close to the real axis. For z = λ+iε, λ > 0,
its symbol picks up singularities on the sphere of radius λ1/2 when ε → 0. In
fact, from the well-known formula

lim
ε→0

1
x− iε

= iπδ(x) + p.v.
1
x
, (1.6)

it follows that the (scalar part of) the symbol of (D0 − z)−1 for m = 0
has a bounded Fourier transform. We emphasize that in higher dimensions
n ≥ 2 there can be no Lp → Lq estimate (p and q being dual exponents,
i.e. q = p/(p − 1)) for the resolvent of the Dirac operator that is uniform
in the spectral parameter. The reason is that the analogue of (1.6) in higher
dimensions implies that (D0−z)−1 : Lp(Rn) → Lq(Rn) is bounded uniformly
in |z| > 1 if and only if

2
n+ 1

≤ 1
p

− 1
q

≤ 1
n

(
q =

p

p− 1

)
. (1.7)

The bound on the left is imposed by the Stein–Tomas restriction theorem, see
[10], while the bound on the right is dictated by standard estimates for Bessel
potentials of order one, see e.g. [6, Cor. 6.16]. Both conditions are known to
be sharp. Unfortunately, this forces n = 1. For the Laplacian, the situation
is better since the right hand side of (1.7) is then replaced by 2/n, see [8,
Theorem 2.3]. Based on the latter, eigenvalue estimates for multi-dimensional
Schrödinger operators with Lp-potentials were established in [3].

2. Main Results

Let D0 be the Dirac operator in (1.1), with domain consisting of all square
integrable functions ψ ∈ L2(R+,C

2) that are absolutely continuous on R+,
satisfy (1.2), and such that D0ψ ∈ L2(R+,C

2). In the following, we tac-
itly assume that the potential V is smooth and has compact support. This
assumption allows us to define the sum D0+V in an unambiguous way (as an
operator sum). However, it is in no way essential, as the attentive reader will
gather, and can easily be disposed of. In fact, the assumptions imposed on V
in Theorems 2.1–2.3 are sufficient to define a closed extension of D ⊃ D0 +V

2 This is an instance of the duality between an isoperimetric eigenvalue problem (minimiz-

ing the lowest eigenvalue under the constraint of a fixed Lebesgue norm of the potential)

and a critical Sobolev inequality, see [7].
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via the resolvent formula (3.4), see [2] and the references therein for details.
In particular, the Birman-Schwinger principle remains valid for this exten-
sion, by construction. Incidentally, for (3.4) to be well-defined, the existence
of a point z0 ∈ C \ σ(D0) for which I +Q(z0) has a bounded inverse, has to
be assumed, and once such a point is shown to exist, it will automatically
belong to C \ σ(D). Hence, from this point of view, Theorems 2.1–2.3 (with
V satisfying only the regularity assumptions stated in the respective theo-
rem) yield the existence of a closed extension and the spectral estimates as
a byproduct.

Theorem 2.1. Let v := ‖V ‖1/c < 1/
√

2. Then any eigenvalue z ∈ C \ σ(D0)
of D0 +V subject to the boundary condition (1.2) is contained in the disjoint
union of two closed disks with centres ±mc2x0 and radii mc2r0, where

x0 := 1 +
2v4

1 − 2v2
, r0 := 2v

1 − v2

1 − 2v2
. (2.1)

In particular, the spectrum of the massless Dirac operator (m = 0) with non-
Hermitian potential V is R.

Proof. The proof is based on the Birman-Schwinger principle: z ∈ C \ σ(D0)
is an eigenvalue of D0 + V if and only if −1 is an eigenvalue of the Birman-
Schwinger operator

Q(z) := |V |1/2(D0 − z)−1V 1/2.

Let z ∈ C \ σ(D0) and define

cκ(z) :=
√
z2 − (mc2)2, ζ(z) :=

z +mc2

cκ(z)
(2.2)

where the branch of the square root is chosen such that Imκ(z) > 0. Let us
assume that α ∈ (0, π/2]. It can then be checked that

ψl(x; z) :=

(
cos(κ(z)x) + ζ(z) cot(α) sin(κ(z)x)

−ζ(z)−1 sin(κ(z)x) + cot(α) cos(κ(z)x)

)
, α ∈ (0, π/2].

(2.3)

is a solution to the differential equation (D0 − z)ψl(x; z) = 0 satisfying
the boundary condition (1.2). In the case α = 0, formally corresponding
to cot(α) = ∞, the solution is

ψl(x; z) =

(
ζ(z) sin(κ(z)x)

cos(κ(z)x)

)
, α = 0. (2.4)

On the other hand,

ψ∞(x; z) := eiκ(z)x

(
−iζ(z)

1

)
(2.5)
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is a solution that lies in L2(R+). The resolvent R0(z) = (D0 − z)−1 is then
given by (see e.g. [11, Satz 15.17])

c(R0(z)f)(x) =
1
W

⎛
⎝ψ∞(x; z)

x∫
0

(ψl(y; z), f(y)) dy

+ψl(x; z)

∞∫
x

(ψ∞(y; z), f(y)) dy

⎞
⎠

where

W =

{
1 + iζ(z) cot(α), α ∈ (0, π/2]

iζ(z), α = 0

is the Wronskian and (·, ·) denotes the Hermitian scalar product on C
2 (which

we define to be linear in the second variable). The values of the resolvent
kernel R0(x, y; z) are linear maps in C

2, given by

cR0(x, y; z) =
1
W

(
ψ∞(x; z)(ψl(y; z), ·)θ(x− y)

+ψl(x; z)(ψ∞(y; z), ·)θ(y − x)
)
, (2.6)

where θ denotes the characteristic function of (0,∞). Note that W 	= 0 since
D0 has no eigenvalue [11, p.137]; alternatively, this may be seen as follows:
By assumption, σ := cot(α) ≥ 0, and thus the solution ζ = i

σ of W = 0 lies
in the (open) upper half plane. However, the function ζ defined in (2.2) takes
values in the (open) lower half plane. Indeed, ζ(z) is a (holomorphic) branch
of the square root of (z + mc2)/(z − mc2) for z ∈ C \ σ(D0). The range of
the latter is the cut plane C \ R+, thus any branch of the square root must
have values either in the upper or in the lower half plane. One easily checks
that Imζ(0) < 0.

We now estimate the norm of cR0(x, y; z) as an operator on C
2. Let us

assume that α ∈ (0, π/2], so that ψl is given by (2.3); the case α = 0 may
always be recovered by letting cot(α) → ∞. We then have (suppressing the
z-dependence of κ and ζ)

sup
x≥y≥0

‖cR0(x, y; z)‖2 = sup
x≥y≥0

1
|W |2 ‖ψ∞(x; z)‖2‖ψl(y; z)‖2

=
1 + |ζ|2

|1 + iζ cot(α)|2 sup
y≥0

e−2Im κy‖ψl(y; z)‖2

=
|ζ| + |ζ|−1

4

(
1 + |β|2e−4Im(κ)y

) (|ζ| + |ζ|−1
)

+ 2e−2Im(κ)yRe
(
βe−2iReκy

) (|ζ| − |ζ|−1
)

(2.7)

where

β :=
1 − iζ cot(α)
1 + iζ cot(α)

, (2.8)
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and where we used (in the second line) that the supremum over x is attained
at x = y since Imκ(z) > 0. Noticing that |β| ≤ 1 (since Im(ζ) < 0), we find
that

sup
x,y≥0

‖cR0(x, y; z)‖2 ≤ (|ζ| + |ζ|−1
)

max{|ζ|, |ζ|−1} = 1 + max{|ζ|2, |ζ|−2}.

Using Hölder’s inequality, we arrive at

‖Q(z)‖ ≤ sup
x,y≥0

‖cR0(x, y; z)‖ v ≤
√

1 + max{|ζ|2, |ζ|−2} v. (2.9)

By the Birman-Schwinger principle, the left hand side of (2.9) is equal to 1 if
z is an eigenvalue. If m = 0, then ζ(z) = ±1, depending on whether z is in the
upper or lower half plane, and hence the right hand side of inequality (2.9) is
equal to

√
2v. It follows that z cannot be an eigenvalue if v < 1/

√
2. If m 	= 0,

then for z in the left half plane the maximum equals
√

1 + |ζ(z)|2, while in
the right half plane it equals

√
1 + |ζ(z)|−2. Hence, for every eigenvalue z,

|ζ(z)| ≥
√

1 − v2

v
=: ρ > 1

if z is in the left half plane and |ζ(z)| ≤ ρ−1 if z is in the right half plane.
Since z and ζ(z)2 are related by the Möbius transformation

z = mc2
ζ2(z) + 1
ζ2(z) − 1

,

the domains {z ∈ C : |ζ(z)| ≥ ρ} and {z ∈ C : |ζ(z)| ≤ ρ−1} are mapped to
the two disks in the theorem, see [2] for details on the Möbius transformation.

�

From (2.9) one sees that the eigenvalue estimate is equivalent to the
inequality

(
4
(
1 + max{|ζ|2, |ζ|−2}))−1/2 ≤ 1

2c

∞∫
0

‖V (x)‖ dx. (2.10)

This should be compared to the result of [2] for the whole-line operator, which
may also be written as

(
2 + |ζ|2 + |ζ|−2

)−1/2 ≤ 1
2c

∞∫
0

‖V (x)‖ dx. (2.11)

It is instructive to note that if we replace V by λV , then in the weak coupling
limit λ → 0, the inequalities (2.10) and (2.11) take the form∣∣∣∣z ∓mc2

2m

∣∣∣∣
1/2

≤ Aλ

c

∞∫
0

‖V (x)‖dx+ o(λ), (2.12)

with A = 1 in the case of (2.10) and A = 1/2 in case of (2.11), and ∓
indicating whether z tends to mc2 or −mc2 as λ → 0. Note that (2.12) has
the semiclassical behaviour of a non-relativistic operator, the reason being
that the weak-coupling limit is equivalent to the non-relativistic limit: If we
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subtract (or add, respectively) the rest energy mc2 (i.e. replace z ∓ mc2

by z), we may consider c−1 as a small coupling constant (we now fix λ = 1,
whereas before, we considered c fixed). In the limit c → ∞, the Dirac operator
converges to the Schrödinger operator with Dirichlet or Neumann boundary
conditions, see Sect. 3. On the other hand, for the massless operator (or for
large eigenvalues of the massive operator), the inequalities (2.10) and (2.11)
reduce to

|z|0 ≤ B

c

∞∫
0

‖V (x)‖dx, (2.13)

with B = 1/2 in the case of (2.10) and B = 1 in case of (2.11). Inequality
(2.13) has the correct semiclassical behaviour of a relativistic operator. It is
an open and interesting question whether there exists a bound on the number
of complex eigenvalues of the massless Dirac operator in terms of the right
hand side of (2.13).

From the inequality

2 ≤ 4
(
1 + max{|ζ|2, |ζ|−2})

2 + |ζ|2 + |ζ|−2
≤ 4

it follows that the whole line estimate (2.11) continues to hold for the half-
line operators if the constant 1/2 on the right hand side is replaced by 1. For
“Dirichlet boundary conditions” ψ1(0) = 0 or ψ2(0) = 0 this may also be
seen from the following argument: suppose ψ = (ψ1, ψ2)t is an eigenfunction
of the half-line operator with potential V to an eigenvalue z. Since the parity
operator

Pψ(x) := σ3ψ(−x) =

(
ψ1(−x)

−ψ2(−x)

)

commutes withD0, it follows that z is an eigenvalue of the whole-line operator
with potential

Ṽ (x) :=

{
V (x) x ≥ 0,

V (−x) x < 0,

with corresponding eigenfunction

ψ̃(x) :=

{
ψ(x) x ≥ 0,

Pψ(x) x < 0,

and (2.10) follows from the whole-line estimate (2.11) for the operatorD0+Ṽ .
In fact, for the massive (m 	= 0) Dirac operator with Dirichlet boundary
conditions, inequality (2.10) may be refined, in a similar spirit as in [4] for
the Schrödinger operator, compare (1.4). We define the functions G∓ by

G∓(a, b) :=
√

sup
y≥0

[(1 + e−2y) ∓ 2ae−y cos(aby)], a, b ∈ R. (2.14)
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Theorem 2.2. Let α ∈ {0, π/2} and assume that v = ‖V ‖1/c < 1/
√

2. Then
every eigenvalue z = mc2(ζ2+1)/(ζ2−1) of the massive (m 	= 0) Dirac oper-
ator D0+V subject to the boundary conditions ψ1(0) cos(α)−ψ2(0) sin(α) = 0
satisfies(

(|ζ| + |ζ|−1)G∓

( |ζ| − |ζ|−1

|ζ| + |ζ|−1
, cot(t)

))−1

≤ 1
2c

∞∫
0

‖V (x)‖ dx,

with “−” if α = 0 and “+” if α = π/2, and with ζ = |ζ|eit, π < t < 2π.

Proof of Theorem 2.2. In the following, we set a = |ζ|−|ζ|−1

|ζ|+|ζ|−1 , b = cot(t).
Noting that for m 	= 0

κ = m

√(
ζ2 + 1
ζ2 − 1

)2

− 1, Im(κ) > 0,

we find that

Imκ =
2(|ζ| + |ζ|−1)| sin(t)|

(|ζ| − |ζ|−1)2 cos2(t) + (|ζ| + |ζ|−1)2 sin2(t)
,

Reκ = − sgn(sin(t))
2(|ζ| − |ζ|−1) cos(t)

(|ζ| − |ζ|−1)2 cos2(t) + (|ζ| + |ζ|−1)2 sin2(t)
.

For α = 0, we have β = −1 and for α = π/2, we have β = +1 (with β defined
in (2.8). Hence, (2.7) implies

sup
x,y≥0

‖cR0(x, y; z)‖2 =
|ζ| + |ζ|−1

4
sup
y≥0

[(
1 + e−2y

) (|ζ| + |ζ|−1
)

∓2e−y cos
(
Re(κ)Im(κ)−1y

) (|ζ| − |ζ|−1
)]

=

(|ζ| + |ζ|−1
)2

4
G∓ (a, b)2 .

We thus get

1 ≤ ‖Q(z)‖ ≤ ‖V ‖1

c

(|ζ| + |ζ|−1
)

2
G∓ (a, b) ,

and the claim follows from the Birman-Schwinger principle like in the proof
of Theorem 2.1. �

It follows from Theorem 2.2 that the eigenvalues of D0 + V may only
emerge from ±mc2 as the potential is “turned on”. However, if the first
moment of the potential is sufficiently small, then the eigenvalues can emerge
only from one of those points.

Theorem 2.3. Let α ∈ {0, π/2}. If

(2mc)2

⎛
⎜⎝
⎛
⎝ ∞∫

0

x‖V (x)‖dx

⎞
⎠

2

+

⎛
⎝ ∞∫

0

‖V (x)‖dx

⎞
⎠

2
⎞
⎟⎠ < 1,
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then the massive (m 	= 0) Dirac operator D0 + V does not have any eigen-
values near ±mc2 (again “+” for α = 0 and “−” for α = π/2).

Proof. We only prove the case α = 0, the other case is analogous. It follows
from (2.4)–(2.6) that

‖cR0(x, y; z)‖2 =
[
(1 + |ζ|2)| sin(κy)|2 + (1 + |ζ|−2)| cos(κy)|2] e−2Im(κ)x.

Using

sin(κy)e−2Im(κ)x ≤ κy ≤ κx, cos(κy)e−2Im(κ)x ≤ 1,

it follows that

‖cR0(x, y; z)‖2 = (1 + |ζ|2)κ2xy + (1 + |ζ|−2),

and hence

‖Q(z)‖2 ≤ 1
c2
(|z2 − (mc2)2| + |z ±mc2|2)

⎛
⎝ ∞∫

0

x‖V (x)‖dx

⎞
⎠

2

+
|z2 − (mc2)2| + |z ∓mc2|2

|z2 − (mc2)2|

⎛
⎝ ∞∫

0

‖V (x)‖dx

⎞
⎠

2

.

The claim follows again from the Birman-Schwinger principle. �

The eigenvalue inclusion provided by Theorem 2.2 is more intricate
than the estimate (1.4) for the Schrödinger operator, because the argument
and absolute value still appear simultaneously in the function G∓ in (2.14),
whereas they are separated in (1.4). However, there are special cases when
the expression of G∓ becomes simpler, schematically:
(1) z ∈ iR ⇐⇒ |ζ| = 1 ⇐⇒ a = 0;

G∓(0, b) =
√

2.

(2) z ∈ (−mc2,mc2) ⇐⇒ t = −π
2 ⇐⇒ b = 0;

G∓(a, 0) = max{2(1 ∓ a), 1}.
(3) z → ±mc2 ⇐⇒ |ζ|±1 → ∞ ⇐⇒ a → ±1;

lim
a→1−

G−(a, b) = lim
a→−1+

G+(a, b) = g(b).

Here, g is the function (1.5) appearing in the estimate (1.4) for the
Schrödinger operator. In case (1) Theorem 2.2 yields no improvement beyond
the generic estimate of Theorem 2.1. Case (2) occurs in particular if the poten-
tial is Hermitian-valued. Case (3) is of interest in the non-relativistic limit
(or the weak coupling limit); we will postpone this to Sect. 3.

Corollary 2.4. Let v := ‖V ‖1/c <
√

3/2 with V Hermitian-valued. If the
boundary conditions (1.2) hold with α = 0, then

σ(D0 + V ) ⊂ (−∞,−mc2 (1 − 2v2
)] ∪

[
mc2

(
1 − v2

1 +
√

1 − v2

)
,∞
)
.

For α = π/2, we have
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σ(D0 + V ) ⊂
(

−∞,−mc2
(

1 − v2

1 +
√

1 − v2

)]
∪ [mc2 (1 − 2v2

)
,∞) .

Remark 2.5. Note that these intervals are disjoint so long as v <
√

3/2. The
gap closes more slowly from the right than from the left if α = 0 and vice
versa if α = π/2; more precisely, e.g. in the first case the end points of the
gap are mc2

(
1 − 2v2

)
as opposed to mc2

(
1 − 1

2v
2 +O(v4).

)
Proof. We treat the case α = 0 only, the case α = π/2 is analogous. Let z be
in the gap of the above half-infinite intervals. Then ζ(z) lies on the negative
imaginary axis, i.e. we have cot(t) = 0 in Theorem 2.2 (case (2) above).
Hence, z ∈ C \ σ(D0) whenever(

(|ζ| + |ζ|−1)G−

( |ζ| − |ζ|−1

|ζ| + |ζ|−1
, 0
))−1

>
v

2
(2.15)

An elementary computation shows that

G−

( |ζ| − |ζ|−1

|ζ| + |ζ|−1
, 0
)

=

⎧⎨
⎩
√

2
(
1 − |ζ|−|ζ|−1

|ζ|+|ζ|−1

)
|ζ| ≤ √

3,

1 |ζ| ≥ √
3.

Thus, by (2.15), z ∈ C \ σ(D0) whenever |ζ| ∈ ( v√
1−v2 , ρ), where ρ >

√
3 is

the larger of the two solutions of the equation (|ζ|+ |ζ|−1)v
2 = 1. Multiplying

the latter by |ζ| and solving the quadratic equation, then using the relations

z = mc2
|ζ|2 − 1
|ζ|2 + 1

= mc2
(

1 − 2
|ζ|2 + 1

)
= −mc2

(
1 − 2|ζ|2

|ζ|2 + 1

)
,

one checks by direct computation that the claimed spectral estimates hold.
�

3. The Non-relativistic Limit

The spectral estimates for the Dirac operator on the half-line, Theorems 2.1
and 2.2 reduce to the corresponding bounds for the Schrödinger operator in
[4] in the non-relativistic limit c → ∞. Here, e.g. for V a scalar multiple of
the identity matrix,

lim
c→∞(D0 + V +mc2)−1 = 0 ⊕

(
1

2m
d2

dx2
+ V

)−1

,

lim
c→∞(D0 + V −mc2)−1 =

(
− 1

2m
d2

dx2
+ V

)−1

⊕ 0, (3.1)

where the limit operators satisfy a Dirichlet or a Neumann condition at zero.
For α ∈ {0, π/2}, and under the assumption that V is relatively D0-bounded
(this of course follows from our global assumption that V is smooth and has
compact support), this is a consequence of [9, Theorem 6.1] for abstract Dirac
operators. If α /∈ {0, π/2}, then D0 is not an abstract supersymmetric Dirac
operator in the sense of [9] because the projections onto the first and second
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components do not leave the domain of D0 invariant. Moreover, the proof of
Proposition 3.1 shows that V need not be D0-bounded.

Proposition 3.1. The limits in (3.1) exist in the norm-resolvent sense. In the
first case, the nontrivial part of the limit operator satisfies a

(a) Dirichlet boundary condition for α ∈ (0, π/2],
(b) Neumann boundary condition for α = 0.

In the second case, it satisfies a

(c) Dirichlet boundary condition for α ∈ [0, π/2),
(d) Neumann boundary condition for α = π/2.

Proof. Without loss of generality, we assume that m = 1/2. We only prove
(a) and (b), the proof of (c) and (d) is similar. The resolvent of D0 + mc2

is given by the formulas (2.3)–(2.6) with the substitution z → z − mc2 in
the expressions for κ(z) and ζ(z) in (2.2). Note that after the substitution,
we have that κ = O(1) and ζ = O(c−1). It is a straightforward computation
that the pointwise limit of the resolvent kernel is given by

lim
c→∞R0(x, y; z) = 0 ⊕ −1

2i
√−z

(
ei

√−z|x−y| − ei
√−z(x+y)

)
, α ∈ (0, π/2],

lim
c→∞R0(x, y; z) = 0 ⊕ −1

2i
√−z

(
ei

√−z|x−y| + ei
√−z(x+y)

)
, α = 0. (3.2)

The nontrivial part coincides with the resolvent kernel of the Dirichlet and
Neumann Laplacian, respectively.

To prove the convergence in the operator norm on L2(R+), one can use
the Schur test, see e.g. [5, Appendix 1]. To this end, one observes that

|R0(x, y; z) − lim
c→∞R0(x, y; z)| ≤ Ac−1e−Im

√−z|x−y|, x, y ∈ R+ (3.3)

for some universal constant A > 0; we omit the straightforward details. This
proves the claim if V = 0. In the general case, the claim follows from the
resolvent formula

(D0 + V − z)−1 = (D0 − z)−1

−(D0 − z)−1V 1/2(I +Q(z))−1|V |1/2(D0 − z)−1 (3.4)

since, upon replacing z by z − mc2 and using the Schur test together with
(3.3) again, the right hand side converges to a limit in which D0 is replaced
by the second derivative. �

In view of Proposition 3.1, Theorem 2.2 reduces to [4, Theorem 1.1] in
the non-relativistic limit c → ∞. Indeed, Theorem 2.1 implies that, if z is an
eigenvalue, then |ζ|±1 → ∞, which is equivalent to z → ±mc2. Subtracting
mc2 from D0 + V amounts to fixing the limit to +mc2. In view of

(|ζ| + |ζ|−1)G−

( |ζ| − |ζ|−1

|ζ| + |ζ|−1
, cot(t)

)
=
∣∣∣∣ 2mc2

z −mc2

∣∣∣∣
1/2

g(cot(t)) + o(z −mc2),

we obtain, upon setting m = 1
2 and replacing z by z +mc2 in Theorem 2.2,
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|z|1/2 ≤ 1
2
g(cot(θ/2))

∞∫
0

|V (x)|dx, z = |z|eiθ,

in accordance with (1.4).
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214, pp. 39–44. Birkhäuser/Springer Basel AG, Basel (2011)

[5] Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, 2nd
edn, vol. 249. Springer, New York (2008)

[6] Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, 2nd
edn, vol. 250. Springer, New York (2009)

[7] Keller, J.B.: Lower bounds and isoperimetric inequalities for eigenvalues of the
Schrödinger equation. J. Math. Phys. 2, 262–266 (1961)

[8] Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique
continuation for second order constant coefficient differential operators. Duke
Math. J. 55(2), 329–347 (1987)

[9] Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer,
Berlin (1992)

[10] Tomas., P.A.: A restriction theorem for the Fourier transform. Bull. Am. Math.
Soc. 81, 477–478 (1975)

[11] Weidmann, J.: Lineare Operatoren in Hilberträumen. Teil II. Mathematische
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