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Abstract. In the present article, we develop a new functional framework
for the study of scalar wave scattering by objects, called multi-screens,
that are arbitrary arrangements of thin panels of impenetrable materials.
From a geometric point of view, multi-screens are a priori non-orientable
non-Lipschitz surfaces. We use our new framework to study boundary
integral formulations of the scattering by such objects.
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1. Introduction

Numerical computation of acoustic wave scattering by complex arrangements
of panels made of some sound-soft material is of great interest in applications.
It often occurs that some of the pieces composing such an arrangement have
a thickness much smaller than the wavelength, whereas they are large in the
other directions; such pieces of material may then be considered infinitely
thin, and we call them “screens”.

In this article we aim to study integral equation formulations for
strongly elliptic boundary value problems with particular focus on the scalar
Helmholtz equation when a boundary condition is perscribed on a screen-like
object that may consist of several panels. We call such an object a “multi-
screen” and a typical representative is shown in Fig. 2.

Integral equations for acoustic scattering by screens have already been
considered in numerous works, such as [1–3,10–15,22,23]. These references
provide full description of integral formulation for wave scattering by screens
for the case where they can be described, from a geometrical point of view,
as smooth manifolds with (smooth) boundary. In [4], the authors extended
these results to the case where only Lipschitz regularity was assumed for
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Figure 1. A two-dimensional screen structure (black) can
be inflated to domain, whose boundary (blue) corresponds
to the original screen. Obviously, each point on the screen is
associated with two points on the new surface (color figure
online)

the surface describing the screen. So far though, to our knowledge, it has
always been assumed that the screens where represented by surfaces that
are everywhere locally orientable i.e. the surface posseses two sides in the
neighbourhood of any of its point. Unfortunately this assumption excludes a
number of cases, certainly relevant for applications, where the surface would
have three or more branches joining along a curve on the surface, see, for
example, Fig. 2.

In the geometrical configurations represented in this figure, important
theoretical difficulties arise from the presence of junction points located at
the border of three or more panels. Such a geometrical feature has already
been studied in the litterature on boundary integral equations for transmis-
sion problems with penetrable scatterers, see [7,18] and references therein,
although this is a different context compared to scattering by screens.

Because of junction points, the surfaces represented in Fig. 2 do not
belong to the class of Lipschitz manifolds. As a consequence the result pre-
sented in [4,8] are not directly reusable here. Adapting the results of [4,8] to
this type of geometry is the main purpose of the present document. Here we
focus on Helmholtz equation. We will adress the case of Maxwell’s equations
in a forthcoming work.

For multi-screen we are going to recover results very similar to what is
already known in simpler situations: Green’s formula, representation theorem,
etc. . . . In many respects the conventional theory can be adapted by treating
the screens as objects of finite thickness, with one exception however: the
jump formulas do not hold in the same form as in Lemma 4.1 of [8].

In order to establish these results, we need to construct a new functional
framework, that allows to talk about traces on the surface of multi-screens.
Buffa and Christiansen [4], also introduced a new functional framework
adapted to the study of scattering by standard Lipschitz screens. The present
approach is much different, though. The intuition behind it is to treat multi-
screens as if they had an (infinitesimal) thickness so that, crudely speaking,
they can be viewed as orientable Lipschitz manifolds without boundary, see
Fig. 1.
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The outline of this article is as follows. In the next section, we pro-
vide a precise definition of a multi-screen. In Sect. 3, we recall well known
results concerning Sobolev spaces and trace spaces. In Sect. 4, we intro-
duce Sobolev spaces of functions adapted to multi-screens. These functions
may admit jump across the screens. In Sect. 5, we define trace spaces on
multi-screens. These new trace spaces, called multi-trace spaces, generalize
standard traces, and their definition guarantees that Green’s formula holds.
In Sect. 6, we introduce remarkable subspaces of the multi-trace spaces. We
also exhibit close relationship between these remarkable subspaces, and stan-
dard trace spaces. In Sect. 7, we study boundary value problems set around
a multi-screen, with boundary values prescribed at the multi-screen, and we
also provide two useful density results. In Sect. 8, we introduce and study
layer potentials adapted to multi-screens. We prove an analogue of the rep-
resentation theorem, jump formulas, and show that the Dirichlet trace of the
single layer potential, and the Neumann trace of the double layer potentials
are isomorphisms.

Remark. Throughout this article, we systematically restrict the analysis to
R

d with d = 2 or 3 only.

2. Geometry

Before providing a detailed definition for the geometries that we wish to con-
sider, let us first recall the definition of a Lipschitz screen in R

3 as proposed
by Buffa and Christiansen [4].

Definition 2.1 (Lipschitz screen). A Lipschitz screen (in the sense of Buffa–
Christiansen) is a subset Γ ⊂ R

3 that satisfies the following properties:
• the set Γ is a compact Lipschitz two-dimensional sub-manifold with

boundary,
• denoting ∂Γ the boundary of Γ, we have Γ = Γ\∂Γ,
• there exists a finite covering of Γ with cubes such that, for each such

cube C, denoting by a the length of its sides, we have
* if C contains a point of ∂Γ, there exists an orthonormal basis of R

3

in which C can be identified with (0, a)3 and there are Lipschitz
continuous functions ψ : R → R and φ : R

2 → R with values in
(0, a) such that

Γ ∩ C = {(x, y, z) ∈ C | y < ψ(x), z = φ(x, y)},

∂Γ ∩ C = {(x, y, z) ∈ C | y = ψ(x), z = φ(x, y)},
(2.1)

* if C contains no boundary point, there exists a Lipschitz open set
Ω ⊂ R

3 such that we have Γ ∩ C = ∂Ω ∩ C.

The definition of a Lipschitz screen in R
2 is very similar, but simpler. The

only difference compared to Definition 2.1 is that Condition (2.1) should be
replaced by: there is a Lipschitz continuous function φ : R → R with values
in (0, a) and a constant a0 ∈ (0, a) such that
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Figure 2. Two examples of multi-screen geometries

Γ ∩ C = {(x, y) ∈ C | x < a0, y = φ(x)}
and ∂Γ ∩ C = {(x, y) ∈ C | x = a0, y = φ(x)}.

Now let us focus on potentially more complicated surfaces. In order to propose
a convenient definition for surfaces shaped like screen with several branches,
we first introduce an intermediary definition.

Definition 2.2 (Lipschitz partition). A Lipschitz partition of R
d is a finite

collection of Lipschitz open sets (Ωj)j=0...n such that R
d = ∪n

j=0Ωj and
Ωj ∩ Ωk = ∅, if j �= k.

Definition 2.3 (Multi-screen). A multi-screen is a subset Γ ⊂ R
d such that

there exists a Lipschitz partition of R
d denoted (Ωj)j=0...n satisfying Γ ⊂

∪n
j=0∂Ωj and such that, for each j = 0 . . . n, we have Γ ∩ ∂Ωj = Γj where

Γj ⊂ ∂Ωj is some Lipschitz screen (in the sense of Buffa–Christiansen).

Note that a Lipschitz screen, in the sense of Definition 2.1, is a multi-
screen. The surfaces represented in Fig. 2 represent multi-screens that are not
Lipschitz screens. Besides, the skeleton ∪j=0...n∂Ωj of a Lipschitz partition
(Ωj)j=0...n of R

d is a multi-screen.
A multi-screen is not a priori orientable which makes it more delicate

to analyze compared to a more standard surface such as the boundary of a
C∞−domain. For example, a Möbius strip is a Lipschitz screen in the sense of
Buffa and Christiansen, as was pointed out in [4], although it is not globally
orientable (Fig. 3).

Of course, the Möbius strip fits the definition of a multi-screen: as is
shown in Fig. 4, one can find a Lipshitz partition that contains the Möbius
strip in its skeleton.

Remark 2.4. A multi-screen according to Definition 2.3 may contain points
where three or more “branches” meet so that, at these points, the multi-
screen is not two-sided. This situation compounds difficulties and forces us
to adopt an abstract point of view for concepts such as trace operators and
trace spaces that are more straightforward in other contexts. Hence part of
the present paper will focus on properly defining objects and results that are
already very well known in other classical situations.
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Figure 3. Möbius strip

Figure 4. Lipschitz partition with Möbius strip in its skele-
ton

We end this section by stating precisely what we mean by “the boundary
of a multi-screen”. If Γ is multi-screen, define int(Γ) as the set of points
x ∈ Γ such that there exists a ball Bx centered at x and a Lipschitz partition
R

d = ∪n
j=0Ωj satisfying B ∩ Γ = B ∩n

j=0 ∂Ωj . We set

∂Γ = Γ \ int(Γ).

This definition matches the classical definition of ∂Γ in the case where Γ is a
Lipschitz screen (in the sense of Buffa–Christiansen).

3. Standard Functional Framework

A significant part of the present article is devoted to extending already well
established results related to Sobolev spaces and their traces to the case
where the domain of definition of the functions under consideration excludes
objects whose geometry may be as complex as in the previous section. Before
deriving this extended functional setting though, let us recall precisely what
we regard as “standard functional framework”, at least in the context of
integral equations for strongly elliptic operators. For further details about
the content of this section, we refer the reader to [16, Chapter 3] or [20,
Chapter 2].

In this section, we consider an arbitrary open bounded Lipschitz domain
Ω ⊂ R

d, and consider any Lipschitz screen Γ ⊂ ∂Ω, see Definition 2.1.
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3.1. Standard Dirichlet Traces

With the conventional notation H1(Ω) = {v ∈ L2(Ω) | ‖v‖2
H1(Ω) :=

∫
Ω

|v|2 +
|∇v|2 dx < ∞ }, as usual we define H1

0,Γ(Ω) as the closure of C∞
0,Γ(Ω) := {ϕ ∈

C∞(Ω) | ϕ = 0 in a neighbourhood of Γ } with respect to the norm ‖ ‖H1(Ω).

The point trace operator τd,Γ : v �→ v|Γ induces a continuous map from
H1(Ω) into L2(Γ), see [20, Thm. 2.6.8] and [16, Thm. 3.37]. The following
definitions of Hilbert spaces are standard:

H
1
2 (Γ) :=

{
u|Γ | u ∈ H1(Ω)

}
= Range(τd,Γ),

H̃
1
2 (Γ) :=

{
u|Γ | u ∈ H1

0,∂Ω\Γ
(Ω)

}
,

(3.1)

where H1
0,∂Ω\Γ

(Ω) is defined in the same manner as H1
0,Γ(Ω) (as ∂Ω \ Γ is a

Lipschitz screen as well). Customarily, definitions of these spaces are given
based on local charts mapping functions from their respective parameter
domains [20, Def. 2.4.1]. This yields “proper function spaces”.

There is an alternative angle from which to view H
1
2 (Γ). It relies on

the (a priori non-trivial) result that H1
0,Γ(Ω) = Ker(τd,Γ), see [16, Chap. 3],

so that the trace operator τd,Γ induces an isomorphism from H1(Ω)/H1
0,Γ(Ω)

onto H1/2(Γ). Through this isomorphism we can identify both spaces in the
sequel and write

H
1
2 (Γ) = H1(Ω)/H1

0,Γ(Ω). (3.2)

In fact thanks to the Lipschitz property of Γ and Sobolev extension theorems
this definition is intrinsic in the sense that H1(R\Ω)/H1

0,Γ(R\Ω) yields a
Hilbert space with equivalent norm. Summing, up it is possible to introduce
trace spaces as quotient spaces and this is the approach we are going to pursue
in the sequel, because it can cope with multi-screens, which pose a challenge
to chart based techniques.

3.2. Standard Neumann Traces

Similar results and definitions hold for Neumann traces. We recall H(div,Ω) =
{q ∈ L2(Ω)d | ‖q‖2

H(div,Ω) :=
∫
Ω

|q|2 + |div(q)|2 dx < +∞}, and define
H0,Γ(div,Ω) as the closure of C∞

0,Γ(Ω)d with respect to ‖ ‖H(div,Ω).
Denoting by n the normal vector to ∂Ω pointing toward the exterior of

Ω, the normal component trace operator τn,∂Ω : q �→ n · q|∂Ω induces a con-
tinuous and surjective mapping from H(div,Ω) onto H−1/2(∂Ω) := H1/2(∂Ω)′

(the dual space to H1/2(∂Ω)), see [20, Thm. 2.7.7] and [16, Thm. 4.3]. In the
usual way we introduce

H− 1
2 (Γ) := {q|Γ | q ∈ H− 1

2 (∂Ω)},

H̃− 1
2 (Γ) := {n · p|∂Ω | p ∈ H0,∂Ω\Γ(div,Ω)}.

(3.3)

where the symbol “|Γ” in the definition of H−1/2(Γ) should be understood
as the restriction operator in the sense of distributions on ∂Ω. Again, these
are “proper function spaces”. As above, quotient spaces offer an alternative,
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as we have H0,Γ(div,Ω) = Ker(τn,Γ), so that the normal trace allows the
following identification

H−1/2(Γ) = H(div,Ω)/H0,Γ(div,Ω)

= H(div,Rd \ Ω)/H0,Γ(div,Rd \ Ω). (3.4)

For the remainder of this article we use the quotient space norms induced by
(3.2) and (3.4) as norms on H

1
2 (Γ) and H−1/2(Γ), respectively.

4. Domain Based Function Spaces

We now consider the situation where the domain of definition of functions
contains a multi-screen Γ ⊂ R

d, see Definition 2.3. We aim at adapting the
result of the previous section to domains of the form R

d \Γ. As the geometry
is non-standard, we elaborate many details in order to avoid any ambiguity.
First, we focus on domain based functions.

The space H1(Rd \Γ) will stand for the set of functions u ∈ L2(Rd) such
that there exists p ∈ L2(Rd)d satisfying

∫

Rd\Γ

u div(q)dx = −
∫

Rd\Γ

p · q dx ∀q ∈ D(Rd \ Γ)d,

where, for any open set ω ⊂ R
d, the space D(ω) comprises functions ϕ ∈

C∞(ω) such that supp(ϕ) ⊂ ω. By definition, we may write p = ∇u|
Rd\Γ (in

the sense of distributions on R
d\Γ). A priori, and this is a crucial observation,

we have p �= ∇u in the sense of distributions on R
d. We shall equip this space

with the scalar product

(u, v)H1(Rd\Γ) :=
∫

Rd\Γ

uv dx +
∫

Rd\Γ

(∇u|
Rd\Γ) · (∇v|

Rd\Γ) dx

∀u, v ∈ H1(Rd \ Γ). (4.1)

With this scalar product, it is routine calculus to check that H1(Rd \ Γ) is a
Hilbert space. We equip this space with the norm defined by

‖u‖2
H1(Rd\Γ)

:= ‖u‖2
L2(Rd) + ‖p‖2

L2(Rd)

where p = ∇u|
Rd\Γ.

The space H1(Rd\Γ) strictly contains H1(Rd) as a non-trivial closed subspace.
Indeed the elements of H1(Rd \ Γ) may “jump” across Γ (a precise definition
of “jumps” will be provided in Sect. 6.2) whereas this is not possible for
elements of H1(Rd). In the sequel we shall also denote

H1
loc(R

d \ Γ) =
{
u ∈ L2

loc(R
d) | ϕu ∈ H1(Rd \ Γ) ∀ϕ ∈ D(Rd)

}
,

equipping this space with its classical Frechet topology induced by the semi-
norms ‖ ‖H1(K) for all compact sets K ⊂ R

d, see [19, Chap. 1].
In addition, we consider similar definitions for H(div,Rd \ Γ) and Hloc

(div, R
d \ Γ). For the scalar product, the operator div replaces the operator
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∇. Once again H(div,Rd \Γ) contains H(div,Rd) as a strict non-trivial closed
subspace.

It is clear how to generalize the previous definitions to the case of func-
tions defined over Ω \Γ (instead of R

d \Γ) where Ω is any bounded Lipschitz
open set containing Γ.

Proposition 4.1 (Rellich embedding theorem). Consider any bounded Lip-
schitz open set Ω ⊂ R

d such that Γ ⊂ Ω. Then H1(Ω \ Γ) is compactly
embedded into L2(Ω).

Proof. Take a sequence un ∈ H1(Ω \ Γ), n ≥ 0 such that (‖un‖H1(Rd\Γ))n≥0

is bounded. Consider an open neighbourhood ω0 of Γ such that Γ ⊂ ω0 ⊂
ω0 ⊂ Ω. Consider another open set ω1 ⊂ R

d such that Γ ∩ ω1 = ∅ and
R

d ⊂ ω0 ∪ω1. Take two smooth cut-off functions ψ0, ψ1 that form a partition
of unity subordinated to ω0∪ω1. Clearly ψ1un ∈ H1(Ω) for all n so, extracting
a subsequence if necessary, it may be assumed that (ψ1un)n≥0 converges in
L2(Ω).

There remains to show that, up to some extraction, the sequence
(ψ0un)n≥0 converges in L2(Ω). Since ψ0 vanishes in the neighbourhood of
∂Ω, ψ0un can be considered as defined over all of R

d. Like in Definition 2.3,
there exists a Lipschitz partition R

d = ∪n
j=0Ωj such that Γ ⊂ ∪n

j=0∂Ωj . For
each j = 0 . . . n, we have ψ0un|Ωj

∈ H1(Ωj) and the sequence (ψ0un|Ωj
)n≥0

admits a subsequence that converges in L2(Ωj). Since (Ωj)j=0...n is a finite
family, this concludes the proof. �

We also need to introduce spaces of functions that vanish in the neighborhood
of Γ (such functions, in particular, do not jump across Γ).

Definition 4.2. We define H1
0,Γ(Rd) to be the closure in H1(Rd \ Γ) of the set

D(Rd \Γ). We also define H0,Γ(div,Rd) as the closure in H(div,Rd \Γ) of the
set D(Rd \ Γ)d.

We do not rely on any trace operator for defining H1
0,Γ(Rd) and H0,Γ(div,Rd).

Indeed Γ is not (a priori) a Lipschitz manifold, hence the trace operator has
not been properly defined yet. By construction H1

0,Γ(Rd) and H0,Γ(div,Rd)
are closed subspaces of H1(Rd \ Γ) and H(div,Rd \ Γ) respectively.

5. Multi-Trace Spaces

In the sequel, we shall introduce several types of trace spaces. The first one
is a counterpart of the trace spaces we already introduced in a previous arti-
cle dedicated to boundary integral formulations for the scattering by multi-
subdomain objects, see [6]. With these spaces, traces at the boundary of the
screen may admit different values depending on which side of the screen is
considered. Taking the cue from (3.2) and (3.4), to construct such traces, we
use quotient spaces. We set
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H
+ 1

2 (Γ) := H1(Rd \ Γ)/H1
0,Γ(Rd),

H
− 1

2 (Γ) := H(div,Rd \ Γ)/H0,Γ(div,Rd).
(5.1)

The spaces H
1/2(Γ) and H

−1/2(Γ) will be called Dirichlet and Neumann
multi-trace spaces, respectively. Their elements will be tagged by ,̇ for instance
u̇, ṗ, and they are equipped with the usual quotient space norms ‖ ‖H±1/2(Γ).

In Definition (5.1), it is very important to keep in mind that H1(Rd\Γ) �=
H1(Rd). In the sequel, we introduce “trace like” operators as the canonical
surjections

πd : H1(Rd \ Γ) → H
+ 1

2 (Γ) and πn : H(div,Rd \ Γ) → H
− 1

2 (Γ).

For two elements u, v ∈ H1(Rd \ Γ) such that u and v coincide on a bounded
neighbourhood of Γ, we have πd(u) = πd(v). This allows to extend πd as a
continuous map from H1

loc(R
d \ Γ) to H

1/2(Γ). Similarly πn can be extended
as a continuous map from Hloc(div,Rd \ Γ) to H

−1/2(Γ).

5.1. Duality Pairing

Note that Green’s Formula in R
d does not hold for elements of H1(Rd\Γ) and

H(div,Rd \ Γ). Indeed, pick any u ∈ H1(Rd \ Γ) and any p ∈ H(div,Rd \ Γ),
which, in general, will yield

∫
Rd\Γ

p · ∇u + u div(p) dx �= 0. However, note
that
∫

Rd\Γ

(p + q) · ∇(u+ v) + (u+ v) div(p + q) dx =
∫

Rd\Γ

p · ∇u+ u div(p) dx

∀v ∈ H1
0,Γ(Rd), ∀q ∈ H0,Γ(div,Rd).

This suggests a bilinear pairing between H
1/2(Γ) and H

−1/2(Γ). Indeed, for
u̇ ∈ H

1/2(Γ) and ṗ ∈ H
−1/2(Γ), choose u ∈ H1(Rd \Γ) and p ∈ H(div,Rd \Γ)

such that πd(u) = u̇ and πn(p) = ṗ, and set
∫

[Γ]

u̇ ṗ dσ :=
∫

Rd\Γ

p · ∇u+ u div(p) dx. (5.2)

Please be aware that the integral in the left hand side above should not be
read as an integral with respect to the Lebesgue measure on Γ. It is merely a
notational convention hinting at the relationship of (5.2) with Green’s For-
mula. Similarly to H±1/2(∂Ω) in the case of a smooth boundary, see Sect. 3,
H

±1/2(Γ) are dual to each other via this pairing.

Proposition 5.1. The pairing � , �: H
+1/2(Γ) × H

−1/2(Γ) → C defined by

� v̇, q̇ � =
∫

[Γ]

q̇ v̇ dσ ∀v̇ ∈ H
1
2 (Γ), ∀q̇ ∈ H

− 1
2 (Γ), (5.3)

induces an isometric duality between H
+1/2(Γ) and H

−1/2(Γ).
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Proof. Pick any u̇ ∈ H
+1/2(Γ) and write � u̇, · � for the linear form

ṗ �→� u̇, ṗ � on H
−1/2(Γ). We find

‖ � u̇, · � ‖H−1/2(Γ) = sup
ṗ∈H

− 1
2 (Γ)

q̇ �=0

| � u̇, ṗ � |
‖ṗ‖

H
− 1

2 (Γ)

= sup
p∈H(div,Rd\Γ)

p�=0

∫
Rd\Γ

p · ∇u + u div(p) dx

‖p‖H(div,Rd\Γ)

≤ ‖u‖H1(Rd\Γ) .

The above inequality holds for any u ∈ H1(Rd \ Γ) such that πd(u) = u̇.
Hence, � u̇, · �∈ (H−1/2(Γ))′. Let u ∈ H1(Rd \ Γ) be the minimal norm
representative of u̇, which fulfills

∫

Rd\Γ

∇u · ∇v + u v dx = 0 ∀v ∈ H1
0,Γ(Rd). (5.4)

This implies ‖u‖H1(Rd\Γ) = ‖u̇‖
H1/2(Γ). Set p := ∇u. Since (5.4) means that

−Δu+ u = 0 in R
d \ Γ, we infer p ∈ H(div,Rd \ Γ), div(p) = u, and, finally,

‖p‖H(div,Rd\Γ) = ‖u‖H1(Rd\Γ). As a consequence

‖ � u̇, · � ‖H−1/2(Γ) ≥
∫

Rd\Γ
p · ∇u+ u div(p) dx

‖p‖H(div,Rd\Γ)

≥ ‖u‖H1(Rd\Γ) .

We conclude that u̇ �→� u̇, · � is an isometry H
+1/2(Γ) �→ (H−1/2(Γ))′. By

similar arguments, one establishes that also ṗ �→� ·, ṗ � spawns an isometry
H

−1/2(Γ) �→ (H+1/2(Γ))′, which concludes the proof. �

As an immediate consequence of the duality between H
1
2 (Γ) and H

− 1
2 (Γ) we

obtain that H1(Rd \ Γ) and H0,Γ(div,Rd) are polar to each other, as well as
H1

0,Γ(Rd) and H(div,Rd \ Γ).

Corollary 5.2. Let u ∈ H1(Rd \ Γ) and p ∈ H(div,Rd \ Γ). We have the
following characterizations,

u ∈ H1
0,Γ(Rd) ⇐⇒

∫

Rd\Γ

q · ∇u+ u div(q) dx = 0 ∀q ∈ H(div,Rd \ Γ)

p ∈ H0,Γ(div,Rd) ⇐⇒
∫

Rd\Γ

p · ∇v + v div(p) dx = 0 ∀v ∈ H1(Rd \ Γ)

5.2. Interpretation of Multi-Traces in Terms of Functions

In this paragraph we describe as explicitly as possible the spaces H
±1/2(Γ) for

particular situations, relating these spaces to the more standard functional
framework recalled in Sect. 3.

The skeleton of a Lipschitz partition. We first illustrate the concepts intro-
duced at the beginning of Sect. 5 by applying them to the particular case
where Γ = ∪n

j=0∂Ωj for some Lipschitz partition (Ωj)j=0...n of R
d, see Def-

inition 2.2. In this situation, depicted in Fig. 5, simple localization provides
an isometric isomorphism
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Figure 5. Multi-screens obtained from sub-domain bound-
aries

Loc : H1(Rd \ Γ) → H1(Ω0) × · · · × H1(Ωn).

Writing Extj : H
1
2 (∂Ωj) → H1(Ωj) for some right inverse of the point trace

operator, obviously

πD ◦ Loc−1 ◦(Ext0 × · · · × Extn) : H
1
2 (∂Ω1) × · · · × H

1
2 (∂Ωn) → H

+ 1
2 (Γ).

(5.5)

is a well-defined isometric isomorphism. A similar isomorphism can be
obtained for Neumann traces. Casually speaking, this permits us to iden-
tify

H
+ 1

2 (Γ) ∼= H+ 1
2 (∂Ω0) × · · · × H+ 1

2 (∂Ωn),

H
− 1

2 (Γ) ∼= H− 1
2 (∂Ω0) × · · · × H− 1

2 (∂Ωn).
(5.6)

There is a clear interpretation of (5.2) in this case: take u ∈ H1(Rd \ Γ) and
p ∈ H(div,Rd \ Γ). Let uj = u|Ωj

and pj = p|Ωj
, and set vj = uj |∂Ωj

∈
H1/2(∂Ωj) and qj = nj ·pj |∂Ωj

∈ H−1/2(∂Ωj) where nj is the normal to ∂Ωj

directed toward the exterior of Ωj . Identity (5.2) then reads

� u̇, ṗ � =
∫

[Γ]

u̇ ṗ dσ =
∫

Rd\Γ

p · ∇u+ u div(p) dx

=
n∑

j=0

∫

Ωj

pj · ∇uj + uj div(pj) dx =
n∑

j=0

∫

∂Ωj

vj pj dσ (5.7)

Identity (5.7) is consistent with the usual Green formula.

Standard Lipschitz screens. Next, we illustrate the concepts of this section
by applying them to another special situation shown in Fig. 6. Let Ω1 be
a bounded Lipschitz domain, and let Γ ⊂ ∂Ω1 be a Lipschitz screen in the
sense of Definition 2.1. Let us denote Ω2 = R

d \ Ω1. We have H1(Rd \ Γ) ⊂
H1(Rd \ ∂Ω1) which induces a natural injection

H
1
2 (Γ) = H1(Rd \ Γ)/H1

0,Γ(Rd) ↪→ H1(Rd \ ∂Ω1)/H1
0,Γ(Rd).

From the natural identification H1(Rd \ ∂Ω1) ∼= H1(Ω1) × H1(Ω2) that asso-
ciates u with (u|Ω1 , u|Ω2) we obtain an isomorphism that we may express as
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Figure 6. Lipschitz screen contained in the boundary of a
domain

H1(Rd \ ∂Ω1)/H1
0,Γ(Rd) ∼=

[
H1(Ω1)/H1

0,Γ(Ω1)
]

×
[
H1(Ω2)/H1

0,Γ(Ω2)
]

∼= H
1
2 (Γ) × H

1
2 (Γ).

Here, in the spirit of (3.2), we have linked H
1
2 (Γ) with quotient spaces. From

this discussion we can conclude an injection

H
+ 1

2 (Γ) ↪→ H
1
2 (Γ) × H

1
2 (Γ). (5.8)

Now let us show how the injection (5.8) can be constructed in detail. Consider
an element u̇ ∈ H

1/2(Γ). Take any u ∈ H1(Rd \ Γ) such that πd(u) = u̇, and
make the following identification

u̇ ↔ (u1|Γ, u2|Γ) where uj = u|Ωj
, j = 1, 2.

In this construction, the traces u1, u2 actually satisfy a compatibility con-
dition. Indeed consider a function ũ ∈ H1(Rd) such that ũ|Ω2 = u2 (which
exists thanks to Sobolev extension theorems), and set ũ1 = ũ|Ω1 . Observe
that ũ1|Γ = u2|Γ, and we have

u1 − ũ1 ∈ H1
0,∂Ω\Γ

(Ω) ⇒ u1|Γ − ũ1|Γ = u1|Γ − u2|Γ ∈ H̃
1
2 (Γ). (5.9)

A thorough inspection of the above arguments shows that (5.9) is a necessary
and sufficient condition to ensure that there exists u ∈ H1(Rd \ Γ) such that
u1|Γ, u2|Γ are the traces of u|Ω1 and u|Ω2 on Γ. Thus, localization to Ω1 and
Ω2 together with local traces yield an isomorphism

H
+ 1

2 (Γ) ∼= {
(v1, v2) ∈ H

1
2 (Γ)2 | v1 − v2 ∈ H̃

1
2 (Γ)

}
. (5.10)

Similarly we can prove

H
− 1

2 (Γ) ∼= {
(q1, q2) ∈ H− 1

2 (Γ)2 | q1 + q2 ∈ H̃− 1
2 (Γ)

}
. (5.11)

The “+” sign coming into play in Definition (5.11) is related to the change
in the normal direction depending on wich side of Γ is involved, see Fig. 1.

In addition, it is possible to give an explicit expression of the duality pairing
� , � defined in (5.2)–(5.3) by means of Identifications (5.10) and (5.11).
Indeed consider any u̇ ∈ H

1/2(Γ) and ṗ ∈ H
−1/2(Γ). Pick u ∈ H1(Rd \ Γ)

and p ∈ H(div,Rd \ Γ) such that πd(u) = u̇ and πn(p) = ṗ. For j = 1, 2,
set uj = u|Ωj

and pj = p|Ωj
, and let nj refer to the normal vector to Ωj
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directed toward the exterior of Ωj . Statement (5.10) and (5.11) is based on
the following identifications

u̇ ↔ (v1, v2) and ṗ ↔ (q1, q2),

where

{
v1 = u1|Γ, v2 = u2|Γ,
q1 = n1 · p1|Γ, q2 = n2 · p2|Γ.

According to Green’s formula, we have
∫

[Γ]

u̇ ṗ dσ =
∫

Rd\Γ

p · ∇u+ u div(p) dx

=
∑

j=1,2

∫

Ωj

p · ∇u+ u div(p) dx

=
∑

j=1,2

∫

∂Ωj

qj vj dσ.

The boundary terms in the identity above can be simplified further. Indeed,
since u ∈ H1(Rd\Γ) we have v1 = v2 on ∂Ω1\Γ. Similarly, since p ∈
H(div,Rd\Γ) and n1 = −n2, we have q1 = −q2 on ∂Ω1\Γ, which leads to
cancellation of terms off Γ:

� v̇, q̇ � =
∫

[Γ]

u̇ ṗ dσ =
∑

j=1,2

∫

∂Ωj

qj vj dσ =
∫

Γ

v1 q1 + v2 q2 dσ. (5.12)

6. Single-Trace and Jump Spaces

We return to the general case of an arbitrary multi-screen Γ ⊂ R
d according to

Definition 2.1. As regards the multi-trace spaces H
±1/2(Γ) they contain multi-

valued functions: the sides of each panel of Γ could be regarded as distinct
surfaces, and traces on both sides do not necessarily match, see Fig. 1. Now
we are going to single out subspaces of H

±1/2(Γ) that may be considered as
standard trace spaces of single-valued functions.

6.1. Single-Trace Spaces

We can obtain particular subspaces of H
±1/2(Γ) by simply replacing “R

d \Γ”
by “R

d” in (5.1).

Definition 6.1 (Single-trace spaces). We introduce single-trace spaces as the
quotient spaces

H+ 1
2 ([Γ]) = H1(Rd)/H1

0,Γ(Rd)

H− 1
2 ([Γ]) = H(div,Rd)/H0,Γ(div,Rd).

(6.1)

They owe their name to the intuitive point of view that the elements of the
single-trace spaces can be understood as multi-traces whose values on both
sides of the screen either agree (in the case of H1/2([Γ])) or have opposite
sign (in the case of H−1/2([Γ])).
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Corollary 6.2. The space H+1/2([Γ]) (resp. H−1/2([Γ])) is a closed subspace
of H

+1/2(Γ) (resp. H
−1/2(Γ))

Proof. The assertion is immediate, since H1(Rd) (resp. H(div,Rd)) is closed
in H1(Rd \ Γ) (resp. H(div,Rd \ Γ)). �

There is no duality relationship between H+ 1
2 ([Γ]) ⊂ H

+1/2(Γ) and
H− 1

2 ([Γ]) ⊂ H
−1/2(Γ) with respect to the pairing � , � between the multi-

trace spaces. On the contrary, both spaces are polar to each other, which
provides a weak characterization:

Proposition 6.3. For u̇ ∈ H
+ 1

2 (Γ) and ṗ ∈ H
− 1

2 (Γ) holds true

u̇ ∈ H+ 1
2 ([Γ]) ⇐⇒

∫

[Γ]

u̇ q̇ dσ = 0 ∀q̇ ∈ H− 1
2 ([Γ]),

ṗ ∈ H− 1
2 ([Γ]) ⇐⇒

∫

[Γ]

v̇ ṗ dσ = 0 ∀v̇ ∈ H+ 1
2 ([Γ]).

(6.2)

Proof. We will show only the first assertion, since the proof for the second is
very similar. First, take any u ∈ H1(Rd) such that πd(u) = u̇. Then for any
q̇ ∈ H− 1

2 ([Γ]), considering q ∈ H(div,Rd) such that πn(q) = q̇, the standard
Green formula over all R

d yields
∫

[Γ]

u̇ q̇ dσ =
∫

Rd\Γ

q · ∇u+ u div(q)dx =
∫

Rd

q · ∇u+ u div(q)dx = 0.

Now consider u̇ ∈ H
1/2(Γ) such that the condition in the right hand side of

(6.2) holds. Take a u ∈ H1(Rd \ Γ) such that πd(u) = u̇. We need to show
that u ∈ H1(Rd). We already know that there exists some p ∈ L2(Rd)d such
that

∫
Rd p ·q+u div(q) dx = 0 for any q ∈ D(Rd \Γ)d. Take any q ∈ D(Rd)d,

so that πn(q) = q̇ ∈ H−1/2([Γ]). Applying Definition (5.2), we obtain
∫

Rd

p · q + u div(q) dx =
∫

[Γ]

u̇ q̇ dσ = 0 ∀q ∈ D(Rd).

This proves that p = ∇u in the sense of distributions over R
d (and not just

R
d \ Γ), so that u ∈ H1(Rd). This concludes the proof. �

6.2. Jump Spaces

Another type of trace space may be obtained by considering the duals to
single-trace spaces.

Definition 6.4 (Jump spaces). We introduce jump spaces as the dual spaces

H̃+ 1
2 ([Γ]) :=

(
H− 1

2 ([Γ])
)′ and H̃− 1

2 ([Γ]) :=
(
H+ 1

2 ([Γ])
)′
.

We endow theses spaces with their natural dual norms

‖ϕ‖
H̃± 1

2 ([Γ])
:= sup

q̇∈H∓ 1
2 ([Γ])

q̇ �=0

|〈ϕ, q̇ 〉|
‖q̇‖

H
∓ 1

2 (Γ)

.
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Clearly, any element of H
1/2(Γ) (resp. H

−1/2(Γ)) induces an element
H̃−1/2([Γ]) (resp. H̃1/2([Γ])) via the duality pairing (5.2).

Definition 6.5 (Jump operators). We define continuous jump operators [ ] :
H

+1/2(Γ) → H̃1/2([Γ]) and [ ] : H
−1/2(Γ) → H̃−1/2([Γ]) as follows: For any

u̇ ∈ H
+1/2(Γ) (resp. any ṗ ∈ H

−1/2(Γ)), let [u̇] (resp. [ṗ] ) be the unique
element of H̃1/2([Γ]) (resp. H̃−1/2([Γ])) satisfying

〈[u̇], q̇〉 :=
∫

[Γ]

u̇ q̇ dσ ∀q̇ ∈ H− 1
2 ([Γ]),

〈v̇, [ṗ]〉 :=
∫

[Γ]

v̇ṗ dσ ∀v̇ ∈ H+ 1
2 ([Γ]),

(6.3)

where 〈 , 〉 denotes the duality pairing either between H1/2([Γ]) and H̃−1/2

([Γ]), or between H̃1/2([Γ]) and H−1/2([Γ]).

An immediate consequence of Proposition 6.3 is a characterization of the
kernels of the jump operators that matches the intuition that “single-valued
traces do not jump”.

Corollary 6.6 (Kernels of jump operators). For v ∈ H
1/2(Γ) and q ∈

H
−1/2([Γ]) holds true

v ∈ H1/2([Γ]) ⇔ [v] = 0,

q ∈ H−1/2([Γ]) ⇔ [q] = 0.

Proposition 6.7 (Range of jump operators). The jump operators [ ] :
H

1/2(Γ) → H̃1/2([Γ]) and [ ] : H
−1/2(Γ) → H̃−1/2([Γ]) from Definition 6.5

are surjective.

Proof. The statement follows from Proposition 5.1, the Hahn-Banach Theo-
rem (see [19, Thm 3.3] for example), and Corollary 6.6. �

We end this section by pointing out an alternative description of jump spaces
provided by the next proposition. The proof is a direct consequence of Corol-
lary 6.6 and Problem 9, §3.8 in [21].

Proposition 6.8 (Quotient space characterization of jump spaces). The jump
operators induce isometric isomorphisms

H̃1/2([Γ]) ∼= H
1/2(Γ)/H1/2([Γ]) and

H̃−1/2([Γ]) ∼= H
−1/2(Γ)/H−1/2([Γ]).

6.3. Interpretation of Single-Traces in Terms of Functions

In this paragraph we will try to describe as explicitly as possible the spaces
H±1/2([Γ]) and H̃±1/2([Γ]) for the two special situations that we considered
in Sect. 5.2.
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The skeleton of a Lipschitz partition. First, we focus on the situation where
Γ = ∪n

j=0∂Ωj for some Lipschitz partition (Ωj)j=0...n of R
d, see Fig. 5. Pick

u̇ ∈ H1/2([Γ]). As explained in Sect. 5.2, considering any u ∈ H1(Rd) such
that πd(u) = u̇, and setting uj = u|Ωj

, we can make the identification

u̇ ↔ (v0, . . . , vn) ∈ H
1
2 (∂Ω0) × · · · × H

1
2 (∂Ωn),

where vj = uj |∂Ωj
, j = 0 . . . n. (6.4)

The condition u̇ ∈ H1/2([Γ]) amounts to vj = vk on ∂Ωj ∩∂Ωk ∀j, k = 0 . . . n,
and (6.4) gives rise to an isomorphism

H
1
2 ([Γ]) ∼=

{

(vj)0≤j≤n ∈ n

Π
j=0

H
1
2 (∂Ωj)

∣
∣ vj − vk = 0 on ∂Ωj ∩ ∂Ωk ∀j, k

}

.

Similarly, we find an isomorphism

H− 1
2 ([Γ]) ∼=

{

(qj)0≤j≤n ∈ n

Π
j=0

H− 1
2 (∂Ωj)

∣
∣ qj + qk = 0 on ∂Ωj ∩ ∂Ωk ∀j, k

}

The spaces H±1/2([Γ]) have been considered in [5,6] (where they were noted
X

±1/2(Γ)), and Proposition 6.3 above is a generalization of Proposition 2.1
in [5].

It seems to us that it is not possible to develop any explicit description
of H̃±1/2([Γ]) for the case where Γ is the skeleton of some Lipschitz partition
except if, in this partition, each interface separates at most two subdomains.
The latter case is covered in the next paragraph.

Standard Lipschitz screens. Now we consider the case where Γ ⊂ ∂Ω is a
Lipschitz screen in the sense of Definition 2.1, where Ω is a bounded Lipschitz
open set, as in Fig. 6. Pick u̇ ∈ H1/2([Γ]) and set Ω1 = Ω and Ω2 = R

d \Ω. In
accordance with the discussion in Sect. 5.2, for any u ∈ H1(Rd \ Γ) we have
the identification

u̇ ↔ (v1, v2) ∈ H
1
2 (Γ) × H

1
2 (Γ)

where vj = uj |Γ and uj = u|Ωj
, j = 1, 2.

Since u̇ ∈ H1/2([Γ]) we actually have u ∈ H1(Rd) which implies v1 = v2. This
leads to the conclusion that (compare with (5.10))

H
1
2 ([Γ]) ∼=

{
(v1, v2) ∈ H

1
2 (Γ) × H

1
2 (Γ) | v1 − v2 = 0 on Γ

}
,

i.e. H
1
2 ([Γ]) ∼= φ+

(
H

1
2 (Γ)

) ∼= H
1
2 (Γ), where φ+(x) := (x, x). (6.5)

Similar results hold for the Neumann single-trace space. A slight adaptation
of the above arguments shows that

H− 1
2 ([Γ]) ∼=

{
(q1, q2) ∈ H− 1

2 (Γ) × H− 1
2 (Γ) | q1 + q2 = 0 on Γ

}
,

i.e. H− 1
2 ([Γ]) ∼= φ−

(
H− 1

2 (Γ)
) ∼= H− 1

2 (Γ),

where φ−(x) := (x,−x). (6.6)
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Remark 6.9. This discussion confirms the agreement of the new functional
framework we have introduced with standard Sobolev trace spaces on surfaces
and screens. Such a simple and explicit description does not seem to be
possible for more complicated screens that are multi-screens but not standard
Lipschitz screens. In this sense, our new functional framework is a genuine
generalization of standard Sobolev trace spaces.

Let us now look for some explicit description of H̃±1/2([Γ]), still considering
the case where Γ ⊂ ∂Ω1 is a standard Lipshitz screen. We make use of the
isomorphism

ι : H
1/2(Γ) →

{
(v1, v2) ∈ H

1
2 (Γ) × H

1
2 (Γ) | v1 − v2 ∈ H̃

1
2 (Γ)

}

that underlies (5.10). Pick any v ∈ H̃1/2(Γ), see (3.1). Following the discussion
of Sect. 5.2, if (v1, v2) = (v,−v) = φ−(v), we have v1 − v2 = 2v ∈ H̃1/2(Γ),
so that ι−1(φ−(v)) ∈ H

1/2(Γ) in the sense of (5.10), and the linear mapping

[ι−1φ−] := [ ] ◦ ι−1 ◦ φ− : H̃
1
2 (Γ) → H̃

1
2 ([Γ]) (6.7)

is well defined and continuous.

Theorem 6.10 (Isomorphism connecting H̃
1
2 (Γ) and H̃

1
2 ([Γ])). In the special

situation of a Lipschitz screen Γ the mapping from (6.7) is an isomorphism.

Proof. (i) Injectivity: Assume that [ι−1φ−(v)] = 0 for some v ∈ H̃
1
2 (Γ).

Above in (6.6) we have seen that any element q̇ ∈ H−1/2([Γ]) takes the form
q̇ = θ−1(φ−(q)) = θ−1(q,−q) for some q ∈ H−1/2(Γ), where θ designates the
isomorphism underlying (6.6). As a consequence of (5.12), [ι−1(φ−(v))] = 0
implies

0 = 〈 [ι−1φ−(v)], θ−1(φ−(q)) 〉 =
∫

[Γ]

ι−1(φ−(v)) θ−1(φ−(q)) dσ

= 2
∫

Γ

v q dσ ∀q ∈ H−1/2(Γ). (6.8)

Since H̃1/2(Γ) = H−1/2(Γ)′, Identity (6.8) implies that v = 0.
(ii) Surjectivity: Pick some ϕ ∈ H̃1/2([Γ]). According to the Hahn-

Banach Theorem (see [19, Thm 3.3]) and Proposition 5.1, there exists
v̇ ∈ H

1/2(Γ) such that ‖v̇‖
H1/2(Γ) = ‖ϕ‖H̃1/2([Γ]) and

〈ϕ, q̇ 〉 =
∫

[Γ]

v̇ q̇ dσ ∀q̇ ∈ H−1/2([Γ]).

Moreover, by (5.10) there exists v1, v2 ∈ H1/2(Γ) such that v1 −v2 ∈ H̃1/2(Γ),
and v̇ = ι−1(v1, v2). Any q̇ ∈ H−1/2([Γ]) can be written as q̇ = θ−1(φ−(q)) =
θ−1(q,−q) in the sense of (6.6) for some q ∈ H−1/2(Γ). Setting v = 1

2 (v1−v2),
we have
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〈ϕ, q̇ 〉 =
∫

[Γ]

v̇ q̇ dσ =
∫

Γ

v1 q − v2 q dσ

=
∫

Γ

v q + (−v) (−q) dσ =
∫

[Γ]

ι−1(φ−(v)) q̇ dσ

Since q̇ ∈ H−1/2([Γ]) is arbitrary, this proves that ϕ = [ι−1(φ−(v))], and
bears out the surjectivity of the map (6.7). �

To summarize, the mapping (6.7) induces an isomorphism

H̃
1
2 ([Γ]) ∼= H̃

1
2 (Γ).

We can also find an analogous isomorphism

H̃− 1
2 ([Γ]) ∼= H̃− 1

2 (Γ).

Let us end this paragraph by mentioning that the inclusion “H̃1/2([Γ]) ⊂
H1/2([Γ])” does not hold. This inclusion has to be replaced with some injec-
tion relation, as can be readily seen from

H̃1/2([Γ]) ∼= H̃1/2(Γ) ⊂ H1/2(Γ) ∼= H1/2([Γ]).

7. Boundary Value Problems

Once again, we come back to general multi-screens, and continue the con-
struction of our framework, introducing concepts better adapted to boundary
value problems set in the exterior of such objects. We first need to introduce
generalizations of usual trace operators.

7.1. Dirichlet and Neumann Trace Operators

Let H1(Δ,Rd \ Γ) = {u ∈ H1(Rd \ Γ) | ∇u ∈ H(div,Rd \ Γ) } and denote
H1

loc(Δ,R
d \Γ) = {u ∈ L2

loc(R
d) | ϕ u ∈ H1(Δ,Rd \Γ) ∀ϕ ∈ D(Rd \Γ) }. For

any element of this space we can define its Dirichlet and Neumann traces on
Γ in the following manner

γd(u) = πd(u) and γn(u) = πn(∇u). (7.1)

Clearly γd : H1
loc(Δ,R

d \ Γ) → H
1/2(Γ) and γn : H1

loc(Δ,R
d \ Γ) → H

−1/2(Γ)
are continuous maps. Besides, if u ∈ H1

loc(Δ,R
d \ Γ) and v ∈ H1

loc(Δ,R
d \ Γ)

coincide in a neighbourhood of Γ, then γd(u) = γd(v) and γn(u) = γn(v).

Lemma 7.1. The trace operators γd, γn both admit a continuous right-inverse.

Proof. For any u̇ ∈ H
1/2(Γ), define Sd(u̇) as the unique element of H1(Rd \Γ)

satisfying πd

(
Sd(u̇)

)
= u̇ and ‖Sd(u̇)‖H1(Rd\Γ) = ‖u̇‖H1/2(Γ). As pointed out

in the proof of Proposition 5.1, we have −ΔSd(u̇) + Sd(u̇) = 0 in R
d \ Γ. As

a consequence, Sd : H
1/2(Γ) → H1

loc(Δ,R
d \ Γ) is a continuous right-inverse

for γd.
Similarly, for ṗ ∈ H

−1/2(Γ), define Sn(ṗ) as the unique element of
H(div,Rd\Γ) satisfying πn

(
Sn(ṗ)

)
= ṗ and ‖Sn(ṗ)‖H(div,Rd\Γ) = ‖ṗ‖H−1/2(Γ).

We have −∇div
(
Sn(ṗ)

)
+Sn(ṗ) = 0 in R

d \Γ, and we see v := div
(
Sn(ṗ)

) ∈
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H1
loc(Δ,R

d \ Γ). Obviously, ṗ = γn(v), so that div
(
Sn(·) )

: H
−1/2(Γ) →

H1
loc(Δ,R

d \ Γ) is a continuous right-inverse for γn. �

Note that we may also consider the operator [γd] : H1
loc(Δ,R

d \ Γ) →
H̃1/2([Γ]) as well as [γn] : H1

loc(Δ,R
d\Γ) → H̃−1/2([Γ]) obtained by composing

the Dirichlet and Neumann traces with the jump operators described at § 6.2.
An interesting identity is obtained by applying twice Formula (5.2). This
yields a generalization of the second Green Formula,

∫

Rd

uΔv − vΔu dx =
∫

[Γ]

γd(u)γn(v) − γd(v)γn(u)dσ

∀u, v ∈ H1(Δ,Rd \ Γ). (7.2)

It is possible to consider boundary value problems with Dirichlet or Neumann
condition on Γ prescribed by means of γd and γn.

Proposition 7.2 (Exterior Dirichlet problem). Suppose that Γ is multi-screen
in the sense of Definition 2.3, and that R

d \Γ is connected. Take g ∈ H
1/2(Γ)

and κ ∈ R+ \ {0}. Then there exists a unique u ∈ H1
loc(Δ,R

d \ Γ) satisfying
the following equations

−Δu− κ2u = 0 in R
d \ Γ γd(u) = g and u is outgoing. (7.3)

Moreover, if we denote S : H
1/2(Γ) → H1

loc(Δ,R
d \ Γ) the operator mapping

any g ∈ H
1/2(Γ) to the unique solution to (7.3), then S is continuous.

Proof. Let Ω be an open ball with radius large enough to guarantee Γ ⊂
Ω. Let T : H1/2(∂Ω) → H−1/2(∂Ω) be the exterior Steklov-Poincaré map
associated to the homogeneous Helmholtz equation in R

d\Ω. Let ug ∈ H1(Rd\
Γ) satisfy γd(ug) = g. This element ug can be chosen so as to guarantee that
g �→ ug is continuous from H

1/2(Γ) to H1(Rd \ Γ) according to Lemma 7.1.
Using Green’s formula, Problem (7.3) can be reformulated as

Find u ∈ H1
0,Γ(Ω) such that

(Au, v)H1(Ωd\Γ) = −(Aug, v)H1(Ωd\Γ) ∀v ∈ H1
0,Γ(Ω)

where (Au, v)H1(Ωd\Γ) =
∫

Ω\Γ

∇u · ∇v − κ2u v dx +
∫

∂Ω

vTu dσ

To prove the desired result, it suffices to show that A is a continuous iso-
morphism. Using the compactness result of Proposition (4.1), one can check
by means of classical arguments that A is a Fredholm operator with index 0.
As a consequence, proving that A is a continuous isomorphism boils down to
showing that, when g = 0, the only solution to (7.3) is u = 0.

Now assume that u ∈ H1
loc(R

d \ Γ) satisfies (7.3) with g = 0. For any
ρ > 0, let Bρ refer to the ball centered at 0 with radius ρ, and denote nρ the
unit normal vector to ∂Bρ directed toward the exterior of Bρ. Applying (5.2)
in Bρ \ Γ with p = ∇u, and taking into account that γd(u) = 0, we obtain
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∫

∂Bρ

u nρ · ∇u dσρ =
∫

Bρ\Γ

|∇u|2 − κ2|u|2dx

where dσρ refers to the surface Lebesgue-measure on ∂Bρ. Since the right
hand side in the identity above is real, and according to Sommerfeld’s radi-
ation condition, we have

κ

∫

∂Bρ

|u|2 dσρ = �m

⎧
⎪⎨

⎪⎩

∫

∂Bρ

u (iκ u− nρ · ∇u) dσρ

⎫
⎪⎬

⎪⎭

=⇒ lim
ρ→∞ ‖u‖2

L2(∂Bρ) ≤ 1
κ2

lim
ρ→∞ ‖ iκu− nρ · ∇u ‖2

L2(∂Bρ) = 0.

It follows by Rellich’s Theorem (see e.g. Müller [17]) that u vanishes on
a neighbourhood of infinity. Using an analytic continuation theorem, since
R

d \ Γ is connected, we obtain that u = 0 in R
d \ Γ. �

7.2. Density Results

Generalizing results by Costabel [8], in this subsection we will prove density
theorem that will be useful for the study of boundary integral operators in
the next section.

Proposition 7.3. Consider the continuous operator γ : H1
loc(Δ,R

d \ Γ) →
H

+1/2(Γ)×H
−1/2(Γ) defined by γ(ϕ) = (γd(ϕ), γn(ϕ)) for all ϕ ∈ H1

loc(Δ,R
d\

Γ). The range of γ is dense in H
+1/2(Γ) × H

−1/2(Γ).

Proof. Note that (γd, γn) induce a map from H1(Δ,Rd \ Γ) × H1(Δ,Rd \ Γ)
to H

1/2(Γ) × H
−1/2(Γ) that is continuous. Consider the pairing defined by

(
(u, p), (v, q)

) �→
∫

[Γ]

uq dσ −
∫

[Γ]

vp dσ ∀u, v ∈ H
1
2 (Γ) ∀p, q ∈ H

− 1
2 (Γ).

(7.4)

According to Proposition 5.1, the space H
1/2(Γ) × H

−1/2(Γ) is dual to itself
under the pairing (7.4). Hence, according to Hahn-Banach’s Theorem, it suf-
fices to show that

∫

[Γ]

uγn(v)dσ =
∫

[Γ]

p γd(v)dσ ∀v ∈ H1(Δ,Rd \ Γ)

=⇒ u = 0, p = 0. (7.5)

Take (u, p) ∈ H
1/2(Γ) × H

−1/2(Γ) satisfying the condition in the left-hand
side of (7.5). For any f ∈ L2(Rd) with compact support, denote S(f) the
unique element of H1(Δ,Rd \ Γ) satisfying the equations

−ΔS(f) + S(f) = f in R
d \ Γ, γd

(S(f)
)

= 0 on Γ.

Using Proposition 7.2, it is straightforward to check that S(f) is prop-
erly defined. Denote also Sd(u) the unique element of H1(Rd \ Γ) satisfy-
ing πd

(
Sd(u)

)
= γd

(
Sd(u)

)
= u and ‖Sd(u)‖H1(Rd\Γ) = ‖u‖H1/2(Γ). As was
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pointed out in the proof of Proposition 5.1, we have −ΔSd(u)+Sd(u) = 0 in
R

d \ Γ. Hence

0 =
∫

[Γ]

p γd

( S(f)
)
dσ =

∫

[Γ]

γd

(
Sd(u)

)
γn

( S(f)
)
dσ

=
∫

[Γ]

γd

(
Sd(u)

)
γn

( S(f)
) − γn

(
Sd(u)

)
γd

( S(f)
)
dσ

=
∫

Rd\Γ

Sd(u)ΔS(f) − S(f)ΔSd(u) dσ = −
∫

Rd\Γ

f Sd(u) dx

Since this holds for any f ∈ L2(Rd) with compact support, this implies that
Sd(u) = 0. Hence u = γd(Sd(u)) = 0. As a consequence

∫
[Γ]
p γd(v)dσ = 0 for

any v ∈ H1(Δ,Rd \ Γ), and since γd : H1(Δ,Rd \ Γ) → H
1/2(Γ) is onto, this

finally implies p = 0. �
One may wonder if a result comparable to the previous proposition holds for
single-trace spaces. The answer is positive but, to prove it, we first need an
intermediary result.

Lemma 7.4. Assume that Γ = ∪j=0...n∂Ωj is the skeleton of some Lipschitz
partition (Ωj)j=0...n of R

d. Consider the operator γ : H1
loc(Δ,R

d \ Γ) →
H

+1/2(Γ) × H
−1/2(Γ). The range of γ restricted to H1

loc(Δ,R
d) is dense in

H+1/2([Γ]) × H−1/2([Γ]).

Proof. First of all, according to Proposition 5.1, and the Hahn-Banach
theorem, it suffices to show that if (u̇, ṗ) ∈ H

1/2(Γ) × H
−1/2(Γ) satisfies∫

[Γ]
u̇ γn(ϕ) − ṗ γd(ϕ) dσ = 0 ∀ϕ ∈ H1(Δ,Rd), then

∫

[Γ]

u̇ q̇ − ṗ v̇ dσ = 0 ∀(v̇, q̇) ∈ H1/2([Γ]) × H−1/2([Γ]) (7.6)

which is equivalent to (u̇, ṗ) ∈ H1/2([Γ])×H−1/2([Γ]) according to Proposition
6.3. Hence, let us consider such a pair (u̇, ṗ) ∈ H

1/2(Γ) × H
−1/2(Γ).

For each Ωj , let us denote γj
d(ϕ) = ϕ|∂Ωj

and γj
n(ϕ) = nj · ∇ϕ|∂Ωj

,
∀ϕ ∈ H1(Δ,Ωj), where the traces are taken from the interior of Ωj , and
nj refers to the normal vector to ∂Ωj directed toward the exterior of Ωj .
According to (6.1), the space H+1/2([Γ]) × H−1/2([Γ]) can be identified with
the space

X(Γ) =
{(

γj
d(v), γj

n(q)
)n

j=0
| (v, q) ∈ H1(Δ,Rd)2

}

.

Setting γj(ϕ) = (γj
d(ϕ), γj

n(ϕ)), we also consider the space C(Γ) =
{(γj(ϕ))n

j=0 | ϕ ∈ H1(Δ,Rd \Γ) and −Δϕ+ϕ = 0 in Ωj , j = 0 . . . n }. Then
according to [6, Prop. 6.1], we have X(Γ) ⊕ C(Γ) = H

1/2(Γ) × H
−1/2(Γ). As

a consequence there exists u, p ∈ H1(Δ,Rd) and functions ψj ∈ H1(Δ,Ωj)
with Δψj = ψj , such that u̇ = (γj

d(u) + γj
d(ψj))j=0...n and ṗ = (γj

n(p) +
γj
n(ψj))j=0...n. To finish the proof, it suffices to show that ψj = 0, j = 0 . . . n.
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According to [5, Prop. 2.1] (that admits Proposition 6.3 as a generalization),
we have

0 =
∫

[Γ]

u̇γn(ϕ) − ṗγd(ϕ) dσ

=
n∑

j=0

∫

∂Ωj

γd(u+ ψj)γn(ϕ) − γn(p+ ψj)γd(ϕ) dσ

=
n∑

j=0

∫

∂Ωj

γd(ψj)γn(ϕ) − γn(ψj)γd(ϕ) dσ =
n∑

j=0

∫

Ωj

ψjΔϕ− ϕΔψj dx

=
n∑

j=0

∫

Ωj

ψj(Δϕ− ϕ) dx =
∫

Rd

ψ(Δϕ− ϕ) dx ∀ϕ ∈ H1(Δ,Rd)

where we define ψ ∈ L2(Rd) by ψ|Ωj
= ψj . Now, for any f ∈ D(Rd), there

exists ϕ ∈ H1(Δ,Rd) such that −Δϕ + ϕ = f in R
d. From this we deduce

that
∫

Rd ψfdx = 0 for all f ∈ D(Rd), which implies that ψ = 0. �

Proposition 7.5. In the case where Γ is any multi-screen (not necessarily
the skeleton of some Lipschitz partition), consider the continuous operator
γ : H1

loc(Δ,R
d \ Γ) → H

+1/2([Γ]) × H
−1/2([Γ]). The range of γ restricted to

H1
loc(Δ,R

d) is dense in the space H+1/2([Γ]) × H−1/2([Γ]).

Proof. Take a u̇ ∈ H1/2([Γ]) and ṗ ∈ H−1/2([Γ]) such that u̇ = πn(u)
and ṗ = πn(p) for some u ∈ H1

�(R
d) = {v ∈ H1(Rd) | v =

0 in a neighbourhood of ∂Γ} and some p ∈ H�(div,Rd) = {s ∈ H(div,Rd) |
s = 0 in a neighbourhood of ∂Γ}. Take a Lipschitz partition R

d = ∪K
k=0Ωk

like in Definition 2.3, and set Σ = ∪K
k=0∂Ωk. Since u and p vanish in a neigh-

bourhood of ∂Γ, it may be assumed that u and p vanish on Σ\Γ, using some
adapted cut-off function if necessary.

Since Γ ⊂ Σ, using extension by 0, the traces u̇ and ṗ can be considered
as single-traces on Σ i.e. u̇ ∈ H1/2([Σ]) and ṗ ∈ H−1/2([Σ]). Let us denote
γΣ
d , γ

Σ
n the trace operators on Σ, as defined by (7.1) but considering Σ instead

of Γ. According to Proposition 7.4, there exists a sequence ξn ∈ H1
loc(Δ,R

d)
such that

lim
n→+∞

(
‖u̇− γΣ

d (ξn)‖2

H
+ 1

2 (Σ)
+ ‖ṗ− γΣ

n (ξn)‖2

H
− 1

2 (Σ)

)
= 0. (7.7)

Using a cut-off function if necessary, we can assume that supp(ξn)∩(Σ\Γ) = ∅,
so that the traces of ξn on Σ and Γ coincide. As a consequence, (7.7) actually
holds with Σ replaced by Γ, and γΣ

d , γ
Σ
n replaced by γd, γn. This concludes

the proof for the case where u̇ ∈ πd

(
H1

�(R
d)

)
and ṗ ∈ πn

(
H�(div,Rd)

)
. It

only remains to observe that H1
�(R

d) and H�(div,Rd) are dense in H1(Rd) and
H(div,Rd) according to Proposition 8.11 below. So the proof is complete. �
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8. Potential Operators

As we have an adapted functional framework at hand, we can now build
potential operators for scattering by multi-screens. We will adapt proofs con-
tained in [8], relying on the trace spaces and operators that we introduced
before.

In the sequel, we will study boundary integral formulations to scalar
wave propagation problems around a screen Γ. To simplify our presentation,
in the remaining of this document, we make the following assumption

Assumption: Γ⊂ R
d is a Lipschitz multi-screen such that R

d\Γ is connected

Note that this assumption rules out the case where Γ would be the skeleton
fo some Lipschitz partition of R

d.
The forthcoming analysis could be carried out without this connected-

ness assumption. However this hypothesis will help making the presentation
clearer. Moreover, the results that we present below could be generalized
to any strongly elliptic partial differential operator, following a presentation
similar to [16]. However we focus on Helmholtz equation for the sake of sim-
plicity.

Let Gκ(x) refer to the outgoing Green kernel for the Helmholtz operator,
i.e. it satisfies (−Δ−κ2)Gκ = δ0 in R

d in the sense of distributions. Consider
some x ∈ R

d \ Γ, and observe that the function Gκ,x : y �→ Gκ(x − y) is C∞

in the neighbourhood of Γ. Thus, using a cut-off function if necessary (so as
to remove the singularity of Gκ,x(y) at y = x) we may consider the following
operators, named respectively single layer and double layer potential,

SLκ(q̇)(x) :=
∫

[Γ]

γd(Gκ,x) q̇ dσ ∀q̇ ∈ H
− 1

2 (Γ)

DLκ(v̇)(x) := −
∫

[Γ]

γn(Gκ,x) v̇ dσ ∀v̇ ∈ H
+ 1

2 (Γ).
(8.1)

Clearly SLκ : H
−1/2(Γ) → C∞(Rd \ Γ) and DLκ : H

1/2(Γ) → C∞(Rd \ Γ)
since, if U, V ⊂ R

d are two bounded open sets such that Γ ⊂ V and U∩V = ∅,
the function x �→ Gκ,x, x ∈ U , is a smooth function valued in H1(Δ, V \ Γ).

8.1. Representation Formula

Following [8,16], we may write the expression of the potential operators (8.1)
in a manner that is more convenient for calculus in the sense of distributions.
Denote Gκ∗ : C∞(Rd)′ → D(Rd)′ the operation of convolution (in the sense of
distributions if necessary) with kernel Gκ. Let γ ′

d : H
−1/2(Γ) → H1

loc(R
d \ Γ)′

and γ ′
n : H

+1/2(Γ) → H1
loc(Δ,R

d \Γ)′ refer to the adjoints of γd and γn. Then
we have

SLκ = Gκ ∗ γ ′
d and DLκ = −Gκ ∗ γ ′

n. (8.2)

Take a function u ∈ H1(Rd \ Γ) and assume in addition that supp(u) is
bounded. Consider identity (7.2). Choosing v in D(Rd), we can interpret this
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identity in the sense of distributions, using the adjoint of the trace operators,
which yields

(Δu)|Rd = (Δu)|
Rd\Γ + γ ′

n · γd(u) − γ ′
d · γn(u)

where γ ′
n · γd(u) and γ ′

d · γn(u) are distributions supported in Γ. Now, since
supp(u) is bounded, we can convolve the previous identity with the Green
kernel, which yields the following result.

Lemma 8.1. For any u ∈ H1(Δ,Rd \ Γ) with bounded support, if f = −Δu−
κ2u in the sense of distributions in R

d \ Γ, we have the following formula

u = Gκ ∗ f + SLκ · γn(u) + DLκ · γd(u) in R
d \ Γ. (8.3)

Identity (8.3) is a representation formula, in the parlance of boundary
integral equations. Although we have established it in the case where supp(u)
is bounded, it actually also holds in the case where u is outgoing radiating.

Proposition 8.2. Assume that u ∈ H1
loc(Δ,R

d\Γ) satisfies Sommerfeld’s radi-
ation condition. Define f ∈ L2

loc(R
d) by f = −Δu − κ2u in the sense of

distributions in R
d \ Γ, and suppose in addition that f has bounded support.

Then formula (8.3) still holds.

Proof. Consider a C∞ cut-off function χ : R
d → R+ such that χ(x) = 1 for

x ∈ supp(f), and χ is compactly supported. The function uχ has compact
support so we can apply Lemma 8.1,

χu = Gκ ∗ f + SLκ · γn(u) + DLκ · γd(u)
−Gκ ∗ (uΔχ+ 2∇u · ∇χ) (8.4)

Set ψ := 1−χ and observe that ψu satisfies Sommerfeld’s radiation condition.
In addition, since Δu + κ2u = 0 in supp(ψ), and ∇ψ = −∇χ, we have
(−Δ − κ2)(ψu) = g in R

d where g = uΔχ+ 2∇u · ∇χ has compact support.
As a consequence we can apply standard representation theorems based on
Newton potential [20, Thm 3.1.4] to conclude that

ψu = u− χu = Gκ ∗ g = Gκ ∗ (uΔχ+ 2∇u · ∇χ) in R
d. (8.5)

Combining (8.4) and (8.5) leads directly to an expression of u, which con-
cludes the proof. �

Proposition 8.2 extends [16, Thm 6.10] to problems set in domains containing
multi-screens. Now let us study the continuity properties of the potential
operators SLκ and DLκ.

Proposition 8.3 (Continuity of single layer potential). The potential operator
SLκ continuously maps H

−1/2(Γ) into H1
loc(Δ,R

d \ Γ) ∩ H1
loc(R

d).

Proof. First of all, since H1
loc(R

d) ⊂ H1
loc(R

d \ Γ), the space H1
loc(R

d \ Γ)′ is
continuously embedded into H1

loc(R
d)′. Hence γ ′

d : H
−1/2(Γ) → H1

loc(R
d)′ is

continuous. Besides Gκ∗ is a pseudodifferential operator of order −2 on R
d,

mapping H1
loc(R

d)′ → H1
loc(R

d) continuously. Finally, observe that ΔSLκ(p)+
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κ2SLκ(p) = 0 in R
d \ Γ, in the sense of distributions, for any p ∈ H

−1/2(Γ).
Hence if f = (ΔSLκ(p))|

Rd\Γ, then

‖f‖L2(K) ≤ κ2‖SLκ(p)‖L2(K) ≤ CK‖p‖H−1/2(Γ)

for any compact subset K ⊂ R
d and some CK > 0 independent of p. This

concludes the proof. �
Proposition 8.4 (Continuity of double layer potential). The potential operator
DLκ continuously maps H

+1/2(Γ) into H1
loc(Δ,R

d \ Γ).

Proof. First of all, consider S : H
1/2(Γ) → H1

loc(R
d \Γ) as the solution opera-

tor such that for any g ∈ H
1/2(Γ) the function S(g) is the unique solution to

Problem (7.3). In particular we have γd · S(v) = v for any v ∈ H
1/2(Γ). Since

S(v) is a solution to the homogeneous Helmholtz equation in R
d \ Γ, we can

apply identity (8.3) which yields

DLκ(v) = S(v) − SLκ · γn · S(v) ∀v ∈ H
1
2 (Γ).

The continuity result that we want to prove is then a clear consequence of
the continuity of S,SLκ and γn, see Propositions 8.3 and 7.2. �
8.2. Jump Relations

As predictible, functions of the form DLκ(v) do not belong to H1
loc(R

d). Their
Neumann traces, though, admit no jump across the screen Γ. The following
result summarizes the behaviour of both the single layer and double layer
potentials across the screen Γ.

Proposition 8.5 (Jump relations).

[γd] · DLκ(u̇) = [u̇], [γn] · DLκ(u̇) = 0 ∀u̇ ∈ H
+ 1

2 (Γ),

[γd] · SLκ(ṗ) = 0, [γn] · SLκ(ṗ) = [ṗ] ∀ṗ ∈ H
− 1

2 (Γ).
Proof. We will focus on the proof of the identities concerning the double layer
potential. The identities concerning the single layer potential may be proved
in a similar manner. Consider any u̇ ∈ H

1/2(Γ), set ψ(x) = DLκ(u̇)(x).
According to Relation (8.2), we have Δψ + κ2ψ = γ′

n(u̇) in the sense of
distributions over R

d. As a consequence we have
∫

Rd

ψ (Δϕ+ κ2ϕ)dx = −〈γ′
n(u̇), ϕ〉 =

∫

[Γ]

u̇ γn(ϕ) dx ∀ϕ ∈ D(Rd). (8.6)

where 〈 , 〉 must be understood as the duality pairing between D(Rd) and
D(Rd)′. On the other hand consider the integral in the left hand side above,
and apply the generalized 2nd Green Formula (7.2). Since Δψ + κ2ψ = 0 in
R

d \ Γ, this yields
∫

Rd

ψ (Δϕ+ κ2ϕ)dx =
∫

Rd\Γ

ψ (Δϕ+ κ2ϕ)dx

=
∫

[Γ]

γd(ψ)γn(ϕ) − γn(ψ)γd(ϕ)dσ (8.7)
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and this has to hold for any ϕ ∈ D(Rd) as well. Now take the difference
between Eqs. (8.6) and (8.7), and observe that γn(ϕ) ∈ H−1/2([Γ]) whenever
ϕ ∈ D(Rd). This yields

∫

[Γ]

γn(ψ)γd(ϕ) dσ −
∫

[Γ]

(
γd(ψ) − u̇

)
γn(ϕ) dσ = 0 ∀ϕ ∈ D(Rd). (8.8)

Using the density of D(Rd) in H1
loc(Δ,R

d), as well as Proposition 7.5, we
see that (8.8) implies that

∫
[Γ]
γn(ψ)v̇dσ = 0 for all v̇ ∈ H+1/2([Γ]), and

∫
[Γ]

(γd(ψ) − u̇)q̇ dσ = 0 for all q̇ ∈ H−1/2([Γ]). According to Proposition 6.3,
and the definition of the jump operators given in Sect. 6.2, this concludes the
proof. �

In spite of a clear parallel, there is also a remarkable difference between
Proposition 8.5 above, and the usual jump relations, e.g., from Lemma 4.1 in
[8]. Indeed, in the right hand sides of the identities of Proposition 8.5, what
appears is [u̇] and [ṗ], and not just u̇ and ṗ. This is a specific feature of screen’s
geometries. In the present case, the operators γd ·SLκ : H

−1/2(Γ) → H
+1/2(Γ)

and γn · DLκ : H
+1/2(Γ) → H

−1/2(Γ) are not onto. As exhibited by the next
result, they are not injective neither.

Lemma 8.6 (Kernels of potentials). We have SLκ(ṗ) = 0 ∀ṗ ∈ H−1/2([Γ])
and DLκ(u̇) = 0 ∀u̇ ∈ H+1/2([Γ]).

Proof. We prove the result only for the single layer potential, since for the
double layer potential, the proof is very similar. For any ṗ ∈ H−1/2([Γ]), set
ψ = SLκ(ṗ). The function ψ belongs to H1

loc(Δ,R
d \Γ), and since [γd(ψ)] = 0

and [γn(ψ)] = [ṗ] = 0 according to Proposition 8.5, we deduce that γd(ψ) ∈
H1/2([Γ]) and γn(ψ) ∈ H−1/2([Γ]), so that ψ ∈ H1

loc(Δ,R
d). Since Δψ+κ2ψ =

0 in the sense of distributions in R
d\Γ, we deduce that actually Δψ+κ2ψ = 0

in R
d. To summarize, Δψ + κ2ψ = 0 in R

d and ψ is outgoing, which implies
that ψ = 0. �

This lemma combined with Proposition 6.8 shows that SLκ induces a
continuous map from H̃−1/2([Γ]) to H1

loc(Δ,R
d \ Γ). Similarly DLκ induces a

continuous map from H̃+1/2([Γ]) to H1
loc(Δ,R

d \ Γ). For both induced maps,
we keep the same notations SLκ,DLκ so that

SLκ : H̃− 1
2 ([Γ]) → H1

loc(Δ,R
d \ Γ) and DLκ : H̃+ 1

2 ([Γ]) → H1
loc(Δ,R

d \ Γ)

are continuous operators. We will now examine the invertibility property of
the integral operators γd · SLκ and γn · DLκ.

Proposition 8.7. Assume that κ = ı (imaginary unit). There exists a constant
C > 0 such that

�e

⎧
⎪⎨

⎪⎩

∫

[Γ]

q γd · SLı( q ) dσ

⎫
⎪⎬

⎪⎭
≥ C ‖q‖2

H̃− 1
2 ([Γ])

∀q ∈ H̃− 1
2 ([Γ]),
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�e

⎧
⎪⎨

⎪⎩

∫

[Γ]

v γn · DLı( v ) dσ

⎫
⎪⎬

⎪⎭
≥ C ‖v‖2

H̃
1
2 ([Γ])

∀v ∈ H̃
1
2 ([Γ]).

Proof. Once again we only prove the statement for SLı since the statement
concerning DLı is very similar. Take any q ∈ H̃−1/2([Γ]) and denote ψ =
SLκ(q) so that −Δψ + ψ = 0 in the sense of distributions in R

d \ Γ, and
[γn(ψ)] = q. By definition of the jump operator introduced in Sect. 6.2, we
have ∫

[Γ]

q γd · SLı(q) dσ =
∫

[Γ]

γn(ψ)γd(ψ) dσ =
∫

Rd\Γ

|∇ψ|2 + ψΔψ dx

=
∫

Rd\Γ

|∇ψ|2 + |ψ|2 dx ≥ 1
2

‖ψ‖2
H1(Δ,Rd\Γ)

In the calculus above we used the generalized Green formula (7.2), as well as
the fact that Δψ = ψ. Now since [γn(ψ)] = q and since γn : H1(Δ,Rd \ Γ) →
H

−1/2(Γ) and [ ] : H
−1/2(Γ) → H̃−1/2([Γ]) are continuous, we deduce that

there exists C > 0, independent of q such that

‖q‖
H̃− 1

2 ([Γ])
≤ C ‖ψ‖H1(Δ,Rd\Γ),

which concludes the proof. �

Proposition 8.8 (Coercivity of boundary integral operators). For any wave
number κ ∈ C \ {0} such that �m{κ} ≥ 0, define the operators V :
H̃−1/2([Γ]) → H+1/2([Γ]) and W : H̃1/2(Γ) → H−1/2([Γ]) by

V = γd · SLκ and W = γn · DLκ.

Then there exists compact operators KV : H̃−1/2([Γ]) → H1/2([Γ]) and KW :
H̃1/2([Γ]) → H−1/2([Γ]) such that the following generalized G̊arding identities
are satisfied

�e

⎧
⎪⎨

⎪⎩

∫

[Γ]

q (V + KV) q dσ

⎫
⎪⎬

⎪⎭
≥ C ‖q‖2

H̃− 1
2 ([Γ])

∀q ∈ H̃− 1
2 ([Γ]),

�e

⎧
⎪⎨

⎪⎩

∫

[Γ]

v (W + KW) v dσ

⎫
⎪⎬

⎪⎭
≥ C ‖v‖2

H̃
1
2 ([Γ])

∀v ∈ H̃
1
2 ([Γ]).

Proof. Denote by Gı and SLı,DLı the outgoing Green kernel and the single
and double layer potentials associated to the value ı for the wave number, so
that Proposition 8.7 applies to SLı and DLı. Besides, following Remark 3.1.3
in [20], the operator (Gı − Gκ)∗ is pseudo-differential operator of order −4
mapping H1

loc(R
d)′ to H3

loc(R
d) which implies that both KV := γd ·(SLı−SLκ)

and KW := γn · (DLı − DLκ) are compact as operators mapping respectively
H̃−1/2([Γ]) to H

1/2(Γ) and H̃1/2([Γ]) to H
−1/2(Γ). We finally obtain coercivity

of both V + KV and W + KW by application of Proposition 8.7. �
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The previous result implies that both V : H̃−1/2([Γ]) → H1/2([Γ]) and
W : H̃1/2([Γ]) → H−1/2([Γ]) are Fredholm operators with index 0. As one
may expect by analogy with a more standard problem, they are actually
isomorphisms.

Proposition 8.9. The operators V : H̃−1/2([Γ]) → H1/2([Γ]) and W :
H̃1/2([Γ]) → H−1/2([Γ]) are isomorphisms.

Proof. According to Fredholm alternative, all we need to prove is that these
operators are one-to-one. We prove this only for V, since the proof for W
is analogous. Consider any q̇ ∈ H̃−1/2([Γ]) such that V(q̇) = 0. Take any
ṗ ∈ H

−1/2(Γ) such that [ṗ] = q̇. Injectivity will be proved if we show that
ṗ ∈ H−1/2([Γ]) which is equivalent to [ṗ] = q̇ = 0. Set ψ = SLκ(ṗ). Then
γd(ψ) = V(ṗ) = V(q̇) = 0 and ψ is an outgoing solution to the homogeneous
Helmholtz equation in R

d \ Γ. Hence according to Proposition 7.2, ψ = 0
i.e. SLκ(ṗ) = 0. We conclude with the jump formula [ṗ] = [γn] · SLκ(ṗ) = 0
provided by Proposition 8.5. �
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Appendix

Quotient spaces. As this is a concept constantly used across this article, in
the first part of this appendix we recall elementary results concerning quotient
spaces and their norms. For a full justification of these results, we refer to
[19, chapter 1 & 4],

Assume here that (H, ‖ ‖H) is some Banach space, and that X is a
closed sub-space of H. Then we define the quotient space H/X as the set

H/X := { x+ X | x ∈ H }.
The quotient space H/X is the set of equivalence classes associated to the
equivalence relation x ∼ y ⇐⇒ x − y ∈ X. The addition and multiplica-
tion by scalars induce natural counterparts in H/X, so that H/X inherits a
structure of vector space from H. We equip this space with the norm

‖ ẏ ‖H/X = inf
x∈X

‖y + x‖H for any y ∈ ẏ. (8.9)

Recall that if (H, ‖ ‖H) is a Banach space, then H/X equipped with ‖ ‖H/X

is a Banach space as well. Finally, we would like to remind the reader that
the canonical surjection π : H → H/X is an open mapping.

Observe that, for the topology induced by (8.9), a set U ⊂ H/X is open
if and only if π−1(U) is an open set of H. Using this obervation, it is easy to
prove the following result.

Lemma 8.10. Let (H, ‖ ‖) and (Y, ‖ ‖Y) be two Banach spaces, and assume
that X is a closed subspace of H. Consider a continuous linear map Θ : H →
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Y. If X ⊂ Ker(Θ), then Θ induces a continuous linear map θ : H/X → Y
that is uniquely determined by the identity Θ = θ ◦ π.
Density result. In this part of the appendix, we recall a density result proved
in [9, Lemma 2.4]. We need this result when exploiting the local structure of
screens. We provide a proof for the sake of completeness.

Proposition 8.11. For H being one of the spaces H1(Rd) or H(div,Rd), denote
H� the space of v ∈ H that vanish in a neighbourhood of ∂Γ. Then H� is dense
in H.

Proof. We prove this result for H = H1(Rd). The case where H = H(div,Rd)
follows the same lines. Since C∞(Rd) is dense in H1(Rd), it suffices to show
that any u ∈ C∞(Rd) is the limit of some sequence u1, u2, u3, . . . of H1

�(R
d).

According to Definition 2.3, there exists a Lipschitz partition (Ωj)j=0...Q

such that Γ ∩ ∂Ωj = Γj where Γj is a Lipschitz screen in the sense of Def-
inition 2.1. Set Σj = ∂Γj , and observe that ∂Γ ⊂ ∪Q

j=0Σj . Considering a
partition of unity, the proof can be reduced to the case where u is supported
in some ball B centered at a point x ∈ ∂Γ. Considering a smaller radius
for B if necessary, one may consider that each Σj can be described like in
(2.1). This implies in particular that there exist Lipschitz diffeomorphisms
Ψj : B → Ψj(B) ⊂ R

d such that

Ψj(B ∩ Σj) ⊂ Σ̂ := { (0, 0, z) | z ∈ R }.
Assume first that we have constructed functions τj,k ∈ H1(B) ∩ L∞(B) such
that τj,k = 0 in some neighbourhood of B∩Σj and limk→∞ ‖1 − τj,k‖H1(B) =
0. Setting

τk(x) = τ0,k(x)τ1,k(x) . . . τ1,Q(x)

we obtain τk ∈ H1(B) ∩ L∞(B) such that τk = 0 in a neighbourhood of
B∩(∪Q

j=0Σj) ⊃ B∩∂Γ, and such that limk→∞ ‖1 − τk‖H1(B) = 0. Set uk(x) :=
τk(x)u(x). Since supp(u) ⊂ B and u ∈ L∞(B) and ∇u ∈ L∞(B), we obtain
that uk ∈ H1

�(R
d) and

‖uk − u‖H1(Rd) ≤ 2 ‖1 − τk‖H1(B)

( ‖u‖L∞(B) + ‖∇u‖L∞(B)

) −→
k→∞

0.

To conclude the proof, there only remains to construct the cut-off functions
τj,k(x). Consider a subset Σ ⊂ B such that Ψ(B ∩ Σ) ⊂ Σ̂ := { (0, 0, z) | z ∈
R } for some Lipschitz diffeomorphism Ψ : B → B̂ = Ψ(B). We consider
τ̂k ∈ H1

loc(R
d) ∩ L∞(Rd) defined by

τ̂k(r, θ, z) =

⎧
⎪⎨

⎪⎩

0 if r ≤ 1/k

ln(kr)/ ln(k) if 1/k ≤ r ≤ 1

1 if 1 ≤ r

Straightforward calculus yields limk→∞ ‖1 − τk‖H1(B̂) = 0. Now we can define
τk(x) = τ̂k(Ψ(x)). Clearly τk ∈ L∞(B). According to Theorem 3.23, Chapter
3 in [16], we also have τk ∈ H1(B), and

‖1 − τk‖2
H1(B) ≤

(
1 + ‖DΨ‖2

L∞(B)

)∥
∥Jac(Ψ)−1

∥
∥2

L∞(B)
‖1 − τ̂k‖2

H1(B̂) −→
k→∞

0
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with Jac(Ψ)(x) := det(Ψ(x)). Finally it is clear, according to this construc-
tion, that τk = 0 in a neighbourhood of B ∩ Σ. This concludes the proof. �
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