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Abstract. In the 1970s Muckenhoupt and Wheeden made several con-
jectures relating two weight norm inequalities for the Hardy-Littlewood
maximal operator to such inequalities for singular integrals. Using tech-
niques developed for the recent proof of the A2 conjecture we prove a
related pair of conjectures linking the Riesz potential and the fractional
maximal operator. As a consequence we are able to prove a number of
sharp one and two weight norm inequalities for the Riesz potential.
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1. Introduction

In this paper we prove weighted norm inequalities for the Riesz potential
operator

Iαf(x) =
∫

Rn

f(y)
|x − y|n−α

dy, 0 < α < n.

Our main result is motivated by a pair of conjectures for singular in-
tegrals due to Muckenhoupt and Wheeden, and to provide a foundation for
our work we first sketch these conjectures and the known results.

In the 1970s Muckenhoupt and Wheeden [22] conjectured that if T is
a Calderón-Zygmund singular integral operator, then given a pair of weights
(u, v), for 1 < p < ∞,

T : Lp(v) → Lp(u) (1.1)

D. Cruz-Uribe was supported by the Stewart-Dorwart faculty development fund at Trinity

College and by grant MTM2009-08934 from the Spanish Ministry of Science and Innova-

tion. K. Moen was supported by NSF Grant 1201504.



422 D. Cruz-Uribe, SFO and K. Moen IEOT

provided that the Hardy-Littlewood maximal operator satisfies

M : Lp(v) → Lp(u) (1.2)

M : Lp′
(u1−p′

) → Lp′
(v1−p′

). (1.3)

Further, they conjectured that

T : Lp(v) → Lp,∞(u) (1.4)

provided that (1.3) holds. Originally, they made these conjectures for the
Hilbert transform, but they were soon extended to Calderón-Zygmund sin-
gular integrals. While extremely suggestive and true in many important cases,
both of these conjectures are false. A counter-example to the strong type con-
jecture was found by Reguera and Scurry [29], and this was extended to the
weak-type conjecture by the first author, Reznikov and Volberg [7].

However, a version of these conjectures is true in the off-diagonal case.
If 1 < p < q < ∞, then the first author, Martell and Pérez [4] showed that

T : Lp(v) → Lq(u) (1.5)

provided that

M : Lp(v) → Lq(u) (1.6)

M : Lq′
(u1−q′

) → Lq′
(v1−q′

). (1.7)

and that

T : Lp(v) → Lq,∞(u) (1.8)

provided that (1.7) holds. In fact, they proved a quantitative version of this
result in a slightly different form. Let σ = v1−q′

; then they showed that

‖T ( ·σ)‖Lp(σ)→Lq,∞(u) � ‖M( ·u)‖Lq′ (u)→Lp′ (σ)

and

‖T ( ·σ)‖Lp(σ)→Lq(u) � ‖M( ·σ)‖Lp(σ)→Lq(u) + ‖M( ·u)‖Lq′ (u)→Lp′ (σ).

(1.9)

Replacing f by f/σ or f/u yields inequalities in the form given above.
This formulation has two advantages. First, the weights do not change un-
der duality. More precisely, if M were a linear, self-adjoint operator, then
the inequality gotten from (1.6) by duality would be (1.7). However, in the
new formulation, the two norm inequalities on the right-hand side of (1.9)
would be dual. Even though the maximal operator is not linear, we will abuse
terminology and continue to refer to these as dual inequalities. Second, this
formulation makes it easier to consider weights v that are equal to infinity on
a set of positive measure, replacing it with a weight that is zero. Hereafter
we will formulate all of our weighted norm inequalities in this way.

Our main result is an extension of these off-diagonal results to the case
of Riesz potentials with the Hardy-Littlewood maximal operator replaced by
the fractional maximal operator of Muckenhoupt and Wheeden [23]:

Mαf(x) = sup
Q�x

|Q|α
n −
∫

Q

|f | dy, 0 ≤ α < n.
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Theorem 1.1. Given 0 < α < n, 1 < p < q < ∞, and a pair of weights (u, σ),
then

‖Iα( ·σ)‖Lp(σ)→Lq,∞(u) � ‖Mα( ·u)‖Lq′ (u)→Lp′ (σ)

and

‖Iα( ·σ)‖Lp(σ)→Lq(u) � ‖Mα( ·σ)‖Lp(σ)→Lq(u) + ‖Mα( ·u)‖Lq′ (u)→Lp′ (σ).

In both inequalities the constants depend on n, α, p and q.

An open question is whether Theorem 1.1 is true in the case p = q.
Given the parallels between Riesz potentials and singular integrals this seems
doubtful and so we frame the conjecture in the negative.

Conjecture 1.2. Theorem 1.1 is false when p = q: there exists a pair (u, σ)
such that ‖Mα( ·u)‖Lp′ (u)→Lp′ (σ) < ∞ but ‖Iα( ·σ)‖Lp(σ)→Lp,∞(u) = ∞.

The remainder of this paper is organized as follows. In Sects. 2 and 3
we give applications of Theorem 1.1 to sharp constant, one weight norm
inequalities and to two weight, Ap bump conditions. We will also discuss
some conjectures related to 1.2 made by us in an earlier paper [5]. In Sect. 4
we prove Theorem 1.1. Finally, in Sects. 5 and 6 we prove the results from
Sects. 2 and 3.

Throughout this paper all notation is standard or will be defined as
needed. By a cube we will always mean a cube whose sides are parallel to
the coordinate axes. If we write A � B, then A ≤ cB, where the constant c
depends on n, p, q and α. By A � B we mean that A � B and B � A.

2. Generalized One Weight Inequalities

Theorem 1.1 shows that to prove strong and weak type norm inequalities for
the Riesz potential, we need to prove strong type norm inequalities for the
fractional maximal operator. We will consider two approaches. In this section
we give a generalization of the sharp constant, one weight norm inequalities
considered in [5].

Given 1 < p < q < ∞ and a pair of weights (u, σ), we define

Aα
p,q(u, σ,Q) = |Q|α

n + 1
q − 1

p

⎛
⎝−
∫

Q

u dx

⎞
⎠

1
q
⎛
⎝−
∫

Q

σ dx

⎞
⎠

1
p′

= |Q|α
n + 1

q − 1
p ‖u

1
q ‖q,Q‖σ

1
p′ ‖p′,Q.

Note that this functional is symmetric in u and σ:

Aα
p,q(u, σ,Q) = Aα

q′,p′(σ, u,Q).

It is well known (cf. [3, p. 115]) that if

[u, σ]Aα
p,q

= sup
Q

Aα
p,q(u, σ,Q) < ∞,

then

Mα( ·σ) : Lp(σ) → Lq,∞(u) and Mα( ·u) : Lq′
(σ) → Lp′,∞(u).
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The strong type inequality

Mα( ·σ) : Lp(σ) → Lq(u)

holds in this case if we assume also that the weight σ satisfies a reverse Hölder
inequality; equivalently, if we assume that σ is in the Muckenhoupt class A∞.
This class can be defined in several ways. Traditionally (see [9]) we say that
σ ∈ A∞ if

[σ]Aexp∞ = sup
Q

Aexp
∞ (σ,Q) = sup

Q

⎛
⎝ −
∫

Q

σ dx

⎞
⎠ exp

⎛
⎝−−
∫

Q

log σ dx

⎞
⎠ < ∞.

This is now sometimes referred to as the exponential A∞ condition.
However, for the purposes of sharp constant estimates, an equivalent defini-
tion is very useful: σ ∈ A∞ if and only if

[σ]AM∞ = sup
Q

AM
∞(σ,Q) = sup

Q

1
σ(Q)

∫

Q

M(σχQ)(x) dx < ∞,

where M is the Hardy-Littlewood maximal operator. This equivalent condi-
tion was discovered independently by Fujii [8] and Wilson [33,34] (see also
[35]). The importance of this condition is that [σ]AM∞ � [σ]Aexp∞ and in fact
the constant [σ]AM∞ can be substantially smaller [1,13].

Using Theorem 1.1 we give norm estimates for Riesz potentials in terms
of these quantities. Our approach to this problem is based on recent work on
the sharp constants for singular integrals. (For the history of these results,
see [12,13,17] and the references they contain.) The natural approach when
p and q satisfy the Sobolev relationship 1/p − 1/q = α/n, is to find sharp
estimates in terms of [u, σ]Aα

p,q
. This case was studied in [14]. Our goal here

is to refine these estimates and extend them to general p < q. Following
the work of Hytönen and Pérez [13], we find sharp constants in terms of
[u, σ]Aα

p,q
, [u]AM∞ and [σ]AM∞ . We also give an alternative approach: following

Lerner and the second author [16,18], we prove estimates in terms of a mixed
condition that combines the Aα

p,q and A∞ condition:

[u, σ]
Aα

p,q(u,σ)Aexp∞ (σ)
1
q

= sup
Q

Aα
p,q(u, σ,Q)Aexp

∞ (σ,Q)
1
q .

The next result gives both kinds of estimates for the fractional maximal
operator; We defer the proof until Sect. 5.

Theorem 2.1. Given 0 < α < n and 1 < p ≤ q < ∞, suppose (u, σ) ∈ Aα
p,q

and σ ∈ A∞. Then

‖Mα( ·σ)‖Lp(σ)→Lq(u) � [u, σ]
Aα

p,q(u,σ)Aexp∞ (σ)
1
q

(2.1)

and

‖Mα( ·σ)‖Lp(σ)→Lq(u) � [u, σ]Ap,q
[σ]

1
q

AM∞
. (2.2)
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Hereafter, we will refer to estimates like (2.1) as one supremum esti-
mates, and estimates like (2.2) as two suprema estimates. In general the one
supremum estimates are incomparable with the two suprema estimates (see
[16,18] for examples).

As an immediate consequence of Theorems 1.1 and 2.1 we get the fol-
lowing estimates for Riesz potentials.

Theorem 2.2. Given 0 < α < n and 1 < p < q < ∞, suppose (u, σ) ∈ Aα
p,q

and u ∈ A∞. Then

‖Iα( ·σ)‖Lp(σ)→Lq,∞(u) � [σ, u]
Aα

q′,p′ (σ,u)Aexp∞ (u)
1
p′ (2.3)

and

‖Iα( ·σ)‖Lp(σ)→Lq,∞(u) � [σ, u]Aα
q′,p′ [u]

1
p′
AM∞

. (2.4)

Theorem 2.3. Given 0 < α < n and 1 < p < q < ∞, suppose (u, σ) ∈ Aα
p,q

and u, σ ∈ A∞. Then

‖Iα( ·σ)‖Lp(σ)→Lq(u) � [u, σ]
Aα

p,q(u,σ)Aexp∞ (σ)
1
q

+ [σ, u]
Aα

q′,p′ (σ,u)Aexp∞ (u)
1
p′

(2.5)

and

‖Iα( ·σ)‖Lp(σ)→Lq(u) � [u, σ]Aα
p,q

(
[u]

1
p′
AM∞

+ [σ]
1
q

AM∞

)
. (2.6)

Remark 2.4. We proved inequalities (2.4) and (2.6) in [5] using a more com-
plicated corona decomposition argument. Moreover, we only obtained results
for p and q that satisfy the Sobolev relation.

Theorems 2.2 and 2.3 can be thought of as generalizing one weight
inequalities for the Riesz potential. The classical one weight norm inequalities
for Riesz potentials due to Muckenhoupt and Wheeden [23] were for the case
when p and q satisfy the Sobolev relation, and there exists a weight w such
that u = wq and σ = w−p′

. In this case it follows from the Aα
p,q condition

that both u and σ are in A∞. In this case we can restate (2.6) as

‖Iα‖Lp(wp)→Lq(wq) � [wq]
1
q

As(p)

(
[wq]

1
p′
AM∞

+ [w−p′
]
1
q

AM∞

)
,

where s(p) = 1+p/q′ and we say that a weight v is in the Muckenhoupt class
Ap if

[v]Ap
= sup

Q
Ap(v,Q) = sup

Q
−
∫

Q

v dx

⎛
⎝−
∫

Q

v1−p′
dx

⎞
⎠

p−1

< ∞.

By interpolation we can give a result that is in some sense an improve-
ment of this inequality. We again defer the proof to Sect. 5.
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Theorem 2.5. Given 0 < α < n and 1 < p < n/α, define q by 1/p − 1/q =
α/n. If wq ∈ Ar for some r < s(p) = 1 + p/q′, then

‖Iα‖Lp(wp)→Lq(wq) � [wq]
1
q

Ar
[wq]

1
p′
AM∞

. (2.7)

The corresponding result for singular integrals was proved in [18]. A
weaker version of Theorem 2.5, with the assumption wq ∈ Ar replaced by
the assumption that wq ∈ A1, was recently proved by Recchi [28].

In [18] it was conjectured that for singular integrals, the one supremum
estimates corresponding to (2.3) and (2.5) could be improved by replacing
Aexp

∞ (σ,Q) on the right-hand side with the smaller quantity AM
∞(σ,Q). They

were able to prove a partial result involving an additional log term.
We believe that the corresponding conjecture is true for Riesz potentials.

We can prove a partial result in the classical one weight case. To state it we
define the one supremum constant needed in this case, for a general weight:

[w](Ap)β(AM∞)γ = sup
Q

Ap(w,Q)βAM
∞(w,Q)γ .

Theorem 2.6. Given 0 < α < n and 1 < p < n/α, define q by 1/p − 1/q

= α/n. If wq ∈ As(p), s(p) = 1 + p/q′ and σ = w−p′
, then

‖Mα‖Lp(wp)→Lq(wq) � Φ
(
[w−p′

]As(q′)

) 1
q [w−p′

]
(As(q′))

1
p′ (AM∞)

1
q
, (2.8)

where Φ(t) = 1 + log(t).

The proof of Theorem 2.6 requires a testing condition for the fractional
maximal function in [19]. Using this condition it is very similar to the ar-
gument in [18]. We sketch the details of the proof in Sect. 5. Once again,
as a consequence of Theorem 1.1 we have the following result for the Riesz
potential.

Theorem 2.7. Given 0 < α < n and 1 < p < n/α, define q by 1/p − 1/q =
α/n. If wq ∈ As(p), s(p) = 1 + p/q′, then

‖Iα‖Lp(wp)→Lq,∞(wq) � Φ
(
[wq]As(p)

) 1
p′ [wq]

(As(p))
1
q (AM∞)

1
p′ (2.9)

and

‖Iα‖Lp(wp)→Lq(wq) � Φ
(
[wq]As(p)

) 1
p′ [wq]

(As(p))
1
q (AM∞)

1
p′

+ Φ
(
[w−p′

]As(q′)

) 1
q [w−p′

]
(As(q′))

1
p′ (AM∞)

1
q
, (2.10)

where Φ(t) = 1 + log(t).

3. Two Weight Inequalities via Ap Bump Conditions

If we do not assume that u, σ ∈ A∞, then the Aα
p,q condition is no longer

sufficient for the strong type inequality for the fractional maximal operators
or for the Riesz potentials. The construction is deferred until Sect. 6.
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Example 3.1. Given 0 < α < n and 1 < p ≤ q < ∞, there exists a pair of
weights (u, σ) ∈ Aα

p,q and a function f ∈ Lp(σ) such that Mα(fσ) �∈ Lq(u).

Remark 3.2. A similar example for the Hardy-Littlewood maximal opera-
tor (i.e., when α = 0) was constructed by Muckenhoupt and Wheeden [24].
While the existence of Example 3.1 is part of the folklore of harmonic analy-
sis, to the best of our knowledge one has never been published. It is worth
noting that our example is considerably different from the one constructed
by Muckenhoupt and Wheeden.

It is possible, however, to replace the Aα
p,q condition with a stronger

one defined using Orlicz norms. This approach to weighted norm inequalities
is due to Pérez [25,27] and was motivated by the original Muckenhoupt–
Wheeden conjectures.

To state these results we need to make some preliminary definitions. (For
further information, see [3, Section 5.2].) A Young function is a function Φ :
[0,∞) → [0,∞) that is continuous, convex and strictly increasing, Φ(0) = 0
and Φ(t)/t → ∞ as t → ∞. Define the localized Luxemburg average of f
over a cube Q by

‖f‖Φ,Q = inf

⎧⎨
⎩λ > 0 : −

∫

Q

Φ
( |f(x)|

λ

)
dx ≤ 1

⎫⎬
⎭ .

When Φ(t) = tp, 1 < p < ∞, this becomes the Lp norm and we write
‖f‖Φ,Q = ‖f‖p,Q. The associate function of Φ is the Young function

Φ̄(t) = sup
s>0

{st − Φ(s)}.

Note that ¯̄Φ = Φ. A Young function Φ satisfies the Bp condition if for
some c > 0,

∞∫

c

Φ(t)
tp

dt

t
< ∞.

Important examples of such functions are Φ(t) = t(rp′)′
, r > 1, whose

associate function is Φ̄(t) = trp′
, and Φ(t) = tp log(e + t)−1−ε, ε > 0, which

have associate functions Φ̄(t) � tp
′
log(e + t)p′−1+δ, δ > 0. We refer to these

associate functions as power bumps and log bumps. The Bp condition is
important because it characterizes the Lp boundedness of Orlicz maximal
operators, which in turn can be used to prove two weight inequalities. Define

MΦf(x) = sup
Q�x

‖f‖Φ,Q;

then Pérez [26] showed that MΦ is bounded on Lp(Rn) if and only if Φ ∈ Bp,
and

‖MΦ‖Lp→Lp �

⎛
⎝

∞∫

c

Φ(t)
tp

dt

t

⎞
⎠

1/p

.
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For our results we need to generalize this to the fractional Orlicz maxi-
mal operator. Given 0 < α < n and a Young function Φ, define

Mα,Φf(x) = sup
Q�x

|Q|α
n ‖f‖Φ,Q.

We define the associated fractional Bp condition as follows: given 1 < p
< n/α, let 1/q = 1/p − α/n. Then Φ ∈ Bα

p if
∞∫

c

Φ(t)q/p

tq
dt

t
< ∞.

We prove the following result in Sect. 6.

Theorem 3.3. Given 0 < α < n and 1 < p < n/α, define 1/q = 1/p − α/n.
Then for any Φ ∈ Bα

p , Mα,Φ : Lp(Rn) → Lq(Rn) and

‖Mα,Φ‖Lp→Lq �

⎛
⎝

∞∫

c

Φ(t)
q
p

tq
dt

t

⎞
⎠

1
q

. (3.1)

When α = 0 the two conditions coincide; if α > 0 then the Bα
p condition

is weaker. To see this, note that because the measure dt
t on (0,∞) behaves

in some sense like a counting measure, we have
⎛
⎝

∞∫

c

Φ(t)
q
p

tq
dt

t

⎞
⎠

1
q

�

⎛
⎝

∞∫

c

Φ(t)
tp

dt

t

⎞
⎠

1/p

.

Moreover, the Young function

Φ(t) =
tp

log(t)(1+ε) p
q

is in Bα
p for any ε > 0 but is in Bp only if ε > q/p − 1. Hence, Bp � Bα

p if
α > 0.

To state our results we introduce a new weight condition that is stronger
than the [u, σ]Aα

p,q
condition, replacing the average on σ by an Orlicz average:

we say that (u, σ) ∈ Aα
p,q,Φ if

[u, σ]Aα
p,q,Φ

= sup
Q

|Q|α
n + 1

q − 1
p

⎛
⎝−
∫

Q

u dx

⎞
⎠

1
q

‖σ
1
p′ ‖Φ,Q < ∞.

If we assume that Φ is such that tp
′ ≤ CΦ(ct), then [u, σ]Aα

p,q
�

[u, σ]Aα
p,q,Φ

. This is always the case if Φ̄ ∈ Bp. Note that this new condi-
tion lacks the symmetry of the Aα

p,q condition since the Orlicz norm is always
applied to the second weight.

This condition was introduced by Pérez [25] (see also [3, Section 5.6]),
who used it to prove strong type, two weight norm inequalities for the frac-
tional maximal operator:

‖Mα( ·σ)‖Lp(σ)→Lq(u) � [u, σ]Aα
p,q,Φ

‖MΦ̄‖Lp→Lp . (3.2)
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When p > q we improve his result both qualitatively and quantitatively,
giving a larger class of Young functions and a sharper constant.

Theorem 3.4. Given 0 ≤ α < n and 1 < p ≤ q < ∞, define β = n
(

1
p − 1

q

)
. If

Φ̄ ∈ Bβ
p and the pair of weights (u, σ) ∈ Aα

p,q,Φ, then

‖Mα( ·σ)‖Lp(σ)→Lq(u) � [u, σ]Aα
p,q,Φ

‖Mβ,Φ̄‖Lp→Lq .

To see that this constant is sharper when p > q, we give two examples. If
Φ̄(t) = tp log(t)−(1+ε), ε > 0, then a straightforward computation shows that
the Bp constant is approximately ε−1/p but the Bβ

p constant is approximately
ε−1/q. If Φ̄(t) = t(rp′)′

, r > 1, then the Bp constant is (r′)1/p but the Bβ
p

constant is (r′)1/q. (This second example will be applied below.)
As an immediate consequence of Theorems 1.1 and 3.4 we get the cor-

responding two weight, weak and strong type norm inequalities for Riesz
potentials.

Theorem 3.5. Given 0 < α < n and 1 < p < q < ∞, let β = n
(

1
p − 1

q

)
. If

Ψ̄ ∈ Bβ
q′ and the pair (u, σ) ∈ Aα

q′,p′,Ψ, then

‖Iα( ·σ)‖Lp(σ)→Lq,∞(u) � [σ, u]Aα
q′,p′,Ψ

‖Mβ,Ψ̄‖Lq′ →Lp′ .

Theorem 3.6. Given 0 < α < n and 1 < p < q < ∞, let β = n
(

1
p − 1

q

)
. If

Φ̄ ∈ Bβ
p , Ψ̄ ∈ Bβ

q′ and the pair (u, σ) satisfies (u, σ) ∈ Aα
p,q,Φ and (σ, u) ∈

Aα
q′,p′,Ψ, then

‖Iα( ·σ)‖Lp(σ)→Lq(u) � [u, σ]Aα
p,q,Φ

‖Mβ,Φ̄‖Lp→Lq

+ [σ, u]Aα
q′,p′,Ψ

‖Mβ,Ψ̄‖Lq′ →Lp′ . (3.3)

Theorem 3.6 is referred to as a separated bump condition: conditions of
this kind were implicit in the work of Pérez and were introduced explicitly
for singular integrals in [7] (see below). This condition significantly improves
the original, “double bump” result of Pérez [25], who showed that

‖Iα( ·σ)‖Lp(σ)→Lq(u) � [u, σ]Aα
p,q,Ψ,Φ

‖MΨ̄‖Lq′ →Lq′ ‖MΦ̄‖Lp→Lp , (3.4)

where Ψ̄ ∈ Bq′ , Φ̄ ∈ Bp, and

[u, σ]Aα
p,q,Ψ,Φ

= sup
Q

|Q|α
n + 1

q − 1
p ‖u

1
q ‖Ψ,Q‖σ

1
p′ ‖Φ,Q < ∞. (3.5)

By Hölder’s inequality for Orlicz norms we have that this quantity is
(up to a constant) larger than the right-hand side of (3.3).

As a corollary to Theorem 3.4 we can give an alternative proof of in-
equality (2.2), which, again by Theorem 1.1, implies inequalities (2.4) and
(2.6). We briefly sketch the argument. If (u, σ) ∈ Aα

p,q and σ ∈ A∞, then
Theorem 2.3 in [13]

⎛
⎝−
∫

Q

σr dx

⎞
⎠

1/r

≤ 2−
∫

Q

σ dx,
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where

r = r(σ) = 1 +
1

cn[σ]AM∞
.

Notice that r′ � [σ]AM∞ . Let Φ(t) = trp′
; then Φ̄(t) = t(rp′)′

and

[u, σ]Aα
p,q,Φ

� [u, σ]Aα
p,q

.

Further, as we noted above

‖Mβ,Φ̄‖Lp→Lq � (r′)
1
q � [σ]

1
q

AM∞
.

Remark 3.7. If we use the original inequality (3.2) in this argument, we get
a worse power of 1/p on the constant [σ]AM∞ :

‖Mα( ·σ)‖Lp(σ)→Lq(u) � [u, σ]Aα
p,q

[σ]
1
p

AM∞
.

Theorems 3.5 and 3.6 give positive answers for all 1 < p < q < ∞ to
two conjectures we originally made in [5]. There we proved partial results
using a more complicated corona decomposition argument. We were forced
to assume that Φ and Ψ were log bumps: i.e.,

Φ(t) = tp
′
log(e + t)p′−1+δ, Ψ(t) = tq log(e + t)q−1+δ, δ > 0,

and make the further restriction that (p′/q′)(1 − α/n) ≥ 1 for the weak type
inequality and min(q/p, p′/q′)(1 − α/n) ≥ 1 for the strong type inequality.
These conditions hold if p and q satisfy the Sobolev relationship but do not
hold if p and q are very close in value.

In [5] we also conjectured that these results hold in the critical exponent
case p = q. This case is important for its applications in the study of partial
differential equations: see [31] and the references it contains. We repeat these
conjectures here.

Conjecture 3.8. Given 0 < α < n, 1 < p < ∞, and Ψ̄ ∈ Bp′ , suppose
(u, σ) ∈ Aα

p′,p′,Ψ. Then

‖Iα( ·σ)‖Lp(σ)→Lp,∞(u) � [σ, u]Aα
p′,p′,Ψ

‖MΨ̄‖Lp′ →Lp′ .

Conjecture 3.9. Given 0 < α < n, 1 < p < ∞, Ψ̄ ∈ Bp′ and Φ̄ ∈ Bp, suppose
the pair (u, σ) satisfies (u, σ) ∈ Aα

p′,p′,Φ and (σ, u) ∈ Aα
p,p,Ψ then

‖Iα( ·σ)‖Lp(σ)→Lp(u) � [u, σ]Aα
p,p,Φ

‖MΦ̄‖Lp→Lp + [σ, u]Aα
p′,p′,Ψ

‖MΨ̄‖Lp′ →Lp′ .

Very little is known about these conjectures. We do have that Con-
jecture 3.8 implies Conjecture 3.9, since for all pairs (u, σ) and exponents
1 < p ≤ q < ∞,

‖Iα( ·σ)‖Lp(σ)→Lq(u) � ‖Iα( ·σ)‖Lp(σ)→Lq,∞(u)

+‖Iα( ·u)‖Lq′ (u)→Lp′,∞(σ). (3.6)

(See [31].) Conjecture 3.8 is known in the special case Ψ(t) = tp log(e +
t)2p−1+δ: this was proved in [3, Theorem 9.42]. Note that the exponent is
much larger than desired: in the case of log bumps we would expect the
exponent to be p − 1 + δ.
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Remark 3.10. Conjecture 3.9 is the fractional version of the separated bump
conjecture for Calderón-Zygmund operators made in [11]:

‖T ( ·σ)‖Lp(σ)→Lp(u) � [u, σ]Ap,Φ‖MΦ̄‖Lp→Lp + [σ, u]Ap′,Ψ
‖MΨ̄‖Lp′ →Lp′

(3.7)

(where [u, σ]Ap,Φ = [u, σ]A0
p,p,Φ

). A non-quantitative version of this conjecture
first appeared in [7]. In this paper they gave a partial result in the scale of
log bumps: if

Φ(t) = tp
′
log(e + t)p′−1+δ,Ψ(t) = tp log(e + t)p−1+δ, δ > 0,

then

‖T ( ·σ)‖Lp(σ)→Lp(u) � [u, σ]Ap,Φ‖MΦ̄‖p+1
Lp→Lp + [σ, u]Ap′,Ψ

‖MΨ̄‖p′+1

Lp′ →Lp′ .

We conclude this section with an observation. We suspect that the fol-
lowing result, which gives a connection between operator norms for the Riesz
potential and a “bilinear” (properly, bisublinear) maximal operator defined
by the second author in [20], may be applicable to this problem.

Theorem 3.11. Given 0 < α < n and a dyadic grid D , let X and Y be Banach
function spaces. Then

‖Iα‖X→Y � ‖Mα‖X×Y ′→L1 ,

where for f, g ∈ L1
loc,

Mα(f, g)(x) = sup
Q�x

|Q|α
n −
∫

Q

|f | dx · −
∫

Q

|g| dx.

Earlier, related estimates for singular integrals were implicit in [2] and
the corresponding version of Theorem 3.11 for Calderón-Zygmund operators
was proved in [17]. Theorem 3.11 is proved in essentially the same way and we
omit the details. Inequality (3.4) follows from Theorem 3.11 and the weighted
theory for Mα developed in [20, Theorem 6.6], but we are unable to prove
separated bump results using this approach.

4. Proof of Theorem 1.1

We divide this section into two parts. In the first we gather some results
about dyadic Riesz potentials, and in the second give the proof itself.

Dyadic Riesz Potentials

A dyadic grid, usually denoted D , is a collection of cubes in R
n with the

following properties:
(a) given Q ∈ D , the side-length satisfies 	(Q) = 2k for some k ∈ Z;
(b) given Q,P ∈ D , Q ∩ P is either P, Q, or ∅;
(c) for a fixed k ∈ Z the set Dk = {Q ∈ D : 	(Q) = 2k} is a partition of

R
n.
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Given t ∈ {0, 1/3}n we define the family of dyadic grids

D t = {2−k([0, 1)n + m + (−1)kt) : k ∈ Z,m ∈ Z
n}.

When t = 0, D0 is the classic dyadic grid with base point at the origin
used in the Calderón-Zygmund decomposition.

Given a dyadic grid D and 0 < α < n, we define a dyadic version of Iα:

ID
α f(x) =

∑
Q∈D

1
|Q|1− α

n

∫

Q

f(y) dy · χQ(x). (4.1)

In [5] we showed that for non-negative functions f ,

Iαf(x) � max
t∈{0,1/3}n

IDt

α f(x). (4.2)

Since Iα and ID
α are positive operators, hereafter we may assume that we

are dealing with non-negative functions and can apply these inequalities to
reduce to the dyadic case.

To estimate the norm of ID
α , we will use a testing condition due to Lacey,

Sawyer and Uriarte-Tuero [15]. To state their result, we need two definitions.
First, given a cube Q0 ∈ D , for x ∈ Q0 define the “outer” dyadic Riesz
potential

IQ0
α f(x) =

∑
Q∈D
Q⊃Q0

|Q|α
n −
∫

Q

f(y) dy · χQ(x).

Second, given 0 < α < n, 1 < p < q < ∞ and a pair of weights (u, σ), define
the testing constant

[u, σ]Iout
α ,p,q = sup

Q0

⎛
⎝
∫

Rn

IQ0
α (σχQ0)(x)qu dx

⎞
⎠

1/q

σ(Q0)−1/p.

Theorem 4.1. Given 0 < α < n and 1 < p < q < ∞,

‖ID
α ( ·σ)‖Lp(σ)→Lq,∞(u) � [σ, u]Iout

α ,q′,p′

and

‖ID
α ( ·σ)‖Lp(σ)→Lq(u) � [u, σ]Iout

α ,p,q + [σ, u]Iout
α ,q′,p′ .

Remark 4.2. In Theorem 4.1 the restriction that p < q is essential; this is the
reason for this condition for our paper. In [15] they give a different testing
condition that holds when p = q, but we have been unable to apply our
techniques to get estimates in this case.

Proof of Theorem 1.1
Our argument is broadly similar to the one in [4]. By inequality (4.2) it suffices
to fix a dyadic grid D and obtain norm estimates for ID

α that are independent
of the grid. And by Theorem 4.1 it suffices to estimate the testing constant for
the outer Riesz potential. The inequality “�” in Theorem 1.1 is a consequence
of the following result.
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Theorem 4.3. Given 0 < α < n, 1 < p < q < ∞ and a pair of weights (u, σ),
then

[u, σ]Iout
α ,p,q ≤ (1 − 2α−n)−1‖Mα( ·σ)‖Lp(σ)→Lq(u)

and

[σ, u]Iout
α ,q′,p′ ≤ (1 − 2α−n)−1‖Mα( ·u)‖Lq′ (u)→Lp′ (σ).

Proof. We will prove the first inequality; the proof of the second is identical.
Fix a cube Q0 ∈ D and for each k ≥ 1 let Qk ∈ D be the unique cube such
that Qk−1 ⊂ Qk and |Qk| = 2kn|Q0|. By definition,

IQ0
α (σχQ0)(x) =

∑
Q⊃Q0

|Q|α
n −1

∫

Q

σχQ0 dx · χQ(x)

=
∫

Q0

σ dx ·
∞∑

k=0

|Qk|α
n −1 · χQk

(x).

Clearly, the support of IQ0
α (σχQ0) is

⋃∞
k=0 Qk. If x ∈ Q0, then

IQ0
α (σχQ0)(x) =

∫

Q0

σ dx ·
∞∑

k=0

|Qk|α
n −1 = |Q0|α

n −1

∫

Q0

σ dx ·
∞∑

k=0

2k(α−n)

= (1 − 2α−n)−1|Q0|α
n −1

∫

Q0

σ dx ≤ (1 − 2α−n)−1Mα(σχQ0)(x).

If x ∈ Qj+1\Qj for some j ≥ 0, then

IQ0
α (σχQ0)(x) =

∫

Q0

σ dx ·
∞∑

k=j

|Qk|α
n −1

= |Q0|α
n −1

∫

Q0

σ dx ·
∞∑

k=j

2k(α−n) = (1 − 2α−n)−12j(α−n)|Q0|α
n −1

∫

Q0

σ dx

= (1 − 2α−n)−1|Qj |α
n −1

∫

Q0

σ dx ≤ (1 − 2α−n)−1Mα(σχQ0)(x).

We therefore have that∫

Rn

IQ0
α (σχQ0)

qu dx ≤ (1 − 2α−n)−q

∫

Rn

Mα(σχQ0)
qu dx,

and the desired inequality follows immediately. �

Finally, we prove the reverse inequalities in Theorem 1.1. We will prove
that

‖Mα( ·u)‖Lq′ (u)→Lp′ (σ) � ‖Iα( ·σ)‖Lp(σ)→Lq,∞(u);
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the other estimates are proved in essentially the same way. Fix a cube Q;
then ∫

Q

Iα(fσ)u dx ≤ ‖Iα(fσ)‖Lq,∞(u)‖χQ‖Lq′,1(u)

≤ ‖Iα(·σ)‖Lp(σ)→Lq,∞(u)‖f‖Lp(σ)u(Q)1/q′
.

Let f = Iα(uχQ)p′−1χQ. Then, since Iα is self-adjoint, we have that
⎛
⎝
∫

Q

Iα(uχQ)p′
σ dx

⎞
⎠

1/p′

≤ ‖Iα( ·σ)‖Lp(σ)→Lq,∞(u)u(Q)1/q′
.

Since for non-negative functions f, Mαf(x) � Iαf(x), we have that

[σ, u]Mα,q′,p′ = sup
Q

⎛
⎝
∫

Q

Mα(uχQ)p′
σ dx

⎞
⎠

1/p′

u(Q)−1/q′

� ‖Iα(·σ)‖Lp(σ)→Lq,∞(u).

But by Sawyer’s testing condition for the fractional maximal opera-
tor [30],

‖Mα( ·u)‖Lq′ (u)→Lp′ (σ) � [σ, u]Mα,q′,p′ .

This completes the proof.

5. Estimates Involving A∞
In this section we prove Theorems 2.1, 2.5 and 2.6. We first give some further
results on dyadic operators, and we then prove each of these theorems in
turn.

Dyadic fractional maximal operators

Given a dyadic grid D , define the dyadic fractional maximal operator by

MD
α f(x) = sup

Q∈D

1
|Q|1− α

n

∫

Q

f(y) dy · χQ(x).

Essentially the same argument in [5] that gave us (4.2) also lets us prove
the corresponding estimate for the fractional maximal operator:

Mαf(x) � max
t∈{0,1/3}n

MDt

α f(x). (5.1)

Therefore, it will suffice to prove norm estimates for MD
α . In fact, we

will prove estimates for a linearization of this operator. We begin by defining
sparse families of cubes. These are a generalization of an idea closely con-
nected to the Calderón-Zygmund decomposition. Given a dyadic grid D , a
subset S ⊆ D is sparse if there exists a family of disjoint, “thick” subsets: for
every Q ∈ S there exists EQ ⊆ Q such that the family {EQ}Q∈S is pairwise
disjoint and |EQ| ≥ 1

2 |Q|.
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Given a sparse family S define the linear operator

LS
αf(x) =

∑
Q∈S

|Q|α
n −
∫

Q

f dx · χEQ
(x).

Theorem 5.1. Given 0 ≤ α < n and a dyadic grid D , for every non-negative
Function f ∈ L∞

c (Rn) there exists a sparse family S ⊂ D such that for a.e.
x,

MD
α f(x) � LS

αf(x), (5.2)

and the implicit constants do not depend on D , S or f . Consequently, for
any Banach function spaces X and Y

‖MD
α ‖X→Y � sup

S
‖LS

α‖X→Y

and

‖Mα‖X→Y � sup
S,D

‖LS
α‖X→Y .

The pointwise inequality (5.2) is well known; the basic idea first ap-
peared in Sawyer [30] (see also [3, Section 9.3]). The norm inequalities follow
from this and (5.1).

Proof of Theorem 2.1
For the proof we need three lemmas. The first is an Lp estimate for a dyadic
maximal operator defined with respect to an arbitrary measure. Let μ be a
positive Borel measure on R

n; given a dyadic grid D and 0 ≤ β < n, define

MD
β,μf(x) = sup

Q∈D

1

μ(Q)1− β
n

∫

Q

|f | dμ · χQ(x).

When β = 0 we simply write MD
0,μ = MD

μ . The operator MD
β satisfies norm

inequalities with bounds independent of μ: the proof of the next result can
be found in [21].

Lemma 5.2. Given 0 ≤ β < n and 1 < p ≤ n
β , define 1

q = 1
p − β

n . If μ is a
measure such that μ(Rn) = ∞, then

‖MD
β,μ‖Lp(μ)→Lq(μ) ≤

(
1 +

p′

q

)1− β
n

.

The second lemma is a weighted Carleson embedding theorem. To state
it we make two definitions. Given a sequence of positive numbers
c = {cQ}Q∈D , we say that c is a Carleson sequence with respect to a measure
μ if for each Q0 ∈ D , ∑

Q⊆Q0

cQ ≤ Cμ(Q0). (5.3)

The infimum of the constants in inequality (5.3) will be denoted C(c).
Also, given a sequence a = {aQ}Q∈D , define the sequential maximal operator

Ma(x) = sup
Q∈D

|aQ| · χQ(x).
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The proof of the next result is also standard; for instance, see [13, The-
orem 4.5].

Lemma 5.3. Fix 1 < p < ∞ and a dyadic grid D . If a = {aQ}Q∈D is any
sequence and c = {cQ}Q∈D is a Carleson sequence with respect to a measure
μ, then

∑
Q∈D

|aQ|p cQ ≤ C(c)
∫

Rn

Ma(x)p dμ.

Finally, define the geometric maximal operator by

MD
0 f(x) = sup

Q∈D
exp

⎛
⎝−
∫

Q

log |f | dx

⎞
⎠ · χQ(x).

By Jensen’s inequality, for any r > 0, MD
0 f(x) ≤ MD(|f |r)(x)1/r, so

the geometric maximal operator is bounded on Lp, p > 0. The sharp constant
can be readily computed using this fact: see, for instance, [13, Lemma 2.1].
(For the history of this operator, see [6] and the references it contains.)

Lemma 5.4. Given 0 < p < ∞,

‖MD
0 f‖Lp(Rn) ≤ e‖f‖Lp(Rn).

Proof of Theorem 2.1. Fix a non-negative function f . By Theorem 5.1 it will
suffice to get a norm estimate for the linearization

LS
α(fσ) =

∑
Q∈S

|Q|α
n −
∫

Q

fσ dx · χEQ
,

with a constant that is independent of the sparse subset S ⊂ D . Since the
sets {EQ}Q∈S are pairwise disjoint,

∫

Rn

LS
α(fσ)qu dx =

∑
Q∈S

⎛
⎝|Q|α

n −
∫

Q

fσ dx

⎞
⎠

q

u(EQ)

≤
∑
Q∈S

⎛
⎜⎝|Q|α

n + 1
q − 1

p

⎛
⎝−
∫

Q

u dx

⎞
⎠

1/q⎛
⎝−
∫

Q

σ dx

⎞
⎠

1/p′ ∫

Q

fσ dx

⎞
⎟⎠

q

σ(Q)−q/p′
.

(5.4)

Now let β = n
(

1
p − 1

q

)
; then

σ(Q)−q/p′
=

(
1

σ(Q)1− β
n

)q

σ(Q).

Define the sequences c = {cQ} and a = {aQ} by

cQ =

⎛
⎜⎝|Q|α

n + 1
q − 1

p

⎛
⎝−
∫

Q

u dx

⎞
⎠

1/q⎛
⎝−
∫

Q

σ dx

⎞
⎠

1/p′⎞
⎟⎠

q

σ(Q)
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and

aQ =
1

σ(Q)1− β
n

∫

Q

fσ dx

for Q ∈ S and zero otherwise.
Then we can rewrite (5.4) as

‖LS
α(fσ)‖Lq(u) ≤

⎛
⎝∑

Q∈S
(aQ)qcQ

⎞
⎠

1/q

. (5.5)

To estimate the right-hand side of (5.5) we will show that c is a Carleson
sequence with respect to the measure σ and its Carleson constant is bounded
by either

C(c) ≤ 2e[u, σ]q
Ap,q(u,σ)Aexp∞ (σ)

1
q

(5.6)

or

C(c) ≤ 2[u, σ]qAp,q
[σ]AM∞ . (5.7)

Given these estimate we are done: by Lemma 5.3 we have

‖LS
α(fσ)‖Lq(u) ≤ C(c)1/q‖Ma‖Lq(σ).

By our choice of the sequence a, Ma(x) = MD
β,σf(x). Since σ ∈ A∞, σ(Rn) =

∞, so by Lemma 5.2,

‖LS
α(fσ)‖Lq(u) ≤ C(c)1/q‖MD

β,σf‖Lq(σ) � C(c)1/q‖f‖Lp(σ).

To complete the proof we first prove (5.6). Let Q0 ∈ D ; then by Lemma
5.4,

∑
Q⊆Q0

cQ =
∑
Q∈S

Q⊆Q0

⎛
⎜⎝|Q|α

n + 1
q − 1

p

⎛
⎝−
∫

Q

u dx

⎞
⎠

1/q⎛
⎝−
∫

Q

σ dx

⎞
⎠

1/p′⎞
⎟⎠

q

σ(Q)

≤ 2[u, σ]q
Aα

p,q(u,σ)Aexp∞ (σ)
1
q

∑
Q∈S

Q⊆Q0

exp

⎛
⎝−
∫

Q

log σ

⎞
⎠ |EQ|

≤ 2[u, σ]q
Aα

p,q(u,σ)Aexp∞ (σ)
1
q

∫

Q0

M0(χQ0σ) dx

≤ 2e[u, σ]q
Aα

p,q(u,σ)Aexp∞ (σ)
1
q
σ(Q0).
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We prove (5.7) in a similar fashion: by the definition of the AM
∞ constant,

∑
Q⊆Q0

cQ =
∑
Q∈S

Q⊆Q0

⎛
⎜⎝|Q|α

n + 1
q − 1

p

⎛
⎝−
∫

Q

u dx

⎞
⎠

1/q⎛
⎝−
∫

Q

σ dx

⎞
⎠

1/p′⎞
⎟⎠

q

σ(Q)

≤ 2[u, σ]qAα
p,q

∑
Q∈S

Q⊆Q0

σ(Q)
|Q| |EQ|

≤ 2[u, σ]qAα
p,q

∫

Q0

M(χQ0σ) dx

≤ 2[u, σ]qAα
p,q

[σ]AM∞σ(Q0). �

Proof of Theorem 2.5
To apply Theorem 2.2 we first make a few preliminary remarks. Given any
α and exponents p and q that satisfy the Sobolev relationship, define

s(p) = 1 +
p

q′ = q
(
1 − α

n

)
.

Given a weight w, if we let u = wq and σ = w−p′
, then it is immediate

that

[u, σ]Aα
p,q

= [wq]
1
q

As(p)
.

With this notation we can restate (2.4) as

‖Iα‖Lp(wp)→Lq,∞(wq) � [wq]
1
q

As(p)
[wq]

1
p′
A∞ . (5.8)

Now fix r and w as in the hypotheses. We will prove (2.7) using inter-
polation with change of measure. Since r < s(p), there exist p0 and q0 such
that 1/p0 − 1/q0 = α/n and

r = s(p0) = q0

(
1 − α

n

)
.

Note that p0 < p and q0 < q. Define w0 = wq/q0 ; then

[wq0
0 ]As(p0) = [wq]Ar

,

and so by (5.8),

‖Iα‖Lp0 (w
p0
0 )→Lq0,∞(wq) � [wq]

1
q 0
Ar

[wq]
1

p′
0

A∞ . (5.9)

Define p1 > p and q1 > q by

1/2
p0

+
1/2
p1

=
1
p
,

1/2
q0

+
1/2
q1

=
1
q
.

Let w1 = wq/q1 . Since s(p1) > s(p) > r, we have that

[wq1
1 ]As(p1) ≤ [wq]Ar

.
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Therefore, if we repeat the above argument, we get that

‖Iα‖Lp1 (w
p1
1 )→Lq1,∞(wq) � [wq]

1
q 1
Ar

[wq]
1

p′
1

A∞ . (5.10)

Given inequalities (5.9) and (5.10), by interpolation with change of mea-
sure (Stein and Weiss [32]; also see Grafakos [10, Exercise 1.4.9] for a careful
treatment of the constants) we get (2.7).

Proof of Theorem 2.6
Again, by (5.1) it suffices to work with the dyadic operator MD

α . We begin
with a testing condition from [19]. Given p and q satisfying the Sobolev
relationship, define

[u, σ]MD ,s(p) = sup
R∈D

( ∫
R

MD(σχR)s(p)u dx
)1/q

σ(R)1/q

(recall s(p) = 1 + q
p′ ). It was shown in [19, Corollary 4.5] that

‖MD
α ( ·σ)‖Lp(σ)→Lq(u) � [u, σ]MD ,s(p);

that is, the two weight norm inequality of the fractional maximal operator is
bounded by the testing constant of the Hardy-Littlewood maximal operator.

Now fix wq ∈ As(p) and let u = wq and σ = w−p′
. We will estimate

[u, σ]MD ,s(p). Fix R ∈ D . By inequality (5.2) there exists a sparse family
S ⊂ R such that
∫

R

MD(σχQ)s(p)u dx �
∑
Q∈S

(
σ(Q)
|Q|

)s(p)

u(EQ) ≤
∑
Q∈S

(
σ(Q)
|Q|

)1+ q
p′ u(Q)

|Q| |Q|.

For a ∈ Z define

Sa =

⎧⎨
⎩Q ∈ S : 2a <

(
u(Q)
|Q|

) p′
q σ(Q)

|Q| ≤ 2a+1

⎫⎬
⎭ .

Since wq ∈ As(p), the sets Sa are empty if a < −1 or a >


log2[w−p′
]As(q′)� := K. (The fact that u = wq and σ = w−p′

is essential
at this step.) Hence,

∑
Q∈S

(
σ(Q)
|Q|

)1+ q
p′ u(Q)

|Q| |Q|

=
K∑

a=−1

∑
Q∈Sa

(
σ(Q)
|Q|

)1+ q
p′ u(Q)

|Q| |Q| �
K∑

a=−1

2a q
p′
∑

Q∈Sa

(
σ(Q)
|Q|

)
|EQ|.

(5.11)

We now analyze the inner sum in (5.11). For each a, −1 ≤ a ≤ K, let
Sa

max be the collection of maximal cubes with respect to inclusion in Sa. Then
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the family Sa
max is pairwise disjoint and every cube in Sa is contained in a

cube from Sa
max. Thus,

∑
Q∈Sa

(
σ(Q)
|Q|

)
|EQ| =

∑
Q∈Sa

max

∑
P∈Sa

P⊂Q

(
σ(P )
|P |

)
|EP | ≤

∑
Q∈Sa

max

∫

Q

M(σχQ) dx.

If we substitute this estimate into (5.11), then we have that
K∑

a=−1

2a q
p′
∑

Q∈Sa

(
σ(Q)
|Q|

)
|EQ| ≤

K∑
a=−1

2a q
p′

∑
Q∈Sa

max

∫

Q

M(σχQ) dx

≤
K∑

a=−1

∑
Q∈Sa

max

(
σ(Q)
|Q|

) q
p′ u(Q)

|Q|
∫

Q

M(σχQ) dx

≤ [w−p′
]q
(As(q′))

1
p′ (AM∞)

1
q

K∑
a=−1

∑
Q∈Sa

max

σ(Q)

≤ (2 + K)[w−p′
]q
(As(q′))

1
p′ (AM∞)

1
q

σ(R).

If we combine the above inequalities, we get the desired estimate.

6. Two Weight Ap Bump Conditions

In this section we construct Example 3.1 and prove Theorems 3.3 and 3.4.

Construction of Example 3.1

To construct the desired example, we need to consider two cases. In both
cases we will work on the real line.

The simpler case is if 1
p − 1

q > α
n . Note that in this case, by the Lebesgue

differentiation theorem, if (u, σ) ∈ Aα
p,q, then u and σ have disjoint supports.

Let f = σ = χ[−2,−1] and let u = xtχ[0,∞), where t = q(1−α)−1. Given any
Q = (a, b), Aα

p,q(u, σ,Q) = 0 unless a < −1 and b > 0. In this case we have
that

Aα
p,q(u, σ,Q) ≤ bα+ 1

q − 1
p

⎛
⎝1

b

b∫

0

xt dx

⎞
⎠

1
q
⎛
⎝1

b

−1∫

−2

dx

⎞
⎠

1
p′

� bα+ t+1
q −1

= 1.

Hence, (u, σ) ∈ Aα
p,q. On the other hand, for all x > 1,

Mα(fσ)(x) ≈ xα−1,

and so
∫

R

Mα(fσ)(x)qu(x) dx ≥
∞∫

1

xq(α−1)xq(1−α)−1 dx =

∞∫

1

dx

x
= ∞.
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Now suppose 1
p − 1

q ≤ α
n . We begin with a general lemma that lets

us construct pairs in Aα
p,q; this is an extension of the technique of factored

weights developed in [3, Chapter 6].

Lemma 6.1. Given 0 < α < n, suppose 1 < p ≤ q < ∞ and 1
p − 1

q ≤ α
n . Let

w1, w2 be locally integrable functions, and define

u = w1

(
Mγw2

)− q
p′ , σ = w2

(
Mγw1

)− p′
q ,

where

γ =
α
n + 1

q − 1
p

1
n

(
1 + 1

q − 1
p

) .

Then (u, σ) ∈ Aα
p,q and [u, σ]Aα

p,q
≤ 1.

Proof. By our assumptions on p, q and α, 0 ≤ γ ≤ α. Fix a cube Q. Then

Aα
p,q(u, σ,Q) = |Q|α

n + 1
q − 1

p

⎛
⎝−
∫

Q

w1

(
Mγw2

)− q
p′ dx

⎞
⎠

1
q (

−
∫

w2

(
Mγw1

)− p′
q dx

) 1
p′

≤ |Q|α
n + 1

q − 1
p

(
−
∫

w1 dx

) 1
q′
⎛
⎝|Q| γ

n

⎛
⎝−
∫

Q

w2 dx

⎞
⎠
⎞
⎠

− 1
p′

×
(

−
∫

w2 dx

) 1
p′
⎛
⎝|Q| γ

n

⎛
⎝−
∫

Q

w1 dx

⎞
⎠
⎞
⎠

− 1
q

= |Q|α
n + 1

q − 1
p − γ

n (1+ 1
q − 1

p )

= 1.
�

With n = 1, fix γ as in Lemma 6.1. The second step is to construct a
set E ⊂ [0,∞) such that Mγ(χE)(x) ≈ 1 for x > 0. Let

E =
⋃
j≥0

[j, j + (j + 1)−γ).

Suppose x ∈ [k, k+1); if k = 0, then it is immediate that if we take Q = [0, 2],
then Mγ(χE) ≥ 3 · 2γ−2 ≈ 1. If k ≥ 1, let Q = [0, x]; then

Mγ(χE)(x) ≥ xγ−1
∑

0≤j≤�x

(j + 1)−γ ≥ (k + 1)γ−1

k∑
j=0

(j + 1)−γ

� (k + 1)γ−1(k + 1)1−γ = 1.

It remains to prove the reverse inequality. If |Q| ≤ 1, then

|Q|γ−1|Q ∩ E| ≤ |Q|γ ≤ 1,

so we only have to consider Q such that |Q| ≥ 1. In this case, given a Q, let Q′

be the smallest interval whose endpoints are integers that contains Q. Then
|Q′| ≤ |Q| + 2 ≤ 3|Q|, and so |Q|γ−1|E ∩ Q| ≈ |Q′|γ−1|E ∩ Q′|. Therefore,
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without loss of generality, it suffices to consider Q = [a, a + h + 1], a, h non-
negative integers. Then

|Q|γ−1|Q ∩ E| = (1 + h)γ−1
∑

a≤j≤a+h

(j + 1)−γ ≈ (1 + h)γ−1

a+h∫

a

(t + 1)−γ dt

≈ (1 + h)γ−1
(
(a + h + 1)1−γ − (a + 1)1−γ

)
.

To estimate the last term suppose first that h ≤ a. Then by the mean value
theorem the last term is dominated by

(1 + h)γ−1(1 + h)(a + 1)−γ ≤ 1.

On the other hand, if h > a, then the last term is dominated by

(1 + h)γ−1(a + h + 1)1−γ ≤ 21−γ ≈ 1.

We can now give our desired counter example. Let w1 = χE and let
w2 = χ[0,1]. Then for all x ≥ 2,

Mγw1(x) ≈ 1, Mγw2(x) = sup
Q

|Q|γ−1

∫

Q

w2 dt ≈ xγ−1.

Then by Lemma 6.1, if we set

u = w1(Mβw2)
− q

p′ , σ = w2(Mβw1)− p′
q ,

then (u, σ) ∈ Aα
p,q. Moreover, for x ≥ 2, we have that

u(x) ≈ x(1−γ) q
p′ χE , σ(x) ≈ χ[0,1].

Fix f ∈ Lp(σ): without loss of generality, we may assume supp(f) ⊂
[0, 1]. Then fσ is locally integrable, and for x ≥ 2 we have that

Mα(fσ)(x) ≥ xα−1‖fσ‖1 ≈ xα−1.

Therefore, for x ≥ 2,

Mα(fσ)(x)qu(x) � x(α−1)qx(1−γ) q
p′ χE .

By the definition of γ,

γ

(
1
q

+
1
p′

)
= γ

(
1 +

1
q

− 1
p

)
= α +

1
q

− 1
p

= α − 1 +
1
q

+
1
p′ ;

equivalently,

(γ − 1)
(

q

p′ + 1
)

= q(α − 1),

and so

(α − 1)q + (1 − γ)
q

p′ = γ − 1,

Therefore, to show that Mα(fσ) �∈ Lq(u), it will be enough to prove
that

∞∫

2

xγ−1χE(x) dx = ∞.
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This is straight-forward:

∞∫

2

xγ−1χE(x) dx =
∞∑

j=2

j+(j+1)−γ∫

j

xγ−1 dx

≥
∞∑

j=2

(j + (j + 1)−γ)γ−1(j + 1)−γ

≥
∞∑

j=2

(j + 1)γ−1(j + 1)−γ

≥
∞∑

j=2

(j + 1)−1 = ∞.

Proof of Theorems 3.3 and 3.4

Proof of Theorem 3.3. Our proof is adapted from the argument for the case
α = 0 given in [27]. Fix a non-negative function f ; by a standard approxi-
mation argument we may assume that the support of f is contained in some
cube Q. Let Φp(t) = Φ(t1/p); then be a rescaling argument (see [3, p. 98]),
‖fp‖Q,Φp

= ‖f‖p
Q,Φ, and so

Mα,Φf(x)q = Mpα,Φp
(fp)(x)

q
p .

By [3, Lemma 5.49], we have that

|{x ∈ Q : Mpα,Φp
(fp)(x) > t}|n−pα

n ≤ C

∫

{x∈Q:f(x)>t/c}

Φp

(
f(x)p

t

)
dx.

By the Sobolev relationship, n−pα
n = p

q . Therefore, we have that

⎛
⎝
∫

Q

Mα,Φf(y)q dy

⎞
⎠

1
q

=

⎛
⎝
∫

Q

Mpα,Φp
(fp)(y)

q
p dy

⎞
⎠

1
q

�
⎛
⎝

∞∫

0

t
q
p |{x ∈ Q : Mpα,Φp

(fp)(x) > t}|dt

t

⎞
⎠

1
q

�

⎛
⎜⎜⎝

∞∫

0

t
q
p

⎛
⎜⎝

∫

{x∈Q:f(x)p>t/c}

Φp

(
f(x)p

t

)
dx

⎞
⎟⎠

q
p

dt

t

⎞
⎟⎟⎠

1
q

;
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by Minkowski’s inequality and the change of variables t �→ (f(x)/s)p,

�

⎛
⎜⎜⎝
∫

Q

⎛
⎜⎝

cf(x)p∫

0

Φ
(

f(x)

t
1
p

) q
p

t
q
p
dt

t

⎞
⎟⎠

p
q

dx

⎞
⎟⎟⎠

1
p

=

⎛
⎜⎝
∫

Q

⎛
⎝

∞∫

c

Φ(s)
q
p

(
f(x)

s

)q
ds

s

⎞
⎠

p
q

dx

⎞
⎟⎠

1
p

=

⎛
⎝

∞∫

c

Φ(s)
q
p

sq

ds

s

⎞
⎠

1
q
⎛
⎝
∫

Q

f(x)p dx

⎞
⎠

1
p

.
�

Proof of Theorem 3.4. Arguing as we did for inequality (5.1) it suffices to
work with dyadic operators. Fix a sparse family S; we will estimate

∫

Rn

LS
α(fσ)qu dx =

∑
Q∈S

⎛
⎝|Q|α

n −
∫

Q

fσ

⎞
⎠

q

u(EQ).

Let β = n( 1
p − 1

q ). Then

∑
Q∈S

⎛
⎝|Q| α

n −
∫

Q

fσ

⎞
⎠

q

u(EQ) ≤
∑
Q∈S

⎛
⎜⎝|Q| α

n
+ 1

q

⎛
⎝−
∫

Q

u dx

⎞
⎠

1/q

−
∫

Q

fσ dx

⎞
⎟⎠

q

≤
∑
Q∈S

⎛
⎜⎝|Q| α

n
+ 1

q

⎛
⎝−
∫

Q

u dx

⎞
⎠

1/q

‖σ
1
p′ ‖Φ̄,Q‖fσ

1
p ‖Φ̄,Q

⎞
⎟⎠

q

≤ [u, σ]qAα
p,q,Φ

∑
Q∈S

‖fσ
1
p ‖q

Φ̄,Q
|Q| q

p

� [u, σ]qAα
p,q,Φ

∑
Q∈S

(|Q| β
n ‖fσ

1
p ‖Φ̄,Q)q|EQ|

≤ [u, σ]qAα
p,q,Φ

∫

Rn

(MD
β,Φ̄f)q dx

≤ [u, σ]qAα
p,q,Φ

‖Mβ,Φ̄‖q
Lp→Lq ‖f‖q

Lp(σ). �
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