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1. Introduction and Notation

Throughout the paper Ω is a bounded domain in the complex plane C, whose
boundary ∂Ω is assumed to be of Lipschitz type and U is the unit disk. By

dA(z) = dxdy (z = x+ iy),

is denoted the Lebesgue area measure in Ω. The main subject of this paper
is to discuss a weak solution of the Dirichlet problem{

Δu = g(z), z ∈ Ω
u ∈ W 1,p

0 (Ω),
(1.1)

where p � 1,Δu is the Laplacian and W 1,p
0 (Ω) is the space of functions

u ∈ W 1,p(Ω) ∩ C(Ω) with u|∂Ω = 0. This is a Poisson’s equation. A weakly
differentiable function u defined in a domain Ω with u|∂Ω = 0 and u ∈ C(Ω)
is a weak solution of Poisson’s equation if the partial derivatives ∂xu aned
∂yu are locally integrable in Ω and∫

Ω

[∂xu(z)∂xv(z) + ∂yu(z)∂yv(z) + g(z)v(z)] dA(z) = 0,

for all v ∈ C1
0 (Ω) (see e.g. [6]).

We recall some basic facts of potential theory in the plane which can be
found in [9]. It is well known that for g ∈ Lp(Ω), p � 1, the weak solution u of
Poisson’s equation is given explicitly as the sum of the Newtonian potential



564 D. Kalaj IEOT

N [g](z) =
1
2π

∫
Ω

log |z − w|g(w)dA(w),

and a harmonic function h such that h|∂Ω +N(g)|∂Ω ≡ u|∂Ω. A domain Ω has
Green’s function GΩ whenever C \ Ω contains a nondegenerate continuum.
We normalize the Green function by GΩ(z, ζ) = − log|z− ζ|+O(1) as z → ζ.
In particular, GΩ(z, ζ) > 0. If GΩ(z, w) is the Green function of the domain
Ω, then

u(z) = PΩ[g](z) := −
∫
Ω

GΩ(z, w)g(w)dA(w) (1.2)

is the explicit solution of (1.1). Here g ∈ Lp(Ω), p � 1. In particular if Ω = U,
then the function

u(z) =
1
2π

∫
U

log
|z − w|
|1 − zw|g(w)dA(w)

is the explicit solution of (1.1) or more generally, if Ω is a simply connected
domain and if ψ is a conformal mapping between Ω and the unit disk U then
the solution is given by

u(z) =
1
2π

∫
Ω

log
|ψ(z) − ψ(w)|
|1 − ψ(z)ψ(w)|g(w)dA(w). (1.3)

For g ∈ Lp(Ω), p � 1, the Cauchy transform and conjugate Cauchy
transform for Dirichlet’s problem (see [3, p. 155]) of g are defined by

CΩ[g](z) = ∂u(z)

and

C̄Ω[g](z) = ∂̄u(z).

Here we use the notation

∂ :=
1
2

(
∂x +

1
i
∂y

)
and ∂̄ :=

1
2

(
∂x − 1

i
∂y

)
.

Recall that the norm of an operator T : X → Y between normed spaces X
and Y is defined by

‖T‖X→Y = sup{‖Tx‖ : ‖x‖ = 1}.
The space Lp(Ω), p � 1 is the standard normed Lebesgue space with the
norm

‖f‖p :=

⎛
⎝∫

Ω

|f(z)|pdA(z)

⎞
⎠

1/p

.

For p = 2 it is a Hilbert space.
It is well-known that for p � 1, Cauchy transforms

CΩ : Lp(Ω) → Lp(Ω) and C̄Ω : Lp(Ω) → Lp(Ω)

are bounded operators (the last fact can be deduces from e.g. [6, Lemma 7.12]).
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If u = u1 + iu2 : Ω → C is a complex valued function, then the Jacobian
matrix of a mapping is defined by

Du(z) =
(
∂xu1(z) ∂yu1(z)
∂xu2(z) ∂yu2(z)

)
, z = x+ iy.

If u is a solution of (1.1), then the from (1.2), the matrix Du satisfies

Du(z)h =
∫
Ω

(∇zGΩ(z, w) • h) g(ω) dA(ω), h ∈ R2 = C. (1.4)

Here g = (g1 + ig2) = (g1, g2) is a (possibly) complex valued function and •
denotes the scalar or inner product. Moreover ∇z is the gradient with respect
to z. Equation (1.4) defines the differential operator of Dirichlet’s problem

DΩ : Lp(Ω,C) → Lp(Ω,M2,2), DΩ[g] = Du.

Here M2,2 is the space of square 2 × 2 matrices A by the induced norm:
|A| = max{|Ah| : |h| = 1}.

With respect to the induced norm there holds

|Du(z)| = |∂u(z)| + |∂̄u(z)|, (1.5)

and this implies that

|DΩ[g](z)| = |CΩ[g](z)| + |C̄Ω[g](z)|. (1.6)

The formula (1.5) is well-known, but for the completeness we include its proof
here. Namely for h = eit we have

|Du(z)h| = |∂u(z)h+ ∂̄u(z)h| � |∂u(z)| + |∂̄u(z)|.
On the other hand by choosing h◦ = eit◦ such that

2t◦ = arg
[
∂̄u(z)/∂u(z)

]
,

provided ∂̄u(z) �= 0 and ∂u(z) �= 0, we have

|Du(z)h◦| = |∂u(z)| + |∂̄u(z)|.
This and the previous inequality imply (1.5).

Observe that for g ≡ 1 and Ω = U, the solution of (1.1) is u(z) = |z|2−1
4

and therefore

‖u‖∞ = max
z∈U

|u(z)| = |u(0)| =
1
4

=
1
4
‖g‖∞. (1.7)

The previous special situation is a motivation for our study. We will study
certain norms of operators PΩ, CΩ, C̄Ω and DΩ, where Ω is a bounded set of
the complex plane.

In what follows we include some background. Suppose that g ∈ Lp(Ω),
and that g = 0 outside Ω. The Cauchy transform C[g] of g, is defined by

C[g](z) = −4∂zN [g](z) =
1
π

∫
Ω

g(z)
w − z

dA(w).
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We want to point out the following result of Anderson and Hinkkanen
[1]. If Ω = U, the Cauchy transform C restricted to U, satisfies

‖C‖L2→L2 =
2
α
, (1.8)

where α ≈ 2.4048 is the smallest positive zero of the Bessel function J0 :

J0(x) =
∞∑

k=0

(−1)k

k!2
(x

2

)2k

.

In Anderson et al. [2] obtained some non-sharp estimates of the norm of the
Cauchy transform C in some domain that is not a disk. Later it was proved
by Dostanić [5] that the norm of C on L2(Ω) (where Ω is a bounded domain
in C with piecewise C1 boundary) is equal to 2/

√
λ1, where λ1 is the smallest

eigenvalue of the Dirichlet–Laplacian{−Δu = λu, z ∈ Ω
u|∂Ω = 0 . (1.9)

We refer to the additional paper of Dostanić [4] for some Lp estimates for
the operator C. In [7] the author studied the Lp → Lp and Lq → L∞ norms
of Cauchy transform with respect to Dirichlet’s problem on the unit disk U
and there were obtained some sharp results for p = 1, 2,∞ and q > 2.

Together with this introduction, the paper contains two more sections.
In Sect. 2 we establish some inequalities concerning the norm ‖PΩ‖Lp→L∞ ,
where p � 1 and Ω is a domain in the complex plane. The proofs make use
of Möbius transformations, subordination principle and Jensen formula. The
results are sharp when Ω is a disk in the complex plane. In Sect. 3 we deter-
mine the Hilbert norms ‖PΩ‖L2→L2 , ‖CΩ‖L2→L2 and ‖DΩ‖L2→L2 , provided
that Ω is a domain in the complex plane having a piecewise smooth boundary.
The proof of the results in Sect. 3 make use of the eigenfunction expansion
of a square integrable function f .

2. L∞ Norm of Solution

We begin with the following lemmas needed in the sequel.

Lemma 2.1. For q � 1 the function

Iq(z) =
∫
U

∣∣∣∣log
|z − w|
|1 − zw|

∣∣∣∣
q
dA(w)

2π

is equal to

Iq(z) = 2−1−qΓ(1 + q)(1/|z| − |z|)2Liq−1(|z|2), (2.1)

where

Lis(w) =
∞∑

k=1

wk

ks

is the polylogarithm function.
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Proof. For a fixed z, we introduce the change of variables
z − w

1 − z̄w
= a,

or, what is the same,

w =
z − a

1 − z̄a
.

Then

dA(w) =
(1 − |z|2)2
|1 − z̄a|4 dA(a)

and

Iq(z) =
∫
U

|log |a||q (1 − |z|2)2
|1 − z̄a|4

dA(a)
2π

.

Since

1
|1 − z̄a|4 =

∣∣∣∣∣
∞∑

n=1

nan−1zn−1

∣∣∣∣∣
2

,

by using polar coordinates a = reit and using Parseval’s formula we have

Iq(z) = (1 − |z|2)2
1∫

0

2π∫
0

(log 1/r)q
∞∑

n=1

n2r2n−1|z|2n−2 drdt

2π

= (1 − |z|2)2
∞∑

n=1

n2|z|2n−2

1∫
0

(log 1/r)q
r2n−1dr

= (1 − |z|2)2
∞∑

n=1

n2|z|2n−22−1−qn−1−qΓ(1 + q)

= Γ(1 + q)2−1−q(1 − |z|2)2
∞∑

n=1

n1−q|z|2n−2.

The last expression can be written as (2.1). �
Lemma 2.2. For q > 1, the function

fq(m) =
(1 −m)2

m
Liq−1(m), fq(0) = 1

is decreasing in m ∈ [0, 1].

Proof. First of all

f ′
q(m) =

(−1 +m)((−1 +m)Liq−2(m) + (1 +m)Liq−1(m))
m2

.

Further by calculating the Taylor coefficients w.r.t m we have
(−1 +m)Liq−2(m) + (1 +m)Liq−1(m))

=
∞∑

k=1

[2k(2k − 1)]1−q [(2k)q − (2k − 1)q]mk+1.
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It follows for 0 � m � 1 the inequality f ′
q(m) � 0. This implies that fq is

decreasing as desired. �

It follows from Lemmas 2.1 and 2.2 that

Corollary 2.3. For q � 1 we have

max
|z|�1

Iq(z) = Iq(0) =
Γ(1 + q)

21+q
.

Theorem 2.4. If u is a solution of equation (1.1) with Ω = U is the unit disk,
then for g ∈ Lp(U) we have the following sharp inequality

‖u‖∞ � Γ(1 + q)1/q

21/q+1
‖g‖p, (2.2)

where q is the conjugate of p: 1/p+ 1/q = 1. In other words

‖PU‖Lp→L∞ =
Γ(1 + q)1/q

21/q+1
.

Proof. From (1) we have

|u(z)| �

⎛
⎝∫

U

∣∣∣∣log
|z − w|
|1 − zw|

∣∣∣∣
q
dA(w)

2π

⎞
⎠

1/q ⎛
⎝∫

U

|g(w)|p dA(w)
2π

⎞
⎠

1/p

. (2.3)

The inequality (2.2) follows from Corollary 2.3 and (2.3). The sharpness of
the result follows by taking g(w) = −| log |1/w||q/p. The explicit solution is
the following positive function

u(z) = − 1
2π

∫
U

log
|z − w|
|1 − zw| | log |1/w||q/pdA(w)

and its maximum (the norm ‖u‖∞) is

u(0) =
Γ(1 + q)

21+q
=

Γ(1 + q)1/q

21/q+1
‖g‖p.

�

Theorem 2.5. If Ω ⊂ U is a complex domain then

‖PΩ‖Lp→L∞ � Γ(1 + q)1/q

21/q+1
. (2.4)

The equality is attained if and only if Ω is the unit disk.

Proof. By (1.2) and Hölder inequality we obtain

|u(z)| �

⎛
⎝∫

Ω

|GΩ(z, w)|q dA(w)
2π

⎞
⎠

1/q ⎛
⎝∫

Ω

|g(w)|p dA(w)
2π

⎞
⎠

1/p

.

By subordination principle (see e.g. [9]) for every analytic function f : Ω → U
and z, w ∈ Ω we have

GΩ(z, w) � GU(f(z), f(w)). (2.5)
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Thus for z, w ∈ Ω

GΩ(z, w) � log
∣∣∣∣1 − zw

z − w

∣∣∣∣ .
This implies that∫

Ω

|GΩ(z, w)|q dA(w)
2π

�
∫
Ω

∣∣∣∣log
|z − w|
|1 − zw|

∣∣∣∣
q
dA(w)

2π
.

Since Ω ⊂ U we have∫
Ω

∣∣∣∣log
|z − w|
|1 − zw|

∣∣∣∣
q
dA(w)

2π
�

∫
U

∣∣∣∣log
|z − w|
|1 − zw|

∣∣∣∣
q
dA(w)

2π
. (2.6)

This together with (2.3) and Corollary 2.3 yields (2.4). Since (2.5) (or (2.6))
is an equality if only if Ω is the unit disk, the last assertion of the theorem
follows at once. �

Corollary 2.6. If Ω is a bounded complex domain with diameter diam(Ω),
then

‖PΩ‖Lp→L∞ �
(

diam(Ω)
2

)2−2/p Γ(1 + q)1/q

21/q+1
. (2.7)

The equality is attained if and only if Ω is a disk. In other words for every
solution u to (1.1) we have

|u(z)| �
(

diam(Ω)
2

)2−2/p Γ(1 + q)1/q

21/q+1
‖g‖p. (2.8)

Proof. The proof follows by making use of the change z = diam(Ω)
2 w + b, to

the Poisson equation Δu(z) = g(z), and applying Theorem 2.5. Here b is the
midpoint of the diameter of Ω. Since the proof is straightforward, the details
are omitted. �

2.1. The Refinement of the Case q = 1
In the following theorem we obtain a partial refinement of the local estimate
(2.8) for the case q = 1 provided that Ω ⊂ U is a Jordan domain satisfying
certain properties. We will assume that the conformal mapping ψ : Ω → U
has a conformal extension up to U. In addition we assume that 0 ∈ Ω is
the center of the outscribed circle of Ω,diam(Ω) = 2 and ψ(0) = 0 (see
Remark 2.8 for a nontrivial example of Ω).

Theorem 2.7. If g ∈ L∞(Ω) and u is a solution to (1.1) then

|u(z)| � min
{

1
4
,

∣∣∣∣14 − 1
2

log
∣∣∣∣ψ(z)
z

∣∣∣∣
∣∣∣∣
}

‖g‖∞, z ∈ Ω \ {0}, (2.9)

and

|u(0)| � min
{

1
4
,

∣∣∣∣14 − 1
2

log |ψ′(0)|
∣∣∣∣
}

‖g‖∞.
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Proof. Denote by ψ a conformal extension of ψ in U. From (1.3) we have

|u(z)| � 1
2π

∫
U

∣∣∣∣∣log
|ψ(z) − ψ(w)|
|1 − ψ(z)ψ(w)|

∣∣∣∣∣ dA(w)‖g‖∞.

Let

Φ(w) =
ψ(z) − ψ(w)
1 − ψ(z)ψ(w)

.

Then Φ is an analytic function in the unit disk U. Since z is the only zero of
Φ(w) in the unit disk, by using the Jensen formula we have

1
2π

2π∫
0

log |Φ(reit)|dt = log |Φ(0)| + log
r

|z|

= log

∣∣∣∣∣
ψ(z) − ψ(0)
1 − ψ(z)ψ(0)

∣∣∣∣∣ + log
r

|z| .

By integrating over [0, 1] we have

1
2π

1∫
0

r

2π∫
0

log |Φ(reit)|dtdr =
1
2

log

∣∣∣∣∣
ψ(z) − ψ(0)
1 − ψ(z)ψ(0)

∣∣∣∣∣ +
1
4

(
−1 + 2 log

1
|z|

)
.

Thus

|u(z)| �
∣∣∣∣∣
1
2

log

∣∣∣∣∣
ψ(z) − ψ(0)
1 − ψ(z)ψ(0)

∣∣∣∣∣ +
1
4

(
−1 + 2 log

1
|z|

)∣∣∣∣∣ ‖g‖∞.

But ψ(0) = 0, and therefore

|u(z)| �
∣∣∣∣14 − 1

2
log

∣∣∣∣ψ(z)
z

∣∣∣∣
∣∣∣∣ ‖g‖∞, z �= 0.

On the other hand by Corollary 2.6 we have |u(z)| � 1
4‖g‖∞, z �= 0. This

concludes the proof. �

Remark 2.8. By the conditions of Theorem 2.7, there exists a point z0 on the
boundary of Ω such that |z0| = 1. Since |ψ(z0)| = 1, it follows that∣∣∣∣14 − 1

2
log

∣∣∣∣ψ(z0)
z0

∣∣∣∣
∣∣∣∣ =

1
4
. (2.10)

Thus the estimate (2.9) does not provide a better estimate of norm of PΩ than
the estimate (2.7). But (2.10) and the Schwarz lemma (|z| < |ψ(z)|) implies
that near the point z0 in Ω, the inequality (2.9) is better that the inequal-
ity (2.8) for the case q = 1. The question arises for which Jordan domains
Ω ⊂ U satisfying the conditions of Theorem 2.9 we have∣∣∣∣14 − 1

2
log

∣∣∣∣ψ(z)
z

∣∣∣∣
∣∣∣∣ < 1

4
, z ∈ Ω \ {0}. (2.11)
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The last relation is equivalent to

0 <
1
2

log
∣∣∣∣ψ(z)
z

∣∣∣∣ < 1
2
.

Since the right hand inequality is satisfied, because Ω ⊂ U and Schwarz
lemma, the relation (2.11) is satisfied provided that |ψ(z)| < e|z|.

For example if Ω is the square {z : |x| + |y| � 1}, then the mapping

φ(z) =
Γ(3/4)√
πΓ(5/4) 2F1

(
1
4
,
1
2
,
5
4
, z4

)
z

is a conformal mapping of the unit disk onto Ω. Here 2F1 is the Gauss hyper-
geometric function. Moreover it has a conformal extension mapping a starlike
domain S onto U. For ψ(z) = φ−1(z) we have

1 <
|ψ(z)|

|z| �
√
πΓ(5/4)
Γ(3/4)

≈ 1.31103 < e, z ∈ Ω.

Thus (2.11) is satisfied.

3. The Hilbert Norm of Solution and of its Gradient

Let d � 2 and let Ω ⊂ Rd be a domain with smooth boundary γ (piecewise
smooth if d = 2). Let (ϕn)∞

n=1 be an orthonormal basic of L2(Ω) consisting
of eigenfunctions of boundary problem (1.9), such that −Δϕn = λnϕn where
λ1 < λ2 � . . . � λn . . .. The functions ϕk are real valued.

We now determine the Hilbert norm of solution.

Theorem 3.1. The norm of the operator PΩ : L2(Ω,C) → L2(Ω,C) satisfies

‖PΩ‖L2→L2 =
1
λ1
.

In other words

‖PΩ[g]‖2 � 1
λ1

‖g‖2, for complex valued g ∈ L2(Ω). (3.1)

Equality is attained in (3.1) for g(z) = cϕ1(z), for a.e. z ∈ Ω, where c is a
real constant.

Proof. We start with

Lemma 3.2. If f ∈ L2(Ω), then under previous notation

‖PΩ[f ]‖2
2 =

∞∑
k=1

〈f, ϕk〉2
λ2

k

.

Proof of Lemma 3.2. Let ak = 〈f, ϕk〉 and

f(z) =
∞∑

k=1

akϕk(z). (3.2)

Here ak, k = 1, 2 . . . , are complex constants. Then

PΩ[f ] =
∞∑

k=1

akPΩ[ϕk].
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Moreover,

PΩ[ϕk] =
1
λk

PΩ[Δϕk] = − 1
λk
ϕk.

Since ϕk’s make an orthonormal basis we obtain

‖PΩ[f ]‖2 =
∞∑

k=1

|ak|2
λ2

k

∫
Ω

|ϕk|2dA =
∞∑

k=1

|ak|2
λ2

k

.

�

According to Jentzsch’s theorem, λ1 is a simple eigenvalue. Thus 0 <
λ1 < λ2 � λ3 � . . .. It follows from Lemma 3.5 that

‖PΩ[f ]‖2 � 1
λ1

‖f‖2.

Thus

‖PΩ[f ]‖2 =
1
λ1

‖f‖2

if and only if an = 0 for n � 2. �

To determine the Hilbert norm of the Cauchy transform w.r.t Dirichlet’s
problem, we need the following lemma.

Lemma 3.3. Under the notation of introduction of this section, for n,m ∈ N,∫
Ω

∇ϕn(z) • ∇ϕm(z)dA(z) = λnδmn.

Here • denotes the inner product.

Proof. This lemma is proved in [5] for the case d = 2. For the completeness
we give its detailed proof here. First of all (1.9) is reduced to the following
Fredholm integral equation of the second kind with a self-adjoint kernel:

u(w) − λ

∫
Ω

u(z)GΩ(w, z)dA(z) = 0, w ∈ Ω.

Because the volume potential is smooth on the whole space, provided that the
density is bounded and ∂Ω is piecewise smooth in dimension 2 and smooth
in larger dimensions, it follows that every solution to (1.9) is smooth up to
the boundary ([8]).

Let ϕ and ψ be scalar functions defined in the region Ω, and suppose
that ϕ ∈ C2(Ω) ∩C1(Ω), and ψ is once continuously differentiable. Then, by
the divergence theorem applied to the vector field F = ψ∇ϕ, we obtain∫

Ω

(ψΔϕ+ ∇ϕ • ∇ψ) dA =
∮

∂Ω

ψ (∇ϕ • n) ds (3.3)

where ∂Ω is the boundary of region Ω and n is the outward pointing unit
normal on γ = ∂Ω.
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By taking ϕ = ϕn and ψ = ϕm in (3.3), and having in mind the fact
that Δϕn = −λnϕn, ϕn|γ ≡ 0 and 〈ϕn, ϕm〉 = δnm, we obtain that∫

Ω

(∇ϕn • ∇ϕm) dA(z) = λn

∫
Ω

ϕnϕmdA(z) = λnδnm.

�

We now have:

Theorem 3.4. Let Ω be a domain in C with piecewise smooth boundary. The
norms of the operators C̄Ω, CΩ : L2(Ω,C) → L2(Ω,C) satisfy

‖C̄Ω‖L2→L2 = ‖CΩ‖L2→L2 =
1

2
√
λ1

.

In other words

‖C̄Ω[g]‖2, ‖CΩ[g]‖2 � 1
2
√
λ1

‖g‖2, for complex valued g ∈ L2(Ω). (3.4)

Equality in each case holds in (3.4) if and only if g(z) = cϕ1(z), for a.e.
z ∈ Ω, where c is a real constant.

Proof. We begin by the following lemma

Lemma 3.5. If f ∈ L2(Ω), then under the previous notation

‖CΩ[f ]‖2
2 = ‖C̄Ω[f ]‖2

2 =
∞∑

k=1

〈f, ϕk〉2
4λk

.

Proof of Lemma 3.5. By using representation (3.2) we have

C̄Ω[f ] =
∞∑

k=1

akC̄Ω[ϕk].

Moreover, since ϕk is a real valued function, we have that ∇ϕk =
(ϕkx, ϕky) = ϕkx + iϕky = 2∂̄ϕk, treated as two-dimensional vectors. Notice
that they are formally different mathematical objects: the first one is a real
vector, while the second is a complex number. Having in mind the previous
identification, we have

C̄Ω[ϕk] = − 1
λk

C̄Ω[Δϕk] =
1

2λk
∇ϕk.

According to Lemma 3.3 we obtain

‖C̄Ω[f ]‖2
2 =

∞∑
k=1

|ak|2
4λ2

k

∫
Ω

|∇ϕk|2dA =
∞∑

k=1

|ak|2
4λk

.

�

Since 0 < λ1 < λ2 � λ3 � . . ., it follows from Lemma 3.5 that

‖C̄Ω[f ]‖2 � 1
2
√
λ1

‖f‖2.
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Thus

‖C̄Ω[f ]‖2 =
1

2
√
λ1

‖f‖2

if and only if an = 0 for n � 2. Similarly the operator CΩ can be treated. �

Theorem 3.4 implies

Corollary 3.6. For a real valued function u ∈ W 1,2(Ω) ∩ C(Ω) such that
u|∂Ω = 0, we have the following sharp inequality

‖∇u‖2 � 1√
λ1

‖Δu‖2,

where λ1 is the smallest eigenvalue of the boundary problem (1.9), i.e.

λ1 := inf{λ > 0 : −Δu = λu, u ∈ W 1,2
0 (Ω)}.

As

|DΩ[g](z)| = |CΩ[g](z)| + |C̄Ω[g](z)|
we obtain that

‖DΩ[g]‖2 � 1
2
√
λ1

‖g‖2 +
1

2
√
λ1

‖g‖2 =
1√
λ1

‖g‖2. (3.5)

By the definition of complex partial derivatives, for a real valued function f
we have

|∂f | = |∂̄f | =
1
2

√
|∂xf |2 + |∂yf |2 =

1
2
|∇f |.

This observation together with (1.5) imply that |∇f | = |Df |. This equality
and Theorem 3.4 imply the following theorem.

Theorem 3.7. The norm of the differential operator

DΩ : L2(Ω,C) → L2(Ω,M2,2), DΩ[g] = Du,

is 1/
√
λ1. In other words there holds the sharp inequality

‖Du‖2 � 1√
λ1

‖Δu‖2 (3.6)

for complex valued functions u ∈ W 1,2(Ω) ∩C(Ω) vanishing on the boundary
of Ω.

Proof. The relation (3.6) follows from (3.5). By taking g(z) = ϕ1(z), and hav-
ing in mind the equation |∇g| = |Dg|, according to Theorem 3.4 we obtain
that (3.6) is sharp. �
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3.1. Special Cases

If Ω = U, then λ1 = α2
1, where α1 ≈ 2.4048 is the smallest positive zero of

the Bessel function J0. In this case ϕ1 = c|z|J0(α1|z|) where c is a constant
and J0 is the Bessel function. If Ω = [0, π]2, then λ̃n,m = n2 +m2 are eigen-
values and ϕ̃n,m = 2

π sin(nx) sin(ny) are eigenfunctions of boundary problem
(1.9), and thus λ1 = 2 and ϕ1 = 2

π sinx sin y. See [5] for the last facts. The
first eigenvalue λ1 of the Dirichlet–Laplacian is well-known for the unit ball
in Rn, and it seems that the Theorem 3.1 still hold in several dimensional
case as well.
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