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Abstract. Studying commutative C∗-algebras generated by Toeplitz
operators on the unit ball it was proved that, given a maximal com-
mutative subgroup of biholomorphisms of the unit ball, the C∗-algebra
generated by Toeplitz operators, whose symbols are invariant under the
action of this subgroup, is commutative on each standard weighted Berg-
man space. There are five different pairwise non-conjugate model clas-
ses of such subgroups: quasi-elliptic, quasi-parabolic, quasi-hyperbolic,
nilpotent, and quasi-nilpotent. Recently it was observed in Vasilevski
(Integr Equ Oper Theory. 66:141–152, 2010) that there are many other,
not geometrically defined, classes of symbols which generate commuta-
tive Toeplitz operator algebras on each weighted Bergman space. These
classes of symbols were subordinated to the quasi-elliptic group, the
corresponding commutative operator algebras were Banach, and being
extended to C∗-algebras they became non-commutative. These results
were extended then to the classes of symbols, subordinated to the quasi-
hyperbolic and quasi-parabolic groups. In this paper we prove the anal-
ogous commutativity result for Toeplitz operators whose symbols are
subordinated to the quasi-nilpotent group. At the same time we con-
jecture that apart from the known C∗-algebra cases there are no more
new Banach algebras generated by Toeplitz operators whose symbols
are subordinated to the nilpotent group and which are commutative on
each weighted Bergman space.
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1. Introduction

In the present paper (we hope that) we finish the classification of the Banach
and C∗-algebras generated by Toeplitz operators that are commutative on
each (commonly considered) weighted Bergman space over the unit ball B

n

in C
n. The short history of this problem is as follows.
The C∗-algebras generated by Toeplitz operators which are commuta-

tive on each weighted Bergman space over the unit disk were completely
classified in [2]. Under some technical assumption on “richness” of a class
of generating symbols the result was as follows. A C∗-algebra generated by
Toeplitz operators is commutative on each weighted Bergman space if and
only if the corresponding symbols of Toeplitz operators are constant on cycles
of a pencil of hyperbolic geodesics on the unit disk, or if and only if the cor-
responding symbols of Toeplitz operators are invariant under the action of
a maximal commutative subgroup of the Möbius transformations of the unit
disk. We note that the commutativity on each weighted Bergman space was
crucial in the part “only if” of the above result.

Generalizing this result to Toeplitz operators on the unit ball, it was
proved in [3,4] that, given a maximal commutative subgroup of biholomor-
phisms of the unit ball, the C∗-algebra generated by Toeplitz operators, whose
symbols are invariant under the action of this subgroup, is commutative on
each weighted Bergman space. We note that there are five different pairwise
non-conjugate model classes of such subgroups: quasi-elliptic, quasi-parabolic,
quasi-hyperbolic, nilpotent, and quasi-nilpotent (the last one depends on a
parameter, giving in total n + 2 model classes for the n-dimensional unit
ball). As a consequence, for the unit ball of dimension n, there are n + 2
essentially different “model” commutative C∗-algebras, all others are conju-
gated with one of them via biholomorphisms of the unit ball.

It was firmly expected that the above algebras exhaust all possible alge-
bras of Toeplitz operators which are commutative on each weighted Bergman
space. That is, the invariance under the action of a maximal commutative
subgroup of biholomorphisms for generating symbols is the only reason for
the appearance of Toeplitz operator algebras which are commutative on each
weighted Bergman space.

Recently and quite unexpectedly it was observed in [6] that for n > 1
there are many other, not geometrically defined, classes of symbols which
generate commutative Toeplitz operator algebras on each weighted Bergman
space. These classes of symbols were in a sense originated from, or subor-
dinated to the quasi-elliptic group, the corresponding commutative opera-
tor algebras were Banach, and being extended to C∗-algebras they became
non-commutative. Moreover, for n = 1 all of them collapsed to the commu-
tative C∗-algebra generated by Toeplitz operators with radial symbols (one-
dimensional quasi-elliptic case). These results were extended in [1,7] then
to the classes of symbols, subordinated to the quasi-hyperbolic and quasi-
parabolic groups, which as well generate via corresponding Toeplitz operators
classes of Banach algebras being commutative on each weighted Bergman
space. That is, together with [6], these papers cover the multidimensional
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extensions of the (only) three model cases on the unit disk. The study of the
last two model cases of maximal commutative subgroup of biholomorphisms
of the unit ball, the nilpotent, and quasi-nilpotent groups (which appear only
for n > 1 and n > 2, respectively), was left as an important and interesting
open question.

After many unsuccessful attempts to find commutative algebras gen-
erated by Toeplitz operators and subordinated to the nilpotent group we
conjecture that apart from the known cases there are no more new Banach
algebras generated by Toeplitz operators with symbols subordinated to the nil-
potent group of biholomorphisms of the unit ball B

n and commutative on each
weighted Bergman space.

At the same time such commutative algebras subordinated to the quasi-
nilpotent group do exist, and the present paper is devoted to their descrip-
tion. According to our current understanding the only additional source for
the appearance of (Banach) Toeplitz operator algebras which are commuta-
tive on each weighted Bergman space comes from a torus action on B

n. More
precisely, the maximal commutative group of biholomorphisms, to which the
symbols are subordinated, must contain the torus T

k, with k ≥ 2, as a sub-
group. In the case of the one-dimensional torus T the above commutative
Toeplitz operator algebras collapse to known commutative C∗-algebras gen-
erated by Toeplitz operators whose symbols are invariant under the action
of the maximal commutative group of biholomorphisms in question.

The authors thank Armando Sánchez-Nungaray for stimulating discus-
sions on the topics of this paper.

2. Preliminaries

In this section we recall some notation from [4] that are used throughout the
text. Let

B
n := {z = (z1, . . . , zn) ∈ C

n | |z|2 = |z1|2 + . . . + |zn|2 < 1}
be the unit ball in C

n. The Siegel domain Dn in C
n, which is an unbounded

realization of the unit ball B
n, has the form

Dn =
{

z = (z′, zn) ∈ C
n−1 × C | Imzn − |z′|2 > 0

}
.

Recall that the Cayley transform ω : B
n → Dn maps biholomorphically the

unit ball B
n onto Dn. Let v be the usual Lebesgue measure on C

n ∼= R
2n

and fix λ > −1. Then the standard weighted measure μλ on B
n with weight

parameter λ is given by:

dμλ := cλ(1 − |z|2)λdv, and cλ :=
Γ(n + λ + 1)
πnΓ(λ + 1)

.

Here cλ is a normalizing constant such that μλ(Bn) = 1. On Dn we can
consider the corresponding weighted measure μ̃λ defined by

dμ̃λ(ζ ′, ζn) =
cλ

4
(
Im ζn − |ζ ′|2)λdv(ζ ′, ζn).
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Let f be a function on B
n, then we put (Uλf)(ζ) := 2n+λ+1(1−iζn)−n−λ−1f ◦

ω−1(ζ) where ζ ∈ Dn. A straightforward calculation shows, cf. [1,4]

Lemma 2.1. Let λ > −1, then Uλ defines a unitary transformation of
L2(Bn, μλ) onto L2(Dn, μ̃λ).

In the following we write A2
λ(Bn) and A2

λ(Dn) for the weighted Berg-
man spaces of all complex analytic functions in L2(Bn, μλ) and L2(Dn, μ̃λ),
respectively. It is known that by restriction Uλ defines a unitary transforma-
tion of A2

λ(Bn) onto A2
λ(Dn).

Let BDn,λ be the Bergman projection of L2(Dn, μ̃λ) onto A2
λ(Dn). Given

a bounded measurable function f ∈ L∞(Dn) we define the Toeplitz operator
Tf acting on the weighted Bergman space A2

λ(Dn) in the usual way by

Tf := BDn,λMf ,

where Mf denotes the multiplication by f . In this paper we study a class of
commutative Banach algebras generated by Toeplitz operators on A2

λ(Dn).
To simplify the notation we will not indicate the dependence of Tf on the
weight parameter λ. Note that via the unitary transformation Uλ the results
in this paper on Toeplitz operators acting on weighted Bergman spaces over
Dn can be directly translated to the corresponding setting of Toeplitz oper-
ators on A2

λ(Bn).

Put D := C
n−1 × R × R+. Then the map:

κ : D → Dn : (z′, u, v) �→ (z′, u + iv + i|z′|2)
defines a diffeomorphism with inverse κ−1(z′, zn) = (z′,Re zn, Imzn − |z′|2).
Given a function f on Dn, we define U0f := f ◦ κ to obtain a function U0f
on D. On the domain D we consider the measure

dηλ(z′, u, v) :=
cλ

4
vλdv(z′, u, v).

We have the following, cf. [1,4]

Lemma 2.2. The operator U0 is unitary from L2(Dn, μ̃λ) to L2(D, ηλ) with
inverse U−1

0 = U∗
0 given by U∗

0 f = f ◦ κ−1.

We occasionally omit the dependence of the weight λ > −1 and put
A0(D) := U0(A2

λ(Dn)) which clearly forms a closed subspace of L2(D, ηλ).

3. Quasi-Nilpotent Group Action and a Decomposition of the
Bergman Projection

As was explained in [3,4] the classification of maximal commutative sub-
groups G of biholomorphisms of Dn or B

n yields five essentially differ-
ent types. Corresponding to each type there are commutative Banach or
C∗-algebras of Toeplitz operators acting on weighted Bergman spaces. The
aim of this paper is to define such algebras in case of the quasi-nilpotent
group G of biholomorphisms. We recall the definition.
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Let 1 ≤ k ≤ n−2. We rather use the notation z = (z′, w′, zn) for z ∈ Dn

where z′ ∈ C
k and w′ ∈ C

n−k−1. The quasi-nilpotent group T
k ×R

n−k−1 ×R

acts on Dn, cf. [4], as follows: given (t, b, h) ∈ T
k × R

n−k−1 × R, we have:

τ(t,b,h) : (z′, w′, zn) �→ (
tz′, w′ + b, zn + h + 2iw′ · b + i|b|2).

Note that in the case k = n − 1 we obtain the quasi-parabolic group, while
for k = 0 the group action is called nilpotent.

On the domain D = C
k × C

n−k−1 × R × R+ we use the variables
(z′, w′, u, v) and we represent L2(D, ηλ) in the form:

L2(D, ηλ) = L2(Ck) ⊗ L2(Cn−k−1) ⊗ L2(R) ⊗ L2(R+, ηλ). (3.1)

Let F be the Fourier transform on L2(R), and with respect to the decom-
position (3.1) consider the unitary operators U1 := I ⊗ I ⊗ F ⊗ I acting on
L2(D, ηλ). With this notation we put A1(D) := U1(A0(D)).

Next, we introduce polar coordinates on C
k and put r = (r1, . . . , rk) =

(|z′
1|, . . . , |z′

k|). Moreover, in the following we write x′ := Re w′ and y′ :=
Im w′. Then one can check that r, y′ and Imzn − |w′|2 are invariant under
the action of the quasi-nilpotent group. Following the ideas in [4] and with
rdr = r1dr1 · · · rkdrk we represent L2(D, ηλ) in the form

L2(Rk
+, rdr) ⊗ L2(Tk) ⊗ L2(Rn−k−1) ⊗ L2(Rn−k−1) ⊗ L2(R) ⊗ L2(R+, ηλ).

(3.2)

We define the unitary operator U2 on L2(D, ηλ) by U2 = I⊗F(k)⊗F(n−k−1)⊗
I ⊗I ⊗I. Here F(k) = F ⊗· · ·⊗F is the k-dimensional discrete Fourier trans-
form and F(n−k−1) = F ⊗· · ·⊗F denotes the (n−k −1)-dimensional Fourier
transform on L2(Rn−k−1). Note that L2(D, ηλ) is isometrically mapped by
U2 onto

	2

(
Z

k, L2(Rk
+, rdr) ⊗ L2(Rn−k−1) ⊗ L2(Rn−k−1) ⊗ L2(R) ⊗ L2(R+, ηλ)

)
.

(3.3)

We put A2(D) := U2(A1(D)) and we write elements in (3.3) as {fβ(r, x′, y′,
ξ, v)}β∈Zk , where

(r, x′, y′, ξ, v) ∈ R
k
+ × R

n−k−1 × R
n−k−1 × R × R+.

Next we recall the definition of the unitary operator U3 which acts on (3.3)
by:

U3:
{
fβ(r, x′, y′, ξ, v)

}
β∈Zk �−→

{
fβ

(
r,

√
ξ(x′ + y′),

1
2
√

ξ
(−x′ + y′), ξ, v

)}

β∈Zk

.

One immediately checks that the inverse U−1
3 has the form

U−1
3 :

{
fβ(r, x′, y′, ξ, v)

}
β∈Zk �−→

{
fβ

(
r,

x′

2
√

ξ
−

√
ξy′,

x′

2
√

ξ
+

√
ξy′, ξ, v

)}

β∈Zk

.

In the following we write Z+ = N ∪ {0} = {0, 1, 2, · · · } for the non-
negative integers. In order to state the main result of Section 8 in [4] we
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need to introduce the operator R0, which defines an isometric embedding of
	2(Zk

+, L2(Rn−k−1 × R+)) into (3.3). It is explicitly given by

R0 : {cβ(x′, ξ)}β∈Z
k
+

�−→
{
χ

Z
k
+×R+

(β, ξ)Aβ(ξ)rβe−ξ(|r|2+v)− |y′|2
2 cβ(x′, ξ)

}

β∈Zk

= {gβ(r, x′, y′, ξ, v)}β∈Zk .

Here χ
Z

k
+×R+

(β, ξ) denotes the characteristic function of Z
k
+×R+ and cβ(x′, ξ)

is extended by zero for ξ ∈ (−∞, 0) and all x′ ∈ R
n−k−1. Moreover, we have

used the abbreviation

Aβ(ξ) := π− n−k−1
4

√
2k+2

cλ

(2ξ)|β|+λ+k+1

β!Γ(λ + 1)
. (3.4)

The adjoint operator R∗
0 is given by:

R∗
0 :

{
fβ(r, x′, y′, ξ, v)

}
β∈Zk �−→

{
Aβ(ξ) (3.5)

×
∫

R
k
+×Rn−k−1×R+

rβe−ξ(|r|2+v)− |y′|2
2 fβ(r, x′, y′, ξ, v)rdrdy′ cλvλ

4
dv

}
β∈Z

k
+

.

We set U := U3U2U1U0, which gives a unitary operator from A2
λ(Dn) onto

A3(D) := U3(A2(D)). The following result has been proved in [4], Theorem
8.2 and it provides a decomposition of the Bergman projection BDn,λ in form
of a certain operator product.

Theorem 3.1. [4] The operator R := R∗
0U maps L2(Dn, μ̃λ) onto the space

	2(Zk
+, L2(Rn−k−1 × R+)), and the restriction

R|A2
λ
(Dn)

: A2
λ(Dn) −→ 	2

(
Z

k
+, L2(Rn−k−1 × R)

)

is an isometric isomorphism. The adjoint operator

R∗ = U∗R0 : 	2
(
Z

k
+, L2(Rn−k−1 × R+)

) −→ A2
λ(Dn) ⊂ L2(Dn, μ̃λ)

is an isometric isomorphism of 	2(Zk
+, L2(Rn−k−1 × R+)) onto the subspace

A2
λ(Dn) of L2(Dn, μ̃λ). Furthermore one has:

RR∗ = I : 	2(Zk
+, L2(Rn−k−1 × R+)) −→ 	2

(
Z

k
+, L2(Rn−k−1 × R+)

)
,

R∗R = BDn,λ : L2(Dn, μ̃λ) −→ A2
λ(Dn).

4. Toeplitz Operators with Quasi-Homogeneous Symbols

Now, we restrict our attention to bounded measurable symbols on Dn that are
invariant or have a certain homogeneity with respect to the quasi-nilpotent
group action on Dn.

Definition 4.1. A bounded measurable function a : Dn → C is called quasi-
nilpotent if it has the form a(z) = a(r, y′, Imzn − |w′|2). In particular, such a
is invariant under the action of the quasi-nilpotent group.

The following theorem was proved in [4].
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Theorem 4.2. [4, Theorem 10.4] Let a = a(r, y′, Imzn − |w′|2) be a bounded
measurable quasi-nilpotent function on Dn. Then the Toeplitz operator Ta

acting on A2
λ(Dn) is unitary equivalent to the multiplication operator γaI =

RTaR∗ acting on the space 	2(Zk
+, L2(Rn−k−1 × R+)). The sequence

γa = {γa(β, x′, ξ)}β∈Z
k
+

∈ 	2(Zk
+, L2(Rn−k−1 × R+))

with (x′, ξ) ∈ R
n−k−1 × R+ is given by:

γa(β, x′, ξ) = 2kπ− n−k−1
2

(2ξ)|β|+λ+k+1

β!Γ(λ + 1)

×
∫

R
k
+×Rn−k−1×R+

a

(
r,

1
2
√

ξ
(−x′ + y′), v + |r|2

)

×rβe−2ξ(v+|r|2)−|y′|2vλrdrdy′dv.

We need to prove a similar result for a class of more general symbols.
Recall that we use the notation x′ := Re w′ ∈ R

n−k−1 where w′ ∈ C
n−k−1

and let α = (α1, . . . , αm) be a tuple in Z
m
+ such that |α| = α1 + · · ·+αm = k.

Similar to [1,6] we divide the coordinates of z′ ∈ C
k into m groups as follows:

z′
(1) = (z′

1,1, . . . , z
′
1,α1

), z′
(2) = (z′

2,1, . . . , z
′
2,α2

), . . . z′
(m)

= (z′
m,1, . . . , z

′
m,αm

)

and such that z′ = (z′
(1), z

′
(2), . . . , z

′
(m)). In the following we will use the same

notation also in case of multi-indices β ∈ Z
k instead of vectors z′ ∈ C

k. By
passing to polar coordinates, we write each tuple z′

(j) = (z′
j,1, . . . , z

′
j,αj

)∈C
αj ,

where j = 1, . . . , m, in the form

z′
(j) = rjζ(j) with rj :=

√
|z′

j,1|2 + . . . + |z′
j,αj

|2 and

ζ(j) ∈ S
2αj−1 ⊂ C

αj .

Here S
2n−1 denotes the real (2n − 1)-dimensional boundary of B

n.

Definition 4.3. Let a(r, y′, Imzn − |w′|2) be a quasi-nilpotent function and
α ∈ Z

m
+ as above.

(i) Then a is called ”α-quasi-nilpotent quasi-radial” if its radial dependence
on r can be expressed as a function of r1, . . . , rm.

(ii) The function b(z′, w′, zn) is called ”α-quasi-nilpotent quasi-homoge-
neous” if it is α-quasi-nilpotent quasi-homogeneous with respect to the
variable z′, i.e.

b(z′, w′, zn) = b0

(
r1, . . . , rm, y′, Imzn − |w′|2)ζpζ

q
, (4.1)

where ζ = (ζ(1), ζ(2), . . . , ζ(m)) ∈ S
2α1−1 × S

2α2−1 × . . . × S
2αm−1 and

p, q ∈ Z
k
+ are orthogonal. The pair (p, q) is then called the “degree” of b.

Remark 4.4. Note that there is a one-to-one correspondence between the set
of tuples {(p, q) ∈ Z

k
+ × Z

k
+ : p ⊥ q} and Z

k via (p, q) �→ p − q.
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Consider an α-quasi-nilpotent quasi-homogeneous symbol b(z′, w′, zn)
as in (4.1) and of degree (p, q) ∈ Z

k
+ × Z

k
+ with p ⊥ q. Our next aim is to

calculate the operator RTbR
∗. On the domain D = C

k ×C
n−k−1 ×R×R+ we

use the variables (z′, w′, u, v). Moreover, we express z′ in polar coordinates
z′ = (t1r1, . . . , tkrk) where rs ≥ 0 and ts ∈ S = S

1 for s = 1, . . . , k. Then we
have the relations

zj,� = rjζj,� = tj,�rj,�

for 	 = {1, . . . , αj} and j = 1, . . . , m. It follows that ζj,� = tj,�rj,�r−1
j in the

case of rj �= 0 and therefore:

ζpζ
q

= tpt
q
rp+q

m∏
j=1

r
−|p(j)|−|q(j)|
j . (4.2)

Note that the assignment z′ �→ ζpζ
q

depends on the initial choice of α ∈ Z
m
+ .

Using Theorem 3.1 we can write:

RTbR
∗ = RBDn,λbBDn,λR∗

= R(R∗R)b(R∗R)R∗

= (RR∗)RbR∗(RR∗)
= RbR∗

= R∗
0U3U2U1U0bU

−1
0 U−1

1 U−1
2 U−1

3 R0

= R∗
0U3U2U1b0(r1, . . . , rm, y′, v + |r|2)ζpζ̄qU−1

1 U−1
2 U−1

3 R0

= R∗
0U3U2b0(r1, . . . , rm, y′, v + |r|2)ζpζ̄qU−1

2 U−1
3 R0.

First we calculate the operator U2bU
−1
2 . Let {fβ(r, x′, y′, ξ, v)}β∈Zk be an

element in the space (3.3) and write r := (r1, . . . , rm). Since the symbol
b0(r, y′, v + |r|2)ζpζ̄q is independent of x′ we obtain from (4.2) that:

U2b0(r, y′, v + |r|2)ζpζ̄qU−1
2

{
fβ(r, x′, y′, ξ, v)

}
β∈Zk

(4.3)

=
{

b0(r, y′, v + |r|2)rp+q
( m∏

j=1

r
−|p(j)|−|q(j)|
j

)
fβ−p+q(r, x′, y′, ξ, v)

}
β∈Zk

.

Combining (4.3) and (3.5) gives:

RTbR
∗{cβ(x′, ξ)}β∈Z

k
+

= R∗
0U3U2bU

−1
2 U−1

3

{
χ

Z
k
+×R+

(β, ξ)

Aβ(ξ)rβe−ξ(|r|2+v)− |y′|2
2 cβ(x′, ξ)

}
β∈Zk

= R∗
0U3U2bU

−1
2

{
χ

Z
k
+×R+

(β, ξ)Aβ(ξ)rβ

×e
−ξ(|r|2+v)− 1

2 | 1
2

√
ξ

x′+
√

ξy′|2
cβ

( 1

2
√

ξ
x′ −

√
ξy′, ξ

)}
β∈Zk

= R∗
0U3

{
χ

Z
k
+×R+

(β − p + q, ξ)Aβ−p+q(ξ)r
β+2qb0

×(r, y′, v + |r|2)

×
( m∏

j=1

r
−|p(j)|−|q(j)|
j

)
e

−ξ(|r|2+v)− 1
2 | 1

2
√

ξ
x′+

√
ξy′|2
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× cβ−p+q

( 1

2
√

ξ
x′ −

√
ξy′, ξ

)}
β∈Zk

= R∗
0

{
χ

Z
k
+×R+

(β − p + q, ξ)Aβ−p+q(ξ)b0

×
(
r,

−x′ + y′

2
√

ξ
, v + |r|2

)

×
( m∏

j=1

r
−|p(j)|−|q(j)|
j

)
rβ+2qe−ξ(|r|2+v)− 1

2 |y′|2cβ−p+q

(x′, ξ)
}

β∈Zk

=
{

Aβ(ξ)Aβ−p+q(ξ)χZ
k
+×R+

(β − p + q, ξ)cβ−p+q(x
′, ξ)

×
∫

R
k
+×Rn−k−1×R+

r2(β+q)

×
( m∏

j=1

r
−|p(j)|−|q(j)|
j

)
e−2ξ(|r|2+v)−|y′|2

× b0
(
r,

−x′ + y′

2
√

ξ
, v + |r|2

)
rdrdy′ cλvλ

4
dv

}
β∈Z

k
+

.

Now put:

γ̃b,p,q(β, x′, ξ) := Aβ(ξ)Aβ−p+q(ξ)χZ
k
+×R+

(β − p + q, ξ)

×
∫

R
k
+×Rn−k−1×R+

m∏
j=1

r
−|p(j)|−|q(j)|
j

× r2(β+q)e−2ξ(|r|2+v)−|y′|2b0

(
r,

−x′ + y′

2
√

ξ
, v + |r|2

)
rdrdy′

×cλvλ

4
dv. (4.4)

Hence, we have proved:

Theorem 4.5. Let b be defined as in (4.1). The operator RTbR
∗ acts on the

Hilbert space 	2(Zk
+, L2(Rn−k−1 × R+)) by the rule:

RTbR
∗{cβ(x′, ξ)

}
β∈Z

k
+

=
{

γ̃b,p,q

(
β, x′, ξ

) · cβ−p+q

(
x′, ξ

)}
β∈Z

k
+

.

Note that, in the case p = q = 0, Theorem 4.5 reduces to Theorem 4.2.

Example 1. We calculate RTbR
∗ more explicitly in the special case where

b0 ≡ 1 and we choose k = m, i.e. α = (1, . . . , 1) ∈ Z
k
+. Let (p, q) ∈ Z

k
+ × Z

k
+

such that p ⊥ q and put

b(z′, w′, zn) = ζpζ̄q = tpt̄q.

According to Theorem 4.5 it is sufficient to calculate the functions:

γ̃b,p,q(β, x′, ξ) = Aβ(ξ)Aβ−p+q(ξ)χR+(ξ)

×
∫

R
k
+×Rn−k−1×R+

r2β+q−pe−2ξ(|r|2+v)−|y′|2rdrdy′ cλvλ

4
dv
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for all β ∈ Z
k
+ with β − p + q ∈ Z

k
+. We use the identity:

∫

Rn−k−1×R+

e−2ξv−|y′|2dy′vλdv = π
n−k−1

2 Γ(λ + 1)(2ξ)−(λ+1),

(cf. formula 3.381.4 of [5]) where ξ > 0, which together with (3.4) shows that

γ̃b,p,q(β, x′, ξ) = 2k(2ξ)|β|+k+ |q|−|p|
2

1√
β!(β − p + q)!

∫

R
k
+

r2β+q−p+ee−2ξ|r|2dr

=

∏k
j=1 Γ(βj + qj−pj

2 + 1)√
β!(β − p + q)!

.

In particular, in this case γ̃b,p,q(β, x′, ξ) is independent of x′ and ξ.

5. Commuting Toeplitz Operators

The goal of the present section is to study the commutativity of Toep-
litz operators with symbols having certain invariance properties. We will
use the above notation. Fix α ∈ Z

m
+ with |α| = k as before and let a =

a0(r1, . . . , rm, y′, Imzn − |w′|2) be a bounded measurable α-quasi-nilpotent
quasi-radial function on Dn. Consider the symbol:

b(z′, w′, zn) = b0(r1, . . . , rm, y′, Im zn − |w′|2) · ζpζ̄q. (5.1)

We calculate the operator products RTbTaR∗ and RTaTbR
∗. According to

Theorem 4.5 and Theorem 3.1 we have

RTbTaR∗{cβ}β∈Z
k
+

= (RTbR
∗)(RTaR∗){cβ}β∈Z

k
+

(5.2)

= (RTbR
∗)

{
γ̃a,0,0(β, x′, ξ)cβ(x′, ξ)

}
β∈Z

k
+

=
{

γ̃b,p,q(β, x′, ξ)γ̃a,0,0(β−p + q, x′, ξ)cβ−p+q(x′, ξ)
}

β∈Z
k
+

.

On the other hand it follows:

RTaTbR
∗{cβ}β∈Z

k
+

= (RTaR∗)(RTbR
∗){cβ}β∈Z

k
+

(5.3)

= (RTaR∗)
{

γ̃b,p,q(β, x′, ξ) · cβ−p+q(x′, ξ)
}

β∈Z
k
+

=
{

γ̃a,0,0(β, x′, ξ)γ̃b,p,q(β, x′, ξ)cβ−p+q(x′, ξ)
}

β∈Z
k
+

.

Hence, we conclude from (5.2) and (5.3) that both operators Ta and Tb com-
mute if and only if

γ̃a,0,0(β, x′, ξ) = γ̃a,0,0 (β − p + q, x′, ξ)
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for all β ∈ Z
k
+. According to (4.4) this is equivalent to:

1
β!

∫

R
k
+×Rn−k−1×R+

a0

(
r,

−x′ + y′

2
√

ξ
, v + |r|2

)

×r2βe−2ξ(v+|r|2)−|y′|2vλrdrdy′dv

=
(2ξ)−|p|+|q|

(β − p + q)!

∫

R
k
+×Rn−k−1×R+

a0

(
r,

−x′ + y′

2
√

ξ
, v + |r|2

)

× r2(β−p+q)e−2ξ(v+|r|2)−|y′|2vλrdrdy′dv. (5.4)

Since a0(r, y′, Imzn − |w′|2) only depends on r = (r1, . . . , rm) we can assume
that the above integral has the form:

∫

R
k
+×Rn−k−1×R+

a0

(
r,

−x′ + y′

2
√

ξ
, v + |r|2

)
r2βe−2ξ(v+|r|2)−|y′|2

×vλrdrdy′dv =: (∗),

where β ∈ Z
k
+. With e = (1, 1, · · · , 1) ∈ Z

k
+ we obtain

(∗) =
1
2k

∫

Rk×Rn−k−1×R+

a0

(
r,

−x′ + y′

2
√

ξ
, v + |r|2

)

×|r2β |e−2ξ(v+|r|2)−|y′|2vλrdrdy′dv

=
1
2k

∫

Rn−k−1×R+

∫

R
m
+ ×Sα1−1×···×Sαm−1

a0

(
r,

−x′ + y′

2
√

ξ
, v + |r|2

)

× |ρ2β+e| ·
( m∏

j=1

r
2|β(j)|+2αj−1

j

)
e−2ξ(v+|r|2)−|y′|2

× vλdσ(ρ(1)) . . . dσ(ρ(m))rdrdy′dv.

In the last integral we wrote dσ(ρ(j)) for the standard area measure on the
sphere S

αj−1. The integral over the m-fold product S
α1−1 × . . . × S

αm−1 can
be calculated explicitly by using the following well-known formula:

Lemma 5.1. Let dσ denote the usual surface measure on the (n − 1)-
dimensional sphere S

n−1 and let θ ∈ Z
n
+. Then

∫

Sn−1
|yθ|dσ(y) =

2Γ
(

θ1+1
2

) · . . . · Γ
(

θn+1
2

)

Γ
(

n+|θ|
2

) .

Using the formula in Lemma 5.1 we define:

Θβ :=
∫

Sα1−1×...×Sαm−1
|ρ2β+e|dσ(ρ(1)) . . . dσ(ρ(m))

= 2mβ!
m∏

j=1

Γ
(

αj + 1
2

+ |β(j)|
)−1

. (5.5)
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This finally gives:

(∗) =
Θβ

2k

∫

R
m
+ ×Rn−k−1×R+

a0

(
r,

1
2
√

ξ
(−x′ + y′), v + |r|2

)

×r
2|β(1)|+2α1−1
1 · . . . · r2|β(m)|+2αm−1

m e−2ξ(v+|r|2)−|y′|2vλdrdy′dv.

Note that the last integral does not depend on the full multi-index β but
rather on the values |β(j)| for j = 1, . . . , m. We denote this integral by
Ga(|β(1)|, . . . , |β(m)|). Then the commutativity condition (5.4) can be written
in the form:

Θβ

β!
Ga

(|β(1)|, . . . , |β(m)|
)

= (2ξ)−|p|+|q| Θβ−p+q

(β − p + q)!
×Ga

(|β(1)| − |p(1)| + |q(1)|, . . . , |β(m)| − |p(m)| + |q(m)|
)
.

According to the definition (5.5) this is equivalent to:

Ga

(|β(1)|, . . . , |β(m)|
) m∏

j=1

Γ
(

αj + 1
2

+ |β(j)|
)−1

= (2ξ)−|p|+|q|Ga

(|β(1)| − |p(1)| + |q(1)|, . . . , |β(m)| − |p(m)| + |q(m)|
)

×
m∏

j=1

Γ
(

αj + 1
2

+ |β(j)| − |p(j)| + |q(j)|
)−1

.

This equality can be only true simultaneously for all α-quasi-nilpotent quasi-
radial functions a and all β ∈ Z

k
+ if |p(j)| = |q(j)| for j = 1, . . . , m. Hence, we

obtain:

Theorem 5.2. Let α ∈ Z
m
+ be given. Then the statements (a), (b) and (c)

below are equivalent:

(a) For each α-quasi-nilpotent quasi-radial function a = a0(r, y′, Imzn −
|w′|2) ∈ L∞(Dn) and each α-quasi-nilpotent quasi-homogeneous func-
tion

b = b0(r1, . . . , rm, y′, Im zn − |w′|2) · ζpζ̄q ∈ L∞(Dn) (5.6)

of degree (p, q) ∈ Z
k
+ × Z

k
+ the Toeplitz operators Ta and Tb commute

on each weighted Bergman space A2
λ(Dn).

(b) The equality γ̃a,0,0(β, x′, ξ) = γ̃a,0,0 (β − p + q, x′, ξ) holds for all β ∈ Z
k
+

and for each α-quasi-nilpotent quasi-radial functions a.
(c) The equality |p(j)| = |q(j)| holds for each j = 1, . . . , m.

Now, let us assume that b ∈ L∞(Dn) is of the form (5.6). Under the
assumption |p(j)| = |q(j)|, for each j = 1, . . . , m, we calculate γ̃b,p,q(β, x′, ξ)
in (4.4) more explicitly by reducing the order of integration. Assume that
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β − p + q ∈ Z
k
+. Then:

γ̃b,p,q(β, x′, ξ) = Aβ(ξ)Aβ−p+q(ξ)χR+(ξ)
∫

R
k
+×Rn−k−1×R+

r2(β+q)

×
m∏

j=1

r
−|p(j)|−|q(j)|
j e−2ξ(|r|2+v)−|ỹ′|2b0

×
(
r,

−x′ + ỹ′

2
√

ξ
, v + |r|2

)
rdrdỹ′ cλvλ

4
dv

= Θβ+qAβ(ξ)Aβ−p+q(ξ)χR+(ξ)2−k

×
∫

R
m
+ ×Rn−k−1×R+

m∏
j=1

r
2|β(j)|+|q(j)|−|p(j)|+2αj−1

j

× e−2ξ(|r|2+v)−|ỹ′|2b0

(
r,

−x′ + ỹ′

2
√

ξ
, v + |r|2

)
drdỹ′ cλvλ

4
dv

=
Θβ+q

Θβ

Aβ−p+q(ξ)
Aβ(ξ)

· Db(β, x′, ξ)

=
(β + q)!√

β!(β − p + q)!

m∏
j=1

Γ
(

αj+1
2 + |β(j)|

)

Γ
(

αj+1
2 + |β(j) + q(j)|

) · Db(β, x′, ξ),

where Db(β, x′, ξ) = γ̃b,0,0(β, x′, ξ), which can be seen by choosing p = q = 0
in the above equalities. Hence we have proved:

Proposition 5.3. Let α ∈ Z
m
+ be given. Assume that b ∈ L∞(Dn) is of the

form (5.6) and let |p(j)| = |q(j)|, for each j = 1, . . . , m. Then in the case of
β − p + q ∈ Z

k
+ we have

γ̃b,p,q(β, x′, ξ) =
(β + q)!√

β!(β − p + q)!

m∏
j=1

Γ
(

αj+1
2 + |β(j)|

)

Γ
(

αj+1
2 + |β(j) + q(j)|

) · γ̃b,0,0(β, x′, ξ).

In the case of β − p + q /∈ Z
k
+ we have γ̃b,p,q(β, x′, ξ) = 0. The factor

γ̃b,0,0(β, x′, ξ) can be expressed in the form

γ̃b,0,0(β, x′, ξ) = ΘβA2
β(ξ)χR+(ξ)2−k

∫

R
m
+ ×Rn−k−1×R+

m∏
j=1

r
2|β(j)|+2αj−1

j

×e−2ξ(|r|2+v)−|y′|2b0

(
r,

−x′ + y′

2
√

ξ
, v + |r|2

)
drdy′ cλvλ

4
dv.

(5.7)

Let α ∈ Z
m
+ be given and (p, q) ∈ Z

k
+ × Z

k
+. From Proposition 5.3 we

conclude:

Corollary 5.4. Let a = a0(r, y′, Imzn − |w′|2) ∈ L∞(Dn) be an α-quasi-
nilpotent quasi-radial function. Under the assumption |p(j)| = |q(j)| for all
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j = 1, 2, . . . ,m we have

TaTζpζ
q = Tζpζ

qTa = Taζpζ
q (5.8)

on each weighted Bergman space.

Proof. The first equality in (5.8) is a direct consequence of Theorem 5.2. If
e(z) ≡ 1 then Te = Id, and thus γ̃e,0,0(β, x′, ξ) ≡ 1. Hence, Proposition 5.3
implies that in the case of a symbol b = ζpζ̄q with |p(j)| = |q(j)|, for all
j = 1, 2, . . . ,m, one has

γ̃b,p,q(β, x′, ξ) =
(β + q)!√

β!(β − p + q)!

m∏
j=1

Γ
(

αj+1
2 + |β(j)|

)

Γ
(

αj+1
2 + |β(j) + q(j)|

) , (5.9)

whenever β −p+ q ∈ Z
k
+ (cf. Example 1 for the choice of α = (1, . . . , 1) ∈ Z

k
+

and the case pj = qj , for j = 1, . . . , k). Moreover, if β − p + q /∈ Z
k
+, then it

holds γ̃b,p,q(β, x′, ξ) = 0. Theorem 5.2, Proposition 5.3 and the assumption
that |p(j)| = |q(j)|, for all j = 1, 2, · · · ,m, imply now that

γ̃ab,p,q(β, x′, ξ) = γ̃b,p,q(β, x′, ξ) · γ̃a,0,0(β, x′, ξ)
= γ̃b,p,q(β, x′, ξ) · γ̃a,0,0(β − p + q, x′, ξ).

This together with (5.2) and Theorem 4.5 yields the second equality in (5.8).
�

6. Commutative Banach Algebras

In this section we define commutative Banach algebras of Toeplitz opera-
tors which are induced by the quasi-nilpotent group action. Given a pair of
multi-indices (p, q) ∈ Z

k
+ × Z

k
+, we put

p̃(j) := (0, . . . , p(j), 0, . . . , ) and q̃(j) := (0, . . . , 0, q(j), 0, . . . , 0)

so that p = p̃(1) + p̃(2) + . . . + p̃(m) and q = q̃(1) + q̃(2) + . . . + q̃(m). Consider
the Toeplitz operators:

Tj := T
ζ

p̃(j) ζ̄
q̃(j)

(cf. the notation in Definition 4.3). Now, we can prove that certain products
of Toeplitz operators are Toeplitz operators again with the product symbol.

Proposition 6.1. Let us assume that |p(j)| = |q(j)| for all j = 1, 2, . . . ,m.
Then the Toeplitz operators Tj commute mutually. Moreover,

m∏
j=1

Tj = Tζpζ̄q (6.1)

on each weighted Bergman space.

Proof. Let bj := ζ p̃(j) ζ̄ q̃(j) , for j = 1, . . . , m. We only prove the following
product rule:

TjTi = T
ζ

p̃(i)+p̃(j) ζ̄
q̃(i)+q̃(j) (6.2)
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for i, j ∈ {1, . . . , m} and i �= j. According to Theorem 4.5 the operator
RTjTiR

∗ acts on the sequence space 	2(Zk
+, L2(Rn−k−1 × R+)) by the rule:

RTjTiR
∗{cβ(x′, ξ)

}
β∈Z

k
+

= RTjR
∗
{

γ̃bi,p̃(i),q̃(i)(β, x′, ξ)cβ−p̃(i)+q̃(i)(x
′, ξ)

}
β∈Z

k
+

=
{

γ̃bj ,p̃(j),q̃(j)(β, x′, ξ) · γ̃bi,p̃(i),q̃(i)(β − p̃(j) + q̃(j), x
′, ξ)

×cβ−p̃(i)−p̃(j)+q̃(i)+q̃(j)(x
′, ξ)

}
β∈Z

k
+

.

Hence it is clear that (6.2) is equivalent to:

γ̃bj ,p̃(j),q̃(j)(β, x′, ξ) · γ̃bi,p̃(i),q̃(i)(β − p̃(j) + q̃(j), x
′, ξ) =

= γ̃bibj ,p̃(i)+p̃(j),q̃(i)+q̃(j)(β, x′, ξ). (6.3)

By (5.9) we have

γ̃bj ,p̃(j),q̃(j)(β, x′, ξ) =
(β(j) + q̃(j))!√

β(j)!(β(j) − p̃(j) + q̃(j))!
Γ(αj+1

2 + |β(j)|)
Γ(αj+1

2 + |β(j) + q̃(j)|)
,

and similar for i replaced by j. Moreover, the function on the right hand side
of (6.3) has the explicit form:

γ̃bibj ,p̃(i)+p̃(j),q̃(i)+q̃(j)(β, x′, ξ) =
(β + q̃(i) + q̃(j))!√

β!(β − p̃(i) − p̃(j) + q̃(i) + q̃(j))!

×
∏

�∈{i,j}

Γ(α�+1
2 + |β(�)|)

Γ(α�+1
2 + |β(�) + q̃(�)|)

.

Now, (6.3) can be easily checked from these identities. �

Let α ∈ Z
m
+ with |α| = k as before and consider two α-quasi-nilpotent

quasi-homogeneous functions ϕj ∈ L∞(Dn) where j = 1, 2. We express ϕj ,
for j = 1, 2 in the form

ϕ1(z′, w′, zn) = a1

(
r1, . . . , rm, y′, Im zn − |w′|2)ζpζ̄q,

ϕ2(z′, w′, zn) = a2

(
r1, . . . , rm, y′, Im zn − |w′|2)ζuζ̄v,

where (p, q), (u, v) ∈ Z
k
+ × Z

k
+ with p ⊥ q and u ⊥ v are the degrees of ϕ1

and ϕ2, respectively. Moreover, assume that |p(j)| = |q(j)| and |u(j)| = |v(j)|,
for j = 1, 2, . . . ,m.

Theorem 6.2. The Toeplitz operators Tϕ1 and Tϕ2 commute on each weighted
Bergman space A2

λ(Dn) if and only if for each 	 = 1, 2, . . . , k one of the
conditions (a) − (d) is fulfilled:

(a) p� = q� = 0
(b) u� = v� = 0
(c) p� = u� = 0
(d) q� = v� = 0.
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Proof. Similar to the argument in the proof of Proposition 6.1 it follows that
the operators Tϕ1 and Tϕ2 commute on A2

λ(Dn) if and only if for all β ∈ Z
k
+:

γ̃ϕ1,p,q(β, x′, ξ) · γ̃ϕ2,u,v(β − p + q, x′, ξ)
= γ̃ϕ2,u,v(β, x′, ξ) · γ̃ϕ1,p,q(β − u + v, x′, ξ).

Since |p(j)| = |q(j)| and |u(j)| = |v(j)| for j = 1, 2, · · · ,m we can use the
factorization of γ̃ϕ1,p,q(β, x′, ξ) and γ̃ϕ2,u,v(β, x′, ξ) in Proposition 5.3:

γ̃ϕ1,p,q(β, x′, ξ) = Φp,q(β) · γ̃ϕ1,0,0(β, x′, ξ),
γ̃ϕ2,u,v(β, x′, ξ) = Φu,v(β) · γ̃ϕ2,0,0(β, x′, ξ),

where we use the notation:

Φp,q(β) :=
(β + q)!√

β!(β − p + q)!

m∏
j=1

Γ(αj+1
2 + |β(j)|)

Γ(αj+1
2 + |β(j) + q(j)|)

. (6.4)

Moreover, it follows from Theorem 5.2 and again by the conditions on (p, q)
and (u, v) that

γ̃ϕ1,0,0(β, x′, ξ) = γ̃ϕ1,0,0(β − u + v, x′, ξ)
γ̃ϕ2,0,0(β, x′, ξ) = γ̃ϕ2,0,0(β − p + q, x′, ξ).

Therefore we only need to verify that

Φp,q(β) · Φu,v(β − p + q) = Φu,v(β) · Φp,q(β − u + v).

By a straightforward calculation this is equivalent to:

(β + q)!
(β − p + q + v)!

(β − p + q)!
= (β + v)!

(β − u + v + q)!
(β − u + v)!

.

Varying β it can be seen that this equality holds if and only if for each
	 = 1, 2, . . . , k one of the conditions (a) − (d) is fulfilled. �

Let (p, q) ∈ Z
k
+ × Z

k
+ and α ∈ Z

m
+ such that |α| = k. Let h ∈ Z

m
+ be

given with the properties:
(i) hj = 0, if αj = 1,
(ii) 1 ≤ hj ≤ αj − 1, if αj > 1. In the case of αj1 = αj2 with j1 < j2 we

assume that hj1 ≤ hj2 .
In the following we assume that p(j) and q(j) for j = 1, . . . , m are of the
particular form

p(j) = (pj,1, . . . , pj,hj
, 0, . . . , 0) and q(j) = (0, . . . , 0, qj,hj+1 , . . . , qj,αj

).
(6.5)

Below we will use the data α and h to define commutative Banach algebras of
Toeplitz operators. The second assumption in (ii) serves to avoid repetition
of the unitary equivalent algebras.

Define Rα(h) to be the linear space generated by all bounded measur-
able α-quasi-nilpotent quasi-homogeneous functions

b(z′, w′, zn) = b0

(
r1, . . . , rm, y′, Im zn − |w′|2) · ζpζ̄q. (6.6)
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Moreover, in (6.6) we assume that p(j) and q(j) are of the form (6.5) with:

pj,1 + . . . + pj,hj
= qj,hj+1 + . . . + qj,αj

.

As a corollary to Theorem 6.2 we obtain:

Theorem 6.3. The Banach algebra generated by Toeplitz operators with sym-
bols from Rα(h) is commutative.

Finally, we remark:
(a) For k > 2 and α �= (1, 1, . . . , 1) the commutative algebras Rα(h) are

just Banach algebras, while the C∗-algebras generated by them are non-
commutative.

(b) These algebras are commutative for each weighted Bergman space
A2

λ(Dn) with λ > −1.
(c) For k = 0 (nilpotent case) or k = 1, 2 these algebras collapse to the sin-

gle C∗-algebras which are generated by Toeplitz operators with quasi-
nilpotent symbols b(r, y′, Im zn − |z′|).
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