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Abstract. We develop a kind of fractional calculus and theory of
relaxation and diffusion equations associated with operators in the time
variable, of the form (D(k)u)(t) = d

dt

∫ t

0
k(t− τ)u(τ) dτ − k(t)u(0) where

k is a nonnegative locally integrable function. Our results are based on
the theory of complete Bernstein functions. The solution of the Cau-
chy problem for the relaxation equation D(k)u = −λu, λ > 0, proved
to be (under some conditions upon k) continuous on [0, ∞) and com-
pletely monotone, appears in the description by Meerschaert, Nane, and
Vellaisamy of the process N(E(t)) as a renewal process. Here N(t) is
the Poisson process of intensity λ, E(t) is an inverse subordinator.

Mathematics Subject Classification (2010). Primary 26A33, 34A08,
35R11; Secondary 60K05.

Keywords. Differential-convolution operator, relaxation equation,
fundamental solution of the Cauchy problem, renewal process, complete
Bernstein function, Stieltjes function.

1. Introduction

The basic ingredient of the theory of fractional evolution equations [7,13],
the Caputo–Dzhrbashyan fractional derivative of order α ∈ (0, 1), has the
form

(D(k)u)(t) =
d

dt

t∫

0

k(t − τ)u(τ) dτ − k(t)u(0) (1.1)

where

k(t) =
t−α

Γ(1 − α)
, t > 0. (1.2)
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A recent theory of evolution equations with distributed order derivatives
(used for modeling ultraslow relaxation and diffusion processes; see [4,9,19,
20] and references therein) is based on the operator (1.1) with

k(t) =

1∫

0

t−α

Γ(1 − α)
dρ(α), t > 0, (1.3)

where ρ is a Borel measure on [0, 1]; see [1,6,11,14–17,21,28].
It is natural to look at a general operator (1.1) and to ask the following

question. Under what conditions upon a nonnegative function k ∈ Lloc
1 (R+)

does the operator D(k) possess a right inverse (a kind of a fractional integral)
and produce, as a kind of a fractional derivative, equations of evolution type?
The latter means, in particular, that

(A) The Cauchy problem

(D(k)u)(t) = −λu(t), t > 0; u(0) = 1, (1.4)

where λ > 0, has a unique solution uλ, infinitely differentiable for t > 0 and
completely monotone, that is (−1)nu

(n)
λ (t) ≥ 0 for all t > 0, n = 0, 1, 2, . . ..

(B) The Cauchy problem

(D(k)w)(t, x) = Δw(t, x), t > 0, x ∈ R
n; w(0, x) = w0(x), (1.5)

where w0 is a bounded globally Hölder continuous function, that is |w0(ξ) −
w0(η)| ≤ C|ξ − η|γ , 0 < γ ≤ 1, for any ξ, η ∈ R

n, has a unique bounded solu-
tion (the notion of a solution should be defined appropriately). Moreover, the
equation in (1.5) possesses a fundamental solution of the Cauchy problem, a
kernel with the property of a probability density.

Note that the well-posedness of the Cauchy problem for equations with
the operator D(k) has been established under much weaker assumptions than
those needed for (A) and (B); see [10].

In the above special cases (A) and (B) are satisfied; see [7,14]. When k(t)
has the form (1.2), the function uλ can be expressed via the Mittag–Leffler
function Eα: uλ(t) = Eα(−λtα); see [7,13]. In the case (1.3), the asymptotic
behavior of uλ(t) is studied in [14,16]; for the operator-theoretic meaning of
the distributed order derivative and integral see [15].

From the point of view of mathematical physics, it is natural to expect
the emergence of mathematical theories, in which the relaxation function
uλ(t) appears instead of e−λt. So far, the first developments of this kind are
in the theory of stochastic processes, namely the renewal processes with slowly
decaying distribution functions of waiting times; see [18,23] and references
therein.

In this paper we find a class of general operators (1.1) possessing the
above evolution generating properties. This class is described in terms of
analytic properties of the Laplace transform

K(p) =

∞∫

0

e−ptk(t) dt. (1.6)
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We develop, in particular, a theory of the Cauchy problem (1.5). In contrast
to the classical theory of parabolic equations and its analogs known for the
cases (1.2) and (1.3), the main technical tools are not the contour integration
and explicit estimates, but the theory of complete Bernstein functions [27].
Our solution of the Cauchy problem (1.4) leads to an analytic description of
general renewal processes constructed (for a slightly more general situation)
in [23] in terms of the random time change in the classical Poisson process
determined by an inverse subordinator.

In Sect. 2, we give a survey of the results we need about complete
Bernstein functions and Stieltjes functions. In Sect. 3, we introduce and study
an analogue, for the general framework, of the fractional integration opera-
tor. Section 4 is devoted to the problem (1.4), while Sect. 5 deals with the
problem (1.5).

2. Complete Bernstein Functions and Stieltjes Functions

In this section we collect information we need about the classes of functions
mentioned in the title. For the detailed exposition see [27].

A real-valued function f on (0,∞) is called a Bernstein function, if
f ∈ C∞, f(λ) ≥ 0 for all λ > 0, and

(−1)n−1f (n)(λ) ≥ 0 for all n ≥ 1, λ > 0.

Equivalently, a function f : (0,∞) → R is a Bernstein function, if and
only if

f(λ) = a + bλ +

∞∫

0

(
1 − e−λt

)
μ(dt) (2.1)

where a, b ≥ 0, and μ is a Borel measure on [0,∞), called the Lévy measure,
such that

∞∫

0

min(1, t)μ(dt) < ∞. (2.2)

The triplet (a, b, μ) is determined by f uniquely. In particular,

a = f(0+), b = lim
λ→∞

f(λ)
λ

. (2.3)

A Bernstein function f is said to be a complete Bernstein function, if
its Lévy measure μ has a completely monotone density m(t) with respect to
the Lebesgue measure, so that (2.1) takes the form

f(λ) = a + bλ +

∞∫

0

(
1 − e−λt

)
m(t) dt (2.4)

where, by (2.2),
∞∫

0

min(1, t)m(t) dt < ∞.
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Here the complete monotonicity means that m ∈ C∞(0,∞), (−1)nm(n)(t) ≥
0, t > 0, for all n = 0, 1, 2, . . ..

Another important class of functions is that of Stieltjes functions, that
is of functions ϕ admitting the integral representation

ϕ(λ) =
a

λ
+ b +

∞∫

0

1
λ + t

σ(dt) (2.5)

where a, b ≥ 0, σ is a Borel measure on [0,∞), such that
∞∫

0

(1 + t)−1σ(dt) < ∞. (2.6)

Using the identity (λ + t)−1 =
∞∫

0

e−tse−λsds we find from (2.5) that

ϕ(λ) =
a

λ
+ b +

∞∫

0

e−λsg(s) ds (2.7)

where

g(s) =

∞∫

0

e−tsσ(dt) (2.8)

is a completely monotone function whose Laplace transform exists for any
λ > 0.

We will denote the class of complete Bernstein functions by CBF , and
the class of Stieltjes functions by S. The following characterization is proved
in [27].

Proposition 1. Suppose that f is a nonnegative function on (0,∞). Then the
following conditions are equivalent.

(i) f ∈ CBF .
(ii) The function λ �→ λ−1f(λ) is in S.
(iii) f has an analytic continuation to the upper half-plane H = {z ∈ C :

Im z > 0}, such that Im f(z) ≥ 0 for all z ∈ H, and there exists the real
limit

f(0+) = lim
(0,∞)�λ→0

f(λ). (2.9)

(iv) f has an analytic continuation to the cut complex plane C \ (−∞, 0],
such that Im z · Im f(z) ≥ 0, and there exists the real limit (2.9).

(v) f has an analytic continuation to H given by the expression

f(z) = a + bz +

∞∫

0

z

z + t
σ(dt) (2.10)

where a, b ≥ 0, and σ is a Borel measure on (0,∞) satisfying (2.6).
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Note that the constants a, b are the same in both the representations
(2.4) and (2.10). The density m(t) appearing in the integral representation
(2.4) of a function f ∈ CBF and the measure σ corresponding to the Stieltjes
function ϕ(λ) = λ−1f(λ) are connected by the relation

m(t) =

∞∫

0

e−tss σ(ds). (2.11)

The importance of complete Bernstein functions is caused by the follow-
ing “nonlinear” properties [27], quite unusual and having significant applica-
tions.

Proposition 2. (i) A function f �≡ 0 is a complete Bernstein function, if
and only if 1/f is a Stieltjes function.

(ii) Let f, f1, f2 ∈ CBF , ϕ,ϕ1, ϕ2 ∈ S. Then f ◦ ϕ ∈ S, ϕ ◦ f ∈ S, f1 ◦ f2 ∈
CBF , ϕ1 ◦ ϕ2 ∈ CBF , (λ + f)−1 ∈ S for any λ > 0.

It follows from Propositions 1 (ii) and 2 (i) that 0 �≡ f ∈ CBF , if and
only if the function f∗(λ) = λ/f(λ) belongs to CBF . Let us write its repre-
sentation similar to (2.4),

f∗(λ) = a∗ + b∗λ +

∞∫

0

(
1 − e−λt

)
m∗(t) dt.

Then

a∗ =

⎧
⎨

⎩

0, if a > 0,
1

b +
∞∫

0
tm(t) dt

, if a = 0; (2.12)

b∗ =

⎧
⎨

⎩

0, if b > 0,
1

a +
∞∫

0
m(t) dt

, if b = 0; (2.13)

3. Fractional Derivative and Integral

Throughout the paper (except the uniqueness theorem in Sect. 5) we make
the following assumptions regarding the Laplace transform (1.6) of the func-
tion k.

(*) The Laplace transform (1.6) exists for all p > 0. The function K belongs
to the Stieltjes class S, and

K(p) → ∞, as p → 0; K(p) → 0, as p → ∞; (3.1)

pK(p) → 0, as p → 0; pK(p) → ∞, as p → ∞; (3.2)
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By Proposition 1, the function p �→ pK(p) is a complete Bernstein
function. It follows from (2.3), (3.1), and (3.2) that the integral represen-
tations (like (2.5) and (2.7)) of the function K have the form

K(p) =

∞∫

0

1
p + t

σ(dt)

and

K(p) =

∞∫

0

e−psg(s) ds (3.3)

where

g(s) =

∞∫

0

e−tsσ(dt),

and the measure σ satisfies (2.6). For the function p �→ pK(p) we have

pK(p) =

∞∫

0

(
1 − e−pt

)
m(t) dt,

and the limit relations from (3.3) and (3.2) show that

∞∫

0

m(t) dt =

∞∫

0

tm(t) dt = ∞. (3.4)

It follows from the uniqueness theorem for the Laplace transform that
g(s) = k(s), so that the assumptions (∗) imply the representation

k(s) =

∞∫

0

e−tsσ(dt), 0 < s < ∞, (3.5)

so that k is completely monotone.
For each fixed s ≥ 1, the function t �→ (1+t)e−ts is monotone decreasing

on [0,∞), and its value at the origin is 1. It follows from (2.6), (3.5), and the
dominated convergence theorem that k(s) → 0, s → ∞.

Note that the conditions (∗) are obviously satisfied for the kernel (1.2);
under some conditions upon the weight measure ρ, they are satisfied also for
the case (1.3). On the other hand, given a function K satisfying (∗), one can
restore k by the formula (3.5). As a simple example, consider the complete
Bernstein function p �→ log(1 + pβ), 0 < β < 1 (see Example 15.4.59 in
[27]), and set K(p) = p−1 log(1 + pβ). Then K(p) ∼ pβ−1, as p → 0, and
K(p) ∼ βp−1 log p, as p → ∞, so that the conditions (3.1) and (3.2) are satis-
fied. The above asymptotic properties are different from those corresponding
to the cases (1.2) and (1.3).
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By Proposition 2, the function p �→ 1
pK(p)

belongs to the Stieltjes class.

Using (2.12), (2.13), and (3.3) we find its representation similar to (3.3), that
is

1
pK(p)

=

∞∫

0

e−ps
κ(s) ds

where κ(s) is a completely monotone function, κ(s) → 0, as s → 0. Just as
in (3.5), we get the representation

κ(t) =

∞∫

0

e−λtη(dλ), 0 < t < ∞, (3.6)

where
∞∫

0

η(dλ)
1 + λ

< ∞.

Let us consider the convolution

(k ∗ κ)(t) =

t∫

0

k(t − τ)κ(τ) dτ.

By the construction of κ, the Laplace transform of k ∗ κ equals
1
p
, so that

(k ∗ κ)(t) ≡ 1. (3.7)

In other words, k and κ form a pair of Sonine kernels. Such kernels
were searched for from the 19th century; see [26] for a survey. The con-
nection between the complete Bernstein functions and Sonine kernels seems
never noticed, but can be useful due to the availability of tables of complete
Bernstein functions [27].

Let us study, under the assumptions (∗), the generalized fractional dif-
ferentiation operator D(k) of the form (1.1) and the generalized fractional
integration operator

(I(k)f)(t) =

t∫

0

κ(t − s)f(s) ds. (3.8)

The operator D(k)u is defined on continuous functions u, such that k ∗ u
is almost everywhere differentiable, for example, on absolutely continuous
functions u. The operator I(k) is defined on Lloc

1 (0,∞).
The following result extends a well-known property of the Caputo–

Dzhrbashyan fractional derivative (see Lemma 2.21 and Lemma 2.22 in [13]).

Theorem 1. (i) If f is a locally bounded measurable function on (0,∞),
then D(k)I(k)f = f .

(ii) If a function u is absolutely continuous on [0,∞), then
(I(k)D(k)u)(t) = u(t) − u(0).
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Proof. (i) Let v = I(k)f . By (3.6) and (3.8),

v(t) =

t∫

0

f(s) ds

∞∫

0

e−λ(t−s)η(dλ),

which implies the inequality

|v(t)| ≤ C

∞∫

0

1
λ

(
1 − e−λt

)
η(dλ), 0 < t ≤ T < ∞, (3.9)

(here and below the letter C denotes various positive constants). By (3.9),

|v(t)| ≤ Ct

1∫

0

η(dλ) + C

∞∫

1

(
1 − e−λt

) η(dλ)
λ

,

so that v(t) → 0, as t → +0.
By (3.7), we have k ∗v = k ∗κ ∗f = 1∗f , so that (k ∗v)(t) =

∫ t

0
f(τ) dτ

is absolutely continuous, and D(k)v = f .
(ii) We find, using (3.7) twice, that

(I(k)D(k)u)(t) =

t∫

0

κ(t − s)

⎡

⎣ d

ds

s∫

0

k(s − τ)u(τ) dτ

⎤

⎦ ds − u(0)

= −
t∫

0

κ(θ)

⎡

⎣ d

dθ

t−θ∫

0

k(t − θ − τ)u(τ) dτ

⎤

⎦ dθ − u(0)

=
d

dt

t∫

0

κ(θ)

t−θ∫

0

k(t − θ − τ)u(τ) dτ − u(0)

=
d

dt
(κ ∗ k ∗ u)(t) − u(0) =

d

dt

t∫

0

u(τ) dτ = u(t) − u(0).

�

4. Relaxation Equation and Renewal Processes

Let us consider the Cauchy problem (1.4).

Theorem 2. Under the assumption (∗), the problem (1.4) has a unique
solution uλ(t), continuous on [0,∞), infinitely differentiable and completely
monotone on (0,∞).

Proof. Applying formally the Laplace transform, we find for the image ũλ of
a solution the expression

ũλ(p) =
K(p)

pK(p) + λ
, (4.1)
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that is pũλ(p) = Φ ◦ (pK(p)) where Φ(z) =
z

z + λ
. By Proposition 1 (v), Φ is

a complete Bernstein function. It follows from the assumption (∗) and Prop-
osition 2 (ii) that p �→ pũλ(p) is a complete Bernstein function. Therefore ũλ

is a Stieltjes function, so that by (2.7),

K(p)
pK(p) + λ

=
a

p
+ b +

∞∫

0

e−psg(s) ds,

where g is completely monotone, possesses the representation (2.8) with the
measure satisfying (2.6), and by (2.3), (3.1), and (3.2),

a = lim
p→+0

pK(p)
pK(p) + λ

= 0, b = lim
p→∞

K(p)
pK(p) + λ

= 0.

Thus, we have found that

K(p)
pK(p) + λ

=

∞∫

0

e−psg(s) ds,

and the identity (4.1) will hold if we set uλ = g. In addition, it follows from
(3.2) that

K(p)
pK(p) + λ

∼ 1
p
, p → ∞.

Taking into account the monotonicity of g, we may apply the Karamata-Feller
Tauberian theorem [8] and find that uλ(t) → 1, as t → +0.

Now it follows from the uniqueness theorem for the Laplace transform
that uλ is a solution, in the strong sense, of the problem (1.4). �

Remark. It is instructive to see what happens if K(p) satisfies weaker
conditions, for example, if p �→ pK(p) is a Bernstein function, but not a com-
plete Bernstein function. It is seen from comparing (2.1) and (2.4) that the
simplest example of this kind is obtained if we take K0(p) = p−1(1 − e−p).
Then

K0(p) =

∞∫

0

k0(t)e−pt dt, k0(t) =

{
1, if 0 ≤ t ≤ 1,
0, if t > 1.

It is easy to check that

(
D(k0)u

)
(t) =

{
u(t) − u(t − 1), if t > 1;
u(t) − u(0), if 0 < t ≤ 1,

and a general solution of corresponding problem (1.4) has the form

u(t) =

⎧
⎪⎨

⎪⎩

1, if t = 0;
(1 + λ)−1, if 0 < t ≤ 1;
c(1 + λ)−t, if t > 1,

c = const. This function is not continuous at the origin. It is continuous at
t = 1, if c = 1, but even in this case it is not differentiable at t = 1.
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A probabilistic interpretation of Theorem 2 can be given on the basis
of the results by Meerschaert et al. [23]. Let D(t) be a subordinator (see [3]
for the necessary notions and results from the theory of Lévy processes),

E
[
e−sD(t)

]
= e−tΨ(s)

where the Laplace exponent Ψ is a Bernstein function having the represen-
tation

Ψ(s) = bs +

∞∫

0

(
1 − e−sτ

)
Φ(dτ)

with the drift coefficient b ≥ 0 and the Lévy measure Φ, such that either
b > 0, or Φ((0,∞)) = ∞, or both.

The process D is strictly increasing, thus it possesses an inverse function

E(t) = inf{r > 0 : D(r) > t}.

Let N(t) be the Poisson process with intensity λ. It is shown in [23]
that N(E(t)) is a renewal process with independent identically distributed
waiting times Jn, such that

P[Jn > t] = E
[
e−λE(t)

]
. (4.2)

The Laplace transform of the expression in (4.2) is as follows:
∞∫

0

e−stE
[
e−λE(t)

]
dt =

Ψ(s)
s(λ + Ψ(s))

. (4.3)

It is interesting to know analytic properties of the function (4.2), and
we can find them for the case where Ψ(s) = sK(s) is a complete Bernstein
function (so that K is a Stieltjes function) satisfying (3.1) and (3.2). In this
case the right-hand side of (4.3) is exactly the Laplace transform of the func-
tion uλ(t) described in Theorem 2. Therefore, under these assumptions, the
function (4.2) is continuous on [0,∞) and completely monotone. Earlier such
properties were known [23] for the cases of stable subordinators and their
distributed order extensions. In the latter case they were obtained from a
rather complicated explicit integral representation [14] for uλ(t), so that here
we have given a simpler proof based on the theory of complete Bernstein
functions.

5. D(k)-Heat Equation

Let us consider the Cauchy problem (1.5). Applying formally the Laplace
transform in t to both sides of (1.5) we obtain the following equation for the
Laplace transform w̃(p, x) of a solution of (1.5):

pK(p)w̃(p, x) − K(p)w0(x) = Δw̃(p, x), p > 0, x ∈ R
n. (5.1)

A bounded function w(t, x) will be called a LT-solution of the problem
(1.5), if w is continuous in t on [0,∞) uniformly with respect to x ∈ R

n,
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w(0, x) = w0(x), while its Laplace transform w̃(p, x) is twice continuously
differentiable in x, for each p > 0, and satisfies the Eq. (5.1).

Theorem 3. Suppose that the assumption (∗) is satisfied. There exists such
a nonnegative function Z(t, x), t > 0, x ∈ R

n, x �= 0, locally integrable in t
and infinitely differentiable in x �= 0, that

∫

Rn

Z(t, x) dx = 1, t > 0, (5.2)

and for any bounded globally Hölder continuous function w0, the function

w(t, x) =
∫

Rn

Z(t, x − ξ)w0(ξ) dξ (5.3)

is a LT-solution of the Cauchy problem (1.5).

Proof. Consider the function

g(s, p) = K(p)e−spK(p), s > 0, p > 0. (5.4)

Since p �→ pK(p) is a Bernstein function, the function p �→ e−spK(p) is com-
pletely monotone (see conditions for the complete monotonicity in Chapter 13
of [8]). By Bernstein’s theorem, for each s ≥ 0, there exists such a probability
measure μs(dτ) that

e−spK(p) =

∞∫

0

e−pτμs(dτ). (5.5)

The family of measures {μs} is weakly continuous in s.
Set

G(s, t) =

t∫

0

k(t − τ)μs(dτ).

By (3.3) and (5.5), the Laplace transform in t of the function G coincides
with the function g(s, p):

g(s, p) =

∞∫

0

e−ptG(s, t) dt.

On the other hand, it is seen from (5.4) that
∞∫

0

g(s, p) ds =
1
p
,

so that
∞∫

0

e−pt dt

∞∫

0

G(s, t) ds =
1
p
,
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which implies the equality
∞∫

0

G(s, t) ds = 1. (5.6)

We define Z by the subordination equality

Z(t, x) =

∞∫

0

(4πs)−n/2e− |x|2
4s G(s, t) ds, x �= 0. (5.7)

The equality (5.2) follows from (5.6) and properties of the fundamental solu-
tion of the classical heat equation. It follows from (5.7) and (5.6) that Z(t, x)
is infinitely differentiable in x �= 0.

By the definition of G, the Laplace transform in t of the function Z,

Z̃(p, x) =

∞∫

0

(4πs)−n/2e− |x|2
4s g(s, p) ds = K(p)

∞∫

0

(4πs)−n/2e− |x|2
4s e−spK(p) ds

exists for p > 0; by Fubini’s theorem, this implies the local integrability of
Z(t, x) in t. Moreover, using the identity 2.3.16.1 from [25] we find that

Z̃(p, x) = (2π)− n
2 |x|1− n

2 K(p)(pK(p))
1
2 ( n

2 −1)Kn
2 −1(|x|

√
pK(p)), x �= 0,

(5.8)

where Kν is the McDonald function. Note that, by virtue of Proposition 2,
K(p) �= 0 for any p > 0.

Let us consider the function (5.3) starting from its behavior as t → 0.
Using (5.2) we write

w(t, x) − w0(x) =
∫

Rn

Z(t, x − ξ)[w0(ξ) − w0(x)] dξ,

so that

|w(t, x)−w0(x)| ≤ C

∞∫

0

s−n/2G(s, t) ds

∫

Rn

e− |z|2
4s |z|γdz=C1

∞∫

0

sγ/2G(s, t) ds,

and in order to prove that w(t, x) → w0(x) (uniformly in x), as t → 0, it
suffices to show that the function

a(t) =

∞∫

0

sγ/2G(s, t) ds

tends to 0, as t → 0. Consider its Laplace transform

ã(p) =

∞∫

0

sγ/2g(s, p) ds = K(p)

∞∫

0

sγ/2e−spK(p) ds = hp−1[pK(p)]−γ/2

where h > 0.
Since the function λ �→ λγ/2 is a complete Bernstein function, we find

from Proposition 2 that p �→ [pK(p)]γ/2 is a complete Bernstein function, the
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function p �→ [pK(p)]−γ/2 is a Stieltjes function possessing a representation
of the form (2.7). Thus,

[pK(p)]−γ/2 =
c

p
+ d +

∞∫

0

e−psgγ(s) ds (5.9)

where gγ is a completely monotone function of the form (2.8) with the mea-
sure σ satisfying (2.6), c, d ≥ 0.

To find the constants c and d in (5.9), we can consider the complete
Bernstein function

p[pK(p)]−γ/2 = c + dp + p

∞∫

0

e−psgγ(s) ds

and use the formulas (2.3). It follows from (3.1) and (3.2) that

c = lim
p→+0

p[pK(p)]−γ/2 = lim
p→+0

p1− γ
2 [K(p)]−γ/2 = 0,

d = lim
p→∞[pK(p)]−γ/2 = 0.

We have found that

ã(p) = hp−1

∞∫

0

e−psgγ(s) ds = h

∞∫

0

e−pt dt

t∫

0

gγ(τ) dτ,

so that

a(t) = h

t∫

0

gγ(τ) dτ −→ 0, as t → 0.

In order to perform the Laplace transform of the both sides of (5.3), we
need estimates of the function (5.8). It is known [2] that the function Kν and
all its derivatives decay exponentially at infinity. If ν > 0 is not an integer,
then

Kν(z) =
π

2 sin νπ
[I−ν(z) − Iν(z)]

where Iν(z) = zνϕν(z), and ϕν is an entire function. Therefore near the
origin

∣
∣
∣K(l)

ν (z)
∣
∣
∣ ≤ C|z|−ν−l, l = 0, 1, 2, . . . . (5.10)

If ν is a nonnegative integer, then

Kν(z) = (−1)ν+1Iν(z) log
z

2
+ z−νPν(z) + Qν(z)

where Pν is a polynomial, Qν is an analytic function on a neighbourhood of
the origin, so that the inequality (5.10) remains valid for all natural numbers
ν, and

∣
∣
∣K

(l)
0 (z)

∣
∣
∣ ≤

{
C| log z|, if l = 0,

C|z|−l, if l ≥ 1.
(5.11)
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As a result, it follows from (5.8), (5.10), and (5.11) that for each fixed
p, j = 1, . . . , n,

∣
∣
∣
∣
∣

∂l

∂xl
j

Z̃(p, x)

∣
∣
∣
∣
∣
≤ C|x|−n+2−le−a|x|, l = 0, 1, 2, . . . , (5.12)

a > 0, if n ≥ 3. If n = 2, then (5.12) remains valid for l ≥ 1, while
∣
∣
∣Z̃(p, x)

∣
∣
∣ ≤ C| log |x||e−a|x|, n = 2. (5.13)

If n = 1, there is no singularity at x = 0:
∣
∣
∣
∣

∂l

∂xl
Z̃(p, x)

∣
∣
∣
∣ ≤ Ce−a|x|, n = 1. (5.14)

Now the Laplace transform in (5.3) is legitimate, so that

w̃(p, x) =
∫

Rn

Z̃(p, x − ξ)w0(ξ) dξ, p > 0, x ∈ R
n.

The estimates (5.12)–(5.14) justify a single differentiation in spatial variables:

∂w̃(p, x)
∂xj

=
∫

Rn

∂

∂xj
Z̃(p, x − ξ)w0(ξ) dξ, j = 1, . . . , n.

If n = 1, also the direct second differentiation is possible, thus we will consider
the case where n ≥ 2.

It follows from (5.2) that
∫

Rn

Z̃(p, x) dx =
1
p

for all x, (5.15)

so that
∫

Rn

∂

∂xj
Z̃(p, x) dx = 0

and
∂w̃(p, x)

∂xj
=

∫

Rn

∂

∂xj
Z̃(p, x − ξ)

[
[w0(ξ) − w0(x0)

]
dξ (5.16)

where x0 ∈ R
n is an arbitrary fixed point.

Let us divide the domain of integration in (5.16) into two subdomains

Ω1 = {ξ ∈ R
n : |ξ − x0| ≥ δ}, Ω2 = R

n \ Ω1,

where δ > 0. This implies the decomposition (with the obvious notation)
of the left-hand side of (5.16) into the sum v1(p, x) + v2(p, x). The function
v1(p, x) may be differentiated under the integral, if x is in a small neighbour-
hood of x0 (then |x − ξ| remains separated from zero). After that, we set
x = x0, so that

∂v1(p, x0)
∂xj

=
∫

Ω1

∂2

∂x2
j

Z̃(p, x0 − ξ)
[
[w0(ξ) − w0(x0)

]
dξ. (5.17)
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Let 0 < d < δ/2, d̃ = (0, . . . , d, . . . , 0) (d is in the j-th place). Then

1
d

[
v2(p, x0 + d̃) − v2(p, x0)

]
−

∫

Ω2

∂2Z̃(p, x0 − ξ)
∂x2

j

[w0(ξ) − w0(x0)] dξ

=
1
d

∫

|x0−ξ|≤2d

∂Z̃(p, x0 + d̃ − ξ)
∂xj

[w0(ξ) − w0(x0)] dξ

−1
d

∫

|x0−ξ|≤2d

∂Z̃(p, x0 − ξ)
∂xj

[w0(ξ) − w0(x0)] dξ

−
∫

|x0−ξ|≤2d

∂2Z̃(p, x0 − ξ)
∂x2

j

[w0(ξ) − w0(x0)] dξ

+
∫

2d≤|x0−ξ|≤δ

{
1
d

[
∂Z̃(p, x0+d̃−ξ)

∂xj
− ∂Z̃(p, x0−ξ)

∂xj

]

− ∂2Z̃(p, x0−ξ)
∂x2

j

}

× [w0(ξ) − w0(x0)] dξ
def= X1 + X2 + X3 + X4.

We have

|X1| ≤ C

d

∫

|x0−ξ|≤2d

∣
∣
∣x0 + d̃ − ξ

∣
∣
∣
−n+1+γ

dξ =
C

d

∫

|y|≤2d

∣
∣
∣y + d̃

∣
∣
∣
−n+1+γ

dy,

and after the change y = d · η we find that |X1| ≤ Cdγ → 0, as d → 0.
Similarly, X2 → 0, as d → 0. For X3, we get from (5.12) that

|X3| ≤ C

∫

|x0−ξ|≤2d

∣
∣x0 − ξ

∣
∣−n+γ

dξ = C1d
γ → 0.

In X4, by the Taylor formula, the expression in braces equals

d

2
∂3

∂x3
j

Z̃(p, x′ − ξ), x′ = x0 + θd̃, 0 ≤ θ ≤ 1,

where

|x′ − ξ| ≥ |ξ − x0| − |x′ − x0| ≥ |ξ − x0| − d ≥ 1
2
|ξ − x0|,

so that

X4 ≤ Cd

∫

2d≤|x0−ξ|≤δ

∣
∣x0 − ξ

∣
∣−n+γ−1

dξ = Cdγ

∫

2<|z|≤δd−1

|z|−n−1+γ dz → 0,

as d → 0.
Hence,

∂v2(p, x0)
∂xj

=
∫

Ω2

∂2

∂x2
j

Z̃(p, x0 − ξ)
[
[w0(ξ) − w0(x0)

]
dξ.
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Taking into account (5.17) we find that, for any p > 0, x ∈ R
n,

Δxw̃(p, x) =
∫

Rn

Δx

[
Z̃(p, x − ξ)

]
[w0(ξ) − w0(x)] dξ. (5.18)

For each p > 0, the function Z̃(p, x) is a fundamental solution of the
equation −Δu + pK(p)u = 0 (it coincides, up to an easy change of variables,
with the well-known fundamental solution for the equation −Δu + u = 0;
see Chapter 8 in [24]). Therefore ΔZ̃(p, x − ξ) = pK(p)Z̃(p, x − ξ), x �= ξ.
Substituting this in (5.18) we find that

Δw̃(p, x) = pK(p)w̃(p, x) − pK(p)w0(x)
∫

Rn

Z̃(p, ξ) dξ,

and it follows from (5.15) that w̃(p, x) satisfies (5.1). �

Note that a probabilistic representation of a fundamental solution of the
problem (1.5) (and more general problems, with Lévy generators instead of
the Laplacian) was found in [22,23]. The fundamental solutions were under-
stood there as those of the equations obtained by applying the Laplace trans-
form in time and the Fourier transform in spatial variables. For our situation,
we obtained solutions, strong with respect to the variable x. To obtain clas-
sical solutions, one needs stronger assumptions regarding the function K(p).
For example, it would be sufficient to assume its asymptotic properties found
in [14] for the distributed order case (1.3). Then the investigation of strong
solutions would repeat the reasoning from [14].

Our uniqueness result for the problem (1.5) holds under much more
general assumptions and is an immediate consequence of a deep result by
Shnol (see Theorem 2.9 in [5]). Note that the notion of a LT-solution makes
sense also for polynomially bounded solutions, that is such solutions w(t, x)
that |w(t, x)| ≤ P (|x|) where P is some polynomial independent of t. Instead
of (∗), we make the following weaker assumption:

(**) The function k is nonnegative, locally integrable, nonzero on a set of
positive measure, and its Laplace transform K(p) exists for all p > 0.

Theorem 4. Let (∗∗) hold, and suppose that w(t, x) is a polynomially bounded
LT-solution of the problem (1.5) with w0(x) ≡ 0. Then w(t, x) ≡ 0.

Proof. The Laplace transform w̃(p, x) satisfies, for each p > 0, the equa-
tion Δw̃(p, x) = pK(p)w̃(p, x). Thus w̃(p, x) is a generalized eigenfunction
of the operator −Δ on L2(Rn) with the eigenvalue −pK(p) < 0. By Shnol’s
theorem, a nonzero polynomially bounded generalized eigenfunction is pos-
sible only if the eigenvalue belongs to the spectrum of −Δ equal to [0,∞).
Therefore w̃(p, x) ≡ 0, so that w(t, x) ≡ 0. �

Theorem 4 can be extended to some equations with coefficients depend-
ing on x, for which Shnol’s theorem can be applied; see [5,12].
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