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Abstract. Let t �→ A(t) for t ∈ T be a CM -mapping with values
unbounded operators with compact resolvents and common domain of
definition which are self-adjoint or normal. Here CM stands for Cω (real
analytic), a quasianalytic or non-quasianalytic Denjoy–Carleman class,
C∞, or a Hölder continuity class C0,α. The parameter domain T is
either R or R

n or an infinite dimensional convenient vector space. We
prove and review results on CM -dependence on t of the eigenvalues and
eigenvectors of A(t).
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Theorem. Let t �→ A(t) for t ∈ T be a parameterized family of unbounded
operators in a Hilbert space H with common domain of definition and with
compact resolvent.

If t ∈ T = R and all A(t) are self-adjoint then the following holds:
(A) If A(t) is real analytic in t ∈ R, then the eigenvalues and the eigenvec-

tors of A(t) can be parameterized real analytically in t.
(B) If A(t) is quasianalytic of class CQ in t ∈ R, then the eigenvalues and

the eigenvectors of A(t) can be parameterized CQ in t.
(C) If A(t) is non-quasianalytic of class CL in t ∈ R and if no two different

continuously parameterized eigenvalues (e.g., ordered by size) meet of
infinite order at any t ∈ R, then the eigenvalues and the eigenvectors of
A(t) can be parameterized CL in t.

(D) If A(t) is C∞ in t ∈ R and if no two different continuously parameter-
ized eigenvalues meet of infinite order at any t ∈ R, then the eigenvalues
and the eigenvectors of A(t) can be parameterized C∞ in t.
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(E) If A(t) is C∞ in t ∈ R, then the eigenvalues of A(t) can be parameterized
twice differentiably in t.

(F) If A(t) is C1,α in t ∈ R for some α > 0, then the eigenvalues of A(t)
can be parameterized C1 in t.

If t ∈ T = R and all A(t) are normal then the following holds:

(G) If A(t) is real analytic in t ∈ R, then for each t0 ∈ R and for each
eigenvalue z0 of A(t0) there exists N ∈ N>0 such that the eigenvalues
near z0 of A(t0 ± sN ) and their eigenvectors can be parameterized real
analytically in s near s = 0.

(H) If A(t) is quasianalytic of class CQ in t ∈ R, then for each t0 ∈ R and
for each eigenvalue z0 of A(t0) there exists N ∈ N>0 such that the eigen-
values near z0 of A(t0±sN ) and their eigenvectors can be parameterized
CQ in s near s = 0.

(I) If A(t) is non-quasianalytic of class CL in t ∈ R, then for each t0 ∈ R

and for each eigenvalue z0 of A(t0) at which no two of the different
continuously parameterized eigenvalues (which is always possible by [12,
II 5.2]) meet of infinite order, there exists N ∈ N>0 such that the eigen-
values near z0 of A(t0±sN ) and their eigenvectors can be parameterized
CL in s near s = 0.

(J) If A(t) is C∞ in t ∈ R, then for each t0 ∈ R and for each eigenvalue
z0 of A(t0) at which no two of the different continuously parameterized
eigenvalues meet of infinite order, there exists N ∈ N>0 such that the
eigenvalues near z0 of A(t0 ± sN ) and their eigenvectors can be param-
eterized C∞ in s near s = 0.

(K) If A(t) is C∞ in t ∈ R, then for each t0 ∈ R and for each eigenvalue
z0 of A(t0) at which no two of the different continuously parameterized
eigenvalues meet of infinite order, the eigenvalues near z0 of A(t) and
their eigenvectors can be parameterized by absolutely continuous func-
tions in t near t = t0.

If t ∈ T = R
n and all A(t) are normal then the following holds:

(L) If A(t) is real analytic or quasianalytic of class CQ in t ∈ R
n, then for

each t0 ∈ R
n and for each eigenvalue z0 of A(t0), there exist a neighbor-

hood D of z0 in C, a neighborhood W of t0 in R
n, and a finite covering

{πk : Uk → W} of W , where each πk is a composite of finitely many
mappings each of which is either a local blow-up along a real analytic or
CQ submanifold or a local power substitution, such that the eigenvalues
of A(πk(s)), s ∈ Uk, in D and the corresponding eigenvectors can be
parameterized real analytically or CQ in s. If A is self-adjoint, then we
do not need power substitutions.

(M) If A(t) is real analytic or quasianalytic of class CQ in t ∈ R
n, then

for each t0 ∈ R
n and for each eigenvalue z0 of A(t0), there exist a

neighborhood D of z0 in C and a neighborhood W of t0 in R
n such that

the eigenvalues of A(t), t ∈ W , in D and the corresponding eigenvectors
can be parameterized by functions which are special functions of bounded
variation (SBV), see [9] or [3], in t.
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If t ∈ T ⊆ E, a c∞-open subset in a finite or infinite dimensional convenient
vector space then the following holds:
(N) For 0 < α ≤ 1, if A(t) is C0,α (Hölder continuous of exponent α) in

t ∈ T and all A(t) are self-adjoint, then the eigenvalues of A(t) can be
parameterized C0,α in t.

(O) For 0 < α ≤ 1, if A(t) is C0,α in t ∈ T and all A(t) are normal, then
we have: For each t0 ∈ T and each eigenvalue z0 of A(t0) consider a
simple closed C1-curve γ in the resolvent set of A(t0) enclosing only z0
among all eigenvalues of A(t0). Then for t near t0 in the c∞-topology
on T , no eigenvalue of A(t) lies on γ. Let λ(t) = (λ1(t), . . . , λN (t)) be
the N -tuple of all eigenvalues (repeated according to their multiplicity)
of A(t) inside of γ. Then t �→ λ(t) is C0,α for t near t0 with respect to
the non-separating metric

d(λ, μ) = min
σ∈SN

max
1≤i≤N

|λi − μσ(i)|
on the space of N -tuples.

Part (A) is due to Rellich [22] in 1942, see also [4] and [12, VII 3.9]. Part
(D) has been proved in [2, 7.8], see also [13, 50.16], in 1997, which contains
also a different proof of (A). (E) and (F) have been proved in [14] in 2003. (G)
was proved in [19, 7.1]; it can be proved as (H) with some obvious changes,
but it is not a special case since Cω does not correspond to a sequence which
is an L-intersection (see ‘definitions and remarks’ below and [17]). (J) and
(K) were proved in [19, 7.1]. (N) was proved in [15].

The purpose of this paper is to prove the remaining parts (B), (C), (H),
(I), (L), (M), and (O).

Definitions and Remarks. Let M = (Mk)k∈N=N≥0 be an increasing sequence
(Mk+1 ≥ Mk) of positive real numbers with M0 = 1. Let U ⊆ R

n be open.
We denote by CM (U) the set of all f ∈ C∞(U) such that, for each compact
K ⊆ U , there exist positive constants C and ρ such that

|∂αf(x)| ≤ C ρ|α| |α|!M|α| for all α ∈ N
n and x ∈ K.

The set CM (U) is a Denjoy–Carleman class of functions on U . If Mk = 1, for
all k, then CM (U) coincides with the ring Cω(U) of real analytic functions
on U . In general, Cω(U) ⊆ CM (U) ⊆ C∞(U).

Throughout this paper Q = (Qk)k∈N is a sequence as above which
is log-convex (i.e., Q2

k ≤ Qk−1Qk+1 for all k), derivation closed (i.e.,
supk(Qk+1/Qk)1/k < ∞), quasianalytic (i.e.,

∑
k(k!Qk)−1/k = ∞), and

which is also an L-intersection. We say that Q is an L-intersection if CQ =⋂{CN : N non-quasianalytic, log-convex, N ≥ Q}. Moreover, L = (Lk)k∈N

is a sequence as above which is log-convex, derivation closed, and non-quasi-
analytic. Then CQ and CL are closed under composition and allow for the
implicit function theorem. See [17] or [16] and references therein.

That A(t) is a real analytic, CM (where M is either Q or L), C∞, or
Ck,α family of unbounded operators means the following: There is a dense
subspace V of the Hilbert space H such that V is the domain of definition
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of each A(t), and such that A(t)∗ = A(t) in the self-adjoint case, or A(t) has
closed graph and A(t)A(t)∗ = A(t)∗A(t) wherever defined in the normal case.
Moreover, we require that t �→ 〈A(t)u, v〉 is of the respective differentiability
class for each u ∈ V and v ∈ H. From now on we treat only CM = Cω, CM

for M = Q, M = L, and CM = C0,α.
This implies that t �→ A(t)u is of the same class CM (T,H) (where T

is either R or R
n) or is in C0,α(T,H) (if T is a convenient vector space) for

each u ∈ V by [13, 2.14.4, 10.3] for Cω, by [16, 3.1, 3.3, 3.5] for M = L, by
[17, 1.10, 2.1, 2.3] for M = Q, and by [13, 2.3], [11, 2.6.2] or [10, 4.14.4] for
C0,α because C0,α can be described by boundedness conditions only and for
these the uniform boundedness principle is valid.

A sequence of functions λi is said to parameterize the eigenvalues, if for
each z ∈ C the cardinality |{i : λi(t) = z}| equals the multiplicity of z as
eigenvalue of A(t).

Let X be a Cω or CQ manifold. A local blow-up Φ over an open subset
U of X means the composition Φ = ι ◦ ϕ of a blow-up ϕ : U ′ → U with
center a Cω or CQ submanifold and of the inclusion ι : U → X. A local
power substitution is a mapping Ψ : V → X of the form Ψ = ι ◦ ψ, where
ι : W → X is the inclusion of a coordinate chart W of X and ψ : V → W is
given by

(y1, . . . , yq) = ((−1)ε1xγ1
1 , . . . , (−1)εqxγq

q ),

for some γ = (γ1, . . . , γq) ∈ (N>0)q and all ε = (ε1, . . . , εq) ∈ {0, 1}q, where
y1, . . . , yq denote the coordinates of W (and q = dimX).

This paper became possible only after some of the results of [16] and
[17] were proved, in particular the uniform boundedness principles. The wish
to prove the results of this paper was the main motivation for us to work on
[16] and [17].

Applications. For brevity we confine ourselves to CQ; the same applies to
Cω. Let X be a compact CQ manifold and let t �→ gt be a CQ-curve of
CQ Riemannian metrics on X. Then we get the corresponding CQ curve
t �→ Δ(gt) of Laplace-Beltrami operators on L2(X). By theorem (B) the
eigenvalues and eigenvectors can be arranged CQ in t. By [1], the eigen-
functions are also CQ as functions on X (at least for those CQ which can
be described by a weight function, see [7]). Question: Are the eigenvectors
viewed as eigenfunctions then also in CQ(X × R)?

Let Ω be a bounded region in R
n with CQ boundary, and let H(t) =

−Δ+V (t) be a CQ-curve of Schrödinger operators with varying CQ potential
and Dirichlet boundary conditions. Then the eigenvalues and eigenvectors can
be arranged CQ in t. Question: Are the eigenvectors viewed as eigenfunctions
then also in CQ(Ω × R)?

Example. This is an elaboration of [2, 7.4] and [14, Example]. Let S(2) be
the vector space of all symmetric real (2 × 2)-matrices. We use the CL-curve
lemma [16, 3.6] or [17, 2.5]: For each L, there exist sequences μn → ∞, tn →
t∞, sn > 0 in R with the following property: For sequences An, Bn ∈ S(2)
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which are μn-convergent to 0, i.e., μnAn and μnBn are bounded in S(2), there
exists a curve A ∈ CL(R, S(2)) such that A(tn + t) = An + tBn for |t| ≤ sn.

Choose a sequence νn of reals satisfying μnνn → 0 and (νn)n ≤ sn for
all n and use the CL-curve lemma for

An := (νn)n+1

(
1 0
0 −1

)

, Bn := νn

(
0 1
1 0

)

.

The eigenvalues of An + tBn and their derivatives are

λn(t) = ±νn

√
(νn)2n + t2, λ′

n(t) = ± νnt√
(νn)2n + t2

.

Then
λ′(tn + (νn)n) − λ′(tn)

((νn)n)α
=
λ′

n((νn)n) − λ′
n(0)

(νn)nα
= ± νn

(νn)nα
√

2

= ± (νn)1−nα

√
2

→ ∞ for α > 0.

So the condition (in (C), (D), (I), (J), and (K)) that no two different contin-
uously parameterized eigenvalues meet of infinite order cannot be dropped.
By [2, 2.1], we may always find a twice differentiable square root of a non-
negative smooth function, so that the eigenvalues λ are functions which are
twice differentiable but not C1,α for any α > 0.

Note that the normed eigenvectors cannot be chosen continuously in
this example (see also example [21, §2]). Namely, we have

A(tn) = (νn)n+1

(
1 0
0 −1

)

, A(tn + (νn)n) = (νn)n+1

(
1 1
1 −1

)

.

Resolvent Lemma. Let CM be any of Cω, CQ, CL, C∞, or C0,α, and let A(t)
be normal. If A is CM then the resolvent (t, z) �→ (A(t) − z)−1 ∈ L(H,H) is
CM on its natural domain, the global resolvent set

{(t, z) ∈ T × C : (A(t) − z) : V → H is invertible}
which is open (and even connected).

Proof. By definition the function t �→ 〈A(t)v, u〉 is of class CM for each
v ∈ V and u ∈ H. We may conclude that the mapping t �→ A(t)v is of class
CM into H as follows: For CM = C∞ we use [13, 2.14.4]. For CM = Cω

we use in addition [13, 10.3]. For CM = CQ or CM = CL we use [17, 2.1]
and/or [16, 3.3] where we replace R by R

n. For CM = C0,α we use [13,
2.3], [11, 2.6.2], or [10, 4.1.14] because C0,α can be described by boundedness
conditions only and for these the uniform boundedness principle is valid.

For each t consider the norm ‖u‖2
t := ‖u‖2 + ‖A(t)u‖2 on V . Since A(t)

is closed, (V, ‖ ‖t) is again a Hilbert space with inner product 〈u, v〉t :=
〈u, v〉 + 〈A(t)u,A(t)v〉.
Claim. (Cf. [2, in the proof of 7.8], [13, in the proof of 50.16], or [14, Claim 1].)
All these norms ‖ ‖t on V are equivalent, locally uniformly in t. We then
equip V with one of the equivalent Hilbert norms, say ‖ ‖0.
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We reduce this to C0,α. Namely, note first that A(t) : (V, ‖ ‖s) → H
is bounded since the graph of A(t) is closed in H × H, contained in V ×
H and thus also closed in (V, ‖ ‖s) × H. For fixed u, v ∈ V , the func-
tion t �→ 〈u, v〉t = 〈u, v〉 + 〈A(t)u,A(t)v〉 is C0,α since so is t �→ A(t)u. By
the multilinear uniform boundedness principle ([13, 5.18] or [11, 3.7.4]) the
mapping t �→ 〈 , 〉t is C0,α into the space of bounded sesquilinear forms on
(V, ‖ ‖s) for each fixed s. Thus the inverse image of 〈 , 〉s + 1

2 (unit ball) in
L((V, ‖ ‖s) ⊕ (V, ‖ ‖s); C) is a c∞-open neighborhood U of s in T . Thus√

1/2‖u‖s ≤ ‖u‖t ≤ √
3/2‖u‖s for all t ∈ U , i.e., all Hilbert norms ‖ ‖t are

locally uniformly equivalent, and the claim follows.
By the linear uniform boundedness theorem we see that t �→ A(t) is

in CM (T,L(V,H)) as follows (here it suffices to use a set of linear function-
als which together recognize bounded sets instead of the whole dual): For
CM = C∞ we use [13, 1.7, 2.14.3]. For CM = Cω we use in addition [13, 9.4].
For CM = CQ or CM = CL we use [17, 2.2, 2.3] and/or [16, 3.5] where we
replace R by R

n. For CM = C0,α see above.
If for some (t, z) ∈ T × C the bounded operator A(t) − z : V → H is

invertible, then this is true locally with respect to the c∞-topology on the
product which is the product topology by [13, 4.16], and (t, z) �→ (A(t)−z)−1 :
H → V is CM , by the chain rule, since inversion is real analytic on the Banach
space L(V,H).

Note that (A(t)−z)−1 : H → H is a compact operator for some (equiv-
alently any) (t, z) if and only if the inclusion i : V → H is compact, since
i = (A(t) − z)−1 ◦ (A(t) − z) : V → H → H.

Polynomial Proposition. Let P be a curve of polynomials

P (t)(x) = xn − a1(t)xn−1 + · · · + (−1)nan(t), t ∈ R.

(a) If P is hyperbolic (i.e., all roots of P (t) are real for each fixed t) and if
the coefficient functions ai are all CQ then there exist CQ functions λi

which parameterize all roots.
(b) If P is hyperbolic, the coefficient functions ai are CL, and no two of

the different continuously arranged roots (e.g., ordered by size) meet of
infinite order, then there exist CL functions λi which parameterize all
roots.

(c) If the coefficient functions ai are CQ, then for each t0 there exists N ∈
N>0 such that the roots of s �→ P (t0 ± sN ) can be parameterized CQ in
s for s near 0.

(d) If the coefficient functions ai are CL and no two of the different con-
tinuously arranged roots (by [12, II 5.2]) meet of infinite order, then for
each t0 there exists N ∈ N>0 such that the roots of s �→ P (t0 ± sN ) can
be parameterized CL in s for s near 0.

All CQ or CL solutions differ by permutations.

The proof of parts (a) and (b) is exactly as in [2] where the correspond-
ing results were proven for C∞ instead of CL, and for Cω instead of CQ. For
this we need only the following properties of CQ and CL:
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• They allow for the implicit function theorem (for [2, 3.3]).
• They contain Cω and are closed under composition (for [2, 3.4]).
• They are derivation closed (for [2, 3.7]).

Part (a) is also in [8, 7.6] which follows [2]. It also follows from the multi-
dimensional version [20, 6.10] since blow-ups in dimension 1 are trivial. The
proofs of parts (c) and (d) are exactly as in [19, 3.2] where the corresponding
result was proven for Cω instead of CQ, and for C∞ instead of CL, if none
of the different roots meet of infinite order. For these we need the properties
of CQ and CL listed above.

Matrix Proposition. Let A(t) for t ∈ T be a family of (N ×N)-matrices.

(e) If T = R � t �→ A(t) is a CQ-curve of Hermitian matrices, then the
eigenvalues and the eigenvectors can be chosen CQ.

(f) If T = R � t �→ A(t) is a CL-curve of Hermitian matrices such that no
two different continuously arranged eigenvalues meet of infinite order,
then the eigenvalues and the eigenvectors can be chosen CL.

(g) If T = R � t �→ A(t) is a CL-curve of normal matrices such that no two
different continuously arranged eigenvalues meet of infinite order, then
for each t0 there exists N1 ∈ N>0 such that the eigenvalues and eigen-
vectors of s �→ A(t0 ± sN1) can be parameterized CL in s for s near 0.

(h) Let T ⊆ R
n be open and let T � t �→ A(t) be a Cω or CQ-mapping of

normal matrices. Let K ⊆ T be compact. Then there exist a neighbor-
hood W of K, and a finite covering {πk : Uk → W} of W , where each πk

is a composite of finitely many mappings each of which is either a local
blow-up along a Cω or CQ submanifold or a local power substitution,
such that the eigenvalues and the eigenvectors of A(πk(s)) can be chosen
Cω or CQ in s. Consequently, the eigenvalues and eigenvectors of
A(t) are locally special functions of bounded variation (SBV). If A is a
family of Hermitian matrices, then we do not need power substitutions.

The proof of the matrix proposition in case (e) and (f) is exactly as in
[2, 7.6], using the polynomial proposition and properties of CQ and CL. Item
(g) is exactly as in [19, 6.2], using the polynomial proposition and properties
of CL. Item (h) is proved in [20, 9.1, 9.6], see also [18].

Proof of Theorem. We have to prove parts (B), (C), (H), (I), (L), (M), and
(O). So let CM be any of Cω, CQ, CL, or C0,α, and let A(t) be normal. Let
z be an eigenvalue of A(t0) of multiplicity N . We choose a simple closed C1

curve γ in the resolvent set of A(t0) for fixed t0 enclosing only z among all
eigenvalues of A(t0). Since the global resolvent set is open, see the resolvent
lemma, no eigenvalue of A(t) lies on γ, for t near t0. By the resolvent lemma,
A : T → L((V, ‖ ‖0),H) is CM , thus also

t �→ − 1
2πi

∫

γ

(A(t) − z)−1 dz =: P (t, γ) = P (t)
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is a CM mapping. Each P (t) is a projection, namely onto the direct sum of
all eigenspaces corresponding to eigenvalues of A(t) in the interior of γ, with
finite rank. Thus the rank must be constant: It is easy to see that the (finite)
rank cannot fall locally, and it cannot increase, since the distance in L(H,H)
of P (t) to the subset of operators of rank ≤ N = rank(P (t0)) is continuous
in t and is either 0 or 1.

So for t in a neighborhood U of t0 there are equally many eigenvalues
in the interior of γ, and we may call them λi(t) for 1 ≤ i ≤ N (repeated with
multiplicity).

Now we consider the family of N -dimensional complex vector spaces
t �→ P (t)H ⊆ H, for t ∈ U . They form a CM Hermitian vector subbun-
dle over U of U × H → U : For given t, choose v1, . . . , vN ∈ H such that
the P (t)vi are linearly independent and thus span P (t)H. This remains true
locally in t. Now we use the Gram Schmidt orthonormalization procedure
(which is Cω) for the P (t)vi to obtain a local orthonormal CM frame of the
bundle.

Now A(t) maps P (t)H to itself; in a CM local frame it is given by a
normal (N ×N)-matrix parameterized CM by t ∈ U .

Now all local assertions of the theorem follow:

(B) Use the matrix proposition, part (e).
(C) Use the matrix proposition, part (f).
(H) Use the matrix proposition, part (h), and note that in dimension 1

blow-ups are trivial.
(I) Use the matrix proposition, part (g).

(L,M) Use the matrix proposition, part (h), for R
n.

(O) We use the following

Result. ([6], [5, VII.4.1]) Let A,B be normal (N ×N)-matrices and let
λi(A) and λi(B) for i = 1, . . . , N denote the respective eigenvalues.
Then

min
σ∈SN

max
j

|λj(A) − λσ(j)(B)| ≤ C‖A−B‖

for a universal constant C with 1 < C < 3. Here ‖ ‖ is the operator
norm.

Finally, it remains to extend the local choices to global ones for the cases
(B) and (C) only. There t �→ A(t) is CQ or CL, respectively, which imply
both C∞, and no two different eigenvalues meet of infinite order. So we may
apply [2, 7.8] (in fact we need only the end of the proof) to conclude that
the eigenvalues can be chosen C∞ on T = R, uniquely up to a global permu-
tation. By the local result above they are then CQ or CL. The same proof
then gives us, for each eigenvalue λi : T → R with generic multiplicity N , a
unique N -dimensional smooth vector subbundle of R ×H whose fiber over t
consists of eigenvectors for the eigenvalue λi(t). In fact this vector bundle is
CQ or CL by the local result above, namely the matrix proposition, part (e)
or (f), respectively.
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Math. 56(6), 1121–1144 (2004)

[9] De Giorgi, E., Ambrosio, L.: New functionals in the calculus of variations. Atti
Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 82(2), 199–210 (1988)
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of unbounded operators. Math. Ann. (2011). doi:10.1007/s00208-011-0693-9.
(published electronically on June 28, arXiv:math.FA/0611506)

[16] Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for non-quasiana-
lytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. 256, 3510–3544
(2009)

[17] Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for quasianalytic
Denjoy–Carleman differentiable mappings. J. Funct. Anal. 261, 1799–1834
(2011)

[18] Kurdyka, K., Paunescu, L.: Hyperbolic polynomials and multiparameter real-
analytic perturbation theory. Duke Math. J. 141(1), 123–149 (2008)

http://www.ams.org/online_bks/surv53/
http://dx.doi.org/10.1007/s00208-011-0693-9


416 A. Kriegl et al. IEOT

[19] Rainer, A.: Perturbation of complex polynomials and normal operators. Math.
Nach. 282(12), 1623–1636 (2009)

[20] Rainer, A.: Quasianalytic multiparameter perturbation of polynomials and nor-
mal matrices. Trans. Am. Math. Soc. 363(9), 4945–4977 (2011)

[21] Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 113(1), 600–619
(1937)

[22] Rellich, F.: Störungstheorie der Spektralzerlegung V. Math. Ann. 118, 462–484
(1942)

Andreas Kriegl, Peter W. Michor and Armin Rainer (B)
Fakultät für Mathematik
Universität Wien
Nordbergstrasse 15
1090 Wien, Austria
e-mail: andreas.kriegl@univie.ac.at;

peter.michor@univie.ac.at;

armin.rainer@univie.ac.at

Received: March 28, 2011.

Revised: August 13, 2011.


	Denjoy--Carleman Differentiable Perturbation of Polynomials and Unbounded Operators
	Abstract
	References


