Denjoy–Carleman Differentiable Perturbation of Polynomials and Unbounded Operators

Andreas Kriegl, Peter W. Michor and Armin Rainer

Abstract. Let $t \mapsto A(t)$ for $t \in T$ be a C^M -mapping with values unbounded operators with compact resolvents and common domain of definition which are self-adjoint or normal. Here C^M stands for C^{ω} (real analytic), a quasianalytic or non-quasianalytic Denjoy–Carleman class, C^{∞} , or a Hölder continuity class $C^{0,\alpha}$. The parameter domain *T* is either \mathbb{R} or \mathbb{R}^n or an infinite dimensional convenient vector space. We prove and review results on *C*^M-dependence on *t* of the eigenvalues and eigenvectors of *A*(*t*).

Mathematics Subject Classification (2010). 26C10, 26E10, 47A55.

Keywords. Perturbation theory, differentiable choice of eigenvalues and eigenvectors, Denjoy–Carleman ultradifferentiable functions.

Theorem. Let $t \mapsto A(t)$ for $t \in T$ be a parameterized family of unbounded *operators in a Hilbert space* H *with common domain of definition and with compact resolvent.*

If $t \in T = \mathbb{R}$ *and all* $A(t)$ *are self-adjoint then the following holds:*

- (A) If $A(t)$ is real analytic in $t \in \mathbb{R}$, then the eigenvalues and the eigenvec*tors of* A(t) *can be parameterized real analytically in* t*.*
- (B) *If* $A(t)$ *is quasianalytic of class* C^Q *in* $t \in \mathbb{R}$ *, then the eigenvalues and the eigenvectors of* $A(t)$ *can be parameterized* C^Q *in t.*
- (C) If $A(t)$ is non-quasianalytic of class C^L in $t \in \mathbb{R}$ and if no two different *continuously parameterized eigenvalues* (*e.g., ordered by size*) *meet of infinite order at any* $t \in \mathbb{R}$ *, then the eigenvalues and the eigenvectors of* $A(t)$ *can be parameterized* C^L *in t.*
- (D) If $A(t)$ is C^{∞} in $t \in \mathbb{R}$ and if no two different continuously parameter*ized eigenvalues meet of infinite order at any* $t \in \mathbb{R}$, then the eigenvalues and the eigenvectors of $A(t)$ can be parameterized C^{∞} in t.

AK was supported by FWF-Project P 23028-N13, PM by FWF-Project P 21030-N13, AR by FWF-Projects J 2771-N13 and P 22218-N13.

- (E) *If* $A(t)$ *is* C^{∞} *in* $t \in \mathbb{R}$ *, then the eigenvalues of* $A(t)$ *can be parameterized twice differentiably in* t*.*
- (F) If $A(t)$ is $C^{1,\alpha}$ *in* $t \in \mathbb{R}$ for some $\alpha > 0$, then the eigenvalues of $A(t)$ *can be parameterized* C^1 *in t.*
- *If* $t \in T = \mathbb{R}$ *and all* $A(t)$ *are normal then the following holds:*
- (G) If $A(t)$ *is real analytic in* $t \in \mathbb{R}$, then for each $t_0 \in \mathbb{R}$ and for each *eigenvalue* z_0 *of* $A(t_0)$ *there exists* $N \in \mathbb{N}_{>0}$ *such that the eigenvalues near* z_0 *of* $A(t_0 \pm s^N)$ *and their eigenvectors can be parameterized real analytically in s near* $s = 0$ *.*
- (H) *If* $A(t)$ *is quasianalytic of class* C^Q *in* $t \in \mathbb{R}$ *, then for each* $t_0 \in \mathbb{R}$ *and for each eigenvalue* z_0 *of* $A(t_0)$ *there exists* $N \in \mathbb{N}_{>0}$ *such that the eigenvalues near* z_0 *of* $A(t_0 \pm s^N)$ *and their eigenvectors can be parameterized* C^Q in s near $s = 0$.
	- (I) *If* $A(t)$ *is non-quasianalytic of class* C^L *in* $t \in \mathbb{R}$ *, then for each* $t_0 \in \mathbb{R}$ and for each eigenvalue z_0 of $A(t_0)$ at which no two of the different *continuously parameterized eigenvalues (which is always possible by [\[12](#page-8-0), II 5.2])* meet of infinite order, there exists $N \in \mathbb{N}_{\geq 0}$ such that the eigen*values near* z_0 *of* $A(t_0 \pm s^N)$ *and their eigenvectors can be parameterized* C^L *in s near* $s = 0$.
- (J) *If* $A(t)$ *is* C^{∞} *in* $t \in \mathbb{R}$ *, then for each* $t_0 \in \mathbb{R}$ *and for each eigenvalue* z_0 *of* $A(t_0)$ *at which no two of the different continuously parameterized eigenvalues meet of infinite order, there exists* $N \in \mathbb{N}_{>0}$ *such that the eigenvalues near* z_0 *of* $A(t_0 \pm s^N)$ *and their eigenvectors can be parameterized* C^{∞} *in s near s* = 0*.*
- (K) *If* $A(t)$ *is* C^{∞} *in* $t \in \mathbb{R}$ *, then for each* $t_0 \in \mathbb{R}$ *and for each eigenvalue* z_0 *of* $A(t_0)$ *at which no two of the different continuously parameterized eigenvalues meet of infinite order, the eigenvalues near* z_0 *of* $A(t)$ *and their eigenvectors can be parameterized by absolutely continuous functions in* t *near* $t = t_0$ *.*
- *If* $t \in T = \mathbb{R}^n$ *and all* $A(t)$ *are normal then the following holds:*
- (L) *If* $A(t)$ *is real analytic or quasianalytic of class* C^Q *in* $t \in \mathbb{R}^n$ *, then for* \overline{a} *each* $t_0 \in \mathbb{R}^n$ *and for each eigenvalue* z_0 *of* $A(t_0)$ *, there exist a neighborhood* D of z_0 *in* \mathbb{C} *, a neighborhood* W of t_0 *in* \mathbb{R}^n *, and a finite covering* ${\pi_k : U_k \to W}$ *of* W, where each ${\pi_k}$ *is a composite of finitely many mappings each of which is either a local blow-up along a real analytic or* C^Q *submanifold or a local power substitution, such that the eigenvalues of* $A(\pi_k(s))$, $s \in U_k$, in D and the corresponding eigenvectors can be $parameterized\ real\ analytically\ or\ C^Q\ in\ s.\ If\ A\ is\ self-adjoint,\ then\ we$ *do not need power substitutions.*
- (M) *If* $A(t)$ *is real analytic or quasianalytic of class* C^Q *in* $t \in \mathbb{R}^n$ *, then for each* $t_0 \in \mathbb{R}^n$ *and for each eigenvalue* z_0 *of* $A(t_0)$ *, there exist a neighborhood* D *of* z_0 *in* \mathbb{C} *and a neighborhood* W *of* t_0 *in* \mathbb{R}^n *such that the eigenvalues of* $A(t)$, $t \in W$ *, in* D *and the corresponding eigenvectors can be parameterized by functions which are special functions of bounded variation* (*SBV*)*, see* [\[9](#page-8-1)] *or* [\[3](#page-8-2)]*, in* t*.*

If $t \in T \subseteq E$, a c^{∞} -open subset in a finite or infinite dimensional convenient *vector space then the following holds*:

- (N) *For* $0 < \alpha \leq 1$, *if* $A(t)$ *is* $C^{0,\alpha}$ *(Hölder continuous of exponent* α *) in* $t \in T$ *and all* $A(t)$ *are self-adjoint, then the eigenvalues of* $A(t)$ *can be parameterized* $C^{0,\alpha}$ *in t.*
- (O) For $0 < \alpha \leq 1$, if $A(t)$ is $C^{0,\alpha}$ in $t \in T$ and all $A(t)$ are normal, then *we have:* For each $t_0 \in T$ *and each eigenvalue* z_0 *of* $A(t_0)$ *consider a simple closed* C^1 -*curve* γ *in the resolvent set of* $A(t_0)$ *enclosing only* z_0 *among all eigenvalues of* $A(t_0)$ *. Then for t near* t_0 *in the* c^∞ *-topology on T, no eigenvalue of* $A(t)$ *lies on* γ *. Let* $\lambda(t) = (\lambda_1(t), \ldots, \lambda_N(t))$ *be the* N*-tuple of all eigenvalues* (*repeated according to their multiplicity*) *of* $A(t)$ *inside of* γ *. Then* $t \mapsto \lambda(t)$ *is* $C^{0,\alpha}$ *for* t *near* t_0 *with respect to the non-separating metric*

$$
d(\lambda, \mu) = \min_{\sigma \in \mathcal{S}_N} \max_{1 \le i \le N} |\lambda_i - \mu_{\sigma(i)}|
$$

on the space of N*-tuples.*

Part (A) is due to Rellich $[22]$ in 1942, see also $[4]$ $[4]$ and $[12, VII 3.9]$ $[12, VII 3.9]$. Part (D) has been proved in $[2, 7.8]$ $[2, 7.8]$, see also $[13, 50.16]$ $[13, 50.16]$, in 1997, which contains also a different proof of (A) . (E) and (F) have been proved in [\[14](#page-8-6)] in 2003. (G) was proved in [\[19](#page-9-1), 7.1]; it can be proved as (H) with some obvious changes, but it is not a special case since C^{ω} does not correspond to a sequence which is an $\mathcal{L}\text{-intersection}$ (see 'definitions and remarks' below and [\[17](#page-8-7)]). (J) and (K) were proved in [\[19](#page-9-1), 7.1]. (N) was proved in [\[15](#page-8-8)].

The purpose of this paper is to prove the remaining parts (B) , (C) , (H) , $(I), (L), (M), and (O).$

Definitions and Remarks. Let $M = (M_k)_{k \in \mathbb{N} = \mathbb{N} > 0}$ be an increasing sequence $(M_{k+1} \geq M_k)$ of positive real numbers with $M_0 = 1$. Let $U \subseteq \mathbb{R}^n$ be open. We denote by $C^M(U)$ the set of all $f \in C^{\infty}(U)$ such that, for each compact $K \subseteq U$, there exist positive constants C and ρ such that

$$
|\partial^{\alpha} f(x)| \le C \, \rho^{|\alpha|} \, |\alpha|! \, M_{|\alpha|} \quad \text{ for all } \alpha \in \mathbb{N}^n \text{ and } x \in K.
$$

The set $C^M(U)$ is a *Denjoy–Carleman class* of functions on U. If $M_k = 1$, for all k, then $\tilde{C}^{\tilde{M}}(U)$ coincides with the ring $C^{\omega}(U)$ of real analytic functions on U. In general, $C^{\omega}(U) \subseteq C^M(U) \subseteq C^{\infty}(U)$.

Throughout this paper $Q = (Q_k)_{k \in \mathbb{N}}$ is a sequence as above which is log-convex (i.e., $Q_k^2 \leq Q_{k-1}Q_{k+1}$ for all k), derivation closed (i.e., $\sup_k (Q_{k+1}/Q_k)^{1/k} < \infty$, quasianalytic (i.e., $\sum_k (k! Q_k)^{-1/k} = \infty$), and which is also an \mathcal{L} -intersection. We say that Q is an \mathcal{L} -intersection if C^Q = ${\bigcap} \{C^N : N \text{ non-quasianalytic, log-convex, } N \geq Q\}$. Moreover, $L = (L_k)_{k \in \mathbb{N}}$ is a sequence as above which is log-convex, derivation closed, and non-quasianalytic. Then C^Q and C^L are closed under composition and allow for the implicit function theorem. See [\[17](#page-8-7)] or [\[16](#page-8-9)] and references therein.

That $A(t)$ is a real analytic, C^M (where M is either Q or L), C^{∞} , or $C^{k,\alpha}$ family of unbounded operators means the following: There is a dense subspace V of the Hilbert space H such that V is the domain of definition

of each $A(t)$, and such that $A(t)^* = A(t)$ in the self-adjoint case, or $A(t)$ has closed graph and $A(t)A(t)^* = A(t)^*A(t)$ wherever defined in the normal case. Moreover, we require that $t \mapsto \langle A(t)u, v \rangle$ is of the respective differentiability class for each $u \in V$ and $v \in H$. From now on we treat only $C^M = C^{\omega}$, C^M for $M = Q$, $M = L$, and $C^M = C^{0,\alpha}$.

This implies that $t \mapsto A(t)u$ is of the same class $C^M(T,H)$ (where T is either $\mathbb R$ or $\mathbb R^n$) or is in $C^{0,\alpha}(T,H)$ (if T is a convenient vector space) for each $u \in V$ by [\[13](#page-8-5), 2.14.4, 10.3] for C^{ω} , by [\[16,](#page-8-9) 3.1, 3.3, 3.5] for $M = L$, by [\[17](#page-8-7), 1.10, 2.1, 2.3] for $M = Q$, and by [\[13](#page-8-5), 2.3], [\[11,](#page-8-10) 2.6.2] or [\[10](#page-8-11), 4.14.4] for $C^{0,\alpha}$ because $C^{0,\alpha}$ can be described by boundedness conditions only and for these the uniform boundedness principle is valid.

A sequence of functions λ_i is said to *parameterize the eigenvalues*, if for each $z \in \mathbb{C}$ the cardinality $|\{i : \lambda_i(t) = z\}|$ equals the multiplicity of z as eigenvalue of $A(t)$.

Let X be a C^{ω} or C^Q manifold. A *local blow-up* Φ over an open subset U of X means the composition $\Phi = \iota \circ \varphi$ of a blow-up $\varphi : U' \to U$ with center a C^{ω} or C^Q submanifold and of the inclusion $\iota: U \to X$. A *local power substitution* is a mapping $\Psi: V \to X$ of the form $\Psi = \iota \circ \psi$, where $\iota: W \to X$ is the inclusion of a coordinate chart W of X and $\psi: V \to W$ is given by

$$
(y_1, \ldots, y_q) = ((-1)^{\epsilon_1} x_1^{\gamma_1}, \ldots, (-1)^{\epsilon_q} x_q^{\gamma_q}),
$$

for some $\gamma = (\gamma_1,\ldots,\gamma_q) \in (\mathbb{N}_{>0})^q$ and all $\epsilon = (\epsilon_1,\ldots,\epsilon_q) \in \{0,1\}^q$, where y_1, \ldots, y_q denote the coordinates of W (and $q = \dim X$).

This paper became possible only after some of the results of [\[16\]](#page-8-9) and [\[17](#page-8-7)] were proved, in particular the uniform boundedness principles. The wish to prove the results of this paper was the main motivation for us to work on [\[16](#page-8-9)] and [\[17\]](#page-8-7).

Applications. For brevity we confine ourselves to C^Q ; the same applies to C^{ω} . Let X be a compact C^Q manifold and let $t \mapsto g_t$ be a C^Q -curve of C^{Q} Riemannian metrics on X. Then we get the corresponding C^{Q} curve $t \mapsto \Delta(g_t)$ of Laplace-Beltrami operators on $L^2(X)$. By theorem (B) the eigenvalues and eigenvectors can be arranged C^Q in t. By [\[1](#page-8-12)], the eigenfunctions are also C^Q as functions on X (at least for those C^Q which can be described by a weight function, see [\[7\]](#page-8-13)). Question: Are the eigenvectors viewed as eigenfunctions then also in $C^Q(X \times \mathbb{R})$?

Let Ω be a bounded region in \mathbb{R}^n with C^Q boundary, and let $H(t) =$ $-\Delta+V(t)$ be a C^Q -curve of Schrödinger operators with varying C^Q potential and Dirichlet boundary conditions. Then the eigenvalues and eigenvectors can be arranged C^Q in t. Question: Are the eigenvectors viewed as eigenfunctions then also in $C^Q(\Omega \times \mathbb{R})$?

Example. This is an elaboration of $[2, 7.4]$ $[2, 7.4]$ and $[14, 2$ $[14, 2$ Example. Let $S(2)$ be the vector space of all symmetric real (2×2) -matrices. We use the C^L -curve lemma [\[16](#page-8-9), 3.6] or [\[17,](#page-8-7) 2.5]: *For each L*, *there exist sequences* $\mu_n \to \infty$, $t_n \to$ $t_{\infty}, s_n > 0$ in R with the following property: For sequences $A_n, B_n \in S(2)$

which are μ_n -convergent to 0, *i.e.*, $\mu_n A_n$ and $\mu_n B_n$ are bounded in $S(2)$, there *exists a curve* $A \in C^L(\mathbb{R}, S(2))$ *such that* $A(t_n + t) = A_n + tB_n$ for $|t| \leq s_n$.

Choose a sequence ν_n of reals satisfying $\mu_n \nu_n \to 0$ and $(\nu_n)^n \leq s_n$ for all n and use the C^L -curve lemma for

$$
A_n := (\nu_n)^{n+1} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B_n := \nu_n \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
$$

The eigenvalues of $A_n + tB_n$ and their derivatives are

$$
\lambda_n(t) = \pm \nu_n \sqrt{(\nu_n)^{2n} + t^2}, \quad \lambda'_n(t) = \pm \frac{\nu_n t}{\sqrt{(\nu_n)^{2n} + t^2}}.
$$

Then

$$
\frac{\lambda'(t_n + (\nu_n)^n) - \lambda'(t_n)}{((\nu_n)^n)^\alpha} = \frac{\lambda'_n((\nu_n)^n) - \lambda'_n(0)}{(\nu_n)^{n\alpha}} = \pm \frac{\nu_n}{(\nu_n)^{n\alpha}\sqrt{2}}
$$

$$
= \pm \frac{(\nu_n)^{1 - n\alpha}}{\sqrt{2}} \to \infty \quad \text{for } \alpha > 0.
$$

So the condition (in (C) , (D) , (I) , (J) , and (K)) that no two different continuously parameterized eigenvalues meet of infinite order cannot be dropped. By [\[2,](#page-8-4) 2.1], we may always find a twice differentiable square root of a nonnegative smooth function, so that the eigenvalues λ are functions which are twice differentiable but not $C^{1,\alpha}$ for any $\alpha > 0$.

Note that the normed eigenvectors cannot be chosen continuously in this example (see also example $[21, \S2]$ $[21, \S2]$). Namely, we have

$$
A(t_n) = (\nu_n)^{n+1} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad A(t_n + (\nu_n)^n) = (\nu_n)^{n+1} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.
$$

Resolvent Lemma. Let C^M be any of C^{ω} , C^Q , C^L , C^{∞} , or $C^{0,\alpha}$, and let $A(t)$ *be normal. If A is* C^M *then the resolvent* $(t, z) \mapsto (A(t) - z)^{-1} \in L(H, H)$ *is* C^M *on its natural domain, the global resolvent set*

$$
\{(t, z) \in T \times \mathbb{C} : (A(t) - z) : V \to H \text{ is invertible}\}\
$$

which is open (*and even connected*)*.*

Proof. By definition the function $t \mapsto \langle A(t)v, u \rangle$ is of class C^M for each $v \in V$ and $u \in H$. We may conclude that the mapping $t \mapsto A(t)v$ is of class C^M into H as follows: For $C^M = C^{\infty}$ we use [\[13,](#page-8-5) 2.14.4]. For $C^M = C^{\omega}$ we use in addition [\[13,](#page-8-5) 10.3]. For $C^M = C^Q$ or $C^M = C^L$ we use [\[17](#page-8-7), 2.1] and/or [\[16](#page-8-9), 3.3] where we replace R by \mathbb{R}^n . For $C^M = C^{0,\alpha}$ we use [\[13,](#page-8-5) 2.3], [\[11,](#page-8-10) 2.6.2], or [\[10,](#page-8-11) 4.1.14] because $C^{0,\alpha}$ can be described by boundedness conditions only and for these the uniform boundedness principle is valid.

For each t consider the norm $||u||_t^2 := ||u||^2 + ||A(t)u||^2$ on V. Since $A(t)$ is closed, $(V, \|\ \|_t)$ is again a Hilbert space with inner product $\langle u, v \rangle_t :=$ $\langle u, v \rangle + \langle A(t)u, A(t)v \rangle.$

Claim. (Cf. [\[2,](#page-8-4) in the proof of 7.8], [\[13,](#page-8-5) in the proof of 50.16], or [\[14](#page-8-6), Claim 1].) All these norms $\|\cdot\|_t$ on V are equivalent, locally uniformly in t. We then *equip* V with one of the equivalent Hilbert norms, say $\| \quad \|_0$.

We reduce this to $C^{0,\alpha}$. Namely, note first that $A(t): (V, \|\ \|_{\infty}) \to H$ is bounded since the graph of $A(t)$ is closed in $H \times H$, contained in $V \times$ H and thus also closed in $(V, \|\ \|_{\infty}) \times H$. For fixed $u, v \in V$, the function $t \mapsto \langle u, v \rangle_t = \langle u, v \rangle + \langle A(t)u, A(t)v \rangle$ is $C^{0,\alpha}$ since so is $t \mapsto A(t)u$. By the multilinear uniform boundedness principle ([\[13,](#page-8-5) 5.18] or [\[11,](#page-8-10) 3.7.4]) the mapping $t \mapsto \langle , \rangle_t$ is $C^{0,\alpha}$ into the space of bounded sesquilinear forms on $(V, \parallel \parallel_s)$ for each fixed s. Thus the inverse image of $\langle , \rangle_s + \frac{1}{2}$ (unit ball) in $L(\overline{(V, \|\hspace{1ex}\|_s)} \oplus (V, \|\hspace{1ex}\|_s); \mathbb{C})$ is a c^{∞} -open neighborhood U of s in T. Thus $\sqrt{1/2}||u||_s \le ||u||_t \le \sqrt{3/2}||u||_s$ for all $t \in U$, i.e., all Hilbert norms $|| \quad ||_t$ are locally uniformly equivalent, and the claim follows.

By the linear uniform boundedness theorem we see that $t \mapsto A(t)$ is in $C^M(T, L(V, H))$ as follows (here it suffices to use a set of linear functionals which together recognize bounded sets instead of the whole dual): For $C^M = C^{\infty}$ we use [\[13](#page-8-5), 1.7, 2.14.3]. For $C^M = C^{\omega}$ we use in addition [13, 9.4]. For $C^M = C^Q$ or $C^M = C^L$ we use [\[17](#page-8-7), 2.2, 2.3] and/or [\[16](#page-8-9), 3.5] where we replace $\mathbb R$ by $\mathbb R^n$. For $C^M = C^{0,\alpha}$ see above.

If for some $(t, z) \in T \times \mathbb{C}$ the bounded operator $A(t) - z : V \to H$ is invertible, then this is true locally with respect to the c^{∞} -topology on the product which is the product topology by [\[13](#page-8-5), 4.16], and $(t, z) \mapsto (A(t) - z)^{-1}$: $H \to V$ is C^M , by the chain rule, since inversion is real analytic on the Banach space $L(V, H)$.

Note that $(A(t)-z)^{-1}: H \to H$ is a compact operator for some (equivalently any) (t, z) if and only if the inclusion $i: V \to H$ is compact, since $i = (A(t) - z)^{-1} \circ (A(t) - z) : V \to H \to H.$

Polynomial Proposition. *Let* P *be a curve of polynomials*

 $P(t)(x) = x^n - a_1(t)x^{n-1} + \cdots + (-1)^n a_n(t), \quad t \in \mathbb{R}.$

- (a) *If* P *is hyperbolic* (*i.e., all roots of* P(t) *are real for each fixed* t) *and if the coefficient functions* a_i *are all* $C^{\hat{Q}}$ *then there exist* $C^{\hat{Q}}$ *functions* λ_i *which parameterize all roots.*
- (b) If P is hyperbolic, the coefficient functions a_i are C^L , and no two of *the different continuously arranged roots* (*e.g., ordered by size*) *meet of infinite order, then there exist* C^L *functions* λ_i *which parameterize all roots.*
- (c) *If the coefficient functions* a_i *are* C^Q *, then for each* t_0 *there exists* $N \in$ $\mathbb{N}_{>0}$ such that the roots of $s \mapsto P(t_0 \pm s^N)$ can be parameterized C^Q in s *for* s *near* 0*.*
- (d) If the coefficient functions a_i are C^L and no two of the different con*tinuously arranged roots* (*by* [\[12](#page-8-0), II 5.2]) *meet of infinite order, then for each* t_0 *there exists* $N \in \mathbb{N}_{>0}$ *such that the roots of* $s \mapsto P(t_0 \pm s^N)$ *can be parameterized* C^L *in* s *for* s *near* 0*.*

All C^Q *or* C^L *solutions differ by permutations.*

The proof of parts (a) and (b) is exactly as in [\[2\]](#page-8-4) where the corresponding results were proven for C^{∞} instead of C^L , and for C^{ω} instead of C^Q . For this we need only the following properties of C^Q and C^L :

- They allow for the implicit function theorem (for $[2, 3.3]$ $[2, 3.3]$).
- They contain C^{ω} and are closed under composition (for [\[2,](#page-8-4) 3.4]).
- They are derivation closed (for $[2, 3.7]$ $[2, 3.7]$).

Part (a) is also in [\[8](#page-8-14), 7.6] which follows [\[2\]](#page-8-4). It also follows from the multidimensional version [\[20](#page-9-3), 6.10] since blow-ups in dimension 1 are trivial. The proofs of parts (c) and (d) are exactly as in [\[19](#page-9-1), 3.2] where the corresponding result was proven for C^{ω} instead of C^{Q} , and for C^{∞} instead of C^{L} , if none of the different roots meet of infinite order. For these we need the properties of C^Q and C^L listed above.

Matrix Proposition. Let $A(t)$ for $t \in T$ be a family of $(N \times N)$ -matrices.

- (e) If $T = \mathbb{R} \ni t \mapsto A(t)$ is a C^Q -curve of Hermitian matrices, then the *eigenvalues and the eigenvectors can be chosen* C^Q .
- (f) If $T = \mathbb{R} \ni t \mapsto A(t)$ is a C^L -curve of Hermitian matrices such that no *two different continuously arranged eigenvalues meet of infinite order, then the eigenvalues and the eigenvectors can be chosen* C^L .
- (g) If $T = \mathbb{R} \ni t \mapsto A(t)$ *is a* C^L -curve of normal matrices such that no two *different continuously arranged eigenvalues meet of infinite order, then for each* t_0 *there exists* $N_1 \in \mathbb{N}_{>0}$ *such that the eigenvalues and eigenvectors of* $s \mapsto A(t_0 \pm s^{N_1})$ *can be parameterized* C^L *in s for s near* 0.
- (h) Let $T \subseteq \mathbb{R}^n$ be open and let $T \ni t \mapsto A(t)$ be a C^{ω} or C^Q -mapping of *normal matrices.* Let $K \subseteq T$ *be compact. Then there exist a neighborhood* W of K, and a finite covering $\{\pi_k : U_k \to W\}$ of W, where each π_k *is a composite of finitely many mappings each of which is either a local blow-up along a* C^{ω} *or* C^Q *submanifold or a local power substitution. such that the eigenvalues and the eigenvectors of* $A(\pi_k(s))$ *can be chosen* C^{ω} *or* C^{Q} *in s.* Consequently, the eigenvalues and eigenvectors of A(t) *are locally special functions of bounded variation* (*SBV*)*. If* A *is a family of Hermitian matrices, then we do not need power substitutions.*

The proof of the matrix proposition in case (e) and (f) is exactly as in [\[2](#page-8-4), 7.6], using the polynomial proposition and properties of C^Q and C^L . Item (g) is exactly as in [\[19,](#page-9-1) 6.2], using the polynomial proposition and properties of C^L . Item (h) is proved in [\[20,](#page-9-3) 9.1, 9.6], see also [\[18](#page-8-15)].

Proof of Theorem. We have to prove parts (B) , (C) , (H) , (I) , (L) , (M) , and (O). So let C^M be any of C^{ω} , $C^{\overline{Q}}$, C^L , or $C^{0,\alpha}$, and let $A(t)$ be normal. Let z be an eigenvalue of $A(t_0)$ of multiplicity N. We choose a simple closed C^1 curve γ in the resolvent set of $A(t_0)$ for fixed t_0 enclosing only z among all eigenvalues of $A(t_0)$. Since the global resolvent set is open, see the resolvent lemma, no eigenvalue of $A(t)$ lies on γ , for t near t_0 . By the resolvent lemma, $A: T \to L((V, \|\ \|_0), H)$ is C^M , thus also

$$
t \mapsto -\frac{1}{2\pi i} \int_{\gamma} (A(t) - z)^{-1} dz =: P(t, \gamma) = P(t)
$$

is a C^M mapping. Each $P(t)$ is a projection, namely onto the direct sum of all eigenspaces corresponding to eigenvalues of $A(t)$ in the interior of γ , with finite rank. Thus the rank must be constant: It is easy to see that the (finite) rank cannot fall locally, and it cannot increase, since the distance in $L(H, H)$ of $P(t)$ to the subset of operators of rank $\leq N = \text{rank}(P(t_0))$ is continuous in t and is either 0 or 1.

So for t in a neighborhood U of t_0 there are equally many eigenvalues in the interior of γ , and we may call them $\lambda_i(t)$ for $1 \leq i \leq N$ (repeated with multiplicity).

Now we consider the family of N-dimensional complex vector spaces $t \mapsto P(t)H \subseteq H$, for $t \in U$. They form a C^M Hermitian vector subbundle over U of $U \times H \to U$: For given t, choose $v_1, \ldots, v_N \in H$ such that the $P(t)v_i$ are linearly independent and thus span $P(t)H$. This remains true locally in t. Now we use the Gram Schmidt orthonormalization procedure (which is C^{ω}) for the $P(t)v_i$ to obtain a local orthonormal C^M frame of the bundle.

Now $A(t)$ maps $P(t)H$ to itself; in a C^M local frame it is given by a normal $(N \times N)$ -matrix parameterized C^M by $t \in U$.

Now all local assertions of the theorem follow:

- (B) Use the matrix proposition, part (e).
- (C) Use the matrix proposition, part (f).
- (H) Use the matrix proposition, part (h), and note that in dimension 1 blow-ups are trivial.
- (I) Use the matrix proposition, part (g).
- (L,M) Use the matrix proposition, part (h), for \mathbb{R}^n .
	- (O) We use the following

Result. ([\[6](#page-8-16)], [\[5,](#page-8-17) VII.4.1]) *Let* A, B *be normal* $(N \times N)$ *-matrices and let* $\lambda_i(A)$ *and* $\lambda_i(B)$ *for* $i = 1, \ldots, N$ *denote the respective eigenvalues. Then*

$$
\min_{\sigma \in \mathcal{S}_N} \max_j |\lambda_j(A) - \lambda_{\sigma(j)}(B)| \le C \|A - B\|
$$

for a universal constant C with $1 < C < 3$ *. Here* $\|$ is the operator *norm.*

Finally, it remains to extend the local choices to global ones for the cases (B) and (C) only. There $t \mapsto A(t)$ is C^Q or C^L , respectively, which imply both C^{∞} , and no two different eigenvalues meet of infinite order. So we may apply [\[2,](#page-8-4) 7.8] (in fact we need only the end of the proof) to conclude that the eigenvalues can be chosen C^{∞} on $T = \mathbb{R}$, uniquely up to a global permutation. By the local result above they are then C^Q or C^L . The same proof then gives us, for each eigenvalue $\lambda_i : T \to \mathbb{R}$ with generic multiplicity N, a unique N-dimensional smooth vector subbundle of $\mathbb{R} \times H$ whose fiber over t consists of eigenvectors for the eigenvalue $\lambda_i(t)$. In fact this vector bundle is C^Q or C^L by the local result above, namely the matrix proposition, part (e) or (f), respectively.

References

- [1] Albanese, A.A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Int. Equ. Oper. Theor. **66**(2), 153– 181 (2010)
- [2] Alekseevsky, D., Kriegl, A., Losik, M., Michor, P.W.: Choosing roots of polynomials smoothly. Israel J. Math. **105**, 203–233 (1998)
- [3] Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2000)
- [4] Baumgärtel, H.: Endlichdimensionale analytische Störungstheorie. Akademie, Berlin. Mathematische Lehrbücher und Monographien, II. Abteilung. Mathematische Monographien, Band 28 (1972)
- [5] Bhatia, R.: Matrix analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)
- [6] Bhatia, R., Davis, C., McIntosh, A.: Perturbation of spectral subspaces and solution of linear operator equations. Linear Algebra Appl. **52/53**, 45–67 (1983)
- [7] Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin **14**, 424–444 (2007)
- [8] Chaumat, J., Chollet, A.-M.: Division par un polynôme hyperbolique. Can. J. Math. **56**(6), 1121–1144 (2004)
- [9] De Giorgi, E., Ambrosio, L.: New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) **82**(2), 199–210 (1988)
- [10] Faure, C.-A.: Théorie de la différentiation dans les espaces convenables. Ph.D. thesis, Université de Genéve (1991)
- [11] Frölicher, A., Kriegl, A.: Linear spaces and differentiation theory, pure and applied mathematics (New York). John Wiley & Sons Ltd. A Wiley-Interscience Publication, Chichester (1988)
- [12] Kato, T.: Perturbation theory for linear operators, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol 132. Springer, Berlin (1976)
- [13] Kriegl, A., Michor, P.W.: The convenient setting of global analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997). [http://www.ams.org/online](http://www.ams.org/online_bks/surv53/) bks/surv53/
- [14] Kriegl, A., Michor, P.W.: Differentiable perturbation of unbounded operators. Math. Ann. **327**(1), 191–201 (2003)
- [15] Kriegl, A., Michor, P.W., Rainer, A.: Many parameter Hölder perturbation of unbounded operators. Math. Ann. (2011). doi[:10.1007/s00208-011-0693-9.](http://dx.doi.org/10.1007/s00208-011-0693-9) (published electronically on June 28, arXiv:math.FA/0611506)
- [16] Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for non-quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. **256**, 3510–3544 (2009)
- [17] Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. **261**, 1799–1834 (2011)
- [18] Kurdyka, K., Paunescu, L.: Hyperbolic polynomials and multiparameter realanalytic perturbation theory. Duke Math. J. **141**(1), 123–149 (2008)
- [19] Rainer, A.: Perturbation of complex polynomials and normal operators. Math. Nach. **282**(12), 1623–1636 (2009)
- [20] Rainer, A.: Quasianalytic multiparameter perturbation of polynomials and normal matrices. Trans. Am. Math. Soc. **363**(9), 4945–4977 (2011)
- [21] Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 113(1), 600–619 (1937)
- [22] Rellich, F.: Störungstheorie der Spektralzerlegung V. Math. Ann. 118, 462–484 (1942)

Andreas Kriegl, Peter W. Michor and Armin Rainer (\boxtimes) Fakultät für Mathematik

Universität Wien

Nordbergstrasse 15

1090 Wien, Austria

e-mail: andreas.kriegl@univie.ac.at; peter.michor@univie.ac.at;

armin.rainer@univie.ac.at

Received: March 28, 2011.

Revised: August 13, 2011.