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Abstract. We consider integral operators defined by positive definite kernels
K : X ×X → C, where X is a metric space endowed with a strictly-positive
measure. We update upon connections between two concepts of positive defi-
niteness and upgrade on results related to Mercer like kernels. Under smooth-
ness assumptions on K, we present decay rates for the eigenvalues of the
integral operator, employing adapted to our purposes multidimensional ver-
sions of known techniques used to analyze similar problems in the case where
X is an interval. The results cover the case when X is a subset of Rm endowed
with the induced Lebesgue measure and the case when X is a subset of the
sphere Sm endowed with the induced surface Lebesgue measure.
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1. Introduction

This paper is concerned with the analysis of decay rates for eigenvalues of integral
operators construct from positive definite kernels on subsets of metric spaces. Such
operators appear quite naturally in approximation theory, integral equations and
operator theory, playing an important role in many problems.

We will consider two different notions of positive definiteness as explained
below. If X is a nonempty set, a kernel K : X ×X → C is positive definite when
the inequality

n∑
i,j=1

ci cjK(xi, xj) ≥ 0,
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holds for all n ≥ 1, x1, x2, . . . , xn ∈ X and scalars c1, c2, . . . , cn. If X is endowed
with a measure ν and K belongs to L2(X×X, ν×ν), we say that K is L2-positive
definite when the corresponding integral operator

K(f)(x) :=
∫

X

K(x, y)f(y) dν(y), f ∈ L2(X, ν), x ∈ X, (1.1)

is positive, that is, when the following condition holds∫
X

(∫
X

K(x, y)f(y) dν(y)
)
f(x) dν(x) ≥ 0, f ∈ L2(X, ν).

We will write PD(X) and L2PD(X, ν) to denote these two classes of kernels.
Needless to say that the expression on the left-hand side of the above inequality
is just 〈K(f), f〉2, in which 〈·, ·〉2 is the inner product of L2(X, ν).

Keeping the context as general as possible, we will investigate possible con-
nections between these two concepts of positive definiteness. Assuming positive
definiteness of the kernel and reasonable additional smoothness assumptions on K,
we will update on the corresponding Mercer’s theory and analyze decay rates for
the eigenvalues of the integral operator (1.1). A quite general formulation for the
classical result of Mercer is as follows (see [11, 13]).

Theorem 1.1 (Mercer’s Theorem). Let X be a topological Hausdorff space equipped
with a finite Borel measure ν. Then for every continuous positive definite kernel
K : X ×X → C there exist a scalar sequence {λn} ∈ l1, λ1 ≥ λ2 ≥ . . . ≥ 0 and
an orthonormal system {φn} in L2(X, ν) consisting of continuous functions only,
such that the expansion

K(x, y) =
∞∑

n=1

λn(K)φn(x)φn(y), x, y ∈ supp(ν),

converges uniformly.

If the integral operator has countably many eigenvalues λ1(K) ≥ λ2(K) ≥
· · · ≥ 0, the basic decay rate given by Mercer’s theory is λn(K) = o(n−1), as
n → ∞. The following example ([16]) shows that this rate can not be improved,
unless additional assumptions are added. Indeed, consider X = [−1, 1] endowed
with the Lebesgue measure µ. The kernel

K(x, y) =
∞∑

n=1

1
np+1+ε

cos(nπx) cos(nπy), x, y ∈ [−1, 1],

where p is a nonnegative integer and ε > 0, is an element of L2PD([−1, 1], µ). If

φn(x) := cos(nπx), x ∈ [−1, 1],

then the sequence {φn} is L2([−1, 1], µ) -orthonormal and λn(K) = n−1−p−ε,
n = 1, 2, . . .. As so, λn(K) = O(n−1−p−ε) = o(n−1−p), as n → ∞, but
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λn(K) 6= o(n−1−p−ε), as n→∞. The series
∞∑

n=1

nq

np+1+ε
, 0 ≤ q ≤ p,

being convergent, it is not hard to see that the partial derivatives of order at most
p of K are continuous. As so, K is of class Cp.

Improvements on the basic estimate exhibit above can be found in many
contexts under different sets of hypotheses. For instance, reference [15] considers
the case when X is a compact interval while references [12, 13] analyze the case
when X is a compact metric space or even a differentiable manifold, endowed with
a finite measure. In [2], now dropping the compactness assumption on X, Buescu
and Paixão investigated generalizations when X is a closed interval and K satisfies
certain smoothness hypotheses. A similar analysis can be found in [3, 4].

In this paper these questions will be take up again, just assuming that X is
a metric space endowed with a strictly-positive measure. In Section 2, we investi-
gate possible connections between the notions of positive definiteness and recover
Mercer’s Theorem in this new setting. In Section 3, we analyze important proper-
ties of the square root of an integral operator, under the light of the assumptions
adopted on X and on the kernel. In particular we show that the square root is
also an integral operator and deduce a recovery formula via the kernel defining the
original operator. In Section 4, using the results in Section 3, we discuss basic finite
approximations for the integral operator based upon special decompositions of X.
The last result of the section describes an estimate for the sum of the eigenvalues
of the operator deduced from such finite approximations. Section 5 begins with
the concept of (q, t)-compactness, a very special decomposition for metric spaces
endowed with a measure. Later in the section, we deduce the main results of the
paper. They describe decay rates for the eigenvalues of the integral operator when
X is (q, t)-compact and the generating kernel satisfies a smoothness condition of
Lipschitz type. It is important to emphasize that the approach we take here is
based upon arguments found in [2] and references therein.

2. Positive definiteness and Mercer’s theory revisited

The results in this section indicate possible contexts in which the classes PD(X)
and L2PD(X, ν) coincide. Henceforth, if X is a metric space, we will write C(X)
to denote the set of continuous functions on X and CB(X) to denote the subset of
C(X) formed by bounded functions vanishing outside a bounded subset of X. The
letter ν will be used to denote a measure over X. If X is a subset of Rm and the
measure is the restriction of the usual Lebesgue measure of Rm to X, the letter µ
will be used instead.

The first result describes a setting where the inclusion PD(X) ⊂ L2PD(X, ν)
holds.
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Theorem 2.1. If X is a measurable subset of Rm endowed with the usual Lebesgue
measure µ then

PD(X) ∩ C(X ×X) ∩ L2(X ×X,µ× µ) ⊂ L2PD(X,µ).

Proof. Let K be in PD(X)∩C(X×X)∩L2(X×X,µ×µ). Since CB(X) is dense
in L2(X,µ) ([8, p.217]), to show that 〈K(f), f〉2 ≥ 0, f ∈ L2(X,µ), it suffices to
verify that 〈K(f), f〉2 ≥ 0, f ∈ CB(X). Let f ∈ CB(X) and write Xf to denote a
bounded subset of X for which f(x) = 0, x ∈ X\Xf . There exists a sequence {An}
of compact subsets of Xf such that An ⊂ An+1, n = 1, 2, . . ., and limn→∞ µ(Xf \
An) = 0. In particular, the kernel Kf given by Kf (x, y) = K(x, y)f(x)f(y), x, y ∈
X, is uniformly continuous in An×An. The Monotone Convergence Theorem shows
that {KfχAn×An

} converges to Kf in L1(X ×X,µ×µ). Next, for each n, we can
find r = r(n) > 0 so that An ⊂ [−r/2, r/2]m. Writing [−r/2, r/2]m = ∪km

j=1C
k
j ,

in which Ck
1 , C

k
2 , . . . , C

k
km , are m-dimensional cubes having sides of length r/n,

parallel to the coordinate axes, we may decompose An in the form

An = ∪km

j=1A
k
j , Ak

j ⊂ Ck
j , Ak

j ∩Ak
l = ∅, l 6= k.

Choosing xk
j ∈ Ak

j , j = 1, 2, . . . , km and defining

gn
k =

km∑
i,j=1

K(xk
i , x

k
j )f(xk

i )f(xk
j )χAk

i×Ak
j
,

it is easily seen that {gn
k } converges uniformly to KfχAn×An in An × An, when

k → ∞. Also, since K ∈ PD(X), it follows that gn
k (x, y) ≥ 0, x, y ∈ An. Taking

into account that KfχAn×An
is bounded and the fact that µ(An) < ∞, we can

use the Dominated Convergence Theorem to deduce that∫
X×X

Kf (x, y) dµ(x) dµ(y) =
∫

Xf×Xf

Kf (x, y) dµ(x) dµ(y)

= lim
n→∞

∫
An×An

Kf (x, y) dµ(x) dµ(y)

= lim
n→∞

(
lim

k→∞

∫
An×An

gn
k (x, y) dµ(x) dµ(y)

)
≥ 0.

Thus, K ∈ L2PD(X,µ). �

In a similar manner, the following extension can be proved.

Corollary 2.2. If X is a locally compact Hausdorff space endowed with a Radon
measure ν that is finite on compact subsets then

PD(X) ∩ C(X ×X) ∩ L2(X ×X, ν × ν) ⊂ L2PD(X, ν).

The other inclusion can be guaranteed in a quite general context. If X is a
topological space, we say that a measure ν on X is strictly-positive when it is a
Borel measure fulfilling the following requirements: every open nonempty subset
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of X has positive measure and every x ∈ X belongs to an open subset of X having
finite measure.

Theorem 2.3. If a topological space X is endowed with a strictly-positive measure ν,
then

L2PD(X, ν) ∩ C(X ×X) ⊂ PD(X).

Proof. Let K ∈ L2PD(X)∩C(X ×X), x1, x2, . . . , xn ∈ X and c1, c2, . . . , cn ∈ C.
Due to the continuity of K, for each ε > 0 and j ∈ {1, 2, . . . , n} there exist open
sets Xε

j so that xj ∈ Xε
j and

|K(x, y)−K(xi, xj)| < ε, x ∈ Xε
i , y ∈ Xε

j , i, j = 1, 2, . . . , n.

Since ν is strictly-positive, we can assume that 0 < µ(Xε
j ) <∞, j = 1, 2 . . . , n. As

so, integration implies that
1

ν(Xε
i )ν(X

ε
j )

∫
Xε

i

∫
Xε

j

|K(x, y)−K(xi, xj)| dν(x) dν(y) < ε.

In particular,

lim
ε→0+

1
ν(Xε

i )
1

ν(Xε
j )

∫
Xε

i

∫
Xε

j

K(x, y) dν(x) dν(y) = K(xi, xj).

Since the functions

fε :=
n∑

j=1

cj
µ(Xε

j )
χXε

j
, ε > 0,

belong to L2(X, ν), the inequality

0 ≤ 〈K(fε), fε〉2 =
n∑

i,j=1

cicj
1

ν(Xε
i )ν(X

ε
j )

∫
Xε

i

∫
Xε

j

K(x, y) dν(x) dν(y)

leads to

0 ≤
n∑

i,j=1

cicjK(xi, xj),

that is, K ∈ PD(X). �

Next, we introduce a general formulation for Mercer’s Theorem. We will
need some additional notation attached to a measure space (X, ν). Precisely, we
will write A(X, ν) to denote the subset of C(X ×X)∩L2PD(X, ν) formed by all
kernels K : X ×X → C for which x ∈ X → K(x, x) is an element of L1(X, ν).

Theorem 2.4 below includes in its statement a generalization of the classical
Mercer’s Theorem. The proof we include here uses adaptations of methods intro-
duced in [1, 6, 12, 14, 18]. Recall that an operator T on a Hilbert space H is
trace-class ([9]), when its square root |T | := (T ∗T )1/2 satisfies the condition∑

f∈B

〈|T |(f), f〉H <∞, (2.1)
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for every orthonormal basis B of (H, 〈·, ·〉H). The trace acts linearly over the vector
space of all trace-class operators over H. If T is trace-class, the sum in (2.1) does
not depend upon the basis and it is called the trace of T , here denoted by tr(T ).
If T is a compact operator, then |T | is compact, positive and self-adjoint. As so,
denoting by {sn(T )} the sequence of eigenvalues of |T |, each repeated as often as
its multiplicity, then T is trace-class if and only if

∑∞
n=1 sn(T ) <∞. As a matter

of fact, the sum coincides with the trace of |T | when T is trace-class. If T is also
self-adjoint, then sn(T ) = |λn(T )|, n = 1, 2, . . . , so that

tr (T ) =
∞∑

n=1

λn(T ).

An important family of trace-class operators is that encompassing all finite rank
operators onH. IfH is a separable Hilbert space, the set of all trace-class operators
on H is a vector space and the formula

‖T‖tr :=
∞∑

n=1

sn(T )

defines a norm on it, the so-called trace norm. From now on, all general Hilbert
spaces mentioned in the paper are assumed to be separable.

Theorem 2.4. Let X be a metric space endowed with a strictly-positive measure ν.
If K ∈ A(X, ν) then the following assertions hold:
(i) The range of K is a subset of C(X) ∩ L2(X, ν);

(ii) The operator K is compact and selfadjoint, having an L2(X, ν)-convergent
series representation in the form

K(f) =
∞∑

n=1

λn(K)〈f, φn〉2φn, f ∈ L2(X, ν).

The series is absolutely and uniformly convergent on compact subsets of X;
(iii) K has a L2(X ×X, ν × ν)-convergent series representation in the form

K(x, y) =
∞∑

n=1

λn(K)φn(x)φn(y), x, y ∈ X,

{λn(K)} decreases to 0 and {φn} is L2(X, ν)-orthonormal. The convergence
of the series is absolute and uniform on compact subsets of X × X. If
λn(K) > 0 then φn is an eigenfunction of K associated with the eigenvalue
λn(K), taking into account multiplicities;

(iv) The operator K is trace-class and

tr(K) =
∫

X

K(x, x) dν(x).

Proof. Assume K ∈ A(X, ν). Since ν is strictly-positive, Theorem 2.3 shows that
K ∈ PD(X). In particular,

|K(x, y)|2 ≤ K(x, x)K(y, y), x, y ∈ X. (2.2)
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If y ∈ X → K(y, y) is integrable, it is quite clear that every function y ∈ X →
K(x, y), x ∈ X, belongs to L2(X, ν). Next, we show that the mapping x ∈ X →
K(x, ·) ∈ L2(X, ν) is continuous. Let {xn} be a sequence in X converging to
x0 ∈ X. Since K is continuous, the sequence {K(xn, y)} converges to K(x0, y), for
every y ∈ X fixed. Using (2.2), we deduce that

|K(xn, y)−K(x0, y)|2 ≤ |K(xn, y)|2 + 2|K(xn, y)||K(x0, y)|+ |K(x0, y)|2

≤ K(y, y) (K(xn, xn) +K(x0, x0))

+ 2K(y, y)K(xn, xn)1/2K(x0, x0)1/2

≤ 4 sup
m∈Z+

{K(xm, xm)}K(y, y), y ∈ X.

The Dominated Convergence Theorem leads to

lim
n→∞

∫
X

|K(xn, y)−K(x0, y)|2 dν(x) = 0.

The continuity of x ∈ X 7→ K(x, ·) ∈ L2(X, ν) follows. Since

K(f)(x) = 〈f,K(x, ·)〉2, f ∈ L2(X, ν), x ∈ X,

assertion (i) follows.
Since (X, ν) is a measure space and K ∈ L2(X ×X, ν × ν), the integral operator
K : L2(X, ν) → L2(X, ν) is compact ([5, p.86]). Being K hermitian, K is selfad-
joint. Applying the Spectral Theorem for compact selfadjoint operators ([5, p.93]),
we can deduce that K is an L2(X, ν)-convergent series of the form

K(f) =
∞∑

n=1

λn(K)〈f, φn〉2φn, f ∈ L2(X, ν), (2.3)

where {λn(K)} decreases to 0 and {φn} is L2(X, ν)-orthonormal. Next, we consider
auxiliary kernels Kp, p ≥ 1, given by the formula

Kp(x, y) = K(x, y)−
p∑

n=1

λn(K)φn(x)φn(y), x, y ∈ X.

Obviously, Kp ∈ L2(X×X, ν× ν)∩C(X×X) while standard computations show
that Kp ∈ A(X, ν). Lemma 2.2 in [6] reveals that Kp(x, x) ≥ 0, x ∈ X, that is,

p∑
n=1

λn(K)|φn(x)|2 ≤ K(x, x), x ∈ X.

The inequality∣∣∣∣∣
p+q∑
n=p

λn(K)〈f, φn〉2φn(x)

∣∣∣∣∣
2

≤ λ1(K) sup
y∈Y

K(y, y)
p+q∑
n=p

|〈f, φn〉2|2, x ∈ Y,
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holds whenever Y is a compact subset of X and q, p ≥ 1. As so, the convergence
of the series in (2.3) is uniform on compact subsets of X. This takes care of (ii).
From the Cauchy-Schwarz inequality we now obtain∣∣∣∣∣
p+q∑
n=p

λn(K)φn(x)φn(y)

∣∣∣∣∣
2

≤ (K(x, x)+1)
p+q∑
n=p

λn(K)|φn(y)|2, x, y ∈ X, p, q ≥ 1.

The Cauchy Criterion for convergence and the continuity of K imply that the
series

∑∞
n=1 λn(K)φn(x)φn(y) is convergent to a function in C(X), when one of

the variables is held fixed. However, due to (i) and (ii),∫
X

( ∞∑
n=1

λn(K)φn(x)φn(y)

)
f(y) dν(y) =

∞∑
n=1

λn(K)〈f, φn〉2φn(x) = K(f)(x),

whenever f ∈ L2(X, ν) and x ∈ X. Using this information with a convenient choice
for f and recalling our assumption on X, we deduce that

∞∑
n=1

λn(K)φn(x)φn(y) = K(x, y), x, y ∈ X.

Dini’s Theorem leads to
∞∑

n=1

λn(K)|φn(x)|2 = K(x, x), x ∈ X, (2.4)

with uniform and absolute convergence on compact subsets of X. Finally, the
Cauchy Criterion for uniform convergence and the Cauchy-Schwarz inequality im-
ply uniform and absolute convergence of the series on compact subsets of X ×X.
The Monotone Convergence Theorem along with (2.4) resolves (iv). �

The assumptions listed in the previous theorem are to be assumed from now
on. Theorem 2.4 provides basic information on decay rates for the eigenvalues of
the integral operator K, at least when K fits the description considered there.
That we quote in a separated result.

Corollary 2.5. Under the conditions stated in Theorem 2.4, it holds λn(K) =
o(n−1), as n→∞.

3. The square root of K
In this section, we will list some of the properties the square root K1/2 of the
integral operator K has, when K fits the assumptions in Theorem 2.4. Such prop-
erties will be used ahead in some key arguments. The existence of K1/2 of K is
guaranteed by a well-known result from Hilbert space theory ([19, p.142]).
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Lemma 3.1. Let X and ν be as in Theorem 2.4 and K ∈ A(X, ν). Consider the
representation for K provided by Theorem 2.4-(iii). Then K1/2 coincides with the
integral operator S : L2(X, ν) → L2(X, ν), in which S ∈ L2PD(X, ν) is the kernel

S(x, y) :=
∞∑

n=1

λn(K)1/2φn(x)φn(y), x, y ∈ X. (3.1)

Proof. Due to Theorem 2.4-(iv), it is easily seen that the series
∞∑

n=1

λn(K)1/2φn ⊗ φn,

in which φn⊗φn(x, y) := φn(x)φn(y), x, y ∈ X, converges in L2(X×X, ν×ν) (see
Theorem 4.11 in [19]. Hence, Formula (3.1) defines an element S in L2(X×X, ν×ν).
On the other hand, due to Theorem 2.4-(ii),∫

X

S(x, y)f(y) dν(y) =
∞∑

n=1

λn(K)1/2〈f, φn〉2φn(x)

= K1/2(f)(x), x ∈ X, f ∈ L2(X, ν).

Thus, S = K1/2. The L2-positive definiteness of S is clear. �

Lemma 3.2 below describes a crucial information regarding the range of K1/2.

Lemma 3.2. Under the conditions stated in Lemma 3.1, the range of K1/2 is a
subset of C(X) ∩ L2(X, ν).

Proof. The proof uses the formula

K1/2(f)(x) =
∞∑

n=1

λn(K)1/2〈f, φn〉2φn(x), x ∈ X, f ∈ L2(X, ν). (3.2)

If λn(K) > 0, Theorem 2.4-(iii) asserts that φn is an eigenfunction of K associated
with the eigenvalue λn(K). Hence, Theorem 2.4-(i) implies that φn is continu-
ous. Thus, to reach the continuity of K1/2, it suffices to show that the series in
(3.2) converges uniformly on compact subsets of X. But, that follows from the
inequalities∣∣∣∣∣

p+q∑
n=p

λn(K)1/2〈f, φn〉2φn(x)

∣∣∣∣∣
2

≤
p+q∑
n=p

|λn(K)1/2φn(x)|2
p+q∑
n=p

|〈f, φn〉2|2

≤ 〈f, f〉2
p+q∑
n=p

λn(K)|φn(x)|2, x ∈ X, p, q ≥ 1,

consequences of the Cauchy-Schwarz and Bessel inequalities. �

Lemma 3.3 establishes an integral connection between the kernels K and S
associated with K and S = K1/2 respectively.
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Lemma 3.3. Under the conditions stated in the previous lemmas, K can be recov-
ered from S through the formula∫

X

S(x, u)S(x, v) dν(x) = K(v, u), u, v ∈ X.

Proof. Due to Lemma 3.1, S ∈ L2(X ×X, ν × ν). For y ∈ X, define

Sj
y :=

j∑
n=1

λn(K)1/2 φn(y)φn, j = 1, 2, . . . .

Since Sj
y ∈ L2(X, ν), j = 1, 2, . . . and S(·, y) ∈ L2(X, ν), it is easily seen that

〈S(·, y)− Sj
y, S(·, y)− Sj

y〉2 =
∞∑

n=j+1

λn(K)|φn(y)|2, y ∈ X, j = 1, 2, . . . .

Due to the continuity of the inner product, it now follows that

lim
j→∞

〈Sj
u, S

j
v〉2 = 〈S(·, u), S(·, v)〉2, u, v ∈ X.

Meanwhile, the orthonormality of {φn} implies that

lim
j→∞

〈Sj
u, S

j
v〉2 = lim

j→∞

j∑
n=1

λn(K)φn(v)φn(u) = K(v, u), u, v ∈ X.

By uniqueness, 〈S(·, u), S(·, v)〉2 = K(v, u), u, v ∈ X, and the result follows. �

4. Finite rank kernels

Let (X, d) be as in the statement of Theorem 2.4. In this section we will deal with
the integral operator F generated by the kernel F given by the formula

F (x, y) :=
Γ∑

n=1

1
ν(Cn)

χCn
(x)χCn

(y), x, y ∈ X, (4.1)

in which {Cn : n = 1, 2, . . . ,Γ} is a family of subsets of X satisfying the following
two requirements: 0 < ν(∪Γ

n=1Cn) <∞ and ν(Cn ∩Cl) = 0, n 6= l. The inequality
is needed in order to guarantee that F is an element of L2(X × X, ν × ν) while
the other condition enters in some orthonormality arguments (see the beginning
of the proof of Lemma 4.1 below for example). The symbol χCn

will stand for the
usual characteristic function of Cn.

Depending on the family {Cn : n = 1, 2, . . . ,Γ}, F can be used to construct
a convenient finite rank approximation to K, with respect to the trace norm, at
least when K ∈ A(X, ν). That will become clear at the end of the section when
we estimate the sum of all eigenvalues of K. The symbol I stands for the identity
operator.
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Lemma 4.1. The following assertions hold:

(i) The integral operator F : L2(X, ν) → L2(X, ν) is positive of rank at most Γ;
(ii) The operator I −F is positive.

Proof. The set {ν(Cn)−1/2χCn
: n = 1, 2, . . . ,Γ} being L2(X × X, ν × ν)-ortho-

normal, we can write F in the form

F(f) =
Γ∑

n=1

〈
f, ν(Cn)−1/2χCn

〉
2
ν(Cn)−1/2χCn

, f ∈ L2(X, ν), (4.2)

and assertion (i) follows. The same representation shows that F is positive, having
0 and 1 as the only possible eigenvalues. As so, it is an operator of norm 1. It is
now clear that, for all f ∈ L2(X, ν),

〈(I −F)(f), f〉2 = 〈f, f〉2 − 〈F(f), f〉2 ≥ 〈f, f〉2 − ‖F‖〈f, f〉2 = 0, (4.3)

and the proof is complete. �

In Lemma 4.2 below we will deal with the operator K1/2FK1/2.

Lemma 4.2. Let K be an element of A(X, ν). The following assertions hold:

(i) K1/2FK1/2 is an integral operator whose kernel is an element of A(X, ν);
(ii) The number Γ is an upper bound for the rank of K1/2FK1/2;

(iii) The operator K −K1/2FK1/2 is positive.

Proof. Let us write S := K1/2. Recalling the proof of Lemma 3.1, we deduce that

SFS(f)(x) =
∫

X

S(x, u)
(∫

X

F (u, v)
(∫

X

S(v, y)f(y) dν(y)
)
dν(v)

)
dν(u),

whenever f ∈ L2(X, ν) and x ∈ X. Due to Fubini’s Theorem, we conclude that
SFS is an integral operator on L2(X, ν), with kernel G ∈ L2(X ×X, ν × ν) given
by the formula

G(x, y) =
∫

X

∫
X

S(x, u)F (u, v)S(v, y) dν(u) dν(v), x, y ∈ X,

or, alternatively,

G(x, y) =
∫
∪Γ

n=1Cn

∫
∪Γ

n=1Cn

S(x, u)F (u, v)S(v, y) dν(u) dν(v), x, y ∈ X. (4.4)

Returning to the definition of F ,

G(x, y) =
Γ∑

n=1

∫
X

S(x, u)
χCn(u)
ν(Cn)1/2

dν(u)
∫

X

S(v, y)
χCn(v)
ν(Cn)1/2

dν(v)

=
Γ∑

n=1

∫
X

S(x, u)
χCn

(u)
ν(Cn)1/2

dν(u)
∫

X

S(y, v)
χCn

(v)
ν(Cn)1/2

dν(v), x, y ∈ X.
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It follows that SFS has rank at most Γ. Lema 3.2 reveals that G is continuous
while Lemma 4.1-(i) justifies

〈SFS(f), f〉2 = 〈FS(f),S(f)〉2 ≥ 0, f ∈ L2(X, ν).

In other words, G ∈ L2PD(X) ∩ C(X ×X). To finish the proof, first we use the
Cauchy-Schwarz inequality to obtain

0 ≤ G(x, x) =
Γ∑

n=1

∣∣∣∣∫
X

S(x, u)
χCn(u)
ν(Cn)1/2

dν(u)
∣∣∣∣2 ≤ Γ∑

n=1

∫
X

|S(x, u)|2dν(u), x ∈ X.

Due to Lemma 3.3, it follows that

0 ≤ G(x, x) ≤ K(x, x)Γ, x ∈ X,

and, therefore, the function x ∈ X → G(x, x) belongs to L1(X, ν). This takes care
of (i) and (ii). From Lemma 4.1-(ii) and (4.3), we can write

〈K(f), f〉2 = 〈S(f),S(f)〉2 ≥ 〈FS(f),S(f)〉2 = 〈SFS(f), f〉2, f ∈ L2(X, ν).

Assertion (iii) follows. �

In Lemma 4.3 below, we will deduce a formula that allows one to compare
the traces of K and K1/2FK1/2.

Lemma 4.3. If K is an element of A(X, ν) then

tr(K)− tr(K1/2FK1/2) =
Γ∑

n=1

1
ν(Cn)

∫
Cn

∫
Cn

[K(u, u)−K(v, u)] dν(u) dν(v)

+
∫

X\(∪Γ
n=1Cn)

K(u, u) dν(u).

Proof. If K ∈ A(X, ν) then, due to Lemma 4.2-(i), Theorem 2.4-(iv) can be ap-
plied to both K and K1/2FK1/2. Hence,

tr(K)− tr(K1/2FK1/2) =
∫

X

K(x, x) dν(x)−
∫

X

G(x, x)dν(x).

We compute these two integrals separately. Employing (4.4), Fubini’s Theorem
and then Lemma 3.3, it is not hard to see that∫

X

G(x, x) dν(x) =
∫

X

∫
X

F (u, v)K(v, u) dν(u) dν(v)

=
∫
∪Γ

n=1Cn

∫
∪Γ

n=1Cn

F (u, v)K(v, u) dν(u) dν(v).

The definition of F reveals that∫
∪Γ

n=1Cn

F (u, v) dν(u) =
Γ∑

n=1

χCn
(v) = 1, v ∈ ∪Γ

n=1Cn, a.e.,
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so that∫
∪Γ

n=1Cn

K(u, u) dν(u) =
∫
∪Γ

n=1Cn

[∫
∪Γ

n=1Cn

F (v, u) dν(v)

]
K(u, u) dν(u)

=
∫
∪Γ

n=1Cn

[∫
∪Γ

n=1Cn

F (u, v) dν(u)

]
K(v, v) dν(v).

Hence,∫
X

K(u, u) dν(u) =
∫

X\(∪Γ
n=1Cn)

K(u, u) dν(u) +
∫
∪Γ

n=1Cn

K(u, u) dν(u)

=
∫

X\(∪Γ
n=1Cn)

K(u, u) dν(u)

+
∫
∪Γ

n=1Cn

∫
∪Γ

n=1Cn

F (u, v)K(v, v) dν(u) dν(v).

Thus, denoting S = K1/2,

tr(K − SFS) =
∫

X\(∪Γ
n=1Cn)

K(u, u) dν(u)

+
∫
∪Γ

n=1Cn

∫
∪Γ

n=1Cn

F (u, v) [K(v, v)−K(v, u)] dν(u) dν(v).

The formula in the statement of the lemma follows from (4.2). �

Proposition 4.4 below is an extension of a result on best approximation by
finite rank operators, originally found in [15].

Proposition 4.4. Let T be a compact self-adjoint operator on a Hilbert space H and
consider its series representation

T (f) =
∞∑

n=1

λn(T )〈f, φn〉H φn, f ∈ H,

as given by the spectral theorem for such operators. If R ∈ L(H) has rank at most
k then

‖T −R‖tr ≥ ‖T − Tk‖tr ,

where Tk ∈ L(H) is the truncated sum

Tk(f) =
k∑

n=1

λn(T )〈f, φn〉Hφn, f ∈ H.

Proof. Since T −R is compact and self-adjoint, we may consider its spectral rep-
resentation

(T −R)(f) =
∞∑

n=1

λn(T −R)〈f, ψn〉Hψn, f ∈ H.
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Defining A0 = R and

Ap(f) = R(f) +
p∑

n=1

λn(T −R)〈f, ψn〉Hψn, f ∈ H, p = 1, 2, . . . ,

it is easily seen that Ap has rank at most j + p and

(T −Ap)(f) =
∞∑

n=p+1

λn(T −R)〈f, ψn〉Hψn, f ∈ H.

Using Theorem 2.5 in [9] it is now seen that

|λp+1(T −R)| = ‖T −Ap‖ ≥ ‖T − Tj+p‖ ≥ |λj+p+1(T )|, p = 0, 1, . . . ,

and the proof follows. �

Next, using Proposition 4.4, we describe a method to estimate the eigenvalues
of K using the family {Cn : n = 1, 2, . . . ,Γ} behind the definition of F .

Theorem 4.5. Let K be an element of A(X, ν). If {Cn : n = 1, 2, . . . ,Γ} is a family
of subsets of X such that 0 < ν(∪Γ

n=1Cn) <∞ and ν(Cn ∩ Cl) = 0, n 6= l, then

∞∑
n=Γ+1

λn(K) ≤
Γ∑

n=1

1
ν(Cn)

∫
Cn

∫
Cn

[K(u, u)−K(v, u)] dν(u) dν(v)

+
∫

X\(∪Γ
n=1Cn)

K(u, u) dν(u).

Proof. Consider the series representation for K as described in Theorem 2.4-(ii)
and write T to denote the operator obtained from the series by truncating it at Γ:

T (f)(x) =
Γ∑

n=1

λn(K)〈f, φn〉2φn, f ∈ L2(X, ν).

Proposition 4.4 implies that

∞∑
n=Γ+1

λn(K) = ‖K − T‖tr ≤ ‖K −K1/2FK1/2‖tr,

in which F is the kernel described in (4.1). Since

‖K − K1/2FK1/2‖tr = tr (K)− tr (K1/2FK1/2),

the inequality in the statement of the theorem follows from Lemma 4.3. �

An alternative for the inequality in Theorem 4.5 is provided below.
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Theorem 4.6. Let K be an element of A(X, ν). If {Cn : n = 1, 2, . . . ,Γ} is a family
of subsets of X such that 0 < ν(∪Γ

n=1Cn) <∞ and ν(Cn ∩ Cl) = 0, n 6= l, then
∞∑

n=Γ+1

λn(K) ≤
Γ∑

n=1

1
ν(Cn)

∫
Cn

∫
Cn

[
K(u, u) +K(v, v)

2
−K(v, u)

]
dν(u) dν(v)

+
∫

X\(∪Γ
n=1Cn)

K(u, u) dν(u).

Proof. It is analogous to the proof of Theorem 4.5, but using a version of Lemma 4.3
leading to an inequality involving the kernel 2−1(K(u, u)+K(v, v))−K(v, u). The
details are left to the readers. �

5. Decay rates for the eigenvalues under Lipschitz conditions

Keeping the context described in Theorem 2.4, this section describes decay rates
for the eigenvalues of the integral operator K, at least when the kernel K comes
from A(X, ν) and satisfies a convenient Lipschitz condition. The rates hold when
the metric space (X, d) fits in the description below.

Let q be a positive integer and t a positive real. The space (X, d) is said to
be (q, t)-compact when there exist x0 ∈ X and positive real numbers a, b, c and r0
for which the following condition holds: if N ∈ Z+ and r ≥ r0 there exist a family
{Cr

n : n = 1, 2, . . . , k(N)} of subsets of X, all having finite measure, such that
(i) ν(Cr

n ∩ Cr
l ) = ∅, n 6= l;

(ii) d(x, y) ≤ artN−t, x, y ∈ Cr
n, n = 1, 2, . . . , k(N);

(iii) k(N) ≤ bNq;
(iv) B[x0, r c] := {x ∈ X : d(x, x0) ≤ r c} = ∪k(N)

n=1 C
r
n.

Example. Let X be a measurable subset of Rm having positive Lebesgue measure.
Set a =

√
m, b = 1, c = 1/2 and choose x0 ∈ X. Clearly, B[x0, r/2] is a subset

of the m-dimensional (closed) cube of edge r. Subdividing the cube in Nm (not
necessarily closed) m-dimensional (disjoint) cubes Qr

n, n = 1, 2, . . . , Nm := k(N),
then Cr

n := Qr
n∩B[x0, r/2] satisfy the conditions in the definition above with t = 1

and q = m. The number r0 can be any positive real.

Example. Results in [7] and [17, p.219] reveal that a subset of the unit sphere
Sm−1 in Rm, endowed with its usual Lebesgue measure, is (m − 1, 1)-compact.
The numbers in the definition are now a = π/2, c = 1, and r0 = 2. The constant
b can be 10 while the point x0 can be any point in Sm−1.

Example. A similar process can be applied to a subset X of a p-dimensional surface
in Rm, endowed with its surface measure. It can be shown that (X, d), in which
d is the metric induced by the usual norm of Rm, is (m1, 1)-compact for some
m1 ≤ m. If X is a subset of a p-dimensional Ck-manifold M , endowed with some
measure which is finite on balls, then using a Whitney-type Theorem ([10, p.54])
it can be shown that (X, d) is (m, 1)-compact whenever m is large enough and
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d(x, y) := d1(f(x), f(y)), where f : M → Rm+p is an embedding and d1 is a
metric in f(M), induced by the usual norm of Rm+p.

Next, we introduce the Lipschitz condition we will adopt. Let α > 0 and s ≥ 0
be constants. A kernel K : X ×X → C belongs to the Lipschitz class Lipα,s(X, ν)
when the following two conditions hold:

(i) There exist δ > 0 and a locally integrable function A : X → [0,+∞] so that

|K(x, x)−K(x, y)| ≤ A(x)d(x, y)α, x, y ∈ X, d(x, y) ≤ δ; (5.1)

(ii) There exists B ≥ 0 such that

lim sup
r→∞

r−s

∫
B[y,r]

A(x) dν(x) ≤ B, y ∈ X. (5.2)

The definition above is a weaker version of others in the literature (see [7, 12, 13]).
For instance, the first inequality above is easily found in a nonlocal form such as

|K(x, y)−K(x, y′)| ≤ A(x)d(y, y′)α, x, y, y′ ∈ X.

Theorem 5.1. Let X be (q, t)-compact and K ∈ A(X, ν) ∩ Lipα,s(X, ν). Assume
there exist β > 0 and C > 0 such that

lim sup
r→∞

rβ

∫
X\B[y,r]

K(x, x) dν(x) ≤ C, y ∈ X. (5.3)

Define γ := tαβ(β + s + tα)−1. If N is large enough then there exists a constant
C1 > 0 such that

∞∑
n=k(N)+1

λn(K) ≤ C1

Nγ
,

for some k(N) ∈ {0, 1, . . . , bNq}.

Proof. Let x0, a, b, c, and r0 be as in the definition of (q, t)-compactness and let
δ, A and B as in the definition of the class Lipα,s(X, ν). Write S := K1/2. Due to
(5.2), there exists a rx0 > 0 such that∫

B[x0,r c]

A(x)dν(x) ≤ Brs, r ≥ rx0 . (5.4)

Without loss of generality we can assume that r0 > rx0 and r0 c > rx0 . For each
N ∈ Z+ and r ≥ r0 consider families {Cr

n : n = 1, 2, . . . , k(N)} as described in the
definition of (q, t)-compactness. Theorem 4.5 implies that

∞∑
n=k(N)+1

λn(K) ≤
k(N)∑
n=1

1
ν(Cr

n)

∫
Cr

n

∫
Cr

n

[K(u, u)−K(v, u)] dν(u) dν(v)

+
∫

X\B[x0,r c]

K(u, u) dν(u).
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By increasing r0 if necessary, we can use (5.3) to conclude that∫
X\B[x0,r c]

K(u, u) dν(u) ≤ Cc−β

rβ
.

If artN−t < δ, which is always guaranteed when N is large enough, we can use
(5.1) to write

∞∑
n=k(N)+1

λn(K) ≤
k(N)∑
n=1

1
ν(Cr

n)

∫
Cr

n

∫
Cr

n

A(u)d(u, v)α dν(u) dν(v) +
Cc−β

rβ
.

It is now clear that
∞∑

n=k(N)+1

λn(K) ≤
k(N)∑
n=1

1
ν(Cr

n)

∫
Cr

n

∫
Cr

n

A(u)aα
( r
N

)tα

dν(u) dν(v) +
Cc−β

rβ

≤ aα
( r
N

)tα
k(N)∑
n=1

∫
Cr

n

A(u) dν(u) +
Cc−β

rβ

≤ aα
( r
N

)tα
∫

B[x0,r c]

A(u) dν(u) +
Cc−β

rβ
.

Recalling (5.4), we finally deduce that
∞∑

n=k(N)+1

λn(K) ≤ aα
( r
N

)tα

Brs +
Cc−β

rβ
= Baα r

αt+s

Nαt
+
Cc−β

rβ
, (5.5)

as long as r ≥ r0 and N is large enough. To conclude the proof, we will apply
the above estimate using a special choice of r. Precisely, we will put r = r(N) :=
Nαt/(β+αt+s). Since limN→∞ r(N) = ∞, r(N) ≥ r0 when N is large enough. Since

lim
N→∞

r(N)
N

= 0,

the inequality artN−t < δ can be equally captured. Since σ := αt/(β + αt + s)
satisfies αt− σ(αt+ s) = σβ, inequality (5.5) takes the form

∞∑
n=k(N)+1

λn(K) ≤ Baα + Cc−β

Nαtβ/(αt+β+s)
. �

A special case is as follows.

Theorem 5.2. Let X be (q, t)-compact and K ∈ A(X, ν) ∩ Lipα,s(X, ν). If either
X is bounded or K vanishes outside of a bounded set and N is large enough then
there exists a constant C1 > 0 such that

∞∑
n=k(N)+1

λn(K) ≤ C1

N tα
,

for some k(N) ∈ {0, 1, . . . , bNq}.
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Proof. Under either condition mentioned in the statement of the theorem, there
exists r0 > 0 such that∫

X\B[y,r]

K(u, u) dν(u) = 0, r > r0, y ∈ X.

Repeating the arguments used in the proof of Lemma 5.1 and adjusting r0, if
necessary, inequality (5.5) reduces itself to

∞∑
n=k(N)+1

λn(K) ≤ Baα r
αt+s

Nαt

as long as r ≥ r0 and N is large enough. In particular,
∞∑

n=k(N)+1

λn(K) ≤ Baα (r0 + 1)αt+s

Nαt

for N arbitrarily large. �

In order to re-phrase the previous results in a language a little bit more
familiar, we will need a lemma ([7]).

Lemma 5.3. Let {an} be a non-increasing sequence of nonnegative real numbers.
Let l, q and N0 be nonnegative integers, p a positive integer at least 1 and γ ∈ R.
Suppose there exists a constant C > 0 satisfying the following property: if N ≥ N0,
there exists k(N) ≤ pNq such that

∞∑
n=k(N)+l+1

an ≤
C

Nγ
.

Then, the set {n1+γ/qan : n = 1, 2, . . .} is bounded. In particular,

an = O(n−1−γ/q), as n→∞.

The main results of the paper are as follows.

Theorem 5.4. Let X be (q, t)-compact and K ∈ A(X, ν) ∩ Lipα,s(X, ν). If there
exist β > 0 and C ≥ 0 such that

lim sup
r→∞

rβ

∫
X\B[y,r]

K(x, x) dν(x) ≤ C, y ∈ X, (5.6)

then
λn(K) = O(n−1−γ/q), as n→∞, (5.7)

where γ := tαβ(β + s+ tα)−1.

Proof. This follows from Theorem 5.1 and Lemma 5.3. �
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Theorem 5.5. Let X be (q, t)-compact and K ∈ A(X, ν)∩Lipα,s(X, ν). If for every
β > 0 there exists C = C(β) ≥ 0 such that

lim sup
r→∞

rβ

∫
X\B[y,r]

K(x, x) dν(x) ≤ C, y ∈ X, (5.8)

then
λn(K) = o(n−1−θ/q), as n→∞,

whenever θ ∈ [0, tα).

Proof. The function

γ(β) := tα
β

β + s+ tα
, β ∈ [0,∞),

is continuous with range [0, tα). As so, the previous theorem implies that

λn(K) = O(n−1−θ/q), as n→∞,

whenever θ ∈ [0, tα). If

λn(K) 6= o(n−1−γ0/q), as n→∞,

for some γ0 ∈ [0, tα), then there would exist C > 0 such that

lim sup
n→∞

{n−1−γ0/qλn(K)} ≥ C.

But this would imply in unbounded sequences {n1+θ/qλn(K)} when θ ∈ (γ0, tα),
a clear contradiction. �

Theorem 5.6. Let X be (q, t)-compact and K ∈ A(X, ν) ∩ Lipα,s(X, ν). If either
X is bounded or K vanishes outside a bounded set then

λn(K) = O(n−1−tα/q), as n→∞.

Proof. This follows from Theorem 5.2 and Lemma 5.3. �

The reader is advised that the results above generalize some of the results
proved in [2] to the multi-dimensional case. There, the authors use a particular case
of Theorem 4.6 to obtain decay rates for the eigenvalues of K under differentia-
bility hypotheses. We intend to use Theorem 4.6 to investigate multi-dimensional
versions of such context in a future work.

Lets return to the context of Rm. If X is a finite union of convex subsets
of Rm and the assumption K ∈ Lipα,s(X,µ) is changed to the existence and
boundedness of ∂K/∂x then the mean value inequality and the continuity of K
show that K ∈ Lip1,m(Xl, µ), in which Xl is a convex component of X. In view
of this, some of the proofs can be adapted to show that the estimate (5.7) holds
with γ := β(β +m+ 1)−1. Finally, we would like to observe that the existence of
a β > 0 so that

lim sup
|x|→∞

|x|β+mK(x, x) <∞
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implies condition (5.6) in Theorem 5.4. Here, | · | stands for the usual norm in Rm.
A similar remark applies to condition (5.8) in Theorem 5.5.
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