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1. Introduction

The concept of a continuous-time deterministic or causal dynamical system in a set
S can be expressed by the existence of a family of maps Φt : S → S, parametrised
by the nonnegative real numbers t ∈ R+, that satisfy the semigroup properties:
Φt ◦Φs = Φt+s and Φ0 = IdS . The evolution of the system in time from its initial
state x0 ∈ S is described by the orbit t 7→ Φt(x0). (An interesting essay on the
history of this concept can be found in [10]). If Σ is a σ-algebra of subsets of S
and each Φt is (Σ,Σ)-measurable, then each Φt induces a linear operator TΦ(t) on
the space of signed measures M(S) on Σ by means of

TΦ(t)µ := µ ◦ Φ−1
t . (1)
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The family of operators (TΦ(t))t≥0 leaves the cone of positive measures M+(S)
invariant. It constitutes a positive linear semigroup in M(S) and Φt can be recov-
ered from TΦ(t) through the relation TΦ(t)δx = δΦt(x). In this sense, any semigroup
of measurable maps on a measurable space (S,Σ) embeds into a positive linear
semigroup on the space of signed measures on S.

This paper studies properties of this embedding in detail when S is a metric
space with the Borel σ-algebra and the transformations Φt are Lipschitz maps. We
are motivated by the study of long-term dynamics in structured population models
where deterministic behaviour of an individual is ‘perturbed’ at random discrete
time points by a deterministic or random (approximately) instantaneous change
in state. Examples include branching random evolution [9], kinetic chemotaxis
models concerning the run-and-tumble type of movement of flagellated bacteria
like E. coli, B. subtilis or V. cholerae [18, 19, 2] and the extension of these to
amoebae like Dictyostelium discoideum [3, 11], and cell cycle models in which a cell
divides at random time points coupled to deterministic growth [5]. Our approach
to these systems is to consider them as deterministic dynamical systems in the
space (or cone of positive) finite Borel measures on the individual’s state space S.
The dynamics are then governed by a suitable variation of constants formula

µt = TΦ(t)µ0 +
∫ t

0

TΦ(t− s)F (µs)ds (2)

in a space of measures on S. The interpretation, derivation and application of
(2) require a detailed examination of topologies and functional analytic properties
of spaces or sets of measures and operators thereon. There are some preliminary
issues here, which are the primary concern of this paper.

First, the representation (1) of TΦ(t) is practical in the context of (2) only
when Φt is invertible, which is rarely the case in applications. For a functional
analytic treatment we therefore need a ‘better’ representation of TΦ(t). Second,
what topology is ‘natural’ in this setting and allows the application of numerous
results on perturbations of linear semigroups in the literature? The total variation
norm inM(S) is of little use in our context. The embedding x 7→ δx : S →M(S) is
not continuous for ‖ · ‖TV, nor is (TΦ(t))t≥0 strongly continuous, unless (TΦ(t))t≥0

is constant. Our investigations continue along the line set out by Dudley [7, 8]
mainly, based on [21]. Third, we need to have appropriate regularity of the map
t 7→ TΦ(t)µ for the existence of the integral in (2) in some sense (weak, Bochner,
etc.).

Concerning the topologies on spaces of measures we would like to point out
that clearly M(S) is a subspace of Cb(S)∗ and can therefore be endowed with
the restriction of the weak-star topology on Cb(S)∗. This topology is often used
in probability theory. There is an interesting result by Varadarajan, that the re-
striction to M+(S) is metrisable (when S is separable, or when one restricts to
separable positive measures), by a complete metric if S is complete ([21, Theorem
13 and Theorem 18]). Later Dudley showed ([7, Theorem 9 and Theorem 18]) that
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the metric given by

dBL(µ, ν) = ‖µ− ν‖∗BL = sup
{∣∣∫ fd(µ− ν)

∣∣ : ‖f‖BL ≤ 1
}
,

may be used. It is this point that we pursue further.
Moreover, Peng and Xu [20] provide an embedding of a nonlinear semigroup

of Lipschitz transformations into a linear semigroup as well. Their approach in-
volves the use of quotient spaces and their duals however. These are rather incon-
venient and the relationship of their results to the targeted semigroup (TΦ(t))t≥0

on measures is not as clear and direct as the approach we advocate.
The outline of the paper is as follows: Section 2 and 3 introduce Banach spaces

of Lipschitz functions on S, BL(S) and Lipe(S), investigate their dual spaces and
introduce preduals for both, SBL and Se respectively. The latter are closed sub-
spaces of BL(S)∗ and Lipe(S)∗. While assuming for simplicity of this introductory
exposition that S is separable, the space of finite measures M(S) and its sub-
space of measures with first moment, M1(S), are densely embedded in SBL and
Se respectively (Theorem 3.9 and 3.14). The latter spaces equal these spaces of
measures only in the case that S is uniformly discrete (Theorem 3.11). The embed-
dings yield through the map x 7→ δx, the Dirac measure at x ∈ S, an embedding
of S into BL(S)∗ and Lipe(S)∗ that is continuous in the first case (Lemma 3.5)
and an isometric embedding in the latter (Lemma 3.4). Section 4 discusses the
relationship between the natural pointwise ordering on Lipschitz functions, posi-
tive functionals on BL(S) and Lipe(S) and cones of positive measures. Section 5
presents the main result on the embedding of a semigroup of Lipschitz transforma-
tions Φt on S into a positive linear semigroup on SBL and Se. We give a sufficient
condition for strong continuity of these semigroups in terms of (Φt)t≥0. Section
6 concludes with a discussion of some issues concerning topologies on spaces or
cones of measures.

2. Banach spaces of Lipschitz functions

Let (S, d) be a metric space, consisting of at least two points. Lip(S) denotes the
vector space of real-valued Lipschitz functions on S. We only consider real-valued
functions, because ordering will play a role. Moreover, it seems that real-valued
functions are more ‘natural’ in the theory of spaces of Lipschitz functions (see [22,
p. 13]). The Lipschitz seminorm | · |Lip is defined on Lip(S) by means of

|f |Lip := sup
{
|f(x)− f(y)|

d(x, y)
: x, y ∈ S, x 6= y

}
.

Clearly, |f |Lip = 0 if and only if f is constant.
We start with some basic facts on Lipschitz functions that we will use re-

peatedly. First, the distance function is a Lipschitz function:

Lemma 2.1. Let E be a nonempty subset of S. Then x 7→ d(x,E) is in Lip(S). If
E = S, then d(·, E) ≡ 0 and if E is a proper subset of S, then |d(·, E)|Lip = 1.
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This follows from the triangle inequality and the fact that d(x,E) = d(x,E).
In particular Lemma 2.1 implies that x 7→ d(x, y) ∈ Lip(S) for all y ∈ S.

Second, the pointwise minima and maxima of a finite number of Lipschitz
functions are again Lipschitz functions:

Lemma 2.2. ([7, Lemma 4]) Given f1, . . . , fn ∈ Lip(S) we define

g(x) := min(f1(x), . . . , fn(x)) and h(x) := max(f1(x), . . . , fn(x)).

Then g, h ∈ Lip(S) and

max(|g|Lip, |h|Lip) ≤ max(|f1|Lip, . . . , |fn|Lip).

In the sequel two normed spaces of Lipschitz functions on S and their Banach
space properties will be the central objects of study. First, for each e ∈ S we
introduce the norm ‖ · ‖e on Lip(S) by ‖f‖e := |f(e)|+ |f |Lip, f ∈ Lip(S). If e′ is
another element in S, then

‖f‖e ≤ |f(e′)|+ |f(e)− f(e′)|+ |f |Lip ≤ |f(e′)|+ |f |Lip(d(e, e′) + 1)
≤ ‖f‖e′(d(e, e′) + 1).

Thus ‖ · ‖e and ‖ · ‖e′ are equivalent norms on Lip(S).
For the rest of the paper, we fix an element e ∈ S and write Lipe(S) for the

normed vector space Lip(S) with norm ‖ · ‖e. The following property is straight-
forward:

Lemma 2.3. If f ∈ Lipe(S) and x ∈ S, then |f(x)| ≤ max(1, d(x, e))‖f‖e.

Proposition 2.4. Lipe(S) is a Banach space.

Proof. Let (fn)n be a Cauchy sequence in Lipe(S). Let x ∈ S. Then Lemma
2.3 implies that (fn(x))n is a Cauchy sequence for every x ∈ S. Put f(x) :=
limn→∞ fn(x). Let ε > 0. There is an N ∈ N, such that |fn − fm|Lip ≤ ε for all
n,m ≥ N . Then for x, y ∈ S, m ≥ N ,

|(f − fm)(x))− (f − fm)(y)| = lim
n→∞

|(fn − fm)(x)− (fn − fm)(y)|

≤ εd(x, y).

Hence |f − fm|Lip ≤ ε for all m ≥ N . This implies that f ∈ Lipe(S) and |f −
fn|Lip → 0 as n→∞. Thus ‖f−fn‖e → 0 as n→∞, and Lipe(S) is complete. �

Second, let BL(S) be the vector space of bounded Lipschitz functions from
S to R. For f ∈ BL(S) we define: ‖f‖BL := ‖f‖∞ + |f |Lip. Then ‖ · ‖BL is a norm
on BL(S).

Proposition 2.5. BL(S) is complete with respect to ‖ · ‖BL.

The proof of this proposition proceeds in a similar way to that of Proposition
2.4. See also [22, Proposition 1.6.2 (a)]. There, completeness is proved for the
alternative (but equivalent) norm ‖f‖BL,max = max(‖f‖∞, |f |Lip).

If f ∈ BL(S), then f ∈ Lipe(S), so there is a canonical embedding
j : BL(S) → Lipe(S), where j(f) = f . Clearly ‖j(f)‖e ≤ ‖f‖BL. Thus BL(S)
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embeds continuously into Lipe(S). If S has finite diameter, then BL(S) = Lipe(S),
and it is easy to see that in this case the norms ‖ · ‖BL and ‖ · ‖e are equivalent.
Otherwise we can consider the closure of BL(S) in Lipe(S) with respect to ‖ · ‖e:

Proposition 2.6. Let S be a metric space with infinite diameter. Then

BL(S) ( BL(S)
‖·‖e ( Lipe(S).

Proof. Define f(x) :=
√
d(x, e) + 1. Then

|f(x)− f(y)| = |d(x, e)− d(y, e)|√
d(x, e) + 1 +

√
d(y, e) + 1

≤ d(x, y)√
d(x, e) + 1 +

√
d(y, e) + 1

.

So f is in Lipe(S), but not in BL(S), since S has infinite diameter. We will show

that f ∈ BL(S)
‖·‖e . Let fn(x) := min(f(x), n). Then fn ∈ BL(S) by Lemma 2.2.

Let gn := f−fn. Now let x, y ∈ S, x 6= y. Then if f(x) ≤ n and f(y) ≤ n, |gn(x)−
gn(y)| = 0. If f(x) > n and f(y) > n, then |gn(x)−gn(y)| = |f(x)−f(y)| ≤ d(x,y)

2n .
If f(x) > n and f(y) ≤ n, then |gn(x)−gn(y)| = |f(x)−n| ≤ |f(x)−f(y)| ≤ d(x,y)

n+1 .
So |f−fn|Lip = |gn|Lip ≤ 1

n+1 . Therefore ‖f−fn‖e ≤ 1
n+1 and fn → f in Lipe(S).

Now define g(x) = d(x, e). Then g is in Lipe(S), but not in BL(S). Suppose

that g ∈ BL(S)
‖·‖e , then there is a h ∈ BL(S), with ‖g − h‖e <

1
2 . Moreover,

Lemma 2.3 yields

|g(x)− h(x)| ≤ 1
2

max(1, d(x, e)).

This implies that

|h(x)| ≥ |g(x)| − |g(x)− h(x)| ≥ 1
2
d(x, e)− 1

2
.

Because S has infinite diameter, this contradicts that h is bounded. �

Note that the adjoint map j∗ : Lipe(S)∗ → BL(S)∗, which restricts a ϕ ∈
Lipe(S)∗ to BL(S), is continuous, with ‖j∗(ϕ)‖∗BL ≤ ‖ϕ‖∗e.

Whenever S has infinite diameter, BL(S)
‖·‖e ( Lipe(S), by Proposition 2.6.

From this and the Hahn-Banach Theorem it follows that there exists a non-zero
φ ∈ Lipe(S)∗ such that φ|BL(S) = 0, hence j∗ is not injective.

We will use the term Lipschitz spaces to refer to BL(S) and Lipe(S).

Remark. Various authors consider other Banach spaces of Lipschitz functions, such
as e.g. Weaver [22], looking at Lip0(S) consisting of all Lipschitz functions on S
that vanish at some distinct point e ∈ S. On this subspace of Lip(S), | · |Lip is
a norm for which Lip0(S) is complete. Peng and Xu [20] for example, perform
the standard construction of dividing out the constant functions in Lip(S). Then
this space of equivalence classes of Lipschitz functions Lip(S)/R1 is complete with
respect to the norm | · |Lip and it is isometrically isomorphic to Lip0(S). Working
with these spaces is somewhat cumbersome for our applications.
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3. Dual and predual of Lipschitz spaces

Various spaces of Lipschitz functions have been shown to be isometrically iso-
morphic to the dual of a Banach space. For instance, Lip0(S) is the dual of the
so-called Arens-Eells space (see [1] and [22, Section 2.2] ). It is also known that
BL(S) endowed with the norm ‖f‖BL,max := max(‖f‖∞, |f |Lip) is isometrically
isomorphic to the dual of a Banach space. For instance in [15, Theorem 4.1] the
more general result is proven for BL(S,E∗), where E∗ is the dual of a Banach
space. Our aim in this section is to show that BL(S) with the norm ‖ · ‖BL can
also be viewed as the dual of a Banach space, SBL, and that Lipe(S) is the dual
of a Banach space, Se, as well. Furthermore, we will show that natural spaces of
measures are densely contained in SBL and Se.

3.1. Embedding of measures in dual of Lipschitz spaces

In this section we are concerned with embedding measures into BL(S)∗ and
Lipe(S)∗. We shall write ‖ · ‖∗BL to denote the dual norm on BL(S)∗ and ‖ · ‖∗e to
denote the dual norm on Lipe(S)∗.

Let M(S) be the space of all signed finite Borel measures on S and M+(S)
the convex cone of positive measures inM(S). Let ‖·‖TV denote the total variation
norm on M(S). It is a standard result that M(S) endowed with ‖·‖TV is a Banach
space.

The Baire σ-algebra is the smallest σ-algebra on S for which all continuous
real-valued functions on S are measurable. Since S is a metric space, the Baire
and Borel σ-algebras coincide, because for any closed C ⊂ S, fC : x 7→ d(x,C) is
Lipschitz continuous by Lemma 2.1. Therefore we can apply some of the results
from Dudley [7] on Baire measures.

Each µ ∈M(S) defines a linear functional Iµ on BL(S), by means of Iµ(f) :=∫
S
fdµ. Then

‖Iµ‖∗BL = sup
{∣∣∫ fdµ

∣∣ : ‖f‖BL ≤ 1
}

≤ sup
{∫

|f |d|µ| : ‖f‖BL ≤ 1
}
≤ |µ|(S) = ‖µ‖TV, (3)

thus Iµ ∈ BL(S)∗. Moreover, one has

Lemma 3.1. Let µ ∈M+(S). Then ‖Iµ‖∗BL = ‖µ‖TV.

Proof. Suppose µ ∈M+(S). From (3) it follows that ‖Iµ‖∗BL ≤ ‖µ‖TV. Clearly the
constant function 1 is in BL(S), with ‖1‖∗BL = 1. Then ‖µ‖TV = µ(S) =

∫
1dµ ≤

‖Iµ‖∗BL. Hence ‖Iµ‖∗BL = ‖µ‖TV. �

Lemma 3.2. ([7, Lemma 6])
The linear map µ 7→ Iµ : M(S) → BL(S)∗ is injective.

Thus we can continuously embed M(S) into BL(S)∗ and identify µ ∈M(S)
with Iµ ∈ BL(S)∗. When a functional ϕ ∈ BL(S)∗ can be represented by a mea-
sure, we shall write ϕ ∈M(S).
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We define the subspace of M(S) of measures with finite first moment as
follows:

M1(S) :=
{
µ ∈M(S) :

∫
d(x, e)d|µ|(x) <∞

}
.

And we put M+
1 (S) := M1(S) ∩ M+(S). For µ ∈ M1(S) we define ‖µ‖1 :=∫

max(1, d(x, e))d|µ|(x). Then ‖ · ‖1 is a norm on M1(S). Let µ ∈ M1(S). Then
Iµ(f) :=

∫
f dµ is well defined for every f ∈ Lipe(S), and Iµ is a linear functional

on Lipe(S).

Lemma 3.3. Let µ ∈M1(S). Then Iµ ∈ Lipe(S)∗ and

‖Iµ‖∗e ≤ ‖µ‖1.
Moreover, the linear map µ 7→ Iµ : M1(S) → Lipe(S)∗ is injective.

Proof. Let µ ∈M1(S) and f ∈ Lipe(S). Using Lemma 2.3 we obtain

|
∫
fdµ| ≤

∫
|f |d|µ| ≤ ‖f‖e

∫
max(1, d(x, e))d|µ| ≤ ‖f‖e‖µ‖1.

M1(S) is a subspace of M(S) and thus embeds into BL(S)∗. The image of
µ ∈ M1(S) in BL(S)∗ coincides with the one obtained by mapping M1(S) into
Lipe(S)∗ and then restricting to BL(S). Therefore µ 7→ Iµ is injective. �

Thus we can identify µ ∈ M1(S) with Iµ ∈ Lipe(S)∗, and embed M1(S)
into Lipe(S)∗. When a functional ϕ ∈ Lipe(S)∗ can be represented by a measure
in M1(S), we shall write ϕ ∈M1(S).

We can embed S into M(S) or M1(S), by sending x to the Dirac measure
δx. This embedding is not continuous in general with respect to the total variation
norm, since ‖δx − δy‖TV = 2 whenever x 6= y. However, we do have an isometric
embedding into Lipe(S)∗:

Lemma 3.4. Let x ∈ S, then δx is in Lipe(S)∗ with ‖δx‖∗e = max(1, d(x, e)). The
map x 7→ δx is an isometric embedding from S into Lipe(S)∗.

Proof. Let f ∈ Lipe(S) and x ∈ S. Then Lemma 2.3 implies that ‖δx‖∗e ≤
max(1, d(x, e)). For the reverse estimate, consider f(x) := d(x, e). Then f ∈
Lipe(S) and |f |Lip = 1, according to Lemma 2.1. Hence ‖f‖e = 1, and |δx(f)| =
d(x, e) for every x ∈ S. Also, the constant function 1 ∈ Lipe(S) and ‖1‖e =
1. Furthermore, |δx(1)| = 1. Hence ‖δx‖∗e ≥ max(1, d(x, e)) and thus ‖δx‖∗e =
max(1, d(x, e)).

Now, let x, y ∈ S, x 6= y and f ∈ Lipe(S). Then

|(δx − δy)(f)| = |f(x)− f(y)| ≤ |f |Lipd(x, y) ≤ ‖f‖ed(x, y).

Let f(z) := d(x, z)− d(x, e). Then |f |Lip = |d(x, ·)|Lip = 1, ‖f‖e = 1 and |δx(f)−
δy(f)| = d(x, y). Hence ‖δx−δy‖∗e = d(x, y) and x 7→ δx is an isometric embedding
from S into Lipe(S)∗. �

The situation for the embedding of S into BL(S)∗ is similar, though slightly
different: the embedding is not isometric in general.
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Lemma 3.5. For every x ∈ S, δx is in BL(S)∗, and ‖δx‖∗BL = 1. Furthermore for
every x, y ∈ S,

‖δx − δy‖∗BL =
2d(x, y)

2 + d(x, y)
≤ min(2, d(x, y)). (4)

Proof. Let x ∈ S and f ∈ BL(S). Then |δx(f)| = |f(x)| ≤ ‖f‖BL, hence ‖δx‖∗BL ≤
1. The constant function 1 is in BL(S) and |δx(1)| = 1 = ‖1‖BL, so ‖δx‖∗BL = 1.

If x = y, then (4) is satisfied. Suppose x 6= y. Let f ∈ BL(S). Then

|f(x)− f(y)| ≤ min(|f |Lipd(x, y), 2‖f‖∞).

Hence
(2 + d(x, y))|f(x)− f(y)| ≤ 2d(x, y)‖f‖BL,

so

‖δx − δy‖∗BL = sup
‖f‖BL≤1

|f(x)− f(y)| ≤ 2d(x, y)
2 + d(x, y)

.

Define f(z) := d(z,y)−d(z,x)
2+d(x,y) . Then

|f |Lip ≤
1

2 + d(x, y)
|d(·, y)− d(·, x)|Lip ≤

2
2 + d(x, y)

,

where we use that |d(·, x)|Lip = 1, by Lemma 2.1. Since |d(z, y)−d(z, x)| ≤ d(x, y)
for all z ∈ S, we can conclude that ‖f‖∞ ≤ d(x,y)

2+d(x,y) . Hence ‖f‖BL ≤ 1. Further-
more

|δx(f)− δy(f)| = |f(x)− f(y)| = 2d(x, y)
2 + d(x, y)

.

Hence ‖δx − δy‖∗BL = 2d(x,y)
2+d(x,y) . �

Remark. Instead of the norms ‖·‖BL and ‖·‖e, we could also consider the equivalent
norms ‖ · ‖BL,max and ‖f‖e,max := max(|f(e)|, |f |Lip). Then Lemma 3.4 holds
with ‖ · ‖∗e replaced by ‖ · ‖∗e,max. The corresponding statement to (4) in Lemma
3.5 for ‖ · ‖∗BL,max norm is that ‖δx − δy‖∗BL,max = min(2, d(x, y)), which can be
shown using the function f(z) := min(−1 + d(x, z), 1) if d(x, y) < 2 and f(z) :=
min(−1 + 2d(x,z)

d(x,y) , 1) if d(x, y) ≥ 2.

3.2. Predual of Lipe(S) and BL(S)
Let

D := span{δx|x ∈ S} =

{
n∑

k=1

αkδxk
: n ∈ N, αk ∈ R, xk ∈ S

}
.

We define Se to be the closure of the linear subspace D in Lipe(S)∗ with respect
to ‖ · ‖∗e, and SBL to be the closure of D in BL(S)∗ with respect to ‖ · ‖∗BL.

Theorem 3.6. S∗e is isometrically isomorphic to Lipe(S) under the map ψ 7→ Tψ,
where Tψ(x) := ψ(δx).
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Proof. Since Se ⊂ Lipe(S)∗, we can define R : Lipe(S) → S∗e such that Rf(ϕ) :=
ϕ(f) for all ϕ ∈ Se. Clearly |Rf(ϕ)| ≤ ‖ϕ‖∗e‖f‖e, hence ‖Rf‖S∗

e
≤ ‖f‖e.

Now define T : S∗e → Lipe(S) such that Tψ(x) := ψ(δx) for all x ∈ S. It can
easily be verified that Tψ is indeed in Lipe(S), and that T is linear. Now we want
to show that ‖Tψ‖e ≤ ‖ψ‖S∗

e
. Let x, y ∈ S, x 6= y. Note that for real numbers

a and b, |a| + |b| = max(|a − b|, |a + b|). Therefore, using the fact that we only
consider real-valued Lipschitz functions and hence real Banach spaces,

|ψ(δe)|+
|ψ(δx − δy)|
d(x, y)

= max
(
|ψ(δe)−

ψ(δx − δy)
d(x, y)

|, |ψ(δe) +
ψ(δx − δy)
d(x, y)

|
)

= max
(
|ψ(δe −

δx − δy
d(x, y)

)|, |ψ(δe +
δx − δy
d(x, y)

)|
)

≤ ‖ψ‖S∗
e

max
(
‖δe −

δx − δy
d(x, y)

‖∗e, ‖δe +
δx − δy
d(x, y)

‖∗e
)

Now for all f ∈ Lipe(S), with ‖f‖e ≤ 1, we have

|(δe −
δx − δy
d(x, y)

)(f)| = |f(e)− f(x)− f(y)
d(x, y)

|

≤ |f(e)|+ |f(x)− f(y)|
d(x, y)

≤ 1.

And since |(δe − δx−δy

d(x,y) )(1)| = 1, ‖δe − δx−δy

d(x,y) ‖
∗
e = 1. By interchanging x and y, we

also get ‖δe + δx−δy

d(x,y) ‖
∗
e = 1 Thus for all x, y ∈ S, x 6= y,

|ψ(δe)|+ sup
x,y∈S
x6=y

|ψ(δx − δy)|
d(x, y)

≤ ‖ψ‖S∗
e
.

Consequently,
‖Tψ‖e ≤ ‖ψ‖S∗

e
, for all ψ ∈ S∗e .

Now we need to show R and T are each other’s inverses. Let f ∈ Lipe(S),
then

T (Rf)(x) = Rf(δx) = f(x), for all x ∈ S.
Hence T ◦ R = IdLipe(S). Now let ψ ∈ S∗e , and let d ∈ D, then d =

∑n
k=1 αkδxk

,
for certain αk ∈ R and xk ∈ S. Then

R(Tψ)(d) =
n∑

k=1

αkTψ(xk) =
n∑

k=1

αkψ(δxk
) = ψ(d).

Hence R(Tψ) = ψ on a dense subset of Se, so R(Tψ) = ψ on Se. Hence R ◦ T =
IdS∗

e
. Consequently we get that for all f ∈ Lipe(S) : ‖Rf‖∗e ≤ ‖f‖e = ‖T (Rf)‖e ≤

‖Rf‖∗e, hence R is an isometric isomorphism from Lipe(S) to S∗e , with T as its
inverse. �

A similar result holds for BL(S):
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Theorem 3.7. S∗BL is isometrically isomorphic to BL(S) under the map ψ 7→ Tψ,
where Tψ(x) := ψ(δx).

Proof. We define R : BL(S) → S∗BL such that Rf(ϕ) := ϕ(f) for all ϕ ∈ SBL ⊂
BL(S)∗. And we define T : S∗BL → BL(S) such that Tψ(x) := ψ(δx) for all x ∈ S.
Then analogous to the proof of Theorem 3.6 we can show that ‖Rf‖S∗

BL
≤ ‖f‖e,

that ‖Tψ‖BL ≤ ‖ψ‖S∗
BL

and that R and T are each other’s inverses. Hence R is an
isometric isomorphism from BL(S) to S∗BL, with T as its inverse. �

3.3. Identification of SBL

A Borel measure µ ∈ M(S) is called separable if there is a separable Borel mea-
surable subset E of S, such that µ is concentrated on E, i.e. |µ|(S\E) = 0. Let
Ms(S) be the separable Borel measures on S, and M+

s (S) the set of positive,
finite and separable Borel measures on S. If S is separable, Ms(S) = M(S). It is
easy to see that Ms(S) is a closed subspace of M(S) with respect to ‖ · ‖TV.

Let

D+ :=

{
n∑

i=1

αiδxi
: n ∈ N, αi ∈ R+, xi ∈ S

}
.

We define S+
BL to be the closure of D+ with respect to ‖ · ‖∗BL. Notice that S+

BL ⊂
SBL and all ϕ ∈ S+

BL are positive: ϕ(f) ≥ 0 for all 0 ≤ f ∈ BL(S).
We will need the following theorem, which is based on a result from [7]:

Theorem 3.8. M+
s (S) is norm closed in BL(S)∗ if and only if S is complete.

Proof. If S is complete, then M+
s (S) is norm closed in BL(S)∗ by [7, Theorem

9]. Suppose S is not complete. Then there exists a Cauchy sequence (xn)n in S
that does not converge to an element in S. Then (xn)n cannot have a convergent
subsequence. This implies that for every x ∈ S there must be an ε > 0 and an
M ∈ N, such that d(x, xm) ≥ ε for all m ∈ N,m ≥ M , otherwise (xn)n∈N has a
subsequence that converges to x.

We will show that M+
s (S) cannot be norm closed in BL(S)∗. By Lemma 3.5

δxn
is a Cauchy sequence in BL(S)∗. Now assume there is a µ ∈M+

s (S), such that
‖δxn − µ‖∗BL → 0. Then

‖µ‖∗BL = lim
n→∞

‖δxn
‖∗BL = 1.

We will show that µ must be zero, which gives a contradiction. We can
assume, by taking a subsequence, that ‖δxn

− µ‖∗BL < 1
n2 . Now define fn(x) :=

min(nd(x, xn), 1). Then fn ∈ BL(S), with |fn|Lip ≤ n and ‖fn‖∞ ≤ 1. Hence

|
∫
fn dµ| = |δxn

(fn)−
∫
fn dµ| <

n+ 1
n2

→ 0 as n→∞.

Now let x ∈ S. Then there exists an ε > 0 and an M ∈ N, such that d(x, xm) ≥ ε
for all m ∈ N,m ≥ M . This implies that fn(x) → 1 as n → ∞. Hence, by the
Lebesgue Dominated Convergence Theorem,

|
∫

1 dµ| = | lim
n→∞

∫
fn dµ| = 0,
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which implies that µ is zero. �

Our main result in this section is the following theorem:

Theorem 3.9. M+
s (S) ⊂ S+

BL. Furthermore, S+
BL = M+

s (S) if and only if S is
complete.

Proof. First we show that M+
s (S) ⊂ S+

BL. Let µ ∈M+
s (S), and let E be a measur-

able separable subset of S on which µ is concentrated. We want to show that there
is an element ϕ ∈ S+

BL such that ϕ(f) =
∫
f dµ for all f ∈ BL(S). If µ(S) = 0 this

is clear, so we assume µ(S) > 0.
We define the map δ : S → SBL, sending x to δx. Then δ is Lipschitz con-

tinuous by Lemma 3.5. Also, since E is separable and δ is continuous, δ(E) is a
separable subset of SBL. Because µ(S\E) = 0, δ is µ-essentially separably val-
ued. For any f ∈ BL(S) ∼= S∗BL the function x 7→ 〈δx, f〉 = f(x) is measurable,
so x 7→ δx is weakly measurable. By the Pettis Measurability Theorem (e.g. [6,
Theorem 2]), δ is strongly µ-measurable. Furthermore,∫

‖δx‖∗BLdµ(x) =
∫
dµ <∞,

therefore δ : S → SBL is µ-Bochner integrable and
∫
δxdµ(x) defines an element

in SBL. By [6, Corollary 8] we get that

1
µ(S)

∫
δxdµ(x) ∈ conv{δx : x ∈ E} ⊂ S+

BL.

Hence
∫
δxdµ(x) ∈ S+

BL. Furthermore, by [6, Theorem 6] we obtain for all f ∈
BL(S) that 〈

∫
δxdµ(x), f〉 =

∫
〈δx, f〉dµ(x) =

∫
fdµ. This implies

∫
δxdµ(x) is a

functional in S+
BL represented by µ. Thus M+

s (S) ⊂ S+
BL.

Now assume S is complete. It is clear that for all x ∈ S, δx ∈ M+
s (S).

Hence D+ ⊂M+
s (S). From Theorem 3.8 we obtain that M+

s (S) is norm closed in
BL(S)∗, hence S+

BL ⊂M+
s (S). If S is not complete, then by Theorem 3.8, M+

s (S)
is not norm closed in BL(S)∗, which implies that M+

s (S) ( S+
BL. �

The crucial observation towards identification of SBL is the following:

Corollary 3.10. Ms(S) is a ‖ · ‖∗BL-dense subspace of SBL.

One might ask when SBL = Ms(S). To answer this question we need the
notion of a uniformly discrete metric space. S is uniformly discrete if there is an
ε > 0 such that d(x, y) > ε for all x, y ∈ S, x 6= y. The following theorem settles
our question:

Theorem 3.11. Ms(S) is norm closed in BL(S)∗ if and only if S is uniformly
discrete.

Proof. Suppose Ms(S)
‖·‖∗BL = Ms(S). Then (Ms(S), ‖ · ‖∗BL) is a Banach space.

Let I be the identity map from (Ms(S), ‖ · ‖TV) to (Ms(S), ‖ · ‖∗BL). Then, since
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‖µ‖∗BL ≤ ‖µ‖TV, I is a bounded linear map. Clearly, I is bijective, hence by the
Inverse Mapping Theorem the inverse of I is a bounded linear map.

Assume S is not uniformly discrete, then there are xn, yn ∈ S, such that
0 < d(xn, yn) < 1

n . Let µn = δxn − δyn . Then ‖µn‖TV = 2 , while ‖µn‖∗BL ≤
d(xn, yn) < 1

n , for all n ∈ N. This implies I−1 cannot be bounded, which gives us
a contradiction. Hence S must be uniformly discrete.

Now suppose S is uniformly discrete. Then there is an ε > 0 such that
d(x, y) > ε for all x, y ∈ S, x 6= y. Let µ ∈ Ms(S). Let S = P ∪ N be the Hahn
decomposition of S corresponding to µ, then µ+ = µ|P and µ− = µ|N . Define

f(x) :=
{

min(ε/4, 1/2) if x ∈ P ;
−min(ε/4, 1/2) if x ∈ N.

Then ‖f‖∞ ≤ 1/2 and

|f |Lip = sup
x6=y

|f(x)− f(y)|
d(x, y)

≤ ε/2
ε

=
1
2
.

Hence ‖f‖BL ≤ 1. Furthermore,

|
∫
f dµ| = |

∫
P

min(ε/4, 1/2)dµ−
∫

N

min(ε/4, 1/2)dµ|

= |µ+(S) + µ−(S)|min(ε/4, 1/2) = ‖µ‖TV min(ε/4, 1/2).

Hence

‖µ‖TV ≤ ‖µ‖∗BL

1
min(ε/4, 1/2)

,

for all µ ∈ Ms(S). Also, ‖µ‖∗BL ≤ ‖µ‖TV for all µ ∈ Ms(S), hence the norms
‖ · ‖∗BL and ‖ · ‖TV are equivalent on Ms(S). This implies that

Ms(S)
‖·‖∗BL = Ms(S)

‖·‖T V = Ms(S). �

Remark. Note that all the arguments in the proof of Theorem 3.11 hold when we

replace Ms(S) by M(S). Hence M(S)
‖·‖∗BL = M(S) if and only if S is uniformly

discrete.

Corollary 3.12. If S is not uniformly discrete, there are elements in SBL, hence in
BL(S)∗, that cannot be represented by a measure in M(S).

3.4. Identification of Se

We start with the observation that each ϕ ∈ Se is completely determined by its
restriction to BL(S); more precise:

Lemma 3.13. Let ϕ ∈ Se, f ∈ Lipe(S). Define fn(x) := max(min(f(x), n),−n).
Then limn→∞ ϕ(fn) = ϕ(f).
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Proof. Obviously, ‖fn‖e ≤ ‖f‖e for all n ∈ N. Let ε > 0. Then there is a d ∈ D
such that ‖ϕ− d‖∗e < ε

2(‖f‖e+1) . Let Nd be such that d(f − fn) = 0 for all n ≥ Nd.
Then for n ≥ Nd we have

|ϕ(f)− ϕ(fn)| ≤ |ϕ(f)− d(f)|+ |d(f)− d(fn)|+ |ϕ(fn)− d(fn)|
≤ 2‖ϕ− d‖∗e‖f‖e < ε.

Hence limn→∞ ϕ(fn) = ϕ(f). �

Just as before, we restrict to the separable Borel measures: Let Ms,1(S) :=
M1(S)∩Ms(S), and M+

s,1(S) := Ms(S)∩M1
+(S). Similar to S+

BL, we define S+
e

to be the closure of D+ with respect to ‖ · ‖∗e.
Now we can prove the analogue to Theorem 3.9:

Theorem 3.14. M+
s,1(S) ⊂ S+

e . Furthermore, S+
e = M+

s,1(S) if and only if S is
complete.

Proof. First we will show that M+
s,1(S) ⊂ S+

e . Let µ ∈ M+
s,1(S) and define δ :

S → Lipe(S)∗, x 7→ δx. Then we can prove, using similar techniques as in the
proof of Theorem 3.9, that δ is µ-Bochner integrable, that

∫
δx dµ(x) ∈ S+

e and
that 〈

∫
δx dµ(x), f〉 =

∫
fdµ for all f ∈ Lipe(S). This implies that M+

s,1(S) ⊂ S+
e .

Now suppose that S is complete. It is clear that D+ ⊂M+
s,1(S). Let ϕ ∈ S+

e ,
then there are dn ∈ D+ such that ‖ϕ− dn‖∗e → 0. Because

‖j∗(ϕ)− dn‖∗BL = ‖j∗(ϕ− dn)‖∗BL ≤ ‖ϕ− dn‖∗e → 0,

there is a µ ∈ M+
s (S), according to Theorem 3.9, such that j∗(ϕ(f)) = ϕ(f) =∫

fd µ for all f ∈ BL(S). We need to show that µ ∈ M+
s,1(S) and ϕ(f) =

∫
fd µ

for all f ∈ Lipe(S).
Let f ∈ Lipe(S), f ≥ 0. Then

ϕ(f) = lim
n→∞

ϕ(fn) = lim
n→∞

∫
fndµ =

∫
fdµ <∞

by Lemma 3.13 and the Monotone Convergence Theorem. In particular,∫
d(x, e)dµ = ϕ(d(·, e)) <∞, hence µ ∈M+

s,1(S).
Using f = f+ − f− for general f ∈ Lipe(S), where f+ = max(f, 0) and

f− = −min(f, 0), we find that f ∈ L1(µ) and ϕ(f) =
∫
fdµ for every f ∈ Lipe(S).

Hence S+
e ⊂M+

s,1(S).
Now suppose S is not complete. Then there is a Cauchy sequence (xn)n in

S that does not converge to an element in S. This implies by Lemma 3.4 that
(δxn

)n is a Cauchy sequence in Lipe(S)∗. Suppose that µ ∈ M+
s,1(S) is such that

‖δxn
− µ‖∗e → 0. Then ‖δxn

− µ‖∗BL → 0, but from the proof of Theorem 3.8 it
follows that this is not possible. Hence M+

s,1(S) is not norm closed in Lipe(S), and
since M+

s,1(S) ⊂ S+
e , this implies that M+

s,1(S) ( S+
e . �

The following corollaries follows easily from Theorem 3.14:

Corollary 3.15. Ms,1(S) is a ‖ · ‖∗e-dense subspace of Se.
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Corollary 3.16. M+
s,1(S) is norm closed in Se if and only if S is complete.

Remark. In [16, Theorem 4.2] it is shown that the metric space S is complete if and
only if the set of separable probability measures of finite first moment, Ps,1(S), is
complete with respect to the metric H, where

H(µ, ν) = sup
f∈Lip(S)
|f |Lip≤1

|
∫
fdµ−

∫
fdν|.

From Corollary 3.16 we can also conclude this theorem: it follows that when
S is complete, the subset of separable probability measures of finite first moment
P1,s(S) is also a closed set of Se, hence complete with respect to ‖ · ‖∗e. Let µ, ν ∈
P1,s(S), then ‖µ − ν‖∗e is equal to H(µ, ν), since for f ∈ Lip(S) with |f |Lip ≤ 1
we have

|
∫
f dµ−

∫
f dν| = |

∫
f − f(e)dµ−

∫
f − f(e)dµ|,

and g(x) := f(x) − f(e) satisfies: ‖g‖e = |f |Lip ≤ 1. Furthermore, when S is not
complete, M+

s,1(S) is not complete with respect to ‖ · ‖∗e. Then it is not difficult
to see that then P1,s(S) also cannot be complete with respect to ‖ · ‖∗e, hence it is
not complete with respect to H.

Recall the natural embedding j : BL(S) → Lipe(S), and the adjoint j∗ :
Lipe(S)∗ → BL(S)∗. Then, as a consequence of Proposition 2.6, j∗ is not injective
whenever S has infinite diameter. Consider however the restriction j∗e of j∗ to Se.

Lemma 3.17. j∗e maps Se injectively and densely into SBL.

Proof. Let φ ∈ Se be such that j∗e (φ) = 0. Then φ(f) = 0 for all f ∈ BL(S).
Hence Lemma 3.13 implies that φ(f) = 0 for all f ∈ Lipe(S), hence φ = 0. So j∗e
is injective. By continuity of j∗e ,

j∗e (Se) = j∗e (D
‖·‖∗e ) ⊂ j∗e (D)

‖·‖∗BL = D
‖·‖∗BL = SBL.

So we can continuously embed Se into SBL and j∗e (Se) is dense in SBL, since
j∗e (D) = D is dense in SBL. �

4. Positivity

We can endow BL(S) and Lipe(S) with pointwise ordering, so f ≥ g if f(x) ≥ g(x)
for all x ∈ S. From Lemma 2.2 it follows that BL(S) and Lipe(S) are Riesz spaces
with respect to this ordering. However, ‖ · ‖BL and ‖ · ‖e are not Riesz norms, since
|f | ≤ |g| need not imply that |f |Lip ≤ |g|Lip. We are interested in the question
whether all the positive functionals

BL(S)∗+ := {φ ∈ BL(S)∗ : φ(f) ≥ 0 for all f ∈ BL(S), f ≥ 0}

can be represented by measures on S.
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Let Cub(S) denote the Banach space of bounded uniformly continuous real-
valued functions on S, with the supremum norm ‖ · ‖∞. Then BL(S) ⊂ Cub(S) is
dense [7, Lemma 8]. Let φ ∈ BL(S)∗+. Then

|φ(f)| = |φ(f+)− φ(f−)| ≤ φ(|f |) ≤ φ(‖f‖∞ · 1) = ‖f‖∞φ(1) (5)

by positivity of φ. This φ can be uniquely extended to a positive continuous linear
functional on Cub(S).

Let S be complete. If S is compact, then Cub(S) = C(S), and by the Riesz
representation theorem, every φ ∈ Cub(S)∗ can be represented by a measure. If S
is not compact, then C0(S) ( Cub(S), and it is possible to show the existence of
a non-zero functional φ ∈ Cub(S)∗+, such that φ|C0(S) = 0, which implies that φ
cannot be represented by a measure. However, when we also demand that φ is in
SBL, it can be represented by a measure, by a corollary of the following theorem:

Theorem 4.1. SBL ∩ BL(S)∗+ = S+
BL.

Proof. Clearly, S+
BL ⊂ SBL∩BL(S)∗+. Suppose that there exists a φ ∈ SBL∩BL(S)∗+

such that φ 6∈ S+
BL. If φ(1) = 0, then φ(f) = 0 for every f ∈ BL(S), by positivity

of φ and (5), hence φ ∈ S+
BL. So φ(1) > 0. Let

M :=

{
n∑

i=1

αiδxi
: n ∈ N, 0 ≤ αi ≤ φ(1), xi ∈ S, for i = 1, . . . , n

}
,

then M ⊂ S+
BL. Let M be the closure of M in S+

BL with respect to ‖ · ‖∗BL. By
assumption, φ is not in M . Since M is convex, M is a closed convex subset of
SBL. Thus φ is strictly separated from M by [4, Corollary IV.3.10]: there is an
f ∈ S∗BL = BL(S) and an α ∈ R, such that 〈m, f〉 < α for all m ∈ M , and
〈φ, f〉 = φ(f) > α. Clearly φ(1)δx ∈M for all x ∈ S, hence

〈φ(1)δx, f〉 = φ(1)f(x) < α for all x ∈ S.
So f < α

φ(1) and by positivity of φ,

φ(f) < φ(
α1

φ(1)
) = α,

which is a contradiction. So SBL ∩ BL(S)∗+ = S+
BL. �

From Theorem 3.9 and Theorem 4.1 we get the following result:

Corollary 4.2. M+
s (S) ⊂ SBL ∩BL(S)∗+, and SBL ∩BL(S)∗+ = M+

s (S) if and only
if S is complete.

The following theorem can be proved similarly to Theorem 4.1:

Theorem 4.3. Se ∩ Lipe(S)∗+ = S+
e .

And the following corollary follows from Theorem 3.14 and Theorem 4.3:

Corollary 4.4. M+
s,1(S) ⊂ Se ∩ Lipe(S)∗+, and Se ∩ Lipe(S)∗+ = M+

s,1(S) if and
only if S is complete.



366 Hille and Worm IEOT

We have seen in Lemma 3.17 that Se can be considered as a dense subspace
of SBL. The closed convex cones S+

e and S+
BL in both spaces relate as follows:

Proposition 4.5. S+
BL ∩ Se = S+

e .

Proof. Using Theorem 4.1, we obtain

S+
BL ∩ Se = BL(S)∗+ ∩ Se

= {φ ∈ Se : φ(f) ≥ 0, for all 0 ≤ f ∈ BL(S)} =: P.

Now, if φ ∈ Se is such that φ(f) ≥ 0 for all positive f ∈ BL(S), then, by Lemma
3.13, φ(g) ≥ 0 for all positive g ∈ Lipe(S). Hence φ ∈ S+

e and P ⊂ S+
e . Clearly

S+
e ⊂ P . �

The closed convex cone S+
BL defines a partial ordering ‘ ≥′ on SBL by means

of φ ≥ ψ if and only if φ−ψ ∈ S∗BL. Then (SBL,≥) is an ordered Banach space. In
a similar fashion, S+

e introduces a partial ordering in Se. Proposition 4.5 implies
that both orderings are compatible and obtained from the ordering in BL(S)∗+ and
Lipe(S)∗+ according to Theorem 4.1 and Theorem 4.3 respectively.

Note that S+
BL is not a generating cone in SBL, unless S is uniformly discrete

(Theorem 3.11).

5. Embedding into positive linear semigroups on dual Lipschitz
spaces

Let Lip(S, S) be the space of Lipschitz maps on S. For T ∈ Lip(S, S), we define

|T |Lip := sup
{
d(T (x), T (y))

d(x, y)
: x, y ∈ S, x 6= y

}
.

Lemma 5.1. Let T ∈ Lip(S, S). For any f ∈ Lipe(S),

‖f ◦ T‖e ≤ max(1, d(e, T (e)) + |T |Lip)‖f‖e,

and for g ∈ BL(S),
‖g ◦ T‖BL ≤ max(1, |T |Lip)‖g‖BL.

Proof. It is easy to check that for f ∈ Lipe(S), |f ◦ T |Lip ≤ |f |Lip|T |Lip, hence we
have

‖f ◦ T‖e ≤ |f(T (e))|+ |f |Lip|T |Lip

≤ |f(e)|+ |f |Lipd(e, T (e)) + |f |Lip|T |Lip

≤ max(1, d(e, T (e)) + |T |Lip)‖f‖e.

And for g ∈ BL(S), we have

‖g ◦ T‖BL ≤ ‖g ◦ T‖∞ + |g|Lip|T |Lip

≤ ‖g‖∞ + |g|Lip|T |Lip ≤ max(1, |T |Lip)‖g‖BL.

. �
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Definition 5.2. A family of maps (Φt)t≥0 from S into S is a Lipschitz semigroup
on S if

(i) for all t ≥ 0, Φt ∈ Lip(S, S),
(ii) for all s, t ≥ 0, Φt ◦ Φs = Φt+s and Φ0 = IdS.

A Lipschitz semigroup (Φt)t≥0 on S is called strongly continuous if t 7→ Φt(x)
is continuous at t = 0 for all x ∈ S. From property (ii) it then follows that
t 7→ Φt(x) is continuous on R+ for all x ∈ S.

Let (Φt)t≥0 be a Lipschitz semigroup on S. Then we define a semigroup
of operators on Lipe(S). Let f ∈ Lipe(S) and t ≥ 0, and let SΦ(t)f := f ◦
Φt. Then SΦ(t) is a bounded linear operator on Lipe(S), by Lemma 5.1, and
‖SΦ(t)‖L(Lipe(S)) ≤ max(1, d(e,Φt(e))+ |Φt|Lip). Hence (SΦ(t))t≥0 is a semigroup
of bounded linear operators on Lipe(S).

So the dual operators (S∗Φ(t))t≥0 form a semigroup of bounded linear opera-
tors on Lipe(S)∗.

Lemma 5.3. S∗Φ(t)(Se) ⊂ Se.

Proof. Let f ∈ Lipe(S). Then

(S∗Φ(t)δx)(f) = δx(SΦ(t)f) = δx(f ◦ Φt) = f(Φt(x)) = δΦt
(f), (6)

for all x ∈ S, t ≥ 0. Thus S∗Φ(t)(D) ⊂ D.Hence, by continuity of S∗Φ(t), S∗Φ(t)(Se) ⊂
Se. �

Thus we can define a semigroup (T̂Φ(t))t≥0 of bounded linear operators on
Se by setting

T̂Φ(t)ϕ := S∗Φ(t)ϕ, for all ϕ ∈ Se, t ≥ 0.

Theorem 5.4. For all x, y ∈ S and s, t ≥ 0,

d(Φs(x),Φt(y)) = ‖T̂Φ(s)δx − T̂Φ(t)δy‖∗e. (7)

Furthermore, the following are equivalent:
(i) (T̂Φ(t))t≥0 is a strongly continuous semigroup on Se.
(ii) (Φt)t≥0 is strongly continuous and lim supt↓0 |Φt|Lip <∞.
(iii) (Φt)t≥0 is strongly continuous and there exist M ≥ 1 and ω ∈ R such that

|Φt|Lip ≤Meωt for all t ≥ 0.

Proof. From Lemma 3.4 and (6) we get that for every x, y ∈ S and t, s ≥ 0

‖T̂Φ(s)δx − T̂Φ(t)δy‖∗e = ‖δΦs(x) − δΦt(y)‖∗e
= d(Φs(x),Φt(y)).

(i)⇒(iii): There exist M ≥ 1 and ω ∈ R such that ‖T̂Φ(t))‖L(Se) ≤Meωt for
all t ≥ 0. Hence it follows from (7) that for x, y ∈ S and t ≥ 0,

d(Φt(x),Φt(y)) = ‖T̂Φ(t)δx − T̂Φ(t)δy‖∗e
≤ Meωt‖δx − δy‖∗e = Meωtd(x, y).



368 Hille and Worm IEOT

Hence |Φt|Lip ≤ Meωt for all t ≥ 0. From (7) and strong continuity of (T̂Φ(t))t≥0

it follows that (Φt)t≥0 is strongly continuous.
(iii)⇒(ii): This is trivial.
(ii)⇒(i): We want to show that there is a δ > 0 and an M ≥ 1 such that

sup0≤t≤δ ‖T̂Φ(t)‖L(Se) ≤M , and that (T̂Φ(t))t≥0 is strongly continuous onD. Then
we can conclude by [10, Proposition 5.3] that (T̂Φ(t))t≥0 is strongly continuous on
Se, since D is dense in Se by definition. Since lim supt↓0 |Φt|Lip < ∞, there exist
M1, δ > 0 such that |Φt|Lip ≤M1 for all 0 ≤ t ≤ δ. We know that

‖T̂Φ(t)‖L(Se) ≤ ‖S∗Φ(t)‖L(Lipe(S)∗)

= ‖SΦ(t)‖L(Lipe(S)) ≤ max(1, d(e,Φt(e)) + |Φt|Lip).

Now, since [0, δ] is compact, Φ[0,δ](e) is compact, hence bounded, in S, so there is
an M2 > 0 such that d(e,Φt(e)) ≤M2 for all 0 ≤ t ≤ δ. Hence

sup
0≤t≤δ

‖T̂Φ(t)‖L(Se) ≤ max(1,M1 +M2) =: M <∞.

By (7) and strong continuity of (Φt)t≥0 we have for every x ∈ S that

‖T̂Φ(t)δx − δx‖∗e = d(Φt(x), x) → 0

as t ↓ 0. Hence by linearity limt↓0 ‖T̂Φ(t)d− d‖∗e = 0 for all d ∈ D. �

Remarks. 1) Notice that for all ϕ ∈ Se, f ∈ Lipe(S) and t ≥ 0, we have

f(T̂Φ(t)ϕ) = (T̂Φ(t)ϕ)(f) = (S∗Φ(t)ϕ)(f) = ϕ(SΦ(t)(f)) = (SΦ(t)f)(ϕ).

Therefore T̂ ∗Φ(t)f = SΦ(t)f for all f ∈ Lipe(S) and under the equivalent
conditions of Theorem 5.4, (SΦ(t))t≥0 is the dual semigroup of a strongly
continuous semigroup. As Se is not reflexive in general, (SΦ(t))t≥0 cannot
be expected to be strongly continuous. It is on the smaller space S�e by
definition. It would be interesting to be able to identify the latter space.

2) In [20, Corollary 3 and Remark 4] a result similar to Theorem 5.4 is proven,
but in less generality, since there S is taken to be a closed subset of a Banach
space. In [20] the duality of spaces of Lipschitz functions is also exploited
to show this result, but there the Banach space Lip0(S) is used, consisting
of the Lipschitz functions vanishing at some distinct point e in S. Since the
semigroup TΦ(t) will in general not map Lip0(S) into itself, unless e is a fixed
point of (Φt)t≥0, the proof in [20] needs to make use of the Banach space
Lip(S)/R1. By making use of the space Lipe(S), we have no such difficulties.

Notice that the semigroup (SΦ(t))t≥0 defined above is also a semigroup of
bounded linear operators on BL(S), by Lemma 5.1. Then (S∗Φ(t))t≥0 is a semigroup
of bounded linear operators on BL(S)∗. Using very similar techniques as above, we
can show that S∗Φ(t)(SBL) ⊂ SBL for all t ≥ 0. Hence we can define a semigroup
(TΦ(t))t≥0 on SBL by restricting S∗Φ(t) to SBL. Under the equivalent conditions of
Theorem 5.4 this semigroup is strongly continuous:



Vol. 63 (2009) Embedding of Semigroups of Lipschitz Maps 369

Theorem 5.5. For all x, y ∈ S,s, t ≥ 0,

‖TΦ(s)(δx)− TΦ(t)(δy)‖∗BL =
2d(Φs(x),Φt(y))

2 + d(Φs(x),Φt(y))
≤ min(2, d(Φs(x),Φt(y))).

If lim supt↓0 |Φt|Lip < ∞ and (Φt)t≥0 is strongly continuous, then (TΦ(t))t≥0 is a
strongly continuous semigroup on SBL.

The proof is similar to the proof of Theorem 5.4, but here the equality follows
from Lemma 3.5.

Let t ≥ 0. Then T̂Φ(t)(D+) ⊂ D+ and TΦ(t)(D+) ⊂ D+, hence by the conti-
nuity of T̂Φ(t) and TΦ(t) we can conclude that T̂Φ(t)(S+

e ) ⊂ S+
e and TΦ(t)(S+

BL) ⊂
S+

BL. Thus (T̂Φ(t))t≥0 and (TΦ(t))t≥0 are positive semigroups.
Thus, if S is complete,

T̂Φ(t)(M+
s,1(S)) ⊂M+

s,1(S)

and
TΦ(t)(M+

s (S)) ⊂M+
s (S).

In the following proposition we will show that this also holds if S is not
complete.

Proposition 5.6. Let t ≥ 0. Then TΦ(t) and T̂Φ(t) leave Ms(S) and Ms,1(S)
invariant, respectively. Moreover, they are given by (1).

Proof. Let µ ∈Ms(S). Then for all f ∈ BL(S) and t ≥ 0 we have:

TΦ(t)(µ)(f) = µ(SΦ(t)f) =
∫
f ◦ Φtdµ =

∫
fd(µ ◦ Φ−1

t ),

where µ◦Φ−1
t is again a Borel measure, since Φt is continuous on S. Hence TΦ(t)(µ)

is represented by the measure µ ◦ Φ−1
t . We now want to show that µ ◦ Φ−1

t is a
separable measure. Since µ is separable, there is a separable Borel measurable
subset E of S, such that |µ|(S\E) = 0. By continuity of Φt, Φt(E) is separable,
and so is Φt(E). For any Borel measurable A ⊂ S\Φt(E), µ◦Φ−1

t (A) = 0. Therefore
|µ ◦ Φ−1

t |(S\Φt(E)) = 0, so µ ◦ Φ−1
t is separable.

Similarly we get that for µ ∈ Ms,1(S) and t ≥ 0, T̂Φ(t)(µ) is represented by
the separable Borel measure µ ◦ Φ−1

t . Then, by Lemma 3.3, µ ◦ Φ−1
t ∈ M1(S),

hence in Ms,1(S). So T̂Φ(t)(Ms,1(S)) ⊂Ms,1(S). �

Corollary 5.7. Let t ≥ 0. Then TΦ(t) and T̂Φ(t) leave M+
s (S) and M+

s (S) invari-
ant, respectively.

So we see that the strongly continuous semigroup (TΦ(t))t≥0 on SBL, when
restricted to Ms(S), is the semigroup defined by (1). This gives us the proper
functional analytic framework that will enable us to study (2).
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