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c© 2008 Birkhäuser Verlag Basel/Switzerland

Integral Equations
and Operator Theory

Metric Properties of Projections in
Semi-Hilbertian Spaces

M. Laura Arias, Gustavo Corach and M. Celeste Gonzalez

To our teacher Mischa Cotlar, in memoriam

Abstract. Several results on norms of projections on a Hilbert space H are ex-
tended for the operator seminorm defined by a positive semidefinite operator
A ∈ L(H)+.

Mathematics Subject Classification (2000). Primary 46C05; Secondary 47A05,
47A30.

Keywords. Projections, semi inner products, compatibility, symmetrizable.

1. Introduction

In this paper, H denotes a Hilbert space, L(H) is the algebra of bounded linear
operators on H and Q is the subset of L(H) of all projections (i.e. idempotents).
Given a closed subspace S of H, QS denotes the subset of Q of all projections with
image S. The topology and differential geometry of Q and P = {P ∈Q : P ∗ = P}
have been studied in detail in many places [3], [13], [9], [15], [29], [30], [32], [37],
[38] and [42]. This paper is devoted to the study of several metrical properties of
Q and QS when an additional seminorm is considered on H. Let PS ∈QS denote
the unique Hermitian projection with image S. The following properties are well
known:
(I) For all 0 �= Q ∈ Q it holds ‖Q‖ = 1 if and only if Q∗ = Q;

(II) For every non trivial Q ∈ Q it holds ‖Q‖ = ‖I − Q‖;
(III) Given closed subspaces S and T of H it holds ‖PS − PT ‖ ≤ ‖QS − QT ‖ for

every QS ∈ QS and QT ∈ QT ;
(IV) For all closed subspaces S and T of H it holds ‖PS−PT ‖ ≤ 1. Equality holds

if and only if PS and PT commute;
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(V) For all closed subspaces S and T of H it holds ‖PS − PT ‖ = max { ‖PS(I −
PT )‖, ‖PT (I − PS)‖ };

(VI) For every Q ∈Q it holds ‖Q‖ =
1

sin θ
if θ ∈ [0, π/2] is the angle such that

cos θ = sup{| 〈ξ, η〉 | : ξ ∈ R(Q), η ∈ N(Q) and ‖ξ‖ = ‖η‖ = 1}.
Here R(Q) is the image of the projection Q and N(Q) is its nullspace. Proofs of
properties (I), (II) and (IV) can be found in textbooks like [8] and [25]. A proof
of property (V) can be found in the book by Akhiezer and Glazman [1]. Property
(III) is due to T. Kato [[25], Th. 6.35, p. 58] (see also M. Mbektha [[33], 1.10]).
Property (VI) is due to V. Ljance [28]. Proofs of it can be found in the monograph
of Gokhberg and Krein [22] and in the papers by V. Ptak [35], J. Steinberg [40],
D. Buckholtz [6] and I. Ipsen and C. Meyer [24] (for finite dimensional spaces).
The main goal of this paper is to study these properties if we consider an additional
seminorm ‖ . ‖A, defined by a positive semidefinite operator A ∈ L(H) by ‖ξ‖2

A =
〈Aξ, ξ〉, ξ ∈ H, and we replace the operator norm in formulas (I) to (VI) by the
quantity

‖T ‖A = sup{‖Tξ‖A : ‖ξ‖A = 1}.
Of course, many difficulties arise. For instance, it may happen that ‖T ‖A = +∞
for some T ∈ L(H). Besides, there is no obvious choice for an adjoint operation
defined by A. In order to describe our results, we need to introduce a certain
relationship between positive operators and closed subspaces called compatibility
in the recent literature. We say that a positive semidefinite operator A on H and
a closed subspace S of H are compatible if there exists a projection Q ∈ QS such
that AQ is Hermitian (or symmetric). This means that 〈Qξ, η〉A = 〈ξ, Qη〉A for all
ξ, η ∈ H where 〈ξ, η〉A = 〈Aξ, η〉. In this case, it can be proved that H = S+(AS)⊥

and the projection PA,S onto S with nullspace (AS)⊥�S∩N(A) satisfies APA,S =
P ∗

A,SA. This operator, PA,S , has similar, but not identical, metric properties like
the orthogonal projection PS . For example, if the pair (A,S) is compatible, then
for every ξ ∈ H it holds that ‖(I − PA,S)ξ‖A = dA(ξ,S) = inf{‖ξ − η‖A : η ∈ S}.
See [12] for its proof. Under convenient hypothesis of compatibility we are able
to prove properties analogous to (I)-(VI) for the operator seminorm ‖ . ‖A and a
convenient adjoint operation.
The subject of operators which are symmetric under a certain inner product is
quite old. Papers by M.G. Krein [26] in 1937 and W. T. Reid [36] in 1951, with
references to earlier works, studied many spectral properties of the so-called sym-
metrizable operators. Later, P. Lax [27] and J. Dieudonné [17] studied conditions
for the symmetrizability of operators. In more recent times, Z. Sebestyén [39],
B.A. Barnes [4], S. Hassi, Z. Sebestyén and H. de Snoo [23] and P. Cojuhari and
A. Gheondea [7] have found many interesting results and applications of various
notions of symmetrizability.
The contents of the paper are the following. In section 2 we collect some facts
about Moore-Penrose pseudoinverses, compatibility between positive operators
and closed subspaces, and a brief description of a result by R. G. Douglas [19]
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which plays a relevant role in this paper. Douglas theorem (sometimes called range
inclusion theorem) gives necessary and sufficient conditions for the existence and
uniqueness of solution for equations of the type AX = TA, with an additional
condition on the range of X .
In section 3 we explore the existence of A-adjoints for projections. If a projection
Q admits an A-adjoint, then we define Q� as the unique solution of the problem

AX = Q∗A, R(X) ⊆ R(A).

Properties of Q� are described.
Sections 4 and 5 contain the main results of the paper, i.e., the extension of prop-
erties (I) to (VI) above, as follows

(I′) every projection Q such that AQ = Q∗A �= 0 satisfies ‖Q‖A = 1;
(II′) equality ‖Q‖A = ‖I − Q‖A holds for any projection Q such that R(Q) ∩

R(A) �= {0} and R(I − Q) ∩ R(A) �= {0};
(III′) if (A,S), (A, T ) are compatible pairs, then for every QS ∈ QS and QT ∈

QT which admit adjoint respect to 〈 , 〉A it holds

‖PA,S − PA,T ‖A ≤ ‖QS − QT ‖A;

(III′′) if S = S1 + S2 and T = T1 + T2, where S1, T1 ⊆ R(A) and S2, T2 ⊆ N(A)
and the pairs (A,S1) and (A, T1) are compatible, then, for every QS ∈
QS ∩ LA(H) and QT ∈ QT ∩ LA(H) it holds

‖PA,S − PA,T ‖A ≤ ‖QS − QT ‖A,

where LA(H) = {T ∈ L(H) : ‖T ‖A < ∞};
(IV′) if A is compatible with the closed subspaces S and T , then ‖PA,S−PA,T ‖A ≤

1 and equality holds if P �
A,S commutes with P �

A,T ;
(V′) if A is compatible with the closed subspaces S and T , then ‖PA,S−PA,T ‖A =

max{ ‖PA,S(I − PA,T )‖A, ‖PA,T (I − PA,S)‖A };
(VI′) if (A,S) and (A, T ) are compatible pairs and S ∩R(A) �= {0}, then it holds

‖QS//T ‖A =
1

sin θA
, where θA ∈ [0, π/2] is the angle such that cos θA =

sup{| 〈ξ, η〉A | : ξ ∈ S, η ∈ T and ‖ξ‖A = ‖η‖A = 1}.

2. Preliminaries

Throughout H denotes a complex Hilbert space. L(H) is the space of bounded
linear operators on H, L(H)+ denotes the cone of all positive operators of L(H),
i.e., L(H)+ = {A ∈ L(H) : 〈Aη, η〉 ≥ 0 for all η ∈ H}, Gl(H) is the group of
invertible operators of L(H) and Gl(H)+ = Gl(H)∩L(H)+. For every T ∈ L(H),
its range is denoted by R(T ), its nullspace by N(T ) and its adjoint by T ∗. S and
T are closed subspaces of H and S � T = S ∩ T ⊥. In this paper, given closed
subspaces S, T of H, by L(S, T ) we denote the subspace {T ∈ L(H) : T (S⊥) =
{0} and T (S) ⊆ T }. If H is decomposed as a direct sum H = S

.
+ T , where S
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and T are closed subspaces of H, then the unique projection with range S and
nullspace T is denoted by QS//T .

2.1. Moore-Penrose pseudoinverse

Recall that given T ∈ L(H), the Moore-Penrose inverse of T , denoted by T †, is
defined as the unique linear extension of T̃−1 to D(T †) := R(T ) + R(T )⊥ with
N(T †) = R(T )⊥, where T̃ is the isomorphism T |N(T )⊥ : N(T )⊥ −→ R(T ). It holds
that T † is the unique solution of the four “Moore-Penrose equations”:

TXT = T, XTX = X, XT = PN(T )⊥ and TX = PR(T ) |D(T †).

T † has closed graph and T † is bounded if and only if R(T ) is closed. Proofs of
these facts can be found in many places, e.g. the books [34], [5] and [20]. Observe
that, since T † has closed graph, then for every B ∈ L(H) such that R(B) ⊆ D(T †)
it holds that T †B is bounded. In the next proposition we collect without proof
some properties of T † that we will need in this work.

Proposition 2.1. Let T ∈ L(H).
1. If T = T ∗, then (T †)∗ = T †.
2. If T ∈ L(H)+, then T † = (T 1/2)†(T 1/2)†.

A bounded linear densely defined operator T can be uniquely extended to L(H);
its unique extension will be denoted by T . Clearly, ‖T‖ = ‖T ‖. It can be checked
that T = (T ∗)∗. Then, as a consequence, T ∗ = T

∗
= T ∗ and if T = R∗R, then

T = R
∗
R.

2.2. A-selfadjoint projections and compatibility

Any A ∈ L(H)+ defines a positive semidefinite sesquilinear form:

〈 , 〉A : H×H → C, 〈ξ, η〉A = 〈Aξ, η〉 .

By ‖ . ‖A we denote the seminorm induced by 〈 , 〉A , i.e., ‖ξ‖A = 〈ξ, ξ〉1/2
A . Ob-

serve that ‖ξ‖A = 0 if and only if ξ ∈ N(A). Then ‖ . ‖A is a norm if and only
if A is an injective operator. Moreover, 〈 , 〉A , induces a seminorm on a subset
of L(H). Namely, given T ∈ L(H), if there exists a constant c > 0 such that
‖Tω‖A ≤ c‖ω‖A for every ω ∈ R(A) it holds

‖T ‖A = sup
ω∈R(A)

ω �=0

‖Tω‖A

‖ω‖A
< ∞.

It is straightforward that

‖T ‖A = sup{| 〈Tξ, η〉A | : ξ, η ∈ H and ‖ξ‖A ≤ 1 ‖η‖A ≤ 1}.
From now on we will denote

LA(H) = {T ∈ L(H) : ‖T ‖A < ∞}.
It can be seen that LA(H) is not a subalgebra of L(H). In [4] it is proved that if
A ∈ L(H)+ is injective, then T ∈ LA(H) if and only if A1/2TA−1/2 is bounded. In
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the next proposition we extend this result for a not necessary injective operator
A ∈ L(H)+. Before that we state the next theorem of R. G. Douglas (for its proof
see [19] or [21]) which will be used frequently during these notes.

Theorem (Douglas). Let A, B ∈ L(H). The following conditions are equivalent:
1. R(B) ⊆ R(A).
2. There exists a positive number λ such that BB∗ ≤ λAA∗.
3. There exists C ∈ L(H) such that AC = B.

If one of these conditions holds there exists an unique operator D ∈ L(H) such
that AD = B and R(D) ⊆ R(A∗). Furthermore, N(D) = N(B). Such D is called
the reduced solution or Douglas solution of AX = B.

Note that if the equation AX = B has solution, then A†B is the reduced solu-
tion. Indeed, since R(B) ⊆ R(A) ⊆ D(A†), A†B ∈ L(H). Moreover, AA†B =
PR(A)|D(A†)B = B and R(A†B) ⊆ R(A).

Proposition 2.2. Let A ∈ L(H)+ and T ∈ L(H). Then the following conditions are
equivalent:

1. T ∈ LA(H).
2. A1/2T (A1/2)† is a bounded linear operator.
3. R(A1/2T ∗A1/2) ⊆ R(A).

Moreover, if one of these conditions holds, then

‖T ‖A = ‖A1/2T (A1/2)†‖.

Proof. 1⇒2: If T ∈ LA(H), then there exists c > 0 such that ‖Tω‖A ≤ c‖ω‖A for
every ω ∈ R(A). Then, for every ξ ∈ D((A1/2)†) it holds that

‖A1/2T (A1/2)†ξ‖ = ‖T (A1/2)†ξ‖A ≤ ‖T ‖A‖(A1/2)†ξ‖A ≤ ‖T ‖A‖ξ‖.
Therefore, A1/2T (A1/2)† is bounded and ‖A1/2T (A1/2)†‖ ≤ ‖T ‖A.

2⇒1: Let A1/2T (A1/2)† be a bounded linear operator. Then, for every ξ ∈ R(A)
we have that

‖Tξ‖A = ‖TPR(A)ξ‖A = ‖A1/2T (A1/2)†A1/2ξ‖

≤ ‖A1/2T (A1/2)†‖‖A1/2ξ‖
= ‖A1/2T (A1/2)†‖‖ξ‖A,

i.e., item 2. holds. Moreover, ‖T ‖A ≤ ‖A1/2T (A1/2)†‖.
2⇔3: It is clear that ‖Tξ‖A ≤ c‖ξ‖A for every ξ ∈ R(A) if and only if ‖A1/2Tξ‖ ≤
c‖A1/2ξ‖ for every ξ ∈ R(A1/2), i.e. if and only if ‖A1/2TA1/2η‖ ≤ c‖Aη‖ for every
η ∈ H. Now, by Douglas theorem, this is equivalent to R(A1/2T ∗A1/2) ⊆ R(A). �

By Proposition 2.2, if A ∈ L(H)+ has closed range, then LA(H) = L(H) because
(A1/2)† is bounded. But, as the next example shows, if A has not closed range,
then LA(H) � L(H) .
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Example 1. Let A ∈ L(H)+ with non closed range and let µ ∈ R(A1/2) \ R(A).
Then, there exists η ∈ R(A) \R(A1/2) such that µ = A1/2η. Now, let ξ ∈ R(A1/2)
and S a closed subspace of H such that H = span{ξ}+span{η}+S. Then, define
T : H → H by Tξ = η, T η = η and T (S) = {0}. Thus, T ∈ L(H). Moreover, T ∈Q.
Then, T ∗ ∈Q but T ∗ /∈ LA(H). In fact, µ = A1/2η = A1/2Tξ ∈ R(A1/2TA1/2)
and µ /∈ R(A). So, R(A1/2TA1/2) �⊆ R(A), i.e., T ∗ /∈ LA(H) by Proposition 2.2.

A bounded linear operator W ∈ L(H) is called an A-adjoint of T ∈ L(H) if

〈Tξ, η〉A = 〈ξ, Wη〉A for every ξ, η ∈ H,

or, which is equivalent, if W satisfies the equation AW = T ∗A. The operator T
is said A-selfadjoint if AT = T ∗A. The existence of an A-adjoint operator is not
guaranteed. In fact, by Douglas theorem, T ∈ L(H) admits an A-adjoint operator
if and only if R(T ∗A) ⊆ R(A). We shall denote by LA(H) the subalgebra of L(H)
consisting of such operators, i.e,

LA(H) = {T ∈ L(H) : R(T ∗A) ⊆ R(A)}.

Again, by Douglas theorem, it is easy to see that

LA1/2(H) = {T ∈ L(H) : ∃ c > 0 ‖Tξ‖A ≤ c‖ξ‖A ∀ ξ ∈ H}.

The inclusions LA(H) ⊆ LA1/2(H) ⊆ LA(H) hold. The first of them was proved
in Theorem 5.1 of [23], the second one follows from Proposition 2.2. Observe that
these inclusions assure that ‖T ‖A is finite for every T which admits an A-adjoint.
If T ∈ LA(H), then there exists a distinguished A-adjoint operator of T , namely,
the reduced solution of equation AX = T ∗A. We denote this operator by T �.
Therefore T � = A†T ∗A and its main properties are

AT � = T ∗A, R(T �) ⊆ R(A) and N(T �) = N(T ∗A).

Observe that if W is an A-adjoint of T , then T � = PR(A)W . In [2] we have
studied some properties of the � operation which are relevant for studying A-
partial isometries, i.e. operator which behave as partial isometries with respect to
〈 , 〉A. We add now a few properties.

Proposition 2.3. Let A ∈ L(H)+ and T ∈ LA(H). Then

1. ‖T ‖A = ‖T �‖A = ‖T �T ‖1/2
A .

2. ‖W‖A = ‖T �‖A for every W ∈ L(H) which is an A-adjoint of T .
3. If W ∈ LA(H), then ‖TW‖A = ‖WT ‖A.
4. ‖T �‖ ≤ ‖W‖ for every W ∈ L(H) which is an A-adjoint of T . Nevertheless,

T � is not in general the unique A-adjoint of T that realizes the minimal norm.
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Proof.
1. It is easy to check that A1/2T (A1/2)†

∗
= A1/2(A†T ∗A)(A1/2)†. Then

‖T ‖A = ‖A1/2T (A1/2)†‖ = ‖A1/2T (A1/2)†‖ = ‖A1/2T (A1/2)†
∗
‖

= ‖A1/2(A†T ∗A)(A1/2)†‖ = ‖A1/2(A†T ∗A)(A1/2)†‖
= ‖A1/2T �(A1/2)†‖ = ‖T �‖A.

On the other hand,

‖T �T ‖A = ‖A1/2T �T (A1/2)†‖ = ‖A1/2A†T ∗AT (A1/2)†‖
= ‖(A1/2)†T ∗AT (A1/2)†‖ = ‖(A1/2)†T ∗AT (A1/2)†‖
= ‖(A1/2T (A1/2)†)

∗
(A1/2T (A1/2)†)‖ = ‖A1/2T (A1/2)†‖2

= ‖A1/2T (A1/2)†‖2 = ‖T ‖2
A.

2. If W ∈ L(H) is an A-adjoint operator of T , then W = T � + Z, where Z is a
solution of the homogeneous equation AX = 0. Then ‖W‖A = ‖A1/2W (A1/2)†‖ =
‖A1/2(T � + Z)(A1/2)†‖ = ‖A1/2T �(A1/2)†‖ = ‖T �‖A.
3. Note that

‖TW‖A = ‖(TW )�‖A = ‖W �T �‖A = ‖A1/2W �T �(A1/2)†‖
= ‖A1/2W �(A1/2)†A1/2T �(A1/2)†‖
= ‖A1/2T �(A1/2)†A1/2W �(A1/2)†‖
= ‖T �W �‖A = ‖(WT )�‖A

= ‖WT ‖A.

4. Let W ∈ L(H) be an A-adjoint operator of T . Then W = T � + Z, where
AZ = 0. Let ξ ∈ H with ‖ξ‖ = 1. Since R(T �) ⊆ R(A) and R(Z) ⊆ N(A) we get
‖Wξ‖2 = ‖T �ξ‖2 + ‖Zξ‖2. Then ‖T �ξ‖2 ≤ ‖Wξ‖2 and so ‖T �‖ ≤ ‖W‖. Now, let

A =
(

2 0
0 0

)
∈ M2(R)+ and T =

(
1 0
1 1

)
∈ M2(R). It is easy to check that T

admits A-adjoint operators and that T � =
(

1 0
0 0

)
. Furthermore, observe that

the identity matrix I is an A-adjoint of T , ‖T �‖ = ‖I‖ = 1 and T � �= I. �

Given A ∈ L(H)+ and a closed subspace S, we denote by P(A,S) the set of
A-selfadjoint projections with fixed range S:

P(A,S) = {Q ∈ QS : AQ = Q∗A}.
With a fixed A ∈ L(H)+ the set P(A,S) can be empty, or have one element (for
example if A ∈ Gl(H)+) or have infinitely many elements. If P(A,S) �= ∅, then
the pair (A,S) is said to be compatible. For a fuller treatment on the theory of
compatibility see [10], [11], [13] and [31]. Given Q ∈ QS , Q is A-selfadjoint if and
only if 〈Qξ, ξ〉A ≥ 0 for all ξ ∈ H. If the pair (A,S) is compatible, the unique
element in P(A,S) with nullspace (AS)⊥ �N , where N = N(A) ∩ S, is denoted
by PA,S . This element has minimal norm in P (A,S). Nevertheless, PA,S is not in
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general the unique Q ∈ P(A,S) that realizes the minimal norm. See [10] Theorem
3.5 for its proof. The next proposition provides a parametrization of P(A,S) and
it expresses the element PA,S as the solution of certain Douglas-type equations.
For its proof the reader is referred to [11] (section 3), [31] (section 6).

Proposition 2.4. Let A ∈ L(H)+ such that the pair (A,S) is compatible and N =
N(A) ∩ S. If Q is the reduced solution of the equation (PSAPS)X = PSA, then

1. Q = PA,S�N .
2. PA,S = PA,S�N + PN .
3. P(A,S) is an affine manifold that can be parametrized as P(A,S) = PA,S +

L(S⊥,N ). In particular, if N = {0}, then P(A,S) = {PA,S}.

3. The A-adjoint operation � on projections

In this paper, we are mainly interested in how the A-adjoint operation � acts on
A-adjointable projections. We first notice that there is no obvious notion of self-
adjointness: an operator T such that AT = T ∗A could be named A-Hermitian, but
also an operator T ∈ LA(H) such that T � = T. We discuss this problem focusing
in the set of projections. For this, we consider the following subsets of Q:

W = {Q ∈ Q ∩ LA(H) : Q� = Q}
X = {Q ∈ Q ∩ LA(H) : AQ = Q∗A}
Y = {Q ∈ Q ∩ LA(H) : (Q�)2 = Q�}
Z = Q ∩ LA(H).

Proposition 3.1. The next inclusions hold: W � X � Y = Z.

Proof. Let Q ∈ W , then Q� = Q. Thus, Q∗A = AQ� = AQ and so Q ∈ X . On

the other hand, consider A =
(

1 1
1 1

)
∈ M2(C)+ and Q =

(
1 1
0 0

)
. Then

it is easy to check that Q ∈ X , but Q /∈ W . It is immediate that X ⊆ Z. In

order to see that this is a strict inclusion consider A =
(

1 1
1 2

)
∈ M2(C)+

and Q =
(

1 2
0 0

)
. Since A is invertible then R(Q∗A) ⊆ R(A), i.e., Q ∈ Z,

but Q /∈ X . Finally, let Q ∈ Z, i.e, Q2 = Q and there exists Q�. Let us show
that that (Q�)2 = Q�. Indeed, (Q�)2 = A†Q∗AA†Q∗A = A†Q∗PR(A)|D(A†)Q

∗A =
A†(Q∗)2A = A†Q∗A = Q�. i.e., Q ∈ Y. The other inclusion is trivial. �

Proposition 3.2. If Q ∈ P(A,S), then:

1. Q� = Q�Q = PR(A)Q = PR(A)PA,S is a projection.
2. I − Q� ∈ P(A, N(PSA)).
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Proof.
1. It is sufficient to prove that Q�Q is the reduced solution of the equation AX =
Q∗A. In fact, AQ�Q = Q∗AQ = (Q∗)2A = Q∗A and R(Q�Q) ⊆ R(Q�) ⊆ R(A).
Therefore, Q�Q = Q�. In order to see that Q� = P

R(A)
PA,S , observe that, by

Proposition 2.4, we get Q = PA,S + Z, where Z ∈ L(S⊥,N ). Therefore, Q� =
A†Q∗A = P

R(A)
Q = P

R(A)
(PA,S + Z) = P

R(A)
PA,S .

2. If Q ∈ P(A,S), then Q� is also an A-selfadjoint projection. On the other hand,
R(I−Q�) = N(Q�) = N(Q∗A) = R(AQ)⊥ = R(APS)⊥ = N(PSA). Then I−Q� ∈
P(A, N(PSA)). �

Remarks 3.3. Considering the subsets defined before, it is clear that if the pair
(A,S) is compatible, then P(A,S) ⊆ X . On the other hand, P(A,S) ∩ W �= ∅ if
and only if S ⊆ R(A) and the pair (A,S) is compatible. In fact, if there exists
Q ∈ P(A,S)∩W , then Q� = Q and so S = R(Q) = R(Q�) ⊆ R(A). Conversely, if
S ⊆ R(A) and (A,S) is compatible, then P �

A,S = PR(A)PA,S = PA,S , i.e. PA,S ∈
P(A,S) ∩W .

4. Identities on the seminorm of projections

In this section we generalize several identities on the norm of projections when the
seminorm induced by A ∈ L(H)+ is considered. We start by establishing an useful
relationship between orthogonal projections and A-selfadjoint projections.

Proposition 4.1. Let A ∈ L(H)+ and Q ∈ L(H) such that S = R(Q) is a closed
subspace of R(A).

1. If Q ∈ QS ∩ LA(H), then A1/2Q(A1/2)† is a projection.
2. The following conditions are equivalent:

(a) Q ∈ P(A,S).
(b) Q ∈ LA(H) and A1/2Q(A1/2)† is an orthogonal projection.

If one of these conditions holds, then ‖Q‖A = ‖A1/2Q(A1/2)†‖ = 1.

Proof.
1. Since Q ∈ QS and S ⊆ R(A) then A1/2Q(A1/2)† is a projection. Futhermore, as
Q ∈ LA(H), by Proposition 2.2, it holds that A1/2Q(A1/2)† is bounded. Therefore
A1/2Q(A1/2)† is a projection of L(H).
2. Let Q ∈ P(A,S). By item 1. it holds that A1/2Q(A1/2)† is a projection. In order
to see that (A1/2Q(A1/2)†)∗ = A1/2Q(A1/2)†, observe that (A1/2Q(A1/2)†)∗ =
(A1/2Q(A1/2)†)∗ ⊃ (A1/2)†Q∗A1/2. Furthermore, since D((A1/2)†Q∗A1/2) = H,
we obtain that (A1/2Q(A1/2)†)∗ = (A1/2)†Q∗A1/2 = (A1/2)†Q∗A1/2|D((A1/2)†) =

A1/2Q(A1/2)† where the last equality holds since AQ = Q∗A.

Conversely, let A1/2Q(A1/2)† be an orthogonal projection. First, it is shown that
that Q is a projection. Since, A1/2Q(A1/2)† is a projection, then A1/2Q(A1/2)†
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is also a projection. Thus, A1/2Q(A1/2)† = (A1/2Q(A1/2)†)2 = A1/2Q2(A1/2)†.
Then, Q(A1/2)† = Q2(A1/2)†, i.e., (Q2−Q)(A1/2)† = 0. Hence, R(A) ⊆ N(Q2−Q),
or which is the same R((Q∗)2−Q∗) ⊆ N(A). Thus, R(((Q∗)2−Q∗)A) ⊆ N(A). On
the other hand, since R(Q∗A) ⊆ R(A), it is easy to prove that R((Q∗)2A) ⊆ R(A).
So, R(((Q∗)2 − Q∗)A) ⊆ R(A). Then, ((Q∗)2 − Q∗)A = 0, i.e., AQ2 = AQ and so
Q2 = Q. It only remains to show that Q is A-selfadjoint. Now, as A1/2Q(A1/2)†

is selfadjoint, it holds A1/2Q(A1/2)† = (A1/2Q(A1/2)†)∗ = (A1/2Q(A1/2)†)∗ =
(A1/2)†Q∗A1/2. Hence, A1/2Q(A1/2)† = (A1/2)†Q∗A1/2|D((A1/2)†) and as a conse-
quence, AQPR(A) = PR(A) |D((A1/2)†)Q

∗A = Q∗A. Now, taking adjoints we get
Q∗A = AQ. Hence Q ∈ P(A,S).
The equality ‖Q‖A = ‖A1/2Q(A1/2)†‖ follows by Proposition 2.2. �

For the seminorm ‖ ‖A, it is not true, in general, that 1 ≤ ‖Q‖A for every Q ∈QS .
See example 2 below.

Proposition 4.2. Let A ∈ L(H)+. If S ∩ R(A) �= {0}, then 1 ≤ ‖Q‖A for every
Q ∈ QS .

Proof. If Q /∈ LA(H), then the assertion is trivial. Now, suppose Q ∈ LA(H). Let

0 �= ξ ∈ S ∩ R(A) and η = A1/2ξ. Then, we get
‖A1/2Q(A1/2)†η‖

‖η‖ =
‖A1/2Qξ‖
‖A1/2ξ‖ =

‖A1/2ξ‖
‖A1/2ξ‖ = 1. Therefore, ‖Q‖A = ‖A1/2Q(A1/2)†‖ ≥ 1. �

In what follows, given A in L(H)+ we shall say that a projection Q is non-trivial
for A if AQ �= 0. Note that if Q ∈ P(A,S), then ‖Q‖A is finite. Moreover, in the
next proposition we show that if Q ∈ P(A,S) is non-trivial for A, then ‖Q‖A = 1.

Proposition 4.3. Let A ∈ L(H)+. If Q ∈ QS is non-trivial for A, then the following
conditions are equivalent:

1. Q ∈ P(A,S) (i.e. Q is A-selfadjoint ).
2. ‖Q‖A = 1 and Q ∈ LA(H).

Proof.
1 ⇒ 2. If Q ∈ P(A,S), then, by Proposition 3.2, Q�Q is a projection. In addition,
R(Q�Q) ⊆ R(A). Then applying Proposition 4.1 we deduce that A1/2Q�Q(A1/2)†
is an orthogonal projection. Moreover, since Q is non-trivial, R(Q) �⊆ N(A) and
so A1/2Q�Q(A1/2)† �= 0. Thus, applying Proposition 2.3, ‖Q‖2

A = ‖Q�Q‖A =
‖A1/2Q�Q(A1/2)†‖2 = ‖A1/2Q�Q(A1/2)†‖2 = 1.
2 ⇒ 1. As R(Q∗A) ⊆ R(A) then Q� is a projection whose range is contained
in R(A). Then, (A1/2Q�(A1/2)†)2 = A1/2Q�(A1/2)† and so A1/2Q�(A1/2)† is a
projection. In addition, as 1 = ‖Q‖A = ‖Q�‖A = ‖A1/2Q�(A1/2)†‖, it follows
that A1/2Q�(A1/2)† is an orthogonal projection. On the other hand, since Q� =
A†Q∗A we get that A1/2Q�(A1/2)† = (A1/2)†Q∗A1/2|D((A1/2)†) is an orthogonal
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projection. Hence, it holds (A1/2)†Q∗A1/2|D((A1/2)†) = ((A1/2)†Q∗A1/2|D((A1/2)†))
∗

and ((A1/2)†Q∗A1/2|D((A1/2)†))∗ ⊃ A1/2Q(A1/2)†. As a consequence, we have that
(A1/2)†Q∗A1/2|D((A1/2)†) = A1/2Q(A1/2)† and so A1/2Q(A1/2)† is an orthogonal

projection. Thus A1/2Q(A1/2)† = (A1/2Q(A1/2)†)∗ ⊃ (A1/2)†Q∗A1/2. Moreover,
since D((A1/2)†Q∗A1/2) = H then A1/2Q(A1/2)† = (A1/2)†Q∗A1/2. In particular,
A1/2Q(A1/2)† = (A1/2)†Q∗A1/2|D((A1/2)†). So AQ(A1/2)† = Q∗A1/2|D((A1/2)†) and
then AQ = Q∗A. Thus Q ∈ P(A,S). �

Corollary 4.4. Let A ∈ L(H)+ and (A,S) be a compatible pair. If S ∩R(A) �= {0},
then, for every QS ∈ QS it holds

‖PA,S‖A ≤ ‖QS‖A. (4.1)

Proof. Note that ‖PA,S‖A = 1. Therefore, the assertion follows from Proposition
4.2. �

In [[25], Th. 6.35, p. 58] T. Kato proved that ‖PS − PT ‖ ≤ ‖Q1 − Q2‖ for every
Q1 ∈ QS and Q2 ∈ QT (see also M. Mbekhta [[33], 1.10]) . We shall generalize this
property for A-selfadjoint projections and the seminorm induced by A ∈ L(H)+

in three different manners. In Proposition 4.5 the inequality is proved for every
QS , QT ∈ LA(H). In order to obtain this inequality for every QS , QT ∈ Q new
hypotheses on the subspaces S and T are required (Proposition 4.6, Corollary
4.7). The proof of the next proposition follows the same lines that the proof of
[33], Proposition 1.10.

Proposition 4.5. Let A ∈ L(H)+ and (A,S), (A, T ) be compatible pairs. Then, for
every QS ∈ QS ∩ LA(H) and QT ∈ QT ∩ LA(H) it holds

‖PA,S − PA,T ‖A ≤ ‖QS − QT ‖A.

Proof. First observe that QSPA,S = PA,S , PA,SQS = QS , QT PA,T = PA,T and
PA,T QT = QT . From this it holds that

(I − QS)(PA,S − PA,T ) = (QS − QT )PA,T ,

(PA,S − PA,T )QS = (I − PA,T )(QS − QT )

and as consequence ((PA,S −PA,T )QS)� = ((I −PA,T )(QS −QT ))�. On the other
hand, simple computations show that ((I − PA,T )(QS − QT ))� = (Q�

S − Q�
T )(I −

PA,T ) and ((PA,S − PA,T )QS)� = Q�
S(PA,S − PA,T ).

Now, if ξ ∈ H, then it is easy to check that

‖ξ‖2
A + ‖(QS − Q�

S)ξ‖2
A = ‖(I − QS)ξ‖2

A + ‖Q�
Sξ‖2

A.
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Therefore, if η ∈ R(A) and we define ξ = (PA,S − PA,T )η:

‖(PA,S − PA,T )η‖2
A ≤ ‖(PA,S − PA,T )η‖2

A + ‖(QS − Q�
S)(PA,S − PA,T )η‖2

A

= ‖(I − QS)(PA,S − PA,T )η‖2
A + ‖Q�

S(PA,S − PA,T )η‖2
A

= ‖(QS − QT )PA,T η‖2
A + ‖(Q�

S − Q�
T )(I − PA,T )η‖2

A

≤ ‖QS − QT ‖2
A(‖PA,T η‖2

A + ‖(I − PA,T )η‖2
A)

= ‖QS − QT ‖2
A‖η‖2

A.

So, ‖PA,S − PA,T ‖A ≤ ‖QS − QT ‖A. �

Proposition 4.6. Let A ∈ L(H)+ and S, T ⊆ R(A). If the pairs (A,S) and (A, T )
are compatible, then, for every QS ∈ QS ∩LA(H) and QT ∈ QT ∩LA(H) it holds

‖PA,S − PA,T ‖A ≤ ‖QS − QT ‖A. (4.2)

Proof. Since the subspaces S, T ⊆ R(A), it holds that Q1 = A1/2QS(A1/2)† and
Q2 = A1/2QT (A1/2)† are projections with the same range as A1/2PA,S(A1/2)† and
A1/2PA,T (A1/2)†, respectively. On the other hand, by Proposition 4.1, it holds that
A1/2PA,S(A1/2)† and A1/2PA,T (A1/2)† are orthogonal projections. Therefore,

‖PA,S − PA,T ‖A = ‖A1/2(PA,S − PA,T )(A1/2)†‖
= ‖A1/2PA,S(A1/2)† − A1/2PA,T (A1/2)†‖
≤ ‖A1/2QS(A1/2)† − A1/2QT (A1/2)†‖
= ‖A1/2QS(A1/2)† − A1/2QT (A1/2)†‖
= ‖QS − QT ‖A

where the inequality holds by [[25], p. 58]. �

Corollary 4.7. Let A ∈ L(H)+ and S, T ⊆ H such that S = S1 + S2 and T =
T1 + T2, where S1, T1 ⊆ R(A) and S2, T2 ⊆ N(A). If the pairs (A,S1) and (A, T1)
are compatible, then, for every QS ∈ QS ∩LA(H) and QT ∈ QT ∩LA(H) it holds

‖PA,S − PA,T ‖A ≤ ‖QS − QT ‖A.

Proof. Observe that S1 and S2 are orthogonal subspaces, then every projection
QS can be decomposed as QS1 + QS2 where QS1 = PS1QS and QS2 = PS2QS .
Furthermore, since S2 ⊆ N(A) then PA,S = PA,S1 + PS2 . Then,

‖PA,S − PA,T ‖A = ‖A1/2(PA,S1 − PA,T1)(A
1/2)†‖

= ‖A1/2PA,S1(A1/2)† − A1/2PA,T1(A1/2)†‖
≤ ‖A1/2QS1(A1/2)† − A1/2QT1(A1/2)†‖
= ‖A1/2QS1(A

1/2)† − A1/2QT1(A
1/2)†‖

= ‖A1/2(QS1 + QS2)(A
1/2)† − A1/2(QT1 + QT2)(A

1/2)†‖
= ‖QS − QT ‖A. �
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As the next example shows, a naive extension of Kato’s theorem is false. Our
results 4.5, 4.6 and 4.7 offer different additional hypothesis which guarantee the
conclusion.

Example 2. Consider H = R2, S = span{(1, 1)}, T = span{(−1, 2)} and A =(
2 1
1 1/2

)
∈ L(R2)+. Therefore R(A) = span{(2, 1)} and S does not satisfy

the condition of Corollary 4.7. Moreover, QT =
{(

−ξ −1/2(ξ + 1)
2ξ ξ + 1

)
, ξ ∈ R

}

and QS =
{(

1/2(1 + ξ) 1/2(1− ξ)
1/2(1 + ξ) 1/2(1− ξ)

)
, ξ ∈ R

}
. It is easy to check that PA,S =(

2/3 1/3
2/3 1/3

)
and PA,T =

(
1/5 −2/5
−2/5 4/5

)
. Now, if we take QS =

(
0 1
0 1

)

and QT =
(

0 −1/2
0 1

)
, then QS does not admit an A-adjoint operator, ‖PA,S−

PA,T ‖A = 1 and ‖QS‖A = ‖QS − QT ‖A = 0.6.

The following lemma shows that in Corollary 4.4, Proposition 4.5, Corollary 4.7
and Proposition 4.10, the elements PA,S and PA,T can be replaced for any element
of P(A,S) and P (A, T ) respectively.

Lemma 4.8. Let A ∈ L(H)+. If (A,S) and (A, T ) are compatible pairs, then

‖Q1 − Q2‖A = ‖PA,S − PA,T ‖A

for every Q1 ∈ P(A,S) and Q2 ∈ P(A, T ).

Proof. By Propositions 2.3 and 3.2 it holds that ‖Q1 − Q2‖A = ‖Q�
1 − Q�

2‖A =
‖PR(A)PA,S − PR(A)PA,T ‖A = ‖PA,S − PA,T ‖A. �

Given a non trivial projection Q in L(H), i.e., one which is different from 0 and I,
it holds ‖Q‖ = ‖I−Q‖. In [41] different proofs of this fact are collected. In the next
proposition we generalize this identity for the seminorm induced by A ∈ L(H)+.
The proof we present is similar to the one due to Krainer presented in [41].

Proposition 4.9. Let A ∈ L(H)+. Therefore, for every Q ∈ QS such that R(Q) ∩
R(A) �= {0} and R(I − Q) ∩ R(A) �= {0} it holds

‖Q‖A = ‖I − Q‖A.

Proof. Observe that by Proposition 4.2, the conditions R(Q) ∩ R(A) �= {0} and
R(I − Q) ∩ R(A) �= {0} imply that ‖Q‖A ≥ 1 and ‖I − Q‖A ≥ 1. Let ξ ∈ H
such that ‖ξ‖A = 1. Define η = Qξ and µ = (I − Q)ξ. Then ξ = η + µ. Let
us show that ‖Qξ‖A ≤ ‖I − Q‖A. If η ∈ N(A), then ‖Qξ‖A = 0 and so the
inequality holds. If µ ∈ N(A), then ‖Qξ‖A = 1 and so the inequality holds.
Consider η, µ /∈ N(A) and define ω = η̃ + µ̃ where η̃ = ‖µ‖A

‖η‖A
η and µ̃ = ‖η‖A

‖µ‖A
µ.

Then ‖ω‖2
A = ‖η̃‖2

A+‖µ̃‖2
A+2Re 〈η̃, µ̃〉A = ‖η‖2

A+‖µ‖2
A+2Re 〈η, µ〉A = ‖ξ‖2

A = 1.
Therefore, ‖Qξ‖A = ‖η‖A = ‖µ̃‖A = ‖(I − Q)ω‖A ≤ ‖I − Q‖A. Thus, ‖Q‖A ≤
‖I − Q‖A. The other inequality holds by symmetry. �
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The conditions R(Q) ∩ R(A) �= {0} and R(I − Q) ∩ R(A) �= {0} in the above
Proposition are necessary. Indeed, if Q = PN(A), then I − Q = PR(A) and so
‖Q‖A = 0 and ‖I − Q‖A = 1.
In [1] § 34, properties (IV) and (V) enunciated in the introduction are proved.
They where first proved by M. G. Krein, M. A. Krasnoselski and B. Sz.-Nagy. We
extend now these facts for A-selfadjoint projections and the operator seminorm
induced by A, with convenient compatibility hypothesis.

Proposition 4.10. Let A ∈ L(H)+ such that the pairs (A,S) and (A, T ) are com-
patible. Then:
(a) ‖PA,S − PA,T ‖A ≤ 1;
(b) If P �

A,S and P �
A,T commute, then ‖PA,S − PA,T ‖A = 1;

(c) ‖PA,S − PA,T ‖A = max { ‖PA,S(I − PA,T )‖A, ‖PA,T (I − PA,S)‖A }.

Proof. By Proposition 3.1, the element P �
A,S is an A-selfadjoint projection. Fur-

thermore, R(P �
A,S) ⊆ R(A). Therefore, by Proposition 4.1, we get that P1 =

A1/2P �
A,S(A1/2)† is an orthogonal projection. Analogously, P2 = A1/2P �

A,T (A1/2)†
is an orthogonal projection. By the above remarks,

‖PA,S − PA,T ‖A = ‖P �
A,S − P �

A,T ‖A

= ‖A1/2(P �
A,S − P �

A,T )(A1/2)†‖

= ‖A1/2P �
A,S(A1/2)† − A1/2P �

A,T (A1/2)†‖
= ‖P1 − P2‖

and so, by (IV), ‖PA,S − PA,T ‖A ≤ 1; this proves (a).
It is easy to check that if P �

A,S and P �
AT commute, then P1 and P2 commute.

Therefore, applying (IV), ‖PA,S − PA,T ‖A = ‖P1 − P2‖ = 1, which proves (b).
For the proof of (c) observe that

‖PA,S(I − PA,T )‖A = ‖(I − PA,T )�P �
A,S‖A = ‖(PR(A) − P �

A,T )P �
A,S‖A

= ‖(I − P �
A,T )P �

A,S‖A = ‖A1/2(I − P �
A,T )P �

A,S(A1/2)†‖

= ‖A1/2(I − P �
A,T )P �

A,S(A1/2)†‖ = ‖(I − P2)P1‖
= ‖P1(I − P2)‖.

Analogously, ‖PA,T (I − PA,S)‖A = ‖P2(I − P1)‖. On the other hand, ‖PA,S −
PA,T ‖A = ‖P1 − P2‖, by the proof of (b). Then the assertion follows applying
(V). �

5. Angles and seminorm of projections

In [28], V. Ljance proved that if H is decomposed as H = S + T , then the norm
of the projection QS//T equals 1/ sin θ, where θ ∈ [0, π/2] is the angle between
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the subspaces S and T introduced by Dixmier in [18]. Proof of this theorem can
be found in the papers by Ptak [35], Steinberg [40], Buckholtz [6] and Ipsen and
Meyer [24] (for finite dimensional spaces).
As a final result, we extend Ljance’s theorem for the A-seminorm, with a convenient
definition of angle between subspaces depending on the semi-inner product 〈 , 〉A.
First, recall that given two closed subspaces S and T of H the Dixmier’s angle
between them is the angle θ(S, T ) ∈ [0, π

2 ] whose cosine is defined by

cos θ(S, T ) = sup{| 〈ξ, η〉 | : ξ ∈ S, η ∈ T and ‖ξ‖ ≤ 1 ‖η‖ ≤ 1}.
Note that, even though if S and T are not closed subspaces, then the angle between
them can be also defined as above. Moreover, it holds cos θ(S, T ) = cos θ(S, T ). It
is well known that cos θ(S, T ) = ‖PSPT ‖ (see [16]).

Definition 5.1. Let A ∈ L(H)+. The A-angle between two closed subspaces S and
T is the angle θA(S, T ) ∈ [0, π

2 ] whose cosine is defined by

cos θA(S, T ) = sup{| 〈ξ, η〉A | : ξ ∈ S, η ∈ T and ‖ξ‖A ≤ 1 ‖η‖A ≤ 1}.

Observe that 0 ≤ cos θA(S, T ) ≤ 1. Furthermore, it holds that cos θA(S, T ) =
cos θ(A1/2(S), A1/2(T )).

Proposition 5.2. Let A ∈ L(H)+. If (A,S) and (A, T ) are compatible pairs, then
cos θA(S, T ) = ‖PA,SPA,T ‖A.

Proof.

cos θA(S, T ) = sup{| 〈ξ, η〉A | : ξ ∈ S, η ∈ T and ‖ξ‖A ≤ 1 ‖η‖A ≤ 1}
= sup{| 〈PA,Sξ, PA,T η〉A | : ξ, η ∈ H and ‖ξ‖A ≤ 1 ‖η‖A ≤ 1}
= sup{| 〈ξ, PA,SPA,T η〉A | : ξ, η ∈ H and ‖ξ‖A ≤ q ‖η‖A ≤ 1}
= ‖PA,SPA,T ‖A. �

Proposition 5.3. Let A ∈ L(H)+ and S, T closed subspaces of H such that S
.
+

T = H. If (A,S) and (A, T ) are compatible pairs and S ∩ R(A) �= {0}, then for
Q = QS//T it holds

‖Q‖A = (1 − ‖PA,T PA,S‖2
A)−1/2.

Proof. Let ξ ∈ H. Then ξ = PA,T ξ + (I − PA,T )ξ, so Qξ = Q(I − PA,T )ξ and
‖(I−PA,T )ξ‖A ≤ ‖ξ‖A. Therefore, as R(I−PA,T ) = N(PA,T ) = T ⊥A �N , where
N = T ∩N(A), then ‖Q‖A = ‖Q|T ⊥A�N ‖A. Now, consider ξ ∈ (T ⊥A �N )∩R(A).
Thus PA,T Qξ = PA,T ξ + PA,T (Qξ − ξ) = Qξ − ξ and as a consequence ‖Qξ‖2

A =
‖ξ‖2

A +‖Qξ−ξ‖2
A = ‖ξ‖2

A +‖PA,T PA,SQξ‖2
A. Note that, without loss of generality,

we can consider Qξ ∈ R(A). Then we get that 1 =
‖ξ‖2

A

‖Qξ‖2
A

+
‖PA,T PA,SQξ‖2

A

‖Qξ‖2
A

and

from this (
1 − ‖PA,T PA,SQξ‖2

A

‖Qξ‖2
A

)−1/2

=
‖Qξ‖A

‖ξ‖A
.
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Now, since ‖Q‖A = ‖Q|T ⊥A�N ‖A and ‖PA,T PA,S‖A = ‖PA,T PA,S |S‖A the asser-
tion follows. �

Corollary 5.4. Let A ∈ L(H)+ and S, T closed subspaces of H such that S
.
+T = H.

If (A,S) and (A, T ) are compatible pairs and S∩R(A) �= {0}, then for every QS//T
it holds

‖QS//T ‖A =
1

sin θA(T ,S)
.

The following example shows that the condition S ∩ R(A) �= {0} in Proposition
5.3 is not superfluous.

Example 3. Let H = R2, A =
(

2 1
1 1/2

)
∈ L(R2)+ and Q =

(
0 1
0 1

)
.

Then S = R(Q) = span{(1, 1)} and T = N(Q) = span{(1, 0)}. Furthermore,

PA,T =
(

2/3 1/3
2/3 1/3

)
and PA,S =

(
1 1/2
0 0

)
. Now, ‖PA,T PA,S‖A = 1 and

‖Q‖A = 0.6.
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